Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function

In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 8; pp. 8001 - 8029
Main Authors Zhou, Shuang-Shuang, Rashid, Saima, Rauf, Asia, Jarad, Fahd, Hamed, Y. S., Abualnaja, Khadijah M.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate.
AbstractList In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate.
Author Abualnaja, Khadijah M.
Rashid, Saima
Jarad, Fahd
Zhou, Shuang-Shuang
Rauf, Asia
Hamed, Y. S.
Author_xml – sequence: 1
  givenname: Shuang-Shuang
  surname: Zhou
  fullname: Zhou, Shuang-Shuang
– sequence: 2
  givenname: Saima
  surname: Rashid
  fullname: Rashid, Saima
– sequence: 3
  givenname: Asia
  surname: Rauf
  fullname: Rauf, Asia
– sequence: 4
  givenname: Fahd
  surname: Jarad
  fullname: Jarad, Fahd
– sequence: 5
  givenname: Y. S.
  surname: Hamed
  fullname: Hamed, Y. S.
– sequence: 6
  givenname: Khadijah M.
  surname: Abualnaja
  fullname: Abualnaja, Khadijah M.
BookMark eNptkd1KAzEQhYNUsNbe-QB5AFs32exPLqVULRS80euQnZ20KbubJZtS9OlNfwQRr-Yw-eYwmXNLRp3rkJB7lsxTmYrHVoftnCeciTy7ImMuinSWy7Ic_dI3ZDoMuySJFBe8EGOyXxpjwWIXKLi23wcdrOsGapynB7SbbcCabrBDrxv7FXXvXe_8EdINNV7DRbo-IsH5gR5s2FKPQ48QaHBU09Z1LsRtqdl3J_6OXBvdDDi91An5eF6-L15n67eX1eJpPYO0KMMsr1ht0NRgEIsKhQYJMmqTASvSQtecaZnpHCA3CCy-plVZ1mkmZFIhVOmErM6-tdM71Xvbav-pnLbq1HB-o3T8CzSoBGRMci6kkLkwefQ1meCQ5FzKWsQDTgg_e4F3w-DRKLDnawWvbaNYoo45qGMO6pJDHHr4M_SzxL_4N5Y-kSk
CitedBy_id crossref_primary_10_3390_fractalfract6040182
crossref_primary_10_3934_math_2022531
crossref_primary_10_3934_math_2021635
crossref_primary_10_3934_math_2021703
crossref_primary_10_3934_math_2022438
crossref_primary_10_3934_math_2021532
crossref_primary_10_1142_S0218348X22401107
crossref_primary_10_1142_S0218348X22401338
crossref_primary_10_3934_math_2021545
crossref_primary_10_52280_pujm_2021_531203
crossref_primary_10_3390_math9151753
Cites_doi 10.1186/s13660-019-2265-6
10.1007/978-94-017-1043-5
10.1016/j.aej.2021.01.003
10.3934/mbe.2021093
10.1103/PhysRevLett.115.180403
10.1186/s13662-019-2438-0
10.26637/mjm0101/008
10.1142/3779
10.1140/epjst/e2018-00021-7
10.1016/j.amc.2011.03.062
10.26637/mjm103/004
10.32604/cmes.2021.011782
10.1017/mag.2016.67
10.3390/math7121225
10.1016/j.chaos.2019.05.035
10.3390/math7090807
10.1002/mma.7346
10.1002/lpor.201600037
10.3934/math.2021267
10.1016/j.amc.2015.07.026
10.1186/s13662-016-1057-2
10.1186/s13662-018-1939-6
10.1016/j.cam.2018.07.018
10.1186/1687-1847-2012-1
10.3934/math.2020451
10.2478/s13540-012-0047-7
10.2298/FIL1302277D
10.3934/math.2020290
10.1142/S0218348X20400113
10.3934/math.2020315
10.1080/09720502.2010.10700721
10.1007/BF01201355
10.1515/math-2020-0014
10.11121/ijocta.01.2018.00541
ContentType Journal Article
CorporateAuthor Department of Mathematics, Government College University, Faisalabad, Pakistan
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
Department of Mathematics, Çankaya University, Ankara, Turkey
School of Science, Hunan City University, Yiyang 413000, China
Department of Mathematics, Faculty of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
Department of Mathematics, Government College Women University, Faisalabad, pakistan
CorporateAuthor_xml – name: Department of Mathematics, Çankaya University, Ankara, Turkey
– name: Department of Mathematics, Government College University, Faisalabad, Pakistan
– name: School of Science, Hunan City University, Yiyang 413000, China
– name: Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
– name: Department of Mathematics, Government College Women University, Faisalabad, pakistan
– name: Department of Mathematics, Faculty of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021465
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 8029
ExternalDocumentID oai_doaj_org_article_4c51922494964f6a95f542c06299d447
10_3934_math_2021465
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-6b1dfefdcfee7be4ac9c9feef5c1737ad21a95a6cc6fec1c9c3b88d35490becb3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Tue Jul 01 03:56:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-6b1dfefdcfee7be4ac9c9feef5c1737ad21a95a6cc6fec1c9c3b88d35490becb3
OpenAccessLink https://doaj.org/article/4c51922494964f6a95f542c06299d447
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_4c51922494964f6a95f542c06299d447
crossref_citationtrail_10_3934_math_2021465
crossref_primary_10_3934_math_2021465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021465-1
key-10.3934/math.2021465-2
key-10.3934/math.2021465-3
key-10.3934/math.2021465-4
key-10.3934/math.2021465-5
key-10.3934/math.2021465-28
key-10.3934/math.2021465-29
key-10.3934/math.2021465-24
key-10.3934/math.2021465-25
key-10.3934/math.2021465-26
key-10.3934/math.2021465-27
key-10.3934/math.2021465-20
key-10.3934/math.2021465-21
key-10.3934/math.2021465-22
key-10.3934/math.2021465-23
key-10.3934/math.2021465-17
key-10.3934/math.2021465-18
key-10.3934/math.2021465-19
key-10.3934/math.2021465-13
key-10.3934/math.2021465-14
key-10.3934/math.2021465-15
key-10.3934/math.2021465-16
key-10.3934/math.2021465-53
key-10.3934/math.2021465-10
key-10.3934/math.2021465-54
key-10.3934/math.2021465-11
key-10.3934/math.2021465-12
key-10.3934/math.2021465-50
key-10.3934/math.2021465-51
key-10.3934/math.2021465-52
key-10.3934/math.2021465-46
key-10.3934/math.2021465-47
key-10.3934/math.2021465-48
key-10.3934/math.2021465-49
key-10.3934/math.2021465-42
key-10.3934/math.2021465-43
key-10.3934/math.2021465-44
key-10.3934/math.2021465-45
key-10.3934/math.2021465-40
key-10.3934/math.2021465-41
key-10.3934/math.2021465-6
key-10.3934/math.2021465-39
key-10.3934/math.2021465-7
key-10.3934/math.2021465-8
key-10.3934/math.2021465-9
key-10.3934/math.2021465-35
key-10.3934/math.2021465-36
key-10.3934/math.2021465-37
key-10.3934/math.2021465-38
key-10.3934/math.2021465-31
key-10.3934/math.2021465-32
key-10.3934/math.2021465-33
key-10.3934/math.2021465-34
key-10.3934/math.2021465-30
References_xml – ident: key-10.3934/math.2021465-23
  doi: 10.1186/s13660-019-2265-6
– ident: key-10.3934/math.2021465-32
  doi: 10.1007/978-94-017-1043-5
– ident: key-10.3934/math.2021465-8
– ident: key-10.3934/math.2021465-39
– ident: key-10.3934/math.2021465-1
– ident: key-10.3934/math.2021465-13
  doi: 10.1016/j.aej.2021.01.003
– ident: key-10.3934/math.2021465-11
  doi: 10.3934/mbe.2021093
– ident: key-10.3934/math.2021465-20
  doi: 10.1103/PhysRevLett.115.180403
– ident: key-10.3934/math.2021465-44
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021465-18
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021465-27
  doi: 10.26637/mjm0101/008
– ident: key-10.3934/math.2021465-2
  doi: 10.1142/3779
– ident: key-10.3934/math.2021465-9
  doi: 10.1140/epjst/e2018-00021-7
– ident: key-10.3934/math.2021465-38
– ident: key-10.3934/math.2021465-7
  doi: 10.1016/j.amc.2011.03.062
– ident: key-10.3934/math.2021465-5
– ident: key-10.3934/math.2021465-28
  doi: 10.26637/mjm103/004
– ident: key-10.3934/math.2021465-4
– ident: key-10.3934/math.2021465-14
  doi: 10.32604/cmes.2021.011782
– ident: key-10.3934/math.2021465-52
  doi: 10.1017/mag.2016.67
– ident: key-10.3934/math.2021465-43
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021465-46
  doi: 10.3390/math7121225
– ident: key-10.3934/math.2021465-17
  doi: 10.1016/j.chaos.2019.05.035
– ident: key-10.3934/math.2021465-33
  doi: 10.3390/math7090807
– ident: key-10.3934/math.2021465-12
  doi: 10.1002/mma.7346
– ident: key-10.3934/math.2021465-21
  doi: 10.1002/lpor.201600037
– ident: key-10.3934/math.2021465-10
  doi: 10.3934/math.2021267
– ident: key-10.3934/math.2021465-37
– ident: key-10.3934/math.2021465-42
  doi: 10.1016/j.amc.2015.07.026
– ident: key-10.3934/math.2021465-51
  doi: 10.1186/s13662-016-1057-2
– ident: key-10.3934/math.2021465-30
– ident: key-10.3934/math.2021465-53
– ident: key-10.3934/math.2021465-3
– ident: key-10.3934/math.2021465-49
  doi: 10.1186/s13662-018-1939-6
– ident: key-10.3934/math.2021465-50
  doi: 10.1016/j.cam.2018.07.018
– ident: key-10.3934/math.2021465-15
  doi: 10.1186/1687-1847-2012-1
– ident: key-10.3934/math.2021465-48
  doi: 10.1140/epjst/e2018-00021-7
– ident: key-10.3934/math.2021465-29
  doi: 10.3934/math.2020451
– ident: key-10.3934/math.2021465-16
  doi: 10.2478/s13540-012-0047-7
– ident: key-10.3934/math.2021465-40
– ident: key-10.3934/math.2021465-36
  doi: 10.2298/FIL1302277D
– ident: key-10.3934/math.2021465-24
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021465-34
  doi: 10.3934/math.2020290
– ident: key-10.3934/math.2021465-6
  doi: 10.1186/1687-1847-2012-1
– ident: key-10.3934/math.2021465-54
– ident: key-10.3934/math.2021465-45
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021465-19
  doi: 10.1142/S0218348X20400113
– ident: key-10.3934/math.2021465-35
  doi: 10.3934/math.2020315
– ident: key-10.3934/math.2021465-41
  doi: 10.1080/09720502.2010.10700721
– ident: key-10.3934/math.2021465-26
– ident: key-10.3934/math.2021465-31
  doi: 10.1007/BF01201355
– ident: key-10.3934/math.2021465-22
– ident: key-10.3934/math.2021465-47
  doi: 10.1515/math-2020-0014
– ident: key-10.3934/math.2021465-25
  doi: 10.11121/ijocta.01.2018.00541
SSID ssj0002124274
Score 2.2233665
Snippet In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 8001
SubjectTerms cauchy schwartz inequality
grüss type inequality
weighted chebyshev inequality
weighted generalized proportional fractional integrals
Title Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function
URI https://doaj.org/article/4c51922494964f6a95f542c06299d447
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOehJlnY3yW72qNJShHqy0NuSnSQiSFvaLYK_3plkLfUgXryF3SG7fBkyj2S-YewGgAqUVZGkwrlE-twm6MSqRHtde2eMt0D5jvFzPprIp6mabrX6ojthkR44AteTgD4G2plSljlOZUrllcygn-M-aqUMdeRo87aCKdqDcUOWGG_Fm-6iFLKH_h-dPVAfa_XDBm1R9QebMjxg-60zyO_jTxyyHTc7YnvjDZPq6pitB4HjAU0Dh9CAIWbYOPqa_COkNZ3lr5E7-u0Txwtqe7CMGT7ul7FuAYfzhQsn6itOqVeOUTbVWPJmzg1HVZwTKTcnK0fyJ2wyHLw8jpK2VUICotBNktep9Q6B9c4VtZMGSihx7BWkhSiMzVJEzuQAuXeQ4ltRa20FRod9XMVanLLODL9zxngBBUhhtReEb5rVOhUSpzLK66xUqsvuvsGroOURp3YW7xXGEwR1RVBXLdRddruRXkT-jF_kHmgdNjLEeh0eoC5UrS5Uf-nC-X9McsF26Z9imuWSdZrl2l2h49HU10HHvgCz3to1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+computations+for+weighted+generalized+proportional+fractional+operators+with+respect+to+a+monotone+function&rft.jtitle=AIMS+mathematics&rft.au=Shuang-Shuang+Zhou&rft.au=Saima+Rashid&rft.au=Asia+Rauf&rft.au=Fahd+Jarad&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=8&rft.spage=8001&rft.epage=8029&rft_id=info:doi/10.3934%2Fmath.2021465&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c51922494964f6a95f542c06299d447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon