Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function
In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 8; pp. 8001 - 8029 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate. |
---|---|
AbstractList | In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate. |
Author | Abualnaja, Khadijah M. Rashid, Saima Jarad, Fahd Zhou, Shuang-Shuang Rauf, Asia Hamed, Y. S. |
Author_xml | – sequence: 1 givenname: Shuang-Shuang surname: Zhou fullname: Zhou, Shuang-Shuang – sequence: 2 givenname: Saima surname: Rashid fullname: Rashid, Saima – sequence: 3 givenname: Asia surname: Rauf fullname: Rauf, Asia – sequence: 4 givenname: Fahd surname: Jarad fullname: Jarad, Fahd – sequence: 5 givenname: Y. S. surname: Hamed fullname: Hamed, Y. S. – sequence: 6 givenname: Khadijah M. surname: Abualnaja fullname: Abualnaja, Khadijah M. |
BookMark | eNptkd1KAzEQhYNUsNbe-QB5AFs32exPLqVULRS80euQnZ20KbubJZtS9OlNfwQRr-Yw-eYwmXNLRp3rkJB7lsxTmYrHVoftnCeciTy7ImMuinSWy7Ic_dI3ZDoMuySJFBe8EGOyXxpjwWIXKLi23wcdrOsGapynB7SbbcCabrBDrxv7FXXvXe_8EdINNV7DRbo-IsH5gR5s2FKPQ48QaHBU09Z1LsRtqdl3J_6OXBvdDDi91An5eF6-L15n67eX1eJpPYO0KMMsr1ht0NRgEIsKhQYJMmqTASvSQtecaZnpHCA3CCy-plVZ1mkmZFIhVOmErM6-tdM71Xvbav-pnLbq1HB-o3T8CzSoBGRMci6kkLkwefQ1meCQ5FzKWsQDTgg_e4F3w-DRKLDnawWvbaNYoo45qGMO6pJDHHr4M_SzxL_4N5Y-kSk |
CitedBy_id | crossref_primary_10_3390_fractalfract6040182 crossref_primary_10_3934_math_2022531 crossref_primary_10_3934_math_2021635 crossref_primary_10_3934_math_2021703 crossref_primary_10_3934_math_2022438 crossref_primary_10_3934_math_2021532 crossref_primary_10_1142_S0218348X22401107 crossref_primary_10_1142_S0218348X22401338 crossref_primary_10_3934_math_2021545 crossref_primary_10_52280_pujm_2021_531203 crossref_primary_10_3390_math9151753 |
Cites_doi | 10.1186/s13660-019-2265-6 10.1007/978-94-017-1043-5 10.1016/j.aej.2021.01.003 10.3934/mbe.2021093 10.1103/PhysRevLett.115.180403 10.1186/s13662-019-2438-0 10.26637/mjm0101/008 10.1142/3779 10.1140/epjst/e2018-00021-7 10.1016/j.amc.2011.03.062 10.26637/mjm103/004 10.32604/cmes.2021.011782 10.1017/mag.2016.67 10.3390/math7121225 10.1016/j.chaos.2019.05.035 10.3390/math7090807 10.1002/mma.7346 10.1002/lpor.201600037 10.3934/math.2021267 10.1016/j.amc.2015.07.026 10.1186/s13662-016-1057-2 10.1186/s13662-018-1939-6 10.1016/j.cam.2018.07.018 10.1186/1687-1847-2012-1 10.3934/math.2020451 10.2478/s13540-012-0047-7 10.2298/FIL1302277D 10.3934/math.2020290 10.1142/S0218348X20400113 10.3934/math.2020315 10.1080/09720502.2010.10700721 10.1007/BF01201355 10.1515/math-2020-0014 10.11121/ijocta.01.2018.00541 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, Government College University, Faisalabad, Pakistan Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan Department of Mathematics, Çankaya University, Ankara, Turkey School of Science, Hunan City University, Yiyang 413000, China Department of Mathematics, Faculty of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia Department of Mathematics, Government College Women University, Faisalabad, pakistan |
CorporateAuthor_xml | – name: Department of Mathematics, Çankaya University, Ankara, Turkey – name: Department of Mathematics, Government College University, Faisalabad, Pakistan – name: School of Science, Hunan City University, Yiyang 413000, China – name: Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan – name: Department of Mathematics, Government College Women University, Faisalabad, pakistan – name: Department of Mathematics, Faculty of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021465 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 8029 |
ExternalDocumentID | oai_doaj_org_article_4c51922494964f6a95f542c06299d447 10_3934_math_2021465 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-6b1dfefdcfee7be4ac9c9feef5c1737ad21a95a6cc6fec1c9c3b88d35490becb3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Tue Jul 01 03:56:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-6b1dfefdcfee7be4ac9c9feef5c1737ad21a95a6cc6fec1c9c3b88d35490becb3 |
OpenAccessLink | https://doaj.org/article/4c51922494964f6a95f542c06299d447 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c51922494964f6a95f542c06299d447 crossref_citationtrail_10_3934_math_2021465 crossref_primary_10_3934_math_2021465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021465-1 key-10.3934/math.2021465-2 key-10.3934/math.2021465-3 key-10.3934/math.2021465-4 key-10.3934/math.2021465-5 key-10.3934/math.2021465-28 key-10.3934/math.2021465-29 key-10.3934/math.2021465-24 key-10.3934/math.2021465-25 key-10.3934/math.2021465-26 key-10.3934/math.2021465-27 key-10.3934/math.2021465-20 key-10.3934/math.2021465-21 key-10.3934/math.2021465-22 key-10.3934/math.2021465-23 key-10.3934/math.2021465-17 key-10.3934/math.2021465-18 key-10.3934/math.2021465-19 key-10.3934/math.2021465-13 key-10.3934/math.2021465-14 key-10.3934/math.2021465-15 key-10.3934/math.2021465-16 key-10.3934/math.2021465-53 key-10.3934/math.2021465-10 key-10.3934/math.2021465-54 key-10.3934/math.2021465-11 key-10.3934/math.2021465-12 key-10.3934/math.2021465-50 key-10.3934/math.2021465-51 key-10.3934/math.2021465-52 key-10.3934/math.2021465-46 key-10.3934/math.2021465-47 key-10.3934/math.2021465-48 key-10.3934/math.2021465-49 key-10.3934/math.2021465-42 key-10.3934/math.2021465-43 key-10.3934/math.2021465-44 key-10.3934/math.2021465-45 key-10.3934/math.2021465-40 key-10.3934/math.2021465-41 key-10.3934/math.2021465-6 key-10.3934/math.2021465-39 key-10.3934/math.2021465-7 key-10.3934/math.2021465-8 key-10.3934/math.2021465-9 key-10.3934/math.2021465-35 key-10.3934/math.2021465-36 key-10.3934/math.2021465-37 key-10.3934/math.2021465-38 key-10.3934/math.2021465-31 key-10.3934/math.2021465-32 key-10.3934/math.2021465-33 key-10.3934/math.2021465-34 key-10.3934/math.2021465-30 |
References_xml | – ident: key-10.3934/math.2021465-23 doi: 10.1186/s13660-019-2265-6 – ident: key-10.3934/math.2021465-32 doi: 10.1007/978-94-017-1043-5 – ident: key-10.3934/math.2021465-8 – ident: key-10.3934/math.2021465-39 – ident: key-10.3934/math.2021465-1 – ident: key-10.3934/math.2021465-13 doi: 10.1016/j.aej.2021.01.003 – ident: key-10.3934/math.2021465-11 doi: 10.3934/mbe.2021093 – ident: key-10.3934/math.2021465-20 doi: 10.1103/PhysRevLett.115.180403 – ident: key-10.3934/math.2021465-44 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021465-18 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021465-27 doi: 10.26637/mjm0101/008 – ident: key-10.3934/math.2021465-2 doi: 10.1142/3779 – ident: key-10.3934/math.2021465-9 doi: 10.1140/epjst/e2018-00021-7 – ident: key-10.3934/math.2021465-38 – ident: key-10.3934/math.2021465-7 doi: 10.1016/j.amc.2011.03.062 – ident: key-10.3934/math.2021465-5 – ident: key-10.3934/math.2021465-28 doi: 10.26637/mjm103/004 – ident: key-10.3934/math.2021465-4 – ident: key-10.3934/math.2021465-14 doi: 10.32604/cmes.2021.011782 – ident: key-10.3934/math.2021465-52 doi: 10.1017/mag.2016.67 – ident: key-10.3934/math.2021465-43 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021465-46 doi: 10.3390/math7121225 – ident: key-10.3934/math.2021465-17 doi: 10.1016/j.chaos.2019.05.035 – ident: key-10.3934/math.2021465-33 doi: 10.3390/math7090807 – ident: key-10.3934/math.2021465-12 doi: 10.1002/mma.7346 – ident: key-10.3934/math.2021465-21 doi: 10.1002/lpor.201600037 – ident: key-10.3934/math.2021465-10 doi: 10.3934/math.2021267 – ident: key-10.3934/math.2021465-37 – ident: key-10.3934/math.2021465-42 doi: 10.1016/j.amc.2015.07.026 – ident: key-10.3934/math.2021465-51 doi: 10.1186/s13662-016-1057-2 – ident: key-10.3934/math.2021465-30 – ident: key-10.3934/math.2021465-53 – ident: key-10.3934/math.2021465-3 – ident: key-10.3934/math.2021465-49 doi: 10.1186/s13662-018-1939-6 – ident: key-10.3934/math.2021465-50 doi: 10.1016/j.cam.2018.07.018 – ident: key-10.3934/math.2021465-15 doi: 10.1186/1687-1847-2012-1 – ident: key-10.3934/math.2021465-48 doi: 10.1140/epjst/e2018-00021-7 – ident: key-10.3934/math.2021465-29 doi: 10.3934/math.2020451 – ident: key-10.3934/math.2021465-16 doi: 10.2478/s13540-012-0047-7 – ident: key-10.3934/math.2021465-40 – ident: key-10.3934/math.2021465-36 doi: 10.2298/FIL1302277D – ident: key-10.3934/math.2021465-24 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021465-34 doi: 10.3934/math.2020290 – ident: key-10.3934/math.2021465-6 doi: 10.1186/1687-1847-2012-1 – ident: key-10.3934/math.2021465-54 – ident: key-10.3934/math.2021465-45 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021465-19 doi: 10.1142/S0218348X20400113 – ident: key-10.3934/math.2021465-35 doi: 10.3934/math.2020315 – ident: key-10.3934/math.2021465-41 doi: 10.1080/09720502.2010.10700721 – ident: key-10.3934/math.2021465-26 – ident: key-10.3934/math.2021465-31 doi: 10.1007/BF01201355 – ident: key-10.3934/math.2021465-22 – ident: key-10.3934/math.2021465-47 doi: 10.1515/math-2020-0014 – ident: key-10.3934/math.2021465-25 doi: 10.11121/ijocta.01.2018.00541 |
SSID | ssj0002124274 |
Score | 2.2233665 |
Snippet | In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 8001 |
SubjectTerms | cauchy schwartz inequality grüss type inequality weighted chebyshev inequality weighted generalized proportional fractional integrals |
Title | Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function |
URI | https://doaj.org/article/4c51922494964f6a95f542c06299d447 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOehJlnY3yW72qNJShHqy0NuSnSQiSFvaLYK_3plkLfUgXryF3SG7fBkyj2S-YewGgAqUVZGkwrlE-twm6MSqRHtde2eMt0D5jvFzPprIp6mabrX6ojthkR44AteTgD4G2plSljlOZUrllcygn-M-aqUMdeRo87aCKdqDcUOWGG_Fm-6iFLKH_h-dPVAfa_XDBm1R9QebMjxg-60zyO_jTxyyHTc7YnvjDZPq6pitB4HjAU0Dh9CAIWbYOPqa_COkNZ3lr5E7-u0Txwtqe7CMGT7ul7FuAYfzhQsn6itOqVeOUTbVWPJmzg1HVZwTKTcnK0fyJ2wyHLw8jpK2VUICotBNktep9Q6B9c4VtZMGSihx7BWkhSiMzVJEzuQAuXeQ4ltRa20FRod9XMVanLLODL9zxngBBUhhtReEb5rVOhUSpzLK66xUqsvuvsGroOURp3YW7xXGEwR1RVBXLdRddruRXkT-jF_kHmgdNjLEeh0eoC5UrS5Uf-nC-X9McsF26Z9imuWSdZrl2l2h49HU10HHvgCz3to1 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+computations+for+weighted+generalized+proportional+fractional+operators+with+respect+to+a+monotone+function&rft.jtitle=AIMS+mathematics&rft.au=Shuang-Shuang+Zhou&rft.au=Saima+Rashid&rft.au=Asia+Rauf&rft.au=Fahd+Jarad&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=8&rft.spage=8001&rft.epage=8029&rft_id=info:doi/10.3934%2Fmath.2021465&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c51922494964f6a95f542c06299d447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |