On definition of solution of initial value problem for fractional differential equation of variable order
We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 7; pp. 6845 - 6867 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results. |
---|---|
AbstractList | We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results. |
Author | Hu, Lei Zhang, Shuqin Wang, Jie |
Author_xml | – sequence: 1 givenname: Shuqin surname: Zhang fullname: Zhang, Shuqin – sequence: 2 givenname: Jie surname: Wang fullname: Wang, Jie – sequence: 3 givenname: Lei surname: Hu fullname: Hu, Lei |
BookMark | eNptkEtLAzEUhYNUsNbu_AHzAxzNa15LKT4KhW50HW6SG02ZTmpmWvDfOzNtQcRVLifnOzc512TShAYJuWX0XlRCPmyh-7znlDNJ2QWZclmINK_KcvJrviLztt1Q2ru45IWcEr9uEovON77zoUmCS9pQ78_zKEOdHKDeY7KLQde4TVyIiYtgBld_ab1zGLEZnfi1hzN9gOihJ5IQLcYbcumgbnF-Omfk_fnpbfGartYvy8XjKjWiKLs0Ly0z2ggtUNo801ZwjcaCY1TkGqAqLDBWUGsKa7i1QlcZxxIkF5m1JRUzsjzm2gAbtYt-C_FbBfBqFEL8UBA7b2pUJfREhRlUaKSTBXDrcFjfC1QXWZ_Fj1kmhraN6JTx3fi_LoKvFaNq6F4N3atT9z109wc6P-Jf-w8oD4w0 |
CitedBy_id | crossref_primary_10_3390_axioms13040277 crossref_primary_10_3390_fractalfract8050259 |
Cites_doi | 10.1016/j.aml.2014.02.001 10.1016/j.chaos.2017.06.030 10.1016/j.apnum.2020.04.001 10.1016/j.chaos.2019.109405 10.1016/j.cnsns.2015.10.027 10.1016/j.cnsns.2018.09.004 10.1016/j.cam.2018.08.035 10.1007/BF01911126 10.1515/fca-2019-0003 10.1016/j.cam.2016.08.010 10.1007/s00023-018-0734-y 10.1186/s13661-016-0735-z 10.1016/j.chaos.2019.07.052 10.1137/090771715 10.1016/j.aml.2014.12.012 10.1016/j.aml.2017.08.020 10.1016/j.sigpro.2010.04.006 10.1016/j.amc.2012.10.029 10.1186/s13662-016-0869-4 10.1016/j.apm.2014.12.009 10.1016/j.cam.2020.112908 10.1007/s00366-019-00736-x 10.1007/s40314-018-0639-x 10.1007/978-3-642-14574-2_8 10.1016/j.mcm.2011.09.034 10.1016/j.physa.2017.12.007 10.1080/10652469308819027 10.1007/s13398-017-0389-4 10.1007/978-3-319-94006-9 |
ContentType | Journal Article |
CorporateAuthor | School of Science, Shandong Jiaotong University, Jinan, 250357, China Department of Mathematics, China University of Mining and Technology Beijing, Beijing 100083, China |
CorporateAuthor_xml | – name: School of Science, Shandong Jiaotong University, Jinan, 250357, China – name: Department of Mathematics, China University of Mining and Technology Beijing, Beijing 100083, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021401 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 6867 |
ExternalDocumentID | oai_doaj_org_article_8add89e5a9ec4f47a2dfed1cba9e0b75 10_3934_math_2021401 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-68d1cbc3b3e4d65bd32becdaf1036baa97da1170dc7dc2dd3b952e8a4235dd803 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:59 EDT 2025 Tue Jul 01 03:56:48 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-68d1cbc3b3e4d65bd32becdaf1036baa97da1170dc7dc2dd3b952e8a4235dd803 |
OpenAccessLink | https://doaj.org/article/8add89e5a9ec4f47a2dfed1cba9e0b75 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8add89e5a9ec4f47a2dfed1cba9e0b75 crossref_citationtrail_10_3934_math_2021401 crossref_primary_10_3934_math_2021401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021401-13 key-10.3934/math.2021401-35 key-10.3934/math.2021401-14 key-10.3934/math.2021401-11 key-10.3934/math.2021401-33 key-10.3934/math.2021401-12 key-10.3934/math.2021401-34 key-10.3934/math.2021401-31 key-10.3934/math.2021401-10 key-10.3934/math.2021401-32 key-10.3934/math.2021401-30 key-10.3934/math.2021401-19 key-10.3934/math.2021401-17 key-10.3934/math.2021401-18 key-10.3934/math.2021401-15 key-10.3934/math.2021401-16 key-10.3934/math.2021401-2 key-10.3934/math.2021401-3 key-10.3934/math.2021401-1 key-10.3934/math.2021401-24 key-10.3934/math.2021401-25 key-10.3934/math.2021401-22 key-10.3934/math.2021401-23 key-10.3934/math.2021401-20 key-10.3934/math.2021401-21 key-10.3934/math.2021401-8 key-10.3934/math.2021401-9 key-10.3934/math.2021401-6 key-10.3934/math.2021401-28 key-10.3934/math.2021401-7 key-10.3934/math.2021401-29 key-10.3934/math.2021401-4 key-10.3934/math.2021401-26 key-10.3934/math.2021401-5 key-10.3934/math.2021401-27 |
References_xml | – ident: key-10.3934/math.2021401-23 – ident: key-10.3934/math.2021401-32 doi: 10.1016/j.aml.2014.02.001 – ident: key-10.3934/math.2021401-11 doi: 10.1016/j.chaos.2017.06.030 – ident: key-10.3934/math.2021401-14 doi: 10.1016/j.apnum.2020.04.001 – ident: key-10.3934/math.2021401-20 doi: 10.1016/j.chaos.2019.109405 – ident: key-10.3934/math.2021401-4 – ident: key-10.3934/math.2021401-2 doi: 10.1016/j.cnsns.2015.10.027 – ident: key-10.3934/math.2021401-19 doi: 10.1016/j.cnsns.2018.09.004 – ident: key-10.3934/math.2021401-25 doi: 10.1016/j.cam.2018.08.035 – ident: key-10.3934/math.2021401-21 doi: 10.1007/BF01911126 – ident: key-10.3934/math.2021401-29 doi: 10.1515/fca-2019-0003 – ident: key-10.3934/math.2021401-30 doi: 10.1016/j.cam.2016.08.010 – ident: key-10.3934/math.2021401-26 doi: 10.1007/s00023-018-0734-y – ident: key-10.3934/math.2021401-33 doi: 10.1186/s13661-016-0735-z – ident: key-10.3934/math.2021401-27 doi: 10.1016/j.chaos.2019.07.052 – ident: key-10.3934/math.2021401-12 doi: 10.1137/090771715 – ident: key-10.3934/math.2021401-31 doi: 10.1016/j.aml.2014.12.012 – ident: key-10.3934/math.2021401-18 doi: 10.1016/j.aml.2017.08.020 – ident: key-10.3934/math.2021401-7 – ident: key-10.3934/math.2021401-3 – ident: key-10.3934/math.2021401-5 – ident: key-10.3934/math.2021401-35 – ident: key-10.3934/math.2021401-1 doi: 10.1016/j.sigpro.2010.04.006 – ident: key-10.3934/math.2021401-9 doi: 10.1016/j.amc.2012.10.029 – ident: key-10.3934/math.2021401-34 doi: 10.1186/s13662-016-0869-4 – ident: key-10.3934/math.2021401-13 doi: 10.1016/j.apm.2014.12.009 – ident: key-10.3934/math.2021401-10 doi: 10.1016/j.cam.2020.112908 – ident: key-10.3934/math.2021401-15 doi: 10.1007/s00366-019-00736-x – ident: key-10.3934/math.2021401-16 doi: 10.1007/s40314-018-0639-x – ident: key-10.3934/math.2021401-6 doi: 10.1007/978-3-642-14574-2_8 – ident: key-10.3934/math.2021401-8 doi: 10.1016/j.mcm.2011.09.034 – ident: key-10.3934/math.2021401-17 doi: 10.1016/j.physa.2017.12.007 – ident: key-10.3934/math.2021401-22 doi: 10.1080/10652469308819027 – ident: key-10.3934/math.2021401-24 doi: 10.1007/s13398-017-0389-4 – ident: key-10.3934/math.2021401-28 doi: 10.1007/978-3-319-94006-9 |
SSID | ssj0002124274 |
Score | 2.1533785 |
Snippet | We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 6845 |
SubjectTerms | approximate solution fractional differential equations initial value problem variable order caputo fractional derivative variable order fractional integral |
Title | On definition of solution of initial value problem for fractional differential equation of variable order |
URI | https://doaj.org/article/8add89e5a9ec4f47a2dfed1cba9e0b75 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65f5KAnKbttkiY9qrgsgnpxYW8laSawIF1dV3-_M0l3WQ_ixVtJpyG8STNv2uQNY5eYAbjSK52VNkAmpYeMRL6zHADJSGhc7qPa51M5GsuHiZqslfqiPWFJHjgB1zf4ApoKlK2gkUFqW_gAPm8cNgycjuqlGPPWkilag3FBlphvpZ3uohKyj_yP_j0UlFD8iEFrUv0xpgx32U5HBvlNGsQe24B2n20_rpRUPw7Y9LnlHsK0jVur-Czw5WSh69iMPZBkN_CuOAxHHsrDPJ1YwJvLGijREt6Ttjc9_YV5Mp2c4lF_85CNh_cvd6OsK4-QNUKbRVYagqERToD0pXJeFOgQb0OOUclZW2lvqa6Mb7RvCu-Fq1QBxiKBUojpQByxzXbWwjHjpUXi401A9lJIJ5RTVqEDdQnGS2V0j10vAaubTjucSli81phDELw1wVt38PbY1cr6LWlm_GJ3S9ivbEjpOjag_-vO__Vf_j_5j05O2RaNKX1aOWObi_knnCPZWLiLOK--AaKl2O0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+definition+of+solution+of+initial+value+problem+for+fractional+differential+equation+of+variable+order&rft.jtitle=AIMS+mathematics&rft.au=Zhang%2C+Shuqin&rft.au=Wang%2C+Jie&rft.au=Hu%2C+Lei&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=7&rft.spage=6845&rft.epage=6867&rft_id=info:doi/10.3934%2Fmath.2021401&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |