A novel MP-LSTM method for ship trajectory prediction based on AIS data
The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has received increasing attention because it can predict both time and position information in the future period. However, the existing methods are ei...
Saved in:
Published in | Ocean engineering Vol. 228; p. 108956 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has received increasing attention because it can predict both time and position information in the future period. However, the existing methods are either complex or have low prediction accuracy. In order to overcome the limitations, a physical hypothesis is introduced to balance the complexity and the accuracy. The cubic spline interpolation and historical trajectories are used to realize it. The advantages of TPNet and LSTM are combined in the proposed method and four parts are involved: the AIS data preprocessing method, the solutions of destination point and support point, and the uncertainty analysis. The proposed method is not only easy to implement and suitable for real-time analysis, but also has a high prediction accuracy. The case study on a ferry ship in the Jiangsu section of the Yangtze River indicates the validity of the method.
•Complex mapping relationships and large data requirements for multi-step prediction is solved.•A physical constraint is used in the construction of the model.•An automatic generation method of reference trajectory based on ship motion parameters is proposed.•The effectiveness of the method is verified by making predictions under four different navigation states. |
---|---|
AbstractList | The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has received increasing attention because it can predict both time and position information in the future period. However, the existing methods are either complex or have low prediction accuracy. In order to overcome the limitations, a physical hypothesis is introduced to balance the complexity and the accuracy. The cubic spline interpolation and historical trajectories are used to realize it. The advantages of TPNet and LSTM are combined in the proposed method and four parts are involved: the AIS data preprocessing method, the solutions of destination point and support point, and the uncertainty analysis. The proposed method is not only easy to implement and suitable for real-time analysis, but also has a high prediction accuracy. The case study on a ferry ship in the Jiangsu section of the Yangtze River indicates the validity of the method.
•Complex mapping relationships and large data requirements for multi-step prediction is solved.•A physical constraint is used in the construction of the model.•An automatic generation method of reference trajectory based on ship motion parameters is proposed.•The effectiveness of the method is verified by making predictions under four different navigation states. |
ArticleNumber | 108956 |
Author | Yan, Bo-ran Zhang, Jin-fen Zhu, Yong-sheng He, Yan-kang Gao, Da-wei Yan, Ke |
Author_xml | – sequence: 1 givenname: Da-wei surname: Gao fullname: Gao, Da-wei organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China – sequence: 2 givenname: Yong-sheng surname: Zhu fullname: Zhu, Yong-sheng organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China – sequence: 3 givenname: Jin-fen orcidid: 0000-0003-2703-6663 surname: Zhang fullname: Zhang, Jin-fen email: jinfen.zhang@whut.edu.cn organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Hubei, Wuhan, 430063, China – sequence: 4 givenname: Yan-kang orcidid: 0000-0003-2817-5657 surname: He fullname: He, Yan-kang organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Hubei, Wuhan, 430063, China – sequence: 5 givenname: Ke surname: Yan fullname: Yan, Ke organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China – sequence: 6 givenname: Bo-ran surname: Yan fullname: Yan, Bo-ran organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China |
BookMark | eNqFkN1qAjEQRkOxULV9hZIXWJuf3WwCvahIawWlBe11yCazNYtuJLsIvn0jtje98WqGgfPxzRmhQRtaQOiRkgklVDw1k2DBtNB-TxhhNB2lKsQNGlJZ8qxghRygISFMZZJQeYdGXdcQQoQgfIjmU9yGI-zw6jNbrjcrvId-GxyuQ8Td1h9wH00Dtg_xhA8RnLe9Dy2uTAcOp2W6WGNnenOPbmuz6-Dhd47R19vrZvaeLT_mi9l0mVleyj4TVS7znJfEAROCVjUVlhGinLKKl5bRoioYpQRyqhQ1qaXkwAsQjlagnOVj9HzJtTF0XYRaW9-bc6dU1O80JfosRTf6T4o-S9EXKQkX__BD9HsTT9fBlwsI6bmjh6g766G1yUhMerQL_lrEDwlxgEA |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_110691 crossref_primary_10_1016_j_oceaneng_2023_114536 crossref_primary_10_3390_jmse12060958 crossref_primary_10_1016_j_oceaneng_2024_120144 crossref_primary_10_1088_1742_6596_2131_3_032031 crossref_primary_10_1155_2023_8345603 crossref_primary_10_1016_j_ress_2024_110489 crossref_primary_10_1016_j_oceaneng_2024_119439 crossref_primary_10_3390_s22052058 crossref_primary_10_1016_j_engappai_2023_107062 crossref_primary_10_1111_tgis_13260 crossref_primary_10_1109_TITS_2022_3192574 crossref_primary_10_1016_j_knosys_2021_107413 crossref_primary_10_1016_j_apor_2024_104231 crossref_primary_10_3390_jmse12050769 crossref_primary_10_1109_TNSE_2022_3140529 crossref_primary_10_1016_j_tre_2024_103770 crossref_primary_10_3389_fmars_2023_1199238 crossref_primary_10_1016_j_oceaneng_2023_115870 crossref_primary_10_1016_j_engappai_2023_107625 crossref_primary_10_1016_j_energy_2023_128910 crossref_primary_10_1016_j_oceaneng_2022_110836 crossref_primary_10_1016_j_oceaneng_2024_116939 crossref_primary_10_1016_j_oceaneng_2022_111527 crossref_primary_10_3389_fnbot_2022_1049343 crossref_primary_10_1016_j_ress_2024_110463 crossref_primary_10_3390_electronics14030431 crossref_primary_10_1016_j_oceaneng_2023_114198 crossref_primary_10_1016_j_oceaneng_2024_116694 crossref_primary_10_1109_TSMC_2024_3458469 crossref_primary_10_1061_IJGNAI_GMENG_9026 crossref_primary_10_1017_S0373463323000231 crossref_primary_10_1016_j_oceaneng_2023_114905 crossref_primary_10_3390_s22207713 crossref_primary_10_1016_j_isci_2023_106383 crossref_primary_10_1016_j_oceaneng_2023_114248 crossref_primary_10_1016_j_actaastro_2022_09_041 crossref_primary_10_3390_jmse12030513 crossref_primary_10_1109_TITS_2024_3465234 crossref_primary_10_1016_j_oceaneng_2022_112960 crossref_primary_10_3390_app122311905 crossref_primary_10_1016_j_oceaneng_2024_116685 crossref_primary_10_3390_app142210494 crossref_primary_10_1016_j_aei_2022_101854 crossref_primary_10_1016_j_ress_2023_109636 crossref_primary_10_1016_j_oceaneng_2023_115020 crossref_primary_10_3390_jmse11091731 crossref_primary_10_1016_j_oceaneng_2024_119511 crossref_primary_10_1155_2022_8696558 crossref_primary_10_1177_09544070241228641 crossref_primary_10_3390_jmse11081484 crossref_primary_10_1016_j_oceaneng_2024_118701 crossref_primary_10_3390_jmse10121939 crossref_primary_10_1016_j_eswa_2024_125550 crossref_primary_10_1016_j_physa_2023_129275 crossref_primary_10_3390_app13084907 crossref_primary_10_3390_jmse12122241 crossref_primary_10_1109_TII_2023_3302304 crossref_primary_10_1109_ACCESS_2024_3396475 crossref_primary_10_1016_j_oceaneng_2024_117431 crossref_primary_10_3390_jmse12081321 crossref_primary_10_1016_j_oceaneng_2025_120968 crossref_primary_10_3390_s21248254 crossref_primary_10_3390_jmse11081530 crossref_primary_10_1115_1_4065866 crossref_primary_10_1016_j_oceaneng_2024_117987 crossref_primary_10_1016_j_oceaneng_2023_115886 crossref_primary_10_3389_fncom_2024_1358437 crossref_primary_10_1109_TITS_2023_3235911 crossref_primary_10_3390_ijgi13110400 crossref_primary_10_3390_su15097435 crossref_primary_10_3390_jmse12071070 crossref_primary_10_3390_ijgi13030085 crossref_primary_10_1016_j_oceaneng_2024_118880 crossref_primary_10_1016_j_oceaneng_2022_110905 crossref_primary_10_3389_fams_2023_1124091 crossref_primary_10_1016_j_tre_2023_103152 crossref_primary_10_3390_info14040212 crossref_primary_10_1109_TITS_2023_3285415 crossref_primary_10_1080_17445302_2025_2478365 crossref_primary_10_3390_s21217169 crossref_primary_10_1016_j_oceaneng_2023_116588 crossref_primary_10_1088_1742_6596_2613_1_012023 crossref_primary_10_3390_jmse11040806 crossref_primary_10_1016_j_oceaneng_2024_116766 crossref_primary_10_1080_17477778_2023_2169643 crossref_primary_10_3390_app12084073 crossref_primary_10_3390_jmse10060804 crossref_primary_10_3390_jmse13020220 crossref_primary_10_3390_s23146400 crossref_primary_10_1109_TTE_2024_3382032 crossref_primary_10_1177_14750902221109718 crossref_primary_10_1016_j_oceaneng_2023_116188 crossref_primary_10_1016_j_oceaneng_2025_120988 crossref_primary_10_3390_app14146344 crossref_primary_10_3390_jmse12112031 crossref_primary_10_1155_2022_7099494 crossref_primary_10_3390_jmse11040880 crossref_primary_10_1016_j_ress_2022_108963 |
Cites_doi | 10.1016/j.neunet.2014.09.003 10.1016/j.oceaneng.2018.02.060 10.1109/TNNLS.2016.2582924 10.1016/j.ress.2021.107466 10.1016/j.oceaneng.2020.108436 10.1016/j.ress.2020.107239 10.1017/S0373463318000978 10.1016/j.atmosenv.2016.08.086 10.1145/3386725 10.1016/j.oceaneng.2019.03.052 10.1016/j.oceaneng.2019.04.024 10.1016/j.asoc.2009.03.002 10.1109/TAES.2016.150596 10.1109/TSMC.1979.4310076 10.1017/S0373463313000398 10.3390/s17081792 10.1109/TITS.2017.2724551 10.1016/j.ssci.2020.104838 10.1017/S0373463308005134 10.1016/j.fishres.2009.09.014 10.1016/j.trf.2017.12.006 10.1109/TIP.2005.852196 10.1016/j.eneco.2006.10.012 10.1109/TITS.2012.2187282 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2021.108956 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2021_108956 S0029801821003917 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c378t-6b4844370de2661bf16c2009d9c937c215b52110e41991a00683e35e6d1be9dc3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:14:44 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Fri Feb 23 02:46:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | AIS data Trajectory prediction LSTM Neural network Multi-step prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-6b4844370de2661bf16c2009d9c937c215b52110e41991a00683e35e6d1be9dc3 |
ORCID | 0000-0003-2817-5657 0000-0003-2703-6663 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2021_108956 crossref_primary_10_1016_j_oceaneng_2021_108956 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rødseth, Perera, Mo (bib23) 2016 Tu, Zhang, Rachmawati, Rajabally, Huang (bib30) 2018; 19 Altché, Arnaud (bib1) 2018 Gan, Liang, Li, Deng, Cheng (bib7) 2018 Murray, Perera (bib19) 2020; 209 Hintzen, Piet, Brunel (bib10) 2010; 101 Yuan, Zhang, Zhang, Zhang, Guedes Soares (bib45) 2021; 220 Chen, Zhao, Peter, Yue, Xiaotong (bib4) 2016; 145 McKinley, Levine (bib16) 1998; 45 Millefiori, Braca, Bryan, Willett (bib17) 2017; 52 Li, Zhi, Mellado, Hanheide, Duckett (bib14) 2018 Schmidhuber (bib26) 2015; 61 Xu, Liu, Xin (bib35) 2012; 4 Boor (bib2) 1978; 27 Horteborn, Ringsberg, Svanberg, Holm (bib11) 2019; 72 Li, Liu, Liu, Xiong, Wu (bib13) 2017; 17 Otsu (bib20) 1979; 9 Perera, Oliveira, Guedes Soares (bib21) 2012; 13 Wijnands, Thompson, Aschwanden, Stevenson (bib32) 2018; 53 Fang, Jiang, Shi, Zhou (bib6) 2020 Hao, Du, Reynolds (bib9) 2018 Ristic, Scala, Morelande, Gordon (bib22) 2008 Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bib8) 2016; 28 Wang, Peng, Gao, Gao, Jiang (bib31) 2020; 39 Zhang, Zhang, Yao, Zhang (bib37) 2020; 130 Wu, Tang, Yan, Guedes Soares (bib43) 2021; 209 Jiang, Cheng, Xue, Phajm van Gelder (bib44) 2021; 205 Fan, Liang, Wei (bib5) 2008; 30 Sutskever, Vinyals, Le (bib28) 2014; 2 Simsir, Ertugrul (bib27) 2009; 9 Xin, Liu, Yang, Yuan, Zhang (bib34) 2019; 180 Zhang, He, Cunlong Fan, Yan, Guedes Soares (bib42) 2020 Rong, Teixeira, Guedes Soares (bib24) 2019; 182 Rong, Teixeira, Soares (bib25) 2018 Yang, Hu, Lu (bib36) 2020; 16 Zhang, Chandra, Gao (bib39) 2018 Han, Micheline (bib12) 2006; 5 Zissis, Xidias, Lekkas (bib40) 2015; 7 Liu, Chen (bib15) 2014; 67 Tarn, Bucknall, Greig (bib29) 2009; 62 Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (bib33) 2016 Chan, Ho, Nikolova (bib3) 2005; 14 Murray, Perera (bib18) 2019 Zhang, Shi, Liu, Zhao, Wu (bib38) 2018; 155 Murray (10.1016/j.oceaneng.2021.108956_bib19) 2020; 209 Rong (10.1016/j.oceaneng.2021.108956_bib24) 2019; 182 Perera (10.1016/j.oceaneng.2021.108956_bib21) 2012; 13 Yuan (10.1016/j.oceaneng.2021.108956_bib45) 2021; 220 Boor (10.1016/j.oceaneng.2021.108956_bib2) 1978; 27 Fang (10.1016/j.oceaneng.2021.108956_bib6) 2020 Ristic (10.1016/j.oceaneng.2021.108956_bib22) 2008 Zhang (10.1016/j.oceaneng.2021.108956_bib42) 2020 Hao (10.1016/j.oceaneng.2021.108956_bib9) 2018 Otsu (10.1016/j.oceaneng.2021.108956_bib20) 1979; 9 Zissis (10.1016/j.oceaneng.2021.108956_bib40) 2015; 7 Li (10.1016/j.oceaneng.2021.108956_bib13) 2017; 17 Simsir (10.1016/j.oceaneng.2021.108956_bib27) 2009; 9 Yang (10.1016/j.oceaneng.2021.108956_bib36) 2020; 16 Fan (10.1016/j.oceaneng.2021.108956_bib5) 2008; 30 Jiang (10.1016/j.oceaneng.2021.108956_bib44) 2021; 205 Murray (10.1016/j.oceaneng.2021.108956_bib18) 2019 Hintzen (10.1016/j.oceaneng.2021.108956_bib10) 2010; 101 Rong (10.1016/j.oceaneng.2021.108956_bib25) 2018 Zhang (10.1016/j.oceaneng.2021.108956_bib39) 2018 Horteborn (10.1016/j.oceaneng.2021.108956_bib11) 2019; 72 Rødseth (10.1016/j.oceaneng.2021.108956_bib23) 2016 Wu (10.1016/j.oceaneng.2021.108956_bib33) 2016 Han (10.1016/j.oceaneng.2021.108956_bib12) 2006; 5 Schmidhuber (10.1016/j.oceaneng.2021.108956_bib26) 2015; 61 Wijnands (10.1016/j.oceaneng.2021.108956_bib32) 2018; 53 Tarn (10.1016/j.oceaneng.2021.108956_bib29) 2009; 62 McKinley (10.1016/j.oceaneng.2021.108956_bib16) 1998; 45 Tu (10.1016/j.oceaneng.2021.108956_bib30) 2018; 19 Zhang (10.1016/j.oceaneng.2021.108956_bib38) 2018; 155 Millefiori (10.1016/j.oceaneng.2021.108956_bib17) 2017; 52 Sutskever (10.1016/j.oceaneng.2021.108956_bib28) 2014; 2 Xu (10.1016/j.oceaneng.2021.108956_bib35) 2012; 4 Wang (10.1016/j.oceaneng.2021.108956_bib31) 2020; 39 Xin (10.1016/j.oceaneng.2021.108956_bib34) 2019; 180 Altché (10.1016/j.oceaneng.2021.108956_bib1) 2018 Wu (10.1016/j.oceaneng.2021.108956_bib43) 2021; 209 Zhang (10.1016/j.oceaneng.2021.108956_bib37) 2020; 130 Chan (10.1016/j.oceaneng.2021.108956_bib3) 2005; 14 Liu (10.1016/j.oceaneng.2021.108956_bib15) 2014; 67 Chen (10.1016/j.oceaneng.2021.108956_bib4) 2016; 145 Greff (10.1016/j.oceaneng.2021.108956_bib8) 2016; 28 Gan (10.1016/j.oceaneng.2021.108956_bib7) 2018 Li (10.1016/j.oceaneng.2021.108956_bib14) 2018 |
References_xml | – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib26 article-title: Deep Learning in neural networks: an overview publication-title: Neural Network. – volume: 28 start-page: 2222 year: 2016 end-page: 2232 ident: bib8 article-title: LSTM: a search space Odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 155 start-page: 240 year: 2018 end-page: 250 ident: bib38 article-title: Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity publication-title: Ocean Eng. – volume: 67 start-page: 83 year: 2014 end-page: 99 ident: bib15 article-title: Vessel track recovery with incomplete AIS data using tensor CANDECOM/PARAFAC decomposition publication-title: J. Navig. – volume: 182 start-page: 499 year: 2019 end-page: 511 ident: bib24 article-title: Ship trajectory uncertainty prediction based on a Gaussian Process model publication-title: Ocean Eng. – volume: 16 start-page: 1 year: 2020 end-page: 18 ident: bib36 article-title: Constrained LSTM and residual attention for image captioning publication-title: ACM Trans. Multimed Comput. Commun. Appl – start-page: 1 year: 2018 end-page: 10 ident: bib7 article-title: Trajectory length prediction for intelligent traffic signaling: a data-driven approach publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 72 start-page: 777 year: 2019 end-page: 794 ident: bib11 article-title: A revisit of the definition of the ship Domain based on AIS analysis publication-title: J. Navig. – volume: 209 start-page: 107466 year: 2021 ident: bib43 article-title: Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships publication-title: Reliab. Eng. Syst. Saf. – volume: 30 start-page: 889 year: 2008 end-page: 904 ident: bib5 article-title: A generalized pattern matching approach for multi-step prediction of crude oil price publication-title: Energy Econ. – volume: 45 start-page: 1049 year: 1998 end-page: 1060 ident: bib16 article-title: Cubic spline interpolation publication-title: Coll. Redwoods – volume: 7 start-page: 1 year: 2015 end-page: 12 ident: bib40 article-title: Real-time vessel behavior prediction publication-title: Evolv. Syst. – volume: 205 start-page: 107239 year: 2021 ident: bib44 article-title: Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir publication-title: Reliab. Eng. Syst. Saf. – volume: 101 start-page: 108 year: 2010 end-page: 115 ident: bib10 article-title: Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data publication-title: Fish. Res. – year: 2018 ident: bib14 article-title: 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data publication-title: 2018 IEEE International Conference on Robotics & Automation – start-page: 1 year: 2018 end-page: 8 ident: bib39 article-title: Cyclone track prediction with matrix neural networks publication-title: Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN) – volume: 209 start-page: 1 year: 2020 end-page: 13 ident: bib19 article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data publication-title: Ocean Eng. – volume: 220 year: 2021 ident: bib45 article-title: A novel real-time collision risk awareness method based on velocity obstacle considering uncertainties in ship dynamics publication-title: Ocean Eng. – volume: 5 start-page: 1 year: 2006 end-page: 18 ident: bib12 article-title: Data mining: concepts and techniques publication-title: Data Mining Concepts Models Methods Algorithms Second Edition – volume: 145 start-page: 10 year: 2016 end-page: 18 ident: bib4 article-title: Estimating ship emissions based on AIS data for port of Tianjin, China publication-title: Atmos. Environ. – volume: 2 start-page: 3104 year: 2014 end-page: 3112 ident: bib28 article-title: Sequence to sequence learning with neural networks publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems – start-page: 40 year: 2008 end-page: 46 ident: bib22 article-title: Statistical analysis of motion patterns in AIS Data: anomaly detection and motion prediction publication-title: 11th Int. Conf. Inf. Fusion – volume: 39 start-page: 1 year: 2020 end-page: 22 ident: bib31 article-title: A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series publication-title: Comput. Appl. Math. – volume: 130 start-page: 104838 year: 2020 ident: bib37 article-title: A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration publication-title: Saf. Sci. – start-page: 353 year: 2018 end-page: 359 ident: bib1 article-title: An LSTM network for highway trajectory prediction publication-title: Proc. IEEE ITSC – volume: 14 start-page: 1479 year: 2005 end-page: 1485 ident: bib3 article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization publication-title: IEEE Trans. Image Process. – volume: 53 start-page: 34 year: 2018 end-page: 49 ident: bib32 article-title: Identifying behavioural change among drivers using Long Short-Term Memory recurrent neural networks publication-title: Transport. Res. F Traffic Psychol. Behav. – year: 2020 ident: bib42 article-title: Quantitative analysis on risk influencing factors in the Jiangsu segment of the Yangtze river publication-title: Risk Anal. – year: 2016 ident: bib33 article-title: Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation – start-page: 361 year: 2016 end-page: 373 ident: bib23 article-title: Big data in shipping - challenges and opportunities publication-title: Proceedings of the 15th International Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT 2016) – volume: 17 start-page: 1792 year: 2017 ident: bib13 article-title: A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis publication-title: Sensors – volume: 9 start-page: 1217 year: 2009 end-page: 1224 ident: bib27 article-title: Prediction of manually controlled vessels' position and course navigating in narrow waterways using Artificial Neural Networks publication-title: Appl. Soft Comput. – volume: 52 start-page: 2313 year: 2017 end-page: 2330 ident: bib17 article-title: Modeling vessel kinematics using a stochastic mean-reverting process for long-term prediction publication-title: IEEE Trans. Aero. Electron. Syst. – start-page: 6796 year: 2020 end-page: 6805 ident: bib6 article-title: TPNet: Trajectory Proposal Network for Motion Prediction, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2019 ident: bib18 article-title: An AIS-based multiple trajectory prediction approach for collision avoidance in future vessels, conference publication-title: Proceedings of the 38th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2019) – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib20 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man .Cybern. – volume: 19 start-page: 1559 year: 2018 end-page: 1582 ident: bib30 article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 13 start-page: 1188 year: 2012 end-page: 1200 ident: bib21 article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 4 start-page: 271 year: 2012 end-page: 277 ident: bib35 article-title: A novel approach for ship trajectory online prediction using BP neural network algorithm publication-title: Adv. Inform. Sci. Serv. Sci. – start-page: 1186 year: 2018 end-page: 1194 ident: bib9 article-title: SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory Prediction, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 257 year: 2018 end-page: 264 ident: bib25 article-title: A Model for Predicting Ship Destination Routes Based on AIS Data – volume: 27 year: 1978 ident: bib2 article-title: A practical guide to splines publication-title: Appl. Math. Sci. New York Springer – volume: 62 start-page: 455 year: 2009 end-page: 476 ident: bib29 article-title: Review of collision avoidance and path planning methods for ships in close range encounters publication-title: J. Navig. – volume: 180 start-page: 279 year: 2019 end-page: 289 ident: bib34 article-title: A simulation model for ship navigation in the 'Xiazhimen' waterway based on statistical analysis of AIS data publication-title: Ocean Eng. – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.oceaneng.2021.108956_bib26 article-title: Deep Learning in neural networks: an overview publication-title: Neural Network. doi: 10.1016/j.neunet.2014.09.003 – volume: 155 start-page: 240 issue: MAY 1 year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib38 article-title: Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.02.060 – volume: 27 issue: 149 year: 1978 ident: 10.1016/j.oceaneng.2021.108956_bib2 article-title: A practical guide to splines publication-title: Appl. Math. Sci. New York Springer – start-page: 1 year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib39 article-title: Cyclone track prediction with matrix neural networks – volume: 28 start-page: 2222 issue: 10 year: 2016 ident: 10.1016/j.oceaneng.2021.108956_bib8 article-title: LSTM: a search space Odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – volume: 39 start-page: 1 issue: 30 year: 2020 ident: 10.1016/j.oceaneng.2021.108956_bib31 article-title: A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series publication-title: Comput. Appl. Math. – volume: 209 start-page: 107466 year: 2021 ident: 10.1016/j.oceaneng.2021.108956_bib43 article-title: Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107466 – volume: 220 year: 2021 ident: 10.1016/j.oceaneng.2021.108956_bib45 article-title: A novel real-time collision risk awareness method based on velocity obstacle considering uncertainties in ship dynamics publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108436 – volume: 205 start-page: 107239 year: 2021 ident: 10.1016/j.oceaneng.2021.108956_bib44 article-title: Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107239 – volume: 2 start-page: 3104 year: 2014 ident: 10.1016/j.oceaneng.2021.108956_bib28 article-title: Sequence to sequence learning with neural networks – volume: 72 start-page: 777 issue: 3 year: 2019 ident: 10.1016/j.oceaneng.2021.108956_bib11 article-title: A revisit of the definition of the ship Domain based on AIS analysis publication-title: J. Navig. doi: 10.1017/S0373463318000978 – volume: 145 start-page: 10 year: 2016 ident: 10.1016/j.oceaneng.2021.108956_bib4 article-title: Estimating ship emissions based on AIS data for port of Tianjin, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.08.086 – volume: 16 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.oceaneng.2021.108956_bib36 article-title: Constrained LSTM and residual attention for image captioning publication-title: ACM Trans. Multimed Comput. Commun. Appl doi: 10.1145/3386725 – volume: 7 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.oceaneng.2021.108956_bib40 article-title: Real-time vessel behavior prediction publication-title: Evolv. Syst. – volume: 45 start-page: 1049 issue: 1 year: 1998 ident: 10.1016/j.oceaneng.2021.108956_bib16 article-title: Cubic spline interpolation publication-title: Coll. Redwoods – start-page: 6796 year: 2020 ident: 10.1016/j.oceaneng.2021.108956_bib6 – volume: 4 start-page: 271 issue: 11 year: 2012 ident: 10.1016/j.oceaneng.2021.108956_bib35 article-title: A novel approach for ship trajectory online prediction using BP neural network algorithm publication-title: Adv. Inform. Sci. Serv. Sci. – volume: 180 start-page: 279 issue: MAY 15 year: 2019 ident: 10.1016/j.oceaneng.2021.108956_bib34 article-title: A simulation model for ship navigation in the 'Xiazhimen' waterway based on statistical analysis of AIS data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.03.052 – start-page: 353 year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib1 article-title: An LSTM network for highway trajectory prediction publication-title: Proc. IEEE ITSC – start-page: 1186 year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib9 – volume: 182 start-page: 499 issue: JUN.15 year: 2019 ident: 10.1016/j.oceaneng.2021.108956_bib24 article-title: Ship trajectory uncertainty prediction based on a Gaussian Process model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.024 – volume: 9 start-page: 1217 issue: 4 year: 2009 ident: 10.1016/j.oceaneng.2021.108956_bib27 article-title: Prediction of manually controlled vessels' position and course navigating in narrow waterways using Artificial Neural Networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.03.002 – volume: 52 start-page: 2313 issue: 5 year: 2017 ident: 10.1016/j.oceaneng.2021.108956_bib17 article-title: Modeling vessel kinematics using a stochastic mean-reverting process for long-term prediction publication-title: IEEE Trans. Aero. Electron. Syst. doi: 10.1109/TAES.2016.150596 – year: 2020 ident: 10.1016/j.oceaneng.2021.108956_bib42 article-title: Quantitative analysis on risk influencing factors in the Jiangsu segment of the Yangtze river publication-title: Risk Anal. – year: 2016 ident: 10.1016/j.oceaneng.2021.108956_bib33 – start-page: 257 year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib25 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.oceaneng.2021.108956_bib20 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man .Cybern. doi: 10.1109/TSMC.1979.4310076 – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib7 article-title: Trajectory length prediction for intelligent traffic signaling: a data-driven approach publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 67 start-page: 83 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2021.108956_bib15 article-title: Vessel track recovery with incomplete AIS data using tensor CANDECOM/PARAFAC decomposition publication-title: J. Navig. doi: 10.1017/S0373463313000398 – volume: 17 start-page: 1792 issue: 8 year: 2017 ident: 10.1016/j.oceaneng.2021.108956_bib13 article-title: A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis publication-title: Sensors doi: 10.3390/s17081792 – start-page: 361 year: 2016 ident: 10.1016/j.oceaneng.2021.108956_bib23 article-title: Big data in shipping - challenges and opportunities – volume: 19 start-page: 1559 issue: 5 year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib30 article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2017.2724551 – volume: 209 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.oceaneng.2021.108956_bib19 article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data publication-title: Ocean Eng. – year: 2019 ident: 10.1016/j.oceaneng.2021.108956_bib18 article-title: An AIS-based multiple trajectory prediction approach for collision avoidance in future vessels, conference – volume: 130 start-page: 104838 year: 2020 ident: 10.1016/j.oceaneng.2021.108956_bib37 article-title: A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration publication-title: Saf. Sci. doi: 10.1016/j.ssci.2020.104838 – volume: 62 start-page: 455 issue: 3 year: 2009 ident: 10.1016/j.oceaneng.2021.108956_bib29 article-title: Review of collision avoidance and path planning methods for ships in close range encounters publication-title: J. Navig. doi: 10.1017/S0373463308005134 – volume: 101 start-page: 108 issue: 1 year: 2010 ident: 10.1016/j.oceaneng.2021.108956_bib10 article-title: Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data publication-title: Fish. Res. doi: 10.1016/j.fishres.2009.09.014 – volume: 5 start-page: 1 issue: 4 year: 2006 ident: 10.1016/j.oceaneng.2021.108956_bib12 article-title: Data mining: concepts and techniques publication-title: Data Mining Concepts Models Methods Algorithms Second Edition – volume: 53 start-page: 34 issue: FEB year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib32 article-title: Identifying behavioural change among drivers using Long Short-Term Memory recurrent neural networks publication-title: Transport. Res. F Traffic Psychol. Behav. doi: 10.1016/j.trf.2017.12.006 – year: 2018 ident: 10.1016/j.oceaneng.2021.108956_bib14 article-title: 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data – volume: 14 start-page: 1479 issue: 10 year: 2005 ident: 10.1016/j.oceaneng.2021.108956_bib3 article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852196 – start-page: 40 year: 2008 ident: 10.1016/j.oceaneng.2021.108956_bib22 article-title: Statistical analysis of motion patterns in AIS Data: anomaly detection and motion prediction publication-title: 11th Int. Conf. Inf. Fusion – volume: 30 start-page: 889 issue: 3 year: 2008 ident: 10.1016/j.oceaneng.2021.108956_bib5 article-title: A generalized pattern matching approach for multi-step prediction of crude oil price publication-title: Energy Econ. doi: 10.1016/j.eneco.2006.10.012 – volume: 13 start-page: 1188 issue: 3 year: 2012 ident: 10.1016/j.oceaneng.2021.108956_bib21 article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2012.2187282 |
SSID | ssj0006603 |
Score | 2.6023004 |
Snippet | The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108956 |
SubjectTerms | AIS data LSTM Multi-step prediction Neural network Trajectory prediction |
Title | A novel MP-LSTM method for ship trajectory prediction based on AIS data |
URI | https://dx.doi.org/10.1016/j.oceaneng.2021.108956 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvaggWhXro-zBa9omu5tsjqFYW7VVaAu9hWR3Iy0lLSUKXvzt7jSJVhB68JaEnRBmhnlkvpkBuHVEJD2queWIxDcJik6siApuUZ4YIUdC0QT7nQdDtzdhD1M-rUCn7IVBWGVh-3ObvrHWxZNWwc3WajbDHl_HN_ZVmKQFx5xjRzljHmp58_MH5uG6bVrCPPD0VpfwvGlcRJTq9NXkiY6NcDsfF1n_5aC2nE73GI6KaJEE-QedQEWnNTjYmiFYg8NnfHsxePoU7gOSLt_1ggxerKfReEDyFdHExKYEgVkkW0fzzZ_6D7JaY5UGJUPQmSliLoL-iCBq9Awm3btxp2cVyxIsST2RWW7MBGPUayuNPjdObFdi5UP50kQg0nj2mGOypxmCnSJsDaGacu0qO9a-kvQcquky1RdAtPIUtWOs4Zl4I4mFk0iHKWlLHjmauXXgJYdCWUwSx4UWi7CEjM3DkrMhcjbMOVuH1jfdKp-lsZPCLwUQ_tKK0Bj8HbSX_6C9gn28Q5SAza-hmq3f9I0JPrK4sdGuBuwF_cfe8Asd1tc- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HHyAaFV8uwc9xprdbB4HD8VXq60KVvAWk92NtJS01Kp48U_5B51pEq0g9CDeQsIsYXaYb4b5ZgZgj_uR8oSRFveTABMUk1iR8KUlZIKXHPlaJNTv3Lhyq3fOxb28n4CPoheGaJW57898-tBb52_KuTbLvVaLenx5gP7Vx6SFxpx7ObPy0ry9Yt72dFQ7wUve5_zstHlctfLVApYSnj-w3NjxHUd4h9oQQsWJ7SqqE-hAIV4rxMFYUmpkHKIGRdRIIYyQxtV2bAKtBJ47CdMOugtam3Dw_s0rcd1DUfBK6PdG2pLbB4hJUWrSR0xMuU38voA2Z_-GiCMod7YIC3l4yiqZBpZgwqQlmBsZWliC-Ws6PZ90vQznFZZ2X0yHNW6s-m2zwbKd1AyDYUZMMDboR-1haeCN9fpUFiJTYISemuFDpXbLiKa6Anf_osJVmEq7qVkDZrSnhR1T0RADnCT2eaK4o5WtZMSN466DLDQUqnx0OW3Q6IQFR60dFpoNSbNhptl1KH_J9bLhHWMlguICwh9mGCLCjJHd-IPsLsxUm416WK9dXW7CLH0hioItt2Bq0H822xj5DOKdoaUxePhv0_4Eb0sQww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+MP-LSTM+method+for+ship+trajectory+prediction+based+on+AIS+data&rft.jtitle=Ocean+engineering&rft.au=Gao%2C+Da-wei&rft.au=Zhu%2C+Yong-sheng&rft.au=Zhang%2C+Jin-fen&rft.au=He%2C+Yan-kang&rft.date=2021-05-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=228&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108956&rft.externalDocID=S0029801821003917 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |