Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interacti...
Saved in:
Published in | Materials Vol. 11; no. 11; p. 2078 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
24.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation. |
---|---|
AbstractList | Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation.Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation. Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation. |
Author | Moreno, Aitor Mejia-Parra, Daniel Ruiz-Salguero, Oscar Montoya-Zapata, Diego Arbelaiz, Ander Posada, Jorge |
AuthorAffiliation | 1 Laboratory of CAD CAM CAE, Universidad EAFIT, Cra 49 no 7-sur-50, 050022 Medellín, Colombia; dmejiap@eafit.edu.co (D.M.-P.); dmonto39@eafit.edu.co (D.M.-Z.); oruiz@eafit.edu.co (O.R.-S.) 2 Vicomtech, Paseo Mikeletegi 57, Parque Científico y Tecnológico de Gipuzkoa, 20009 Donostia/San Sebastián, Spain; aarbelaiz@vicomtech.org (A.A.); jposada@vicomtech.org (J.P.) |
AuthorAffiliation_xml | – name: 1 Laboratory of CAD CAM CAE, Universidad EAFIT, Cra 49 no 7-sur-50, 050022 Medellín, Colombia; dmejiap@eafit.edu.co (D.M.-P.); dmonto39@eafit.edu.co (D.M.-Z.); oruiz@eafit.edu.co (O.R.-S.) – name: 2 Vicomtech, Paseo Mikeletegi 57, Parque Científico y Tecnológico de Gipuzkoa, 20009 Donostia/San Sebastián, Spain; aarbelaiz@vicomtech.org (A.A.); jposada@vicomtech.org (J.P.) |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-8126-0546 surname: Mejia-Parra fullname: Mejia-Parra, Daniel – sequence: 2 givenname: Diego orcidid: 0000-0001-5521-1794 surname: Montoya-Zapata fullname: Montoya-Zapata, Diego – sequence: 3 givenname: Ander orcidid: 0000-0002-1439-2178 surname: Arbelaiz fullname: Arbelaiz, Ander – sequence: 4 givenname: Aitor orcidid: 0000-0002-9088-7332 surname: Moreno fullname: Moreno, Aitor – sequence: 5 givenname: Jorge orcidid: 0000-0001-7985-9915 surname: Posada fullname: Posada, Jorge – sequence: 6 givenname: Oscar orcidid: 0000-0002-9674-8974 surname: Ruiz-Salguero fullname: Ruiz-Salguero, Oscar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30355959$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtKAzEQhoMonm98AMmlCKuTzZ5yI0ixVqgoVK9DNpttI9lEN1mhb2-09YhzM2Hmy_8PM3to0zqrEDoicEYpg_NOkBgplNUG2iWMFQlhWbb5472DDr1_ghiUkipl22iHAs1zlrNdNB4LH_ClFWYZtMQz3Q1GBO0sbl2PbwcTdDIVXvV4omLdzrFr8WyhVMC3KgiDtcXX948HaKsVxqvDdd5Hs_HVw2iSTO-ub0aX00TSsgpJUUPT1pWI9gzyVkADgpRxrIbmGS2hSmUty1hpq6ppSFkDY1JlqWgyqIDuo4uV6vNQd6qRyoZeGP7c6070S-6E5r87Vi_43L3yIi1ylrIocLIW6N3LoHzgnfZSGSOscoPnKUlzCgWUJKLHP72-TD5XF4HTFSB7532v2i-EAH8_Df8-TYThDyx1-NhznFOb_768AYXwjrw |
CitedBy_id | crossref_primary_10_1088_2631_8695_ad594b crossref_primary_10_3390_app10093281 crossref_primary_10_1115_1_4044595 crossref_primary_10_1051_smdo_2021026 crossref_primary_10_1016_j_addma_2020_101507 crossref_primary_10_3390_nano11112967 |
Cites_doi | 10.1080/0951192X.2015.1130263 10.1115/1.3246978 10.1016/j.ijheatmasstransfer.2010.07.065 10.1016/S0924-0136(01)00522-2 10.1016/S0307-904X(00)00034-2 10.1016/j.ijmachtools.2009.07.004 10.1016/j.phpro.2016.08.094 10.2351/1.4883935 10.1115/1.4025009 10.1139/tcsme-2012-0026 10.1007/s00170-013-5594-5 10.1016/0017-9310(95)00134-U 10.1016/j.optlaseng.2014.04.016 10.1016/j.ijheatmasstransfer.2008.03.034 10.1016/j.ijheatmasstransfer.2014.11.003 10.1016/j.jmatprotec.2005.01.007 10.1016/j.jmapro.2015.06.005 10.1016/j.applthermaleng.2013.09.026 10.1016/j.optlaseng.2012.11.006 10.1115/1.4030658 10.1016/S0278-6125(99)80026-0 10.1007/s11665-009-9477-8 10.1016/j.optlastec.2013.12.023 10.2351/1.4745453 10.1007/3-540-28555-5 10.1115/1.4038207 10.1007/s12008-016-0308-5 10.1361/15477020420756 10.1016/j.apm.2004.03.001 10.1016/j.optlaseng.2013.10.006 10.2351/1.3184436 10.1115/1.4025832 10.1088/0022-3727/48/3/035303 10.1007/s00170-011-3655-1 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3390/ma11112078 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC6265929 30355959 10_3390_ma11112078 |
Genre | Journal Article |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IPNFZ KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RIG RPM TR2 TUS GROUPED_DOAJ NPM 7X8 PQGLB 5PM |
ID | FETCH-LOGICAL-c378t-6b0dfb8a035905fa0d0a17331d35437082cbc7173f88dd17b099ce42ad40803 |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 14:01:48 EDT 2025 Fri Jul 11 09:44:31 EDT 2025 Wed Feb 19 02:36:30 EST 2025 Thu Apr 24 23:04:57 EDT 2025 Tue Jul 01 02:54:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | multi-beam laser fast simulation heat transfer analysis GPU analytic solution |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-6b0dfb8a035905fa0d0a17331d35437082cbc7173f88dd17b099ce42ad40803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5521-1794 0000-0001-7985-9915 0000-0002-1439-2178 0000-0002-9088-7332 0000-0002-9674-8974 0000-0002-8126-0546 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6265929 |
PMID | 30355959 |
PQID | 2125306071 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6265929 proquest_miscellaneous_2125306071 pubmed_primary_30355959 crossref_primary_10_3390_ma11112078 crossref_citationtrail_10_3390_ma11112078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-24 |
PublicationDateYYYYMMDD | 2018-10-24 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2018 |
Publisher | MDPI |
Publisher_xml | – name: MDPI |
References | Olsen (ref_7) 2009; 21 Abe (ref_4) 2001; 111 Zimmer (ref_28) 2009; 52 Kim (ref_13) 2004; 28 ref_36 ref_34 Fu (ref_23) 2015; 19 ref_31 Shuja (ref_2) 2013; 51 Akhtar (ref_16) 2014; 61 Akhtar (ref_15) 2014; 71 Kaakkunen (ref_5) 2014; 26 Shuja (ref_33) 2012; 36 Yilbas (ref_14) 2010; 19 Akarapu (ref_21) 2004; 4 Xu (ref_11) 2005; 164–165 Yuan (ref_26) 2015; 48 Roberts (ref_19) 2009; 49 Modest (ref_8) 1996; 39 ref_25 ref_24 Velez (ref_37) 2016; 29 ref_20 Yilbas (ref_35) 2014; 61 Heeling (ref_32) 2016; 83 Winczek (ref_30) 2010; 53 ref_1 Kim (ref_12) 2000; 25 Jiang (ref_29) 2015; 82 Modest (ref_9) 1997; 9 Mejia (ref_3) 2017; 11 Nyon (ref_22) 2012; 60 Han (ref_10) 1999; 18 Yilbas (ref_18) 2014; 62 Modest (ref_27) 1986; 108 Yilbas (ref_17) 2014; 55 ref_6 |
References_xml | – volume: 29 start-page: 1089 year: 2016 ident: ref_37 article-title: Real-time part detection in a virtually machined sheet metal defined as a set of disjoint regions publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2015.1130263 – volume: 108 start-page: 602 year: 1986 ident: ref_27 article-title: Evaporative Cutting of a Semi-infinite Body With a Moving CW laser publication-title: J. Heat Transf. ASME doi: 10.1115/1.3246978 – volume: 53 start-page: 5774 year: 2010 ident: ref_30 article-title: Analytical solution to Transient temperature field in a half-infinite body caused by moving volumetric heat source publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.07.065 – volume: 111 start-page: 210 year: 2001 ident: ref_4 article-title: The manufacturing of hard tools from metallic powders by selective laser melting. International symposium on advanced forming and die manufacturing technology publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(01)00522-2 – volume: 25 start-page: 25 year: 2000 ident: ref_12 article-title: Transient evaporative laser-cutting with boundary element method publication-title: Appl. Math. Model. doi: 10.1016/S0307-904X(00)00034-2 – volume: 49 start-page: 916 year: 2009 ident: ref_19 article-title: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing publication-title: Int. J. Mach. Tool. Manuf. doi: 10.1016/j.ijmachtools.2009.07.004 – volume: 83 start-page: 899 year: 2016 ident: ref_32 article-title: Computational investigation of synchronized multibeam strategies for the selective laser melting process publication-title: Phys. Procedia doi: 10.1016/j.phpro.2016.08.094 – volume: 26 start-page: 032008 year: 2014 ident: ref_5 article-title: Adaptive multibeam laser cutting of thin steel sheets with fiber laser using spatial light modulator publication-title: J. Laser Appl. doi: 10.2351/1.4883935 – ident: ref_24 doi: 10.1115/1.4025009 – volume: 36 start-page: 373 year: 2012 ident: ref_33 article-title: Multi-beam laser heating of steel: Temperature and thermal stress analysis publication-title: Trans. Can. Soc. Mech. Eng. doi: 10.1139/tcsme-2012-0026 – volume: 71 start-page: 1345 year: 2014 ident: ref_15 article-title: Laser cutting of thick-section circular blanks: Thermal stress prediction and microstructural analysis publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5594-5 – volume: 39 start-page: 221 year: 1996 ident: ref_8 article-title: Three-dimensional, Transient model for laser machining of ablating/decomposing materials publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(95)00134-U – volume: 61 start-page: 57 year: 2014 ident: ref_16 article-title: Laser cutting of rectangular geometry into aluminum alloy: Effect of cut sizes on thermal stress field publication-title: Opt. Laser Eng. doi: 10.1016/j.optlaseng.2014.04.016 – volume: 52 start-page: 497 year: 2009 ident: ref_28 article-title: Analytical solution of the laser-induced temperature distribution across internal material interfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.03.034 – ident: ref_1 – volume: 82 start-page: 98 year: 2015 ident: ref_29 article-title: Effect of laser processing on three dimensional thermodynamic analysis for HSLA rectangular steel plates publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.11.003 – volume: 164–165 start-page: 1644 year: 2005 ident: ref_11 article-title: A numerical simulation of temperature field in plasma-arc forming of sheet metal publication-title: J. Mater. Process. Tech. doi: 10.1016/j.jmatprotec.2005.01.007 – volume: 19 start-page: 81 year: 2015 ident: ref_23 article-title: Finite element simulation and experimental validation of pulsed laser cutting of nitinol publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2015.06.005 – volume: 62 start-page: 28 year: 2014 ident: ref_18 article-title: Laser cutting of triangular blanks from thick aluminum foam plate: Thermal stress analysis and morphology publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.09.026 – volume: 51 start-page: 446 year: 2013 ident: ref_2 article-title: Laser multi-beam heating of moving steel sheet: Thermal stress analysis publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2012.11.006 – ident: ref_25 doi: 10.1115/1.4030658 – volume: 18 start-page: 54 year: 1999 ident: ref_10 article-title: A study on torch path planning in laser cutting processes part 1: Calculation of heat flow in contour laser beam cutting publication-title: J. Manuf. Syst. doi: 10.1016/S0278-6125(99)80026-0 – ident: ref_6 – volume: 19 start-page: 177 year: 2010 ident: ref_14 article-title: Laser cutting of rectangular blanks in thick sheet steel: Effect of cutting speed on thermal stresses publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-009-9477-8 – volume: 61 start-page: 34 year: 2014 ident: ref_35 article-title: Laser bending of metal sheet and thermal stress analysis publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2013.12.023 – volume: 9 start-page: 137 year: 1997 ident: ref_9 article-title: Laser through-cutting and drilling models for ablating/decomposing materials publication-title: J. Laser Appl. doi: 10.2351/1.4745453 – ident: ref_34 doi: 10.1007/3-540-28555-5 – ident: ref_31 doi: 10.1115/1.4038207 – volume: 11 start-page: 547 year: 2017 ident: ref_3 article-title: Appraisal of open software for finite element simulation of 2D metal sheet laser cut publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-016-0308-5 – volume: 4 start-page: 51 year: 2004 ident: ref_21 article-title: A thermal stress and failure model for laser cutting and forming operations publication-title: J. Fail. Anal. Prev. doi: 10.1361/15477020420756 – ident: ref_36 – volume: 28 start-page: 891 year: 2004 ident: ref_13 article-title: Transient evaporative laser cutting with moving laser by boundary element method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2004.03.001 – volume: 55 start-page: 35 year: 2014 ident: ref_17 article-title: Laser cutting of rectangular geometry into alumina tiles publication-title: Opt. Laser Eng. doi: 10.1016/j.optlaseng.2013.10.006 – volume: 21 start-page: 133 year: 2009 ident: ref_7 article-title: Multibeam fiber laser cutting publication-title: J. Laser Appl. doi: 10.2351/1.3184436 – ident: ref_20 doi: 10.1115/1.4025832 – volume: 48 start-page: 035303 year: 2015 ident: ref_26 article-title: Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/48/3/035303 – volume: 60 start-page: 995 year: 2012 ident: ref_22 article-title: Finite element analysis of laser inert gas cutting on Inconel 718 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3655-1 |
SSID | ssj0000331829 |
Score | 2.231328 |
Snippet | Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2078 |
Title | Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30355959 https://www.proquest.com/docview/2125306071 https://pubmed.ncbi.nlm.nih.gov/PMC6265929 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabBEp6KH13-1hU2kspSiw_1vaxj-yG0A1LN4GlFyPLcuOQtYPjPTS_vjOSX9tuoe3FGEnIRvN5NCPPfEPIWyt2x2MVJiwJ44DBl8iZ4FKxWHnSDe1A-QKTk2en4-Nz92TpLQeDk17U0rqKD-Tt1ryS_5EqtIFcMUv2HyTbTgoNcA_yhStIGK5_JeOJuKkMrQjSri6yVV2LS8cO6tRa9gV2qRKTjZrw5sUF_oWeqUqzbbyfzs_79ulMVObFW0Goy0ywuShL0WWkt51IfvBDsG-w4xor9HOmvhcdiGKkoLytAye7OOBZUarc5Ndkhu24PXngmgbWJDzXyhIDmHlo-BsP1Ja2RsPyPpL4Ns3tOCGGOq4EqnDbMmV9eiK8XmkZwoYLLlDNIb7Jk9107ZA9G1wGrGYxXfL2vM1yQHvponXtKxq2WnzyYffcfXKnmWnTVPnN__g1jLZnl5zdJ_dqh4J-MOh4QAYqf0ju9mgmH5EJ4oQ2OKEdTijghPZwQmuc0CKlGidU44RmOQWcPCaLydHZp2NW189g0vGDio1jK0njQCBLo-WlwkoswbFGZ-J4ruOD8SdjiVEYaRAkCfdj8Bakcm2RuOBHOE_Ibl7k6hmh3PYDLw39UApwqNNACFPlTDncSf1EDsm7ZqEiWVPLY4WTqwhcTFzfqFvfIXnTjr02hCpbR71u1jsCfYc_sUSuivVNBKaWB24uWMZD8tSsfztPI7gh8Tck0w5ALvXNnjy70Jzq4Nd74Ck8_-OcL8h-9w28JLtVuVavwB6t4hHZCSbTEdn7eHQ6_zrSsPsJPFOI9Q |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Analytic+Simulation+for+Multi-Laser+Heating+of+Sheet+Metal+in+GPU&rft.jtitle=Materials&rft.au=Mejia-Parra%2C+Daniel&rft.au=Montoya-Zapata%2C+Diego&rft.au=Arbelaiz%2C+Ander&rft.au=Moreno%2C+Aitor&rft.date=2018-10-24&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fma11112078&rft_id=info%3Apmid%2F30355959&rft.externalDocID=30355959 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |