On definition of solution of initial value problem for fractional differential equation of variable order

We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 7; pp. 6845 - 6867
Main Authors Zhang, Shuqin, Wang, Jie, Hu, Lei
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results.
AbstractList We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results.
Author Hu, Lei
Zhang, Shuqin
Wang, Jie
Author_xml – sequence: 1
  givenname: Shuqin
  surname: Zhang
  fullname: Zhang, Shuqin
– sequence: 2
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
– sequence: 3
  givenname: Lei
  surname: Hu
  fullname: Hu, Lei
BookMark eNptkEtLAzEUhYNUsNbu_AHzAxzNa15LKT4KhW50HW6SG02ZTmpmWvDfOzNtQcRVLifnOzc512TShAYJuWX0XlRCPmyh-7znlDNJ2QWZclmINK_KcvJrviLztt1Q2ru45IWcEr9uEovON77zoUmCS9pQ78_zKEOdHKDeY7KLQde4TVyIiYtgBld_ab1zGLEZnfi1hzN9gOihJ5IQLcYbcumgbnF-Omfk_fnpbfGartYvy8XjKjWiKLs0Ly0z2ggtUNo801ZwjcaCY1TkGqAqLDBWUGsKa7i1QlcZxxIkF5m1JRUzsjzm2gAbtYt-C_FbBfBqFEL8UBA7b2pUJfREhRlUaKSTBXDrcFjfC1QXWZ_Fj1kmhraN6JTx3fi_LoKvFaNq6F4N3atT9z109wc6P-Jf-w8oD4w0
CitedBy_id crossref_primary_10_3390_axioms13040277
crossref_primary_10_3390_fractalfract8050259
Cites_doi 10.1016/j.aml.2014.02.001
10.1016/j.chaos.2017.06.030
10.1016/j.apnum.2020.04.001
10.1016/j.chaos.2019.109405
10.1016/j.cnsns.2015.10.027
10.1016/j.cnsns.2018.09.004
10.1016/j.cam.2018.08.035
10.1007/BF01911126
10.1515/fca-2019-0003
10.1016/j.cam.2016.08.010
10.1007/s00023-018-0734-y
10.1186/s13661-016-0735-z
10.1016/j.chaos.2019.07.052
10.1137/090771715
10.1016/j.aml.2014.12.012
10.1016/j.aml.2017.08.020
10.1016/j.sigpro.2010.04.006
10.1016/j.amc.2012.10.029
10.1186/s13662-016-0869-4
10.1016/j.apm.2014.12.009
10.1016/j.cam.2020.112908
10.1007/s00366-019-00736-x
10.1007/s40314-018-0639-x
10.1007/978-3-642-14574-2_8
10.1016/j.mcm.2011.09.034
10.1016/j.physa.2017.12.007
10.1080/10652469308819027
10.1007/s13398-017-0389-4
10.1007/978-3-319-94006-9
ContentType Journal Article
CorporateAuthor School of Science, Shandong Jiaotong University, Jinan, 250357, China
Department of Mathematics, China University of Mining and Technology Beijing, Beijing 100083, China
CorporateAuthor_xml – name: School of Science, Shandong Jiaotong University, Jinan, 250357, China
– name: Department of Mathematics, China University of Mining and Technology Beijing, Beijing 100083, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021401
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 6867
ExternalDocumentID oai_doaj_org_article_8add89e5a9ec4f47a2dfed1cba9e0b75
10_3934_math_2021401
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-68d1cbc3b3e4d65bd32becdaf1036baa97da1170dc7dc2dd3b952e8a4235dd803
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:59 EDT 2025
Tue Jul 01 03:56:48 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-68d1cbc3b3e4d65bd32becdaf1036baa97da1170dc7dc2dd3b952e8a4235dd803
OpenAccessLink https://doaj.org/article/8add89e5a9ec4f47a2dfed1cba9e0b75
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_8add89e5a9ec4f47a2dfed1cba9e0b75
crossref_citationtrail_10_3934_math_2021401
crossref_primary_10_3934_math_2021401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021401-13
key-10.3934/math.2021401-35
key-10.3934/math.2021401-14
key-10.3934/math.2021401-11
key-10.3934/math.2021401-33
key-10.3934/math.2021401-12
key-10.3934/math.2021401-34
key-10.3934/math.2021401-31
key-10.3934/math.2021401-10
key-10.3934/math.2021401-32
key-10.3934/math.2021401-30
key-10.3934/math.2021401-19
key-10.3934/math.2021401-17
key-10.3934/math.2021401-18
key-10.3934/math.2021401-15
key-10.3934/math.2021401-16
key-10.3934/math.2021401-2
key-10.3934/math.2021401-3
key-10.3934/math.2021401-1
key-10.3934/math.2021401-24
key-10.3934/math.2021401-25
key-10.3934/math.2021401-22
key-10.3934/math.2021401-23
key-10.3934/math.2021401-20
key-10.3934/math.2021401-21
key-10.3934/math.2021401-8
key-10.3934/math.2021401-9
key-10.3934/math.2021401-6
key-10.3934/math.2021401-28
key-10.3934/math.2021401-7
key-10.3934/math.2021401-29
key-10.3934/math.2021401-4
key-10.3934/math.2021401-26
key-10.3934/math.2021401-5
key-10.3934/math.2021401-27
References_xml – ident: key-10.3934/math.2021401-23
– ident: key-10.3934/math.2021401-32
  doi: 10.1016/j.aml.2014.02.001
– ident: key-10.3934/math.2021401-11
  doi: 10.1016/j.chaos.2017.06.030
– ident: key-10.3934/math.2021401-14
  doi: 10.1016/j.apnum.2020.04.001
– ident: key-10.3934/math.2021401-20
  doi: 10.1016/j.chaos.2019.109405
– ident: key-10.3934/math.2021401-4
– ident: key-10.3934/math.2021401-2
  doi: 10.1016/j.cnsns.2015.10.027
– ident: key-10.3934/math.2021401-19
  doi: 10.1016/j.cnsns.2018.09.004
– ident: key-10.3934/math.2021401-25
  doi: 10.1016/j.cam.2018.08.035
– ident: key-10.3934/math.2021401-21
  doi: 10.1007/BF01911126
– ident: key-10.3934/math.2021401-29
  doi: 10.1515/fca-2019-0003
– ident: key-10.3934/math.2021401-30
  doi: 10.1016/j.cam.2016.08.010
– ident: key-10.3934/math.2021401-26
  doi: 10.1007/s00023-018-0734-y
– ident: key-10.3934/math.2021401-33
  doi: 10.1186/s13661-016-0735-z
– ident: key-10.3934/math.2021401-27
  doi: 10.1016/j.chaos.2019.07.052
– ident: key-10.3934/math.2021401-12
  doi: 10.1137/090771715
– ident: key-10.3934/math.2021401-31
  doi: 10.1016/j.aml.2014.12.012
– ident: key-10.3934/math.2021401-18
  doi: 10.1016/j.aml.2017.08.020
– ident: key-10.3934/math.2021401-7
– ident: key-10.3934/math.2021401-3
– ident: key-10.3934/math.2021401-5
– ident: key-10.3934/math.2021401-35
– ident: key-10.3934/math.2021401-1
  doi: 10.1016/j.sigpro.2010.04.006
– ident: key-10.3934/math.2021401-9
  doi: 10.1016/j.amc.2012.10.029
– ident: key-10.3934/math.2021401-34
  doi: 10.1186/s13662-016-0869-4
– ident: key-10.3934/math.2021401-13
  doi: 10.1016/j.apm.2014.12.009
– ident: key-10.3934/math.2021401-10
  doi: 10.1016/j.cam.2020.112908
– ident: key-10.3934/math.2021401-15
  doi: 10.1007/s00366-019-00736-x
– ident: key-10.3934/math.2021401-16
  doi: 10.1007/s40314-018-0639-x
– ident: key-10.3934/math.2021401-6
  doi: 10.1007/978-3-642-14574-2_8
– ident: key-10.3934/math.2021401-8
  doi: 10.1016/j.mcm.2011.09.034
– ident: key-10.3934/math.2021401-17
  doi: 10.1016/j.physa.2017.12.007
– ident: key-10.3934/math.2021401-22
  doi: 10.1080/10652469308819027
– ident: key-10.3934/math.2021401-24
  doi: 10.1007/s13398-017-0389-4
– ident: key-10.3934/math.2021401-28
  doi: 10.1007/978-3-319-94006-9
SSID ssj0002124274
Score 2.1533785
Snippet We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 6845
SubjectTerms approximate solution
fractional differential equations
initial value problem
variable order caputo fractional derivative
variable order fractional integral
Title On definition of solution of initial value problem for fractional differential equation of variable order
URI https://doaj.org/article/8add89e5a9ec4f47a2dfed1cba9e0b75
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65f5KAnKbttkiY9qrgsgnpxYW8laSawIF1dV3-_M0l3WQ_ixVtJpyG8STNv2uQNY5eYAbjSK52VNkAmpYeMRL6zHADJSGhc7qPa51M5GsuHiZqslfqiPWFJHjgB1zf4ApoKlK2gkUFqW_gAPm8cNgycjuqlGPPWkilag3FBlphvpZ3uohKyj_yP_j0UlFD8iEFrUv0xpgx32U5HBvlNGsQe24B2n20_rpRUPw7Y9LnlHsK0jVur-Czw5WSh69iMPZBkN_CuOAxHHsrDPJ1YwJvLGijREt6Ttjc9_YV5Mp2c4lF_85CNh_cvd6OsK4-QNUKbRVYagqERToD0pXJeFOgQb0OOUclZW2lvqa6Mb7RvCu-Fq1QBxiKBUojpQByxzXbWwjHjpUXi401A9lJIJ5RTVqEDdQnGS2V0j10vAaubTjucSli81phDELw1wVt38PbY1cr6LWlm_GJ3S9ivbEjpOjag_-vO__Vf_j_5j05O2RaNKX1aOWObi_knnCPZWLiLOK--AaKl2O0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+definition+of+solution+of+initial+value+problem+for+fractional+differential+equation+of+variable+order&rft.jtitle=AIMS+mathematics&rft.au=Zhang%2C+Shuqin&rft.au=Wang%2C+Jie&rft.au=Hu%2C+Lei&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=7&rft.spage=6845&rft.epage=6867&rft_id=info:doi/10.3934%2Fmath.2021401&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon