A novel MP-LSTM method for ship trajectory prediction based on AIS data

The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has received increasing attention because it can predict both time and position information in the future period. However, the existing methods are ei...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 228; p. 108956
Main Authors Gao, Da-wei, Zhu, Yong-sheng, Zhang, Jin-fen, He, Yan-kang, Yan, Ke, Yan, Bo-ran
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has received increasing attention because it can predict both time and position information in the future period. However, the existing methods are either complex or have low prediction accuracy. In order to overcome the limitations, a physical hypothesis is introduced to balance the complexity and the accuracy. The cubic spline interpolation and historical trajectories are used to realize it. The advantages of TPNet and LSTM are combined in the proposed method and four parts are involved: the AIS data preprocessing method, the solutions of destination point and support point, and the uncertainty analysis. The proposed method is not only easy to implement and suitable for real-time analysis, but also has a high prediction accuracy. The case study on a ferry ship in the Jiangsu section of the Yangtze River indicates the validity of the method. •Complex mapping relationships and large data requirements for multi-step prediction is solved.•A physical constraint is used in the construction of the model.•An automatic generation method of reference trajectory based on ship motion parameters is proposed.•The effectiveness of the method is verified by making predictions under four different navigation states.
AbstractList The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has received increasing attention because it can predict both time and position information in the future period. However, the existing methods are either complex or have low prediction accuracy. In order to overcome the limitations, a physical hypothesis is introduced to balance the complexity and the accuracy. The cubic spline interpolation and historical trajectories are used to realize it. The advantages of TPNet and LSTM are combined in the proposed method and four parts are involved: the AIS data preprocessing method, the solutions of destination point and support point, and the uncertainty analysis. The proposed method is not only easy to implement and suitable for real-time analysis, but also has a high prediction accuracy. The case study on a ferry ship in the Jiangsu section of the Yangtze River indicates the validity of the method. •Complex mapping relationships and large data requirements for multi-step prediction is solved.•A physical constraint is used in the construction of the model.•An automatic generation method of reference trajectory based on ship motion parameters is proposed.•The effectiveness of the method is verified by making predictions under four different navigation states.
ArticleNumber 108956
Author Yan, Bo-ran
Zhang, Jin-fen
Zhu, Yong-sheng
He, Yan-kang
Gao, Da-wei
Yan, Ke
Author_xml – sequence: 1
  givenname: Da-wei
  surname: Gao
  fullname: Gao, Da-wei
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China
– sequence: 2
  givenname: Yong-sheng
  surname: Zhu
  fullname: Zhu, Yong-sheng
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China
– sequence: 3
  givenname: Jin-fen
  orcidid: 0000-0003-2703-6663
  surname: Zhang
  fullname: Zhang, Jin-fen
  email: jinfen.zhang@whut.edu.cn
  organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Hubei, Wuhan, 430063, China
– sequence: 4
  givenname: Yan-kang
  orcidid: 0000-0003-2817-5657
  surname: He
  fullname: He, Yan-kang
  organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology, Hubei, Wuhan, 430063, China
– sequence: 5
  givenname: Ke
  surname: Yan
  fullname: Yan, Ke
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China
– sequence: 6
  givenname: Bo-ran
  surname: Yan
  fullname: Yan, Bo-ran
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Shannxi, Xi'an, 710049, China
BookMark eNqFkN1qAjEQRkOxULV9hZIXWJuf3WwCvahIawWlBe11yCazNYtuJLsIvn0jtje98WqGgfPxzRmhQRtaQOiRkgklVDw1k2DBtNB-TxhhNB2lKsQNGlJZ8qxghRygISFMZZJQeYdGXdcQQoQgfIjmU9yGI-zw6jNbrjcrvId-GxyuQ8Td1h9wH00Dtg_xhA8RnLe9Dy2uTAcOp2W6WGNnenOPbmuz6-Dhd47R19vrZvaeLT_mi9l0mVleyj4TVS7znJfEAROCVjUVlhGinLKKl5bRoioYpQRyqhQ1qaXkwAsQjlagnOVj9HzJtTF0XYRaW9-bc6dU1O80JfosRTf6T4o-S9EXKQkX__BD9HsTT9fBlwsI6bmjh6g766G1yUhMerQL_lrEDwlxgEA
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_110691
crossref_primary_10_1016_j_oceaneng_2023_114536
crossref_primary_10_3390_jmse12060958
crossref_primary_10_1016_j_oceaneng_2024_120144
crossref_primary_10_1088_1742_6596_2131_3_032031
crossref_primary_10_1155_2023_8345603
crossref_primary_10_1016_j_ress_2024_110489
crossref_primary_10_1016_j_oceaneng_2024_119439
crossref_primary_10_3390_s22052058
crossref_primary_10_1016_j_engappai_2023_107062
crossref_primary_10_1111_tgis_13260
crossref_primary_10_1109_TITS_2022_3192574
crossref_primary_10_1016_j_knosys_2021_107413
crossref_primary_10_1016_j_apor_2024_104231
crossref_primary_10_3390_jmse12050769
crossref_primary_10_1109_TNSE_2022_3140529
crossref_primary_10_1016_j_tre_2024_103770
crossref_primary_10_3389_fmars_2023_1199238
crossref_primary_10_1016_j_oceaneng_2023_115870
crossref_primary_10_1016_j_engappai_2023_107625
crossref_primary_10_1016_j_energy_2023_128910
crossref_primary_10_1016_j_oceaneng_2022_110836
crossref_primary_10_1016_j_oceaneng_2024_116939
crossref_primary_10_1016_j_oceaneng_2022_111527
crossref_primary_10_3389_fnbot_2022_1049343
crossref_primary_10_1016_j_ress_2024_110463
crossref_primary_10_3390_electronics14030431
crossref_primary_10_1016_j_oceaneng_2023_114198
crossref_primary_10_1016_j_oceaneng_2024_116694
crossref_primary_10_1109_TSMC_2024_3458469
crossref_primary_10_1061_IJGNAI_GMENG_9026
crossref_primary_10_1017_S0373463323000231
crossref_primary_10_1016_j_oceaneng_2023_114905
crossref_primary_10_3390_s22207713
crossref_primary_10_1016_j_isci_2023_106383
crossref_primary_10_1016_j_oceaneng_2023_114248
crossref_primary_10_1016_j_actaastro_2022_09_041
crossref_primary_10_3390_jmse12030513
crossref_primary_10_1109_TITS_2024_3465234
crossref_primary_10_1016_j_oceaneng_2022_112960
crossref_primary_10_3390_app122311905
crossref_primary_10_1016_j_oceaneng_2024_116685
crossref_primary_10_3390_app142210494
crossref_primary_10_1016_j_aei_2022_101854
crossref_primary_10_1016_j_ress_2023_109636
crossref_primary_10_1016_j_oceaneng_2023_115020
crossref_primary_10_3390_jmse11091731
crossref_primary_10_1016_j_oceaneng_2024_119511
crossref_primary_10_1155_2022_8696558
crossref_primary_10_1177_09544070241228641
crossref_primary_10_3390_jmse11081484
crossref_primary_10_1016_j_oceaneng_2024_118701
crossref_primary_10_3390_jmse10121939
crossref_primary_10_1016_j_eswa_2024_125550
crossref_primary_10_1016_j_physa_2023_129275
crossref_primary_10_3390_app13084907
crossref_primary_10_3390_jmse12122241
crossref_primary_10_1109_TII_2023_3302304
crossref_primary_10_1109_ACCESS_2024_3396475
crossref_primary_10_1016_j_oceaneng_2024_117431
crossref_primary_10_3390_jmse12081321
crossref_primary_10_1016_j_oceaneng_2025_120968
crossref_primary_10_3390_s21248254
crossref_primary_10_3390_jmse11081530
crossref_primary_10_1115_1_4065866
crossref_primary_10_1016_j_oceaneng_2024_117987
crossref_primary_10_1016_j_oceaneng_2023_115886
crossref_primary_10_3389_fncom_2024_1358437
crossref_primary_10_1109_TITS_2023_3235911
crossref_primary_10_3390_ijgi13110400
crossref_primary_10_3390_su15097435
crossref_primary_10_3390_jmse12071070
crossref_primary_10_3390_ijgi13030085
crossref_primary_10_1016_j_oceaneng_2024_118880
crossref_primary_10_1016_j_oceaneng_2022_110905
crossref_primary_10_3389_fams_2023_1124091
crossref_primary_10_1016_j_tre_2023_103152
crossref_primary_10_3390_info14040212
crossref_primary_10_1109_TITS_2023_3285415
crossref_primary_10_1080_17445302_2025_2478365
crossref_primary_10_3390_s21217169
crossref_primary_10_1016_j_oceaneng_2023_116588
crossref_primary_10_1088_1742_6596_2613_1_012023
crossref_primary_10_3390_jmse11040806
crossref_primary_10_1016_j_oceaneng_2024_116766
crossref_primary_10_1080_17477778_2023_2169643
crossref_primary_10_3390_app12084073
crossref_primary_10_3390_jmse10060804
crossref_primary_10_3390_jmse13020220
crossref_primary_10_3390_s23146400
crossref_primary_10_1109_TTE_2024_3382032
crossref_primary_10_1177_14750902221109718
crossref_primary_10_1016_j_oceaneng_2023_116188
crossref_primary_10_1016_j_oceaneng_2025_120988
crossref_primary_10_3390_app14146344
crossref_primary_10_3390_jmse12112031
crossref_primary_10_1155_2022_7099494
crossref_primary_10_3390_jmse11040880
crossref_primary_10_1016_j_ress_2022_108963
Cites_doi 10.1016/j.neunet.2014.09.003
10.1016/j.oceaneng.2018.02.060
10.1109/TNNLS.2016.2582924
10.1016/j.ress.2021.107466
10.1016/j.oceaneng.2020.108436
10.1016/j.ress.2020.107239
10.1017/S0373463318000978
10.1016/j.atmosenv.2016.08.086
10.1145/3386725
10.1016/j.oceaneng.2019.03.052
10.1016/j.oceaneng.2019.04.024
10.1016/j.asoc.2009.03.002
10.1109/TAES.2016.150596
10.1109/TSMC.1979.4310076
10.1017/S0373463313000398
10.3390/s17081792
10.1109/TITS.2017.2724551
10.1016/j.ssci.2020.104838
10.1017/S0373463308005134
10.1016/j.fishres.2009.09.014
10.1016/j.trf.2017.12.006
10.1109/TIP.2005.852196
10.1016/j.eneco.2006.10.012
10.1109/TITS.2012.2187282
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2021.108956
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2021_108956
S0029801821003917
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c378t-6b4844370de2661bf16c2009d9c937c215b52110e41991a00683e35e6d1be9dc3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Tue Jul 01 02:14:44 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Fri Feb 23 02:46:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AIS data
Trajectory prediction
LSTM
Neural network
Multi-step prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-6b4844370de2661bf16c2009d9c937c215b52110e41991a00683e35e6d1be9dc3
ORCID 0000-0003-2817-5657
0000-0003-2703-6663
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2021_108956
crossref_primary_10_1016_j_oceaneng_2021_108956
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rødseth, Perera, Mo (bib23) 2016
Tu, Zhang, Rachmawati, Rajabally, Huang (bib30) 2018; 19
Altché, Arnaud (bib1) 2018
Gan, Liang, Li, Deng, Cheng (bib7) 2018
Murray, Perera (bib19) 2020; 209
Hintzen, Piet, Brunel (bib10) 2010; 101
Yuan, Zhang, Zhang, Zhang, Guedes Soares (bib45) 2021; 220
Chen, Zhao, Peter, Yue, Xiaotong (bib4) 2016; 145
McKinley, Levine (bib16) 1998; 45
Millefiori, Braca, Bryan, Willett (bib17) 2017; 52
Li, Zhi, Mellado, Hanheide, Duckett (bib14) 2018
Schmidhuber (bib26) 2015; 61
Xu, Liu, Xin (bib35) 2012; 4
Boor (bib2) 1978; 27
Horteborn, Ringsberg, Svanberg, Holm (bib11) 2019; 72
Li, Liu, Liu, Xiong, Wu (bib13) 2017; 17
Otsu (bib20) 1979; 9
Perera, Oliveira, Guedes Soares (bib21) 2012; 13
Wijnands, Thompson, Aschwanden, Stevenson (bib32) 2018; 53
Fang, Jiang, Shi, Zhou (bib6) 2020
Hao, Du, Reynolds (bib9) 2018
Ristic, Scala, Morelande, Gordon (bib22) 2008
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bib8) 2016; 28
Wang, Peng, Gao, Gao, Jiang (bib31) 2020; 39
Zhang, Zhang, Yao, Zhang (bib37) 2020; 130
Wu, Tang, Yan, Guedes Soares (bib43) 2021; 209
Jiang, Cheng, Xue, Phajm van Gelder (bib44) 2021; 205
Fan, Liang, Wei (bib5) 2008; 30
Sutskever, Vinyals, Le (bib28) 2014; 2
Simsir, Ertugrul (bib27) 2009; 9
Xin, Liu, Yang, Yuan, Zhang (bib34) 2019; 180
Zhang, He, Cunlong Fan, Yan, Guedes Soares (bib42) 2020
Rong, Teixeira, Guedes Soares (bib24) 2019; 182
Rong, Teixeira, Soares (bib25) 2018
Yang, Hu, Lu (bib36) 2020; 16
Zhang, Chandra, Gao (bib39) 2018
Han, Micheline (bib12) 2006; 5
Zissis, Xidias, Lekkas (bib40) 2015; 7
Liu, Chen (bib15) 2014; 67
Tarn, Bucknall, Greig (bib29) 2009; 62
Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (bib33) 2016
Chan, Ho, Nikolova (bib3) 2005; 14
Murray, Perera (bib18) 2019
Zhang, Shi, Liu, Zhao, Wu (bib38) 2018; 155
Murray (10.1016/j.oceaneng.2021.108956_bib19) 2020; 209
Rong (10.1016/j.oceaneng.2021.108956_bib24) 2019; 182
Perera (10.1016/j.oceaneng.2021.108956_bib21) 2012; 13
Yuan (10.1016/j.oceaneng.2021.108956_bib45) 2021; 220
Boor (10.1016/j.oceaneng.2021.108956_bib2) 1978; 27
Fang (10.1016/j.oceaneng.2021.108956_bib6) 2020
Ristic (10.1016/j.oceaneng.2021.108956_bib22) 2008
Zhang (10.1016/j.oceaneng.2021.108956_bib42) 2020
Hao (10.1016/j.oceaneng.2021.108956_bib9) 2018
Otsu (10.1016/j.oceaneng.2021.108956_bib20) 1979; 9
Zissis (10.1016/j.oceaneng.2021.108956_bib40) 2015; 7
Li (10.1016/j.oceaneng.2021.108956_bib13) 2017; 17
Simsir (10.1016/j.oceaneng.2021.108956_bib27) 2009; 9
Yang (10.1016/j.oceaneng.2021.108956_bib36) 2020; 16
Fan (10.1016/j.oceaneng.2021.108956_bib5) 2008; 30
Jiang (10.1016/j.oceaneng.2021.108956_bib44) 2021; 205
Murray (10.1016/j.oceaneng.2021.108956_bib18) 2019
Hintzen (10.1016/j.oceaneng.2021.108956_bib10) 2010; 101
Rong (10.1016/j.oceaneng.2021.108956_bib25) 2018
Zhang (10.1016/j.oceaneng.2021.108956_bib39) 2018
Horteborn (10.1016/j.oceaneng.2021.108956_bib11) 2019; 72
Rødseth (10.1016/j.oceaneng.2021.108956_bib23) 2016
Wu (10.1016/j.oceaneng.2021.108956_bib33) 2016
Han (10.1016/j.oceaneng.2021.108956_bib12) 2006; 5
Schmidhuber (10.1016/j.oceaneng.2021.108956_bib26) 2015; 61
Wijnands (10.1016/j.oceaneng.2021.108956_bib32) 2018; 53
Tarn (10.1016/j.oceaneng.2021.108956_bib29) 2009; 62
McKinley (10.1016/j.oceaneng.2021.108956_bib16) 1998; 45
Tu (10.1016/j.oceaneng.2021.108956_bib30) 2018; 19
Zhang (10.1016/j.oceaneng.2021.108956_bib38) 2018; 155
Millefiori (10.1016/j.oceaneng.2021.108956_bib17) 2017; 52
Sutskever (10.1016/j.oceaneng.2021.108956_bib28) 2014; 2
Xu (10.1016/j.oceaneng.2021.108956_bib35) 2012; 4
Wang (10.1016/j.oceaneng.2021.108956_bib31) 2020; 39
Xin (10.1016/j.oceaneng.2021.108956_bib34) 2019; 180
Altché (10.1016/j.oceaneng.2021.108956_bib1) 2018
Wu (10.1016/j.oceaneng.2021.108956_bib43) 2021; 209
Zhang (10.1016/j.oceaneng.2021.108956_bib37) 2020; 130
Chan (10.1016/j.oceaneng.2021.108956_bib3) 2005; 14
Liu (10.1016/j.oceaneng.2021.108956_bib15) 2014; 67
Chen (10.1016/j.oceaneng.2021.108956_bib4) 2016; 145
Greff (10.1016/j.oceaneng.2021.108956_bib8) 2016; 28
Gan (10.1016/j.oceaneng.2021.108956_bib7) 2018
Li (10.1016/j.oceaneng.2021.108956_bib14) 2018
References_xml – volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib26
  article-title: Deep Learning in neural networks: an overview
  publication-title: Neural Network.
– volume: 28
  start-page: 2222
  year: 2016
  end-page: 2232
  ident: bib8
  article-title: LSTM: a search space Odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 155
  start-page: 240
  year: 2018
  end-page: 250
  ident: bib38
  article-title: Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity
  publication-title: Ocean Eng.
– volume: 67
  start-page: 83
  year: 2014
  end-page: 99
  ident: bib15
  article-title: Vessel track recovery with incomplete AIS data using tensor CANDECOM/PARAFAC decomposition
  publication-title: J. Navig.
– volume: 182
  start-page: 499
  year: 2019
  end-page: 511
  ident: bib24
  article-title: Ship trajectory uncertainty prediction based on a Gaussian Process model
  publication-title: Ocean Eng.
– volume: 16
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib36
  article-title: Constrained LSTM and residual attention for image captioning
  publication-title: ACM Trans. Multimed Comput. Commun. Appl
– start-page: 1
  year: 2018
  end-page: 10
  ident: bib7
  article-title: Trajectory length prediction for intelligent traffic signaling: a data-driven approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 72
  start-page: 777
  year: 2019
  end-page: 794
  ident: bib11
  article-title: A revisit of the definition of the ship Domain based on AIS analysis
  publication-title: J. Navig.
– volume: 209
  start-page: 107466
  year: 2021
  ident: bib43
  article-title: Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 30
  start-page: 889
  year: 2008
  end-page: 904
  ident: bib5
  article-title: A generalized pattern matching approach for multi-step prediction of crude oil price
  publication-title: Energy Econ.
– volume: 45
  start-page: 1049
  year: 1998
  end-page: 1060
  ident: bib16
  article-title: Cubic spline interpolation
  publication-title: Coll. Redwoods
– volume: 7
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib40
  article-title: Real-time vessel behavior prediction
  publication-title: Evolv. Syst.
– volume: 205
  start-page: 107239
  year: 2021
  ident: bib44
  article-title: Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 101
  start-page: 108
  year: 2010
  end-page: 115
  ident: bib10
  article-title: Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data
  publication-title: Fish. Res.
– year: 2018
  ident: bib14
  article-title: 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data
  publication-title: 2018 IEEE International Conference on Robotics & Automation
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib39
  article-title: Cyclone track prediction with matrix neural networks
  publication-title: Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN)
– volume: 209
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib19
  article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data
  publication-title: Ocean Eng.
– volume: 220
  year: 2021
  ident: bib45
  article-title: A novel real-time collision risk awareness method based on velocity obstacle considering uncertainties in ship dynamics
  publication-title: Ocean Eng.
– volume: 5
  start-page: 1
  year: 2006
  end-page: 18
  ident: bib12
  article-title: Data mining: concepts and techniques
  publication-title: Data Mining Concepts Models Methods Algorithms Second Edition
– volume: 145
  start-page: 10
  year: 2016
  end-page: 18
  ident: bib4
  article-title: Estimating ship emissions based on AIS data for port of Tianjin, China
  publication-title: Atmos. Environ.
– volume: 2
  start-page: 3104
  year: 2014
  end-page: 3112
  ident: bib28
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems
– start-page: 40
  year: 2008
  end-page: 46
  ident: bib22
  article-title: Statistical analysis of motion patterns in AIS Data: anomaly detection and motion prediction
  publication-title: 11th Int. Conf. Inf. Fusion
– volume: 39
  start-page: 1
  year: 2020
  end-page: 22
  ident: bib31
  article-title: A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series
  publication-title: Comput. Appl. Math.
– volume: 130
  start-page: 104838
  year: 2020
  ident: bib37
  article-title: A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration
  publication-title: Saf. Sci.
– start-page: 353
  year: 2018
  end-page: 359
  ident: bib1
  article-title: An LSTM network for highway trajectory prediction
  publication-title: Proc. IEEE ITSC
– volume: 14
  start-page: 1479
  year: 2005
  end-page: 1485
  ident: bib3
  article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
  publication-title: IEEE Trans. Image Process.
– volume: 53
  start-page: 34
  year: 2018
  end-page: 49
  ident: bib32
  article-title: Identifying behavioural change among drivers using Long Short-Term Memory recurrent neural networks
  publication-title: Transport. Res. F Traffic Psychol. Behav.
– year: 2020
  ident: bib42
  article-title: Quantitative analysis on risk influencing factors in the Jiangsu segment of the Yangtze river
  publication-title: Risk Anal.
– year: 2016
  ident: bib33
  article-title: Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
– start-page: 361
  year: 2016
  end-page: 373
  ident: bib23
  article-title: Big data in shipping - challenges and opportunities
  publication-title: Proceedings of the 15th International Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT 2016)
– volume: 17
  start-page: 1792
  year: 2017
  ident: bib13
  article-title: A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis
  publication-title: Sensors
– volume: 9
  start-page: 1217
  year: 2009
  end-page: 1224
  ident: bib27
  article-title: Prediction of manually controlled vessels' position and course navigating in narrow waterways using Artificial Neural Networks
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 2313
  year: 2017
  end-page: 2330
  ident: bib17
  article-title: Modeling vessel kinematics using a stochastic mean-reverting process for long-term prediction
  publication-title: IEEE Trans. Aero. Electron. Syst.
– start-page: 6796
  year: 2020
  end-page: 6805
  ident: bib6
  article-title: TPNet: Trajectory Proposal Network for Motion Prediction, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2019
  ident: bib18
  article-title: An AIS-based multiple trajectory prediction approach for collision avoidance in future vessels, conference
  publication-title: Proceedings of the 38th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2019)
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib20
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man .Cybern.
– volume: 19
  start-page: 1559
  year: 2018
  end-page: 1582
  ident: bib30
  article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 13
  start-page: 1188
  year: 2012
  end-page: 1200
  ident: bib21
  article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 4
  start-page: 271
  year: 2012
  end-page: 277
  ident: bib35
  article-title: A novel approach for ship trajectory online prediction using BP neural network algorithm
  publication-title: Adv. Inform. Sci. Serv. Sci.
– start-page: 1186
  year: 2018
  end-page: 1194
  ident: bib9
  article-title: SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory Prediction, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– start-page: 257
  year: 2018
  end-page: 264
  ident: bib25
  article-title: A Model for Predicting Ship Destination Routes Based on AIS Data
– volume: 27
  year: 1978
  ident: bib2
  article-title: A practical guide to splines
  publication-title: Appl. Math. Sci. New York Springer
– volume: 62
  start-page: 455
  year: 2009
  end-page: 476
  ident: bib29
  article-title: Review of collision avoidance and path planning methods for ships in close range encounters
  publication-title: J. Navig.
– volume: 180
  start-page: 279
  year: 2019
  end-page: 289
  ident: bib34
  article-title: A simulation model for ship navigation in the 'Xiazhimen' waterway based on statistical analysis of AIS data
  publication-title: Ocean Eng.
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108956_bib26
  article-title: Deep Learning in neural networks: an overview
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 155
  start-page: 240
  issue: MAY 1
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib38
  article-title: Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.02.060
– volume: 27
  issue: 149
  year: 1978
  ident: 10.1016/j.oceaneng.2021.108956_bib2
  article-title: A practical guide to splines
  publication-title: Appl. Math. Sci. New York Springer
– start-page: 1
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib39
  article-title: Cyclone track prediction with matrix neural networks
– volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  ident: 10.1016/j.oceaneng.2021.108956_bib8
  article-title: LSTM: a search space Odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 39
  start-page: 1
  issue: 30
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108956_bib31
  article-title: A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series
  publication-title: Comput. Appl. Math.
– volume: 209
  start-page: 107466
  year: 2021
  ident: 10.1016/j.oceaneng.2021.108956_bib43
  article-title: Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107466
– volume: 220
  year: 2021
  ident: 10.1016/j.oceaneng.2021.108956_bib45
  article-title: A novel real-time collision risk awareness method based on velocity obstacle considering uncertainties in ship dynamics
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108436
– volume: 205
  start-page: 107239
  year: 2021
  ident: 10.1016/j.oceaneng.2021.108956_bib44
  article-title: Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107239
– volume: 2
  start-page: 3104
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108956_bib28
  article-title: Sequence to sequence learning with neural networks
– volume: 72
  start-page: 777
  issue: 3
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108956_bib11
  article-title: A revisit of the definition of the ship Domain based on AIS analysis
  publication-title: J. Navig.
  doi: 10.1017/S0373463318000978
– volume: 145
  start-page: 10
  year: 2016
  ident: 10.1016/j.oceaneng.2021.108956_bib4
  article-title: Estimating ship emissions based on AIS data for port of Tianjin, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.08.086
– volume: 16
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108956_bib36
  article-title: Constrained LSTM and residual attention for image captioning
  publication-title: ACM Trans. Multimed Comput. Commun. Appl
  doi: 10.1145/3386725
– volume: 7
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108956_bib40
  article-title: Real-time vessel behavior prediction
  publication-title: Evolv. Syst.
– volume: 45
  start-page: 1049
  issue: 1
  year: 1998
  ident: 10.1016/j.oceaneng.2021.108956_bib16
  article-title: Cubic spline interpolation
  publication-title: Coll. Redwoods
– start-page: 6796
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108956_bib6
– volume: 4
  start-page: 271
  issue: 11
  year: 2012
  ident: 10.1016/j.oceaneng.2021.108956_bib35
  article-title: A novel approach for ship trajectory online prediction using BP neural network algorithm
  publication-title: Adv. Inform. Sci. Serv. Sci.
– volume: 180
  start-page: 279
  issue: MAY 15
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108956_bib34
  article-title: A simulation model for ship navigation in the 'Xiazhimen' waterway based on statistical analysis of AIS data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.03.052
– start-page: 353
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib1
  article-title: An LSTM network for highway trajectory prediction
  publication-title: Proc. IEEE ITSC
– start-page: 1186
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib9
– volume: 182
  start-page: 499
  issue: JUN.15
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108956_bib24
  article-title: Ship trajectory uncertainty prediction based on a Gaussian Process model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.024
– volume: 9
  start-page: 1217
  issue: 4
  year: 2009
  ident: 10.1016/j.oceaneng.2021.108956_bib27
  article-title: Prediction of manually controlled vessels' position and course navigating in narrow waterways using Artificial Neural Networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.03.002
– volume: 52
  start-page: 2313
  issue: 5
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108956_bib17
  article-title: Modeling vessel kinematics using a stochastic mean-reverting process for long-term prediction
  publication-title: IEEE Trans. Aero. Electron. Syst.
  doi: 10.1109/TAES.2016.150596
– year: 2020
  ident: 10.1016/j.oceaneng.2021.108956_bib42
  article-title: Quantitative analysis on risk influencing factors in the Jiangsu segment of the Yangtze river
  publication-title: Risk Anal.
– year: 2016
  ident: 10.1016/j.oceaneng.2021.108956_bib33
– start-page: 257
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib25
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.oceaneng.2021.108956_bib20
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man .Cybern.
  doi: 10.1109/TSMC.1979.4310076
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib7
  article-title: Trajectory length prediction for intelligent traffic signaling: a data-driven approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 67
  start-page: 83
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108956_bib15
  article-title: Vessel track recovery with incomplete AIS data using tensor CANDECOM/PARAFAC decomposition
  publication-title: J. Navig.
  doi: 10.1017/S0373463313000398
– volume: 17
  start-page: 1792
  issue: 8
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108956_bib13
  article-title: A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis
  publication-title: Sensors
  doi: 10.3390/s17081792
– start-page: 361
  year: 2016
  ident: 10.1016/j.oceaneng.2021.108956_bib23
  article-title: Big data in shipping - challenges and opportunities
– volume: 19
  start-page: 1559
  issue: 5
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib30
  article-title: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2017.2724551
– volume: 209
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108956_bib19
  article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data
  publication-title: Ocean Eng.
– year: 2019
  ident: 10.1016/j.oceaneng.2021.108956_bib18
  article-title: An AIS-based multiple trajectory prediction approach for collision avoidance in future vessels, conference
– volume: 130
  start-page: 104838
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108956_bib37
  article-title: A probabilistic model of human error assessment for autonomous cargo ships focusing on human–autonomy collaboration
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2020.104838
– volume: 62
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.oceaneng.2021.108956_bib29
  article-title: Review of collision avoidance and path planning methods for ships in close range encounters
  publication-title: J. Navig.
  doi: 10.1017/S0373463308005134
– volume: 101
  start-page: 108
  issue: 1
  year: 2010
  ident: 10.1016/j.oceaneng.2021.108956_bib10
  article-title: Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2009.09.014
– volume: 5
  start-page: 1
  issue: 4
  year: 2006
  ident: 10.1016/j.oceaneng.2021.108956_bib12
  article-title: Data mining: concepts and techniques
  publication-title: Data Mining Concepts Models Methods Algorithms Second Edition
– volume: 53
  start-page: 34
  issue: FEB
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib32
  article-title: Identifying behavioural change among drivers using Long Short-Term Memory recurrent neural networks
  publication-title: Transport. Res. F Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2017.12.006
– year: 2018
  ident: 10.1016/j.oceaneng.2021.108956_bib14
  article-title: 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data
– volume: 14
  start-page: 1479
  issue: 10
  year: 2005
  ident: 10.1016/j.oceaneng.2021.108956_bib3
  article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852196
– start-page: 40
  year: 2008
  ident: 10.1016/j.oceaneng.2021.108956_bib22
  article-title: Statistical analysis of motion patterns in AIS Data: anomaly detection and motion prediction
  publication-title: 11th Int. Conf. Inf. Fusion
– volume: 30
  start-page: 889
  issue: 3
  year: 2008
  ident: 10.1016/j.oceaneng.2021.108956_bib5
  article-title: A generalized pattern matching approach for multi-step prediction of crude oil price
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2006.10.012
– volume: 13
  start-page: 1188
  issue: 3
  year: 2012
  ident: 10.1016/j.oceaneng.2021.108956_bib21
  article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2012.2187282
SSID ssj0006603
Score 2.6023004
Snippet The accurate prediction of ship trajectory has great significance in maritime transportation. Among all the prediction methods, multi-step prediction has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108956
SubjectTerms AIS data
LSTM
Multi-step prediction
Neural network
Trajectory prediction
Title A novel MP-LSTM method for ship trajectory prediction based on AIS data
URI https://dx.doi.org/10.1016/j.oceaneng.2021.108956
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvaggWhXro-zBa9omu5tsjqFYW7VVaAu9hWR3Iy0lLSUKXvzt7jSJVhB68JaEnRBmhnlkvpkBuHVEJD2queWIxDcJik6siApuUZ4YIUdC0QT7nQdDtzdhD1M-rUCn7IVBWGVh-3ObvrHWxZNWwc3WajbDHl_HN_ZVmKQFx5xjRzljHmp58_MH5uG6bVrCPPD0VpfwvGlcRJTq9NXkiY6NcDsfF1n_5aC2nE73GI6KaJEE-QedQEWnNTjYmiFYg8NnfHsxePoU7gOSLt_1ggxerKfReEDyFdHExKYEgVkkW0fzzZ_6D7JaY5UGJUPQmSliLoL-iCBq9Awm3btxp2cVyxIsST2RWW7MBGPUayuNPjdObFdi5UP50kQg0nj2mGOypxmCnSJsDaGacu0qO9a-kvQcquky1RdAtPIUtWOs4Zl4I4mFk0iHKWlLHjmauXXgJYdCWUwSx4UWi7CEjM3DkrMhcjbMOVuH1jfdKp-lsZPCLwUQ_tKK0Bj8HbSX_6C9gn28Q5SAza-hmq3f9I0JPrK4sdGuBuwF_cfe8Asd1tc-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HHyAaFV8uwc9xprdbB4HD8VXq60KVvAWk92NtJS01Kp48U_5B51pEq0g9CDeQsIsYXaYb4b5ZgZgj_uR8oSRFveTABMUk1iR8KUlZIKXHPlaJNTv3Lhyq3fOxb28n4CPoheGaJW57898-tBb52_KuTbLvVaLenx5gP7Vx6SFxpx7ObPy0ry9Yt72dFQ7wUve5_zstHlctfLVApYSnj-w3NjxHUd4h9oQQsWJ7SqqE-hAIV4rxMFYUmpkHKIGRdRIIYyQxtV2bAKtBJ47CdMOugtam3Dw_s0rcd1DUfBK6PdG2pLbB4hJUWrSR0xMuU38voA2Z_-GiCMod7YIC3l4yiqZBpZgwqQlmBsZWliC-Ws6PZ90vQznFZZ2X0yHNW6s-m2zwbKd1AyDYUZMMDboR-1haeCN9fpUFiJTYISemuFDpXbLiKa6Anf_osJVmEq7qVkDZrSnhR1T0RADnCT2eaK4o5WtZMSN466DLDQUqnx0OW3Q6IQFR60dFpoNSbNhptl1KH_J9bLhHWMlguICwh9mGCLCjJHd-IPsLsxUm416WK9dXW7CLH0hioItt2Bq0H822xj5DOKdoaUxePhv0_4Eb0sQww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+MP-LSTM+method+for+ship+trajectory+prediction+based+on+AIS+data&rft.jtitle=Ocean+engineering&rft.au=Gao%2C+Da-wei&rft.au=Zhu%2C+Yong-sheng&rft.au=Zhang%2C+Jin-fen&rft.au=He%2C+Yan-kang&rft.date=2021-05-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=228&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108956&rft.externalDocID=S0029801821003917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon