A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps
We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain param...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 2; pp. 3561 - 3605 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023181 |
Cover
Loading…
Abstract | We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Three illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS and IPS methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid, regardless of whether they are of Gauss/Gauss-Radau type or equally spaced. |
---|---|
AbstractList | We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Three illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS and IPS methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid, regardless of whether they are of Gauss/Gauss-Radau type or equally spaced. |
Author | Elgindy, Kareem T. Refat, Hareth M. |
Author_xml | – sequence: 1 givenname: Kareem T. surname: Elgindy fullname: Elgindy, Kareem T. organization: Mathematics Department, College of Computing and Mathematics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia, IRC for Membrances & Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia – sequence: 2 givenname: Hareth M. surname: Refat fullname: Refat, Hareth M. organization: Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt |
BookMark | eNptkd1KHTEUhYNYqLXe9QHyAI7m72QylyL-HBB6014Pe5LMOZGZ7CHJEfRtfNNmqoiUkovsvbPWF5L1jRxHjJ6QH5xdyE6qyxnK_kIwIbnhR-REqFY2ujPm-FP9lZzl_MgYE1wo0aoT8npFXUjeFhpi8bsEE12yPzjMSx2u7ezLHh0dMdGM01OIOwrUTpAzxbG6xhBD8c0eU3jBSHEpYa42i7EkrLSEw-TnTA95td75nY8DHHyiC07PEecAU6YQHbU-FQiRLpCgXpqCpTMs-Tv5MlaJP3vfT8nv25tf1_fNw8-77fXVQ2Nla0qjjRGMg1ROaa1bJa0YRD3hkpm6wI9GVUnbam3dRm86r4ah47V2hm1UJ0_J9o3rEB77JdVXpOceIfR_B5h2PaQS7OR7xh0XupXguVaSjYZ3rpNgOXSaidFV1vkbyybMOfnxg8dZv6bVr2n172lVufhHbkOBEtYvhDD93_QHFLSdqA |
CitedBy_id | crossref_primary_10_1016_j_jprocont_2023_102995 crossref_primary_10_1016_j_matcom_2023_12_026 crossref_primary_10_1016_j_matcom_2023_11_034 crossref_primary_10_1142_S0219876224500154 |
Cites_doi | 10.1007/BF00935304 10.1134/s0001434618010182 10.2514/6.2010-7890 10.1016/j.cam.2019.03.032 10.1090/S0025-5718-2014-02821-4 10.1137/S1052623499350013 10.1016/j.cam.2013.03.032 10.2307/2153484 10.1007/BF00934054 10.1016/j.automatica.2011.01.085 10.1137/S0036144504446096 10.1016/0022-247x(83)90143-9 10.1093/imamci/dnw051 10.1016/j.jat.2013.01.004 10.1016/j.cam.2011.04.004 10.1090/psapm/048/1314853 10.1093/comjnl/12.3.282 10.1007/s00422-022-00922-z 10.1007/BF02071065 10.1016/0898-1221(88)90067-3 10.1109/JAS.2016.7451105 10.1007/s10589-009-9291-0 10.1002/cnm.1207 10.1007/s10462-021-10118-9 10.1016/j.apnum.2016.10.014 10.1007/s00030-019-0553-y 10.1137/S0036144596301390 10.1063/1.1693365 10.5139/IJASS.2015.16.2.264 10.3846/13926292.2013.841598 10.1007/bf01386223 10.1155/IJMMS.2005.837 10.1007/s11228-014-0304-5 10.1007/s11075-010-9399-4 10.1007/BF00927673 10.1007/s12190-016-1076-x 10.1080/00207160.2019.1628949 10.1080/02331934.2017.1298597 10.1017/CBO9780511618352 10.2514/1.33117 10.1016/0021-9991(87)90002-7 10.1093/imamat/21.4.455 10.1007/BF00934475 10.1017/CBO9780511626357 10.2307/1911976 10.1016/j.cam.2012.10.020 10.3934/jimo.2017056 10.1137/080741574 10.1080/00207160.2018.1554860 10.1016/S0898-1221(97)00034-5 10.1080/00207721.2020.1849862 10.1017/S0962492900002440 10.1002/oca.2541 10.1007/BF00938602 10.1016/j.ifacol.2018.11.396 10.1002/mma.5135 10.1049/iet-syb.2020.0054 10.1007/s11006-005-0147-3 10.1017/S0022112071002842 10.1017/S0004972713001044 10.1016/j.apnum.2018.01.018 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023181 |
DatabaseName | CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 3605 |
ExternalDocumentID | oai_doaj_org_article_01d12673ae16430f819d93ac1a9602fd 10_3934_math_2023181 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-688201a34d4666743c2b23781308080aef848827766cd5659e4bb91cd5d805493 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:29:41 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-688201a34d4666743c2b23781308080aef848827766cd5659e4bb91cd5d805493 |
OpenAccessLink | https://doaj.org/article/01d12673ae16430f819d93ac1a9602fd |
PageCount | 45 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_01d12673ae16430f819d93ac1a9602fd crossref_primary_10_3934_math_2023181 crossref_citationtrail_10_3934_math_2023181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023181-73 key-10.3934/math.2023181-72 key-10.3934/math.2023181-31 key-10.3934/math.2023181-30 key-10.3934/math.2023181-74 key-10.3934/math.2023181-71 key-10.3934/math.2023181-70 key-10.3934/math.2023181-26 key-10.3934/math.2023181-25 key-10.3934/math.2023181-69 key-10.3934/math.2023181-28 key-10.3934/math.2023181-27 key-10.3934/math.2023181-22 key-10.3934/math.2023181-66 key-10.3934/math.2023181-21 key-10.3934/math.2023181-65 key-10.3934/math.2023181-24 key-10.3934/math.2023181-68 key-10.3934/math.2023181-23 key-10.3934/math.2023181-67 key-10.3934/math.2023181-29 key-10.3934/math.2023181-62 key-10.3934/math.2023181-61 key-10.3934/math.2023181-20 key-10.3934/math.2023181-64 key-10.3934/math.2023181-63 key-10.3934/math.2023181-60 key-10.3934/math.2023181-15 key-10.3934/math.2023181-59 key-10.3934/math.2023181-14 key-10.3934/math.2023181-58 key-10.3934/math.2023181-17 key-10.3934/math.2023181-16 key-10.3934/math.2023181-11 key-10.3934/math.2023181-55 key-10.3934/math.2023181-10 key-10.3934/math.2023181-54 key-10.3934/math.2023181-13 key-10.3934/math.2023181-57 key-10.3934/math.2023181-12 key-10.3934/math.2023181-56 key-10.3934/math.2023181-19 key-10.3934/math.2023181-18 key-10.3934/math.2023181-2 key-10.3934/math.2023181-1 key-10.3934/math.2023181-4 key-10.3934/math.2023181-3 key-10.3934/math.2023181-6 key-10.3934/math.2023181-5 key-10.3934/math.2023181-8 key-10.3934/math.2023181-7 key-10.3934/math.2023181-51 key-10.3934/math.2023181-9 key-10.3934/math.2023181-50 key-10.3934/math.2023181-53 key-10.3934/math.2023181-52 key-10.3934/math.2023181-48 key-10.3934/math.2023181-47 key-10.3934/math.2023181-49 key-10.3934/math.2023181-44 key-10.3934/math.2023181-43 key-10.3934/math.2023181-46 key-10.3934/math.2023181-45 key-10.3934/math.2023181-40 key-10.3934/math.2023181-42 key-10.3934/math.2023181-41 key-10.3934/math.2023181-37 key-10.3934/math.2023181-36 key-10.3934/math.2023181-39 key-10.3934/math.2023181-38 key-10.3934/math.2023181-33 key-10.3934/math.2023181-32 key-10.3934/math.2023181-35 key-10.3934/math.2023181-34 |
References_xml | – ident: key-10.3934/math.2023181-31 doi: 10.1007/BF00935304 – ident: key-10.3934/math.2023181-38 doi: 10.1134/s0001434618010182 – ident: key-10.3934/math.2023181-43 doi: 10.2514/6.2010-7890 – ident: key-10.3934/math.2023181-5 doi: 10.1016/j.cam.2019.03.032 – ident: key-10.3934/math.2023181-57 doi: 10.1090/S0025-5718-2014-02821-4 – ident: key-10.3934/math.2023181-70 doi: 10.1137/S1052623499350013 – ident: key-10.3934/math.2023181-18 doi: 10.1016/j.cam.2013.03.032 – ident: key-10.3934/math.2023181-48 doi: 10.2307/2153484 – ident: key-10.3934/math.2023181-30 doi: 10.1007/BF00934054 – ident: key-10.3934/math.2023181-44 doi: 10.1016/j.automatica.2011.01.085 – ident: key-10.3934/math.2023181-71 doi: 10.1137/S0036144504446096 – ident: key-10.3934/math.2023181-12 – ident: key-10.3934/math.2023181-34 doi: 10.1016/0022-247x(83)90143-9 – ident: key-10.3934/math.2023181-47 doi: 10.1093/imamci/dnw051 – ident: key-10.3934/math.2023181-63 doi: 10.1016/j.jat.2013.01.004 – ident: key-10.3934/math.2023181-65 doi: 10.1016/j.cam.2011.04.004 – ident: key-10.3934/math.2023181-59 doi: 10.1090/psapm/048/1314853 – ident: key-10.3934/math.2023181-26 doi: 10.1093/comjnl/12.3.282 – ident: key-10.3934/math.2023181-29 doi: 10.1007/s00422-022-00922-z – ident: key-10.3934/math.2023181-16 doi: 10.1007/BF02071065 – ident: key-10.3934/math.2023181-68 – ident: key-10.3934/math.2023181-64 doi: 10.1016/0898-1221(88)90067-3 – ident: key-10.3934/math.2023181-46 doi: 10.1109/JAS.2016.7451105 – ident: key-10.3934/math.2023181-45 doi: 10.1007/s10589-009-9291-0 – ident: key-10.3934/math.2023181-50 doi: 10.1002/cnm.1207 – ident: key-10.3934/math.2023181-28 doi: 10.1007/s10462-021-10118-9 – ident: key-10.3934/math.2023181-66 doi: 10.1016/j.apnum.2016.10.014 – ident: key-10.3934/math.2023181-41 doi: 10.1007/s00030-019-0553-y – ident: key-10.3934/math.2023181-54 – ident: key-10.3934/math.2023181-49 doi: 10.1137/S0036144596301390 – ident: key-10.3934/math.2023181-17 – ident: key-10.3934/math.2023181-33 – ident: key-10.3934/math.2023181-2 doi: 10.1063/1.1693365 – ident: key-10.3934/math.2023181-22 doi: 10.5139/IJASS.2015.16.2.264 – ident: key-10.3934/math.2023181-74 doi: 10.3846/13926292.2013.841598 – ident: key-10.3934/math.2023181-13 – ident: key-10.3934/math.2023181-27 – ident: key-10.3934/math.2023181-25 doi: 10.1007/bf01386223 – ident: key-10.3934/math.2023181-36 doi: 10.1155/IJMMS.2005.837 – ident: key-10.3934/math.2023181-37 doi: 10.1007/s11228-014-0304-5 – ident: key-10.3934/math.2023181-61 doi: 10.1007/s11075-010-9399-4 – ident: key-10.3934/math.2023181-3 – ident: key-10.3934/math.2023181-67 doi: 10.1007/BF00927673 – ident: key-10.3934/math.2023181-69 doi: 10.1007/s12190-016-1076-x – ident: key-10.3934/math.2023181-73 doi: 10.1080/00207160.2019.1628949 – ident: key-10.3934/math.2023181-58 doi: 10.1080/02331934.2017.1298597 – ident: key-10.3934/math.2023181-72 – ident: key-10.3934/math.2023181-14 – ident: key-10.3934/math.2023181-10 doi: 10.1017/CBO9780511618352 – ident: key-10.3934/math.2023181-55 doi: 10.2514/1.33117 – ident: key-10.3934/math.2023181-53 doi: 10.1016/0021-9991(87)90002-7 – ident: key-10.3934/math.2023181-52 doi: 10.1093/imamat/21.4.455 – ident: key-10.3934/math.2023181-32 doi: 10.1007/BF00934475 – ident: key-10.3934/math.2023181-9 doi: 10.1017/CBO9780511626357 – ident: key-10.3934/math.2023181-42 doi: 10.2307/1911976 – ident: key-10.3934/math.2023181-20 doi: 10.1016/j.cam.2012.10.020 – ident: key-10.3934/math.2023181-51 doi: 10.3934/jimo.2017056 – ident: key-10.3934/math.2023181-62 doi: 10.1137/080741574 – ident: key-10.3934/math.2023181-7 doi: 10.1080/00207160.2018.1554860 – ident: key-10.3934/math.2023181-60 doi: 10.1016/S0898-1221(97)00034-5 – ident: key-10.3934/math.2023181-4 doi: 10.1080/00207721.2020.1849862 – ident: key-10.3934/math.2023181-8 doi: 10.1017/S0962492900002440 – ident: key-10.3934/math.2023181-21 doi: 10.1002/oca.2541 – ident: key-10.3934/math.2023181-35 doi: 10.1007/BF00938602 – ident: key-10.3934/math.2023181-56 – ident: key-10.3934/math.2023181-40 doi: 10.1016/j.ifacol.2018.11.396 – ident: key-10.3934/math.2023181-23 doi: 10.1002/mma.5135 – ident: key-10.3934/math.2023181-15 – ident: key-10.3934/math.2023181-6 doi: 10.1049/iet-syb.2020.0054 – ident: key-10.3934/math.2023181-11 – ident: key-10.3934/math.2023181-39 doi: 10.1007/s11006-005-0147-3 – ident: key-10.3934/math.2023181-1 doi: 10.1017/S0022112071002842 – ident: key-10.3934/math.2023181-19 doi: 10.1017/S0004972713001044 – ident: key-10.3934/math.2023181-24 doi: 10.1016/j.apnum.2018.01.018 |
SSID | ssj0002124274 |
Score | 2.2411456 |
Snippet | We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 3561 |
SubjectTerms | algebraic map gauss-radau points gegenbauer polynomials infinite horizon integration matrix logarithmic map optimal control pseudospectral method |
Title | A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps |
URI | https://doaj.org/article/01d12673ae16430f819d93ac1a9602fd |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygv3QATitrEbuKMBVEqpDJRqVvk2A5UapOojwH-Df-Uu9hUZUAsbHnYluW73H3nnL9j7FryOM91aAPE1l3aulFBLkIRaI2-GBVAS0kHhYfP8WAknsbd8UapL8oJc_TAbuHandCEUZxwZRHY806BHsykXOlQIfaOCkPWF33eRjBFNhgNssB4y2W685SLNuI_-veAcEaGP3zQBlV_41P6-2zPg0HouUkcsC1bHrLd4ZpJdXHEPnvgvA54Yocp1Au7MlVzRJJuXQ1oQPAJqEe0PwAKNIFiqArsVUwIVgZv1XzyUZVQoY2YYTefow6-oswCKAP-FR4talSuVnYOdTV9p0PLqKCgSgPaZQ8AsYXPqBCXhpmqF8ds1H94uR8EvqxCoHkil0EsyesrLozA2AURhI7yCN-gNyOSSWULiV91lCRxrA3ivdSKPE9DvDYSAV7KT9h2WZX2lAGOITuCG1EQKY0mOryoKyOd2jTWVokWu_1e6Ex7znEqfTHNMPYgsWQklsyLpcVu1q1rx7XxS7s7ktm6DTFkNw9QbzKvN9lfenP2H4Ocsx2ak9uSuWDby_nKXiJIWeZXjT5-ARLN5p8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+direct+integral+pseudospectral+method+for+solving+a+class+of+infinite-horizon+optimal+control+problems+using+Gegenbauer+polynomials+and+certain+parametric+maps&rft.jtitle=AIMS+mathematics&rft.au=Elgindy%2C+Kareem+T.&rft.au=Refat%2C+Hareth+M.&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=3561&rft.epage=3605&rft_id=info:doi/10.3934%2Fmath.2023181&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |