A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps

We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain param...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 2; pp. 3561 - 3605
Main Authors Elgindy, Kareem T., Refat, Hareth M.
Format Journal Article
LanguageEnglish
Published AIMS Press 2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023181

Cover

Loading…
Abstract We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Three illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS and IPS methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid, regardless of whether they are of Gauss/Gauss-Radau type or equally spaced.
AbstractList We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Three illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS and IPS methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid, regardless of whether they are of Gauss/Gauss-Radau type or equally spaced.
Author Elgindy, Kareem T.
Refat, Hareth M.
Author_xml – sequence: 1
  givenname: Kareem T.
  surname: Elgindy
  fullname: Elgindy, Kareem T.
  organization: Mathematics Department, College of Computing and Mathematics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia, IRC for Membrances & Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia
– sequence: 2
  givenname: Hareth M.
  surname: Refat
  fullname: Refat, Hareth M.
  organization: Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
BookMark eNptkd1KHTEUhYNYqLXe9QHyAI7m72QylyL-HBB6014Pe5LMOZGZ7CHJEfRtfNNmqoiUkovsvbPWF5L1jRxHjJ6QH5xdyE6qyxnK_kIwIbnhR-REqFY2ujPm-FP9lZzl_MgYE1wo0aoT8npFXUjeFhpi8bsEE12yPzjMSx2u7ezLHh0dMdGM01OIOwrUTpAzxbG6xhBD8c0eU3jBSHEpYa42i7EkrLSEw-TnTA95td75nY8DHHyiC07PEecAU6YQHbU-FQiRLpCgXpqCpTMs-Tv5MlaJP3vfT8nv25tf1_fNw8-77fXVQ2Nla0qjjRGMg1ROaa1bJa0YRD3hkpm6wI9GVUnbam3dRm86r4ah47V2hm1UJ0_J9o3rEB77JdVXpOceIfR_B5h2PaQS7OR7xh0XupXguVaSjYZ3rpNgOXSaidFV1vkbyybMOfnxg8dZv6bVr2n172lVufhHbkOBEtYvhDD93_QHFLSdqA
CitedBy_id crossref_primary_10_1016_j_jprocont_2023_102995
crossref_primary_10_1016_j_matcom_2023_12_026
crossref_primary_10_1016_j_matcom_2023_11_034
crossref_primary_10_1142_S0219876224500154
Cites_doi 10.1007/BF00935304
10.1134/s0001434618010182
10.2514/6.2010-7890
10.1016/j.cam.2019.03.032
10.1090/S0025-5718-2014-02821-4
10.1137/S1052623499350013
10.1016/j.cam.2013.03.032
10.2307/2153484
10.1007/BF00934054
10.1016/j.automatica.2011.01.085
10.1137/S0036144504446096
10.1016/0022-247x(83)90143-9
10.1093/imamci/dnw051
10.1016/j.jat.2013.01.004
10.1016/j.cam.2011.04.004
10.1090/psapm/048/1314853
10.1093/comjnl/12.3.282
10.1007/s00422-022-00922-z
10.1007/BF02071065
10.1016/0898-1221(88)90067-3
10.1109/JAS.2016.7451105
10.1007/s10589-009-9291-0
10.1002/cnm.1207
10.1007/s10462-021-10118-9
10.1016/j.apnum.2016.10.014
10.1007/s00030-019-0553-y
10.1137/S0036144596301390
10.1063/1.1693365
10.5139/IJASS.2015.16.2.264
10.3846/13926292.2013.841598
10.1007/bf01386223
10.1155/IJMMS.2005.837
10.1007/s11228-014-0304-5
10.1007/s11075-010-9399-4
10.1007/BF00927673
10.1007/s12190-016-1076-x
10.1080/00207160.2019.1628949
10.1080/02331934.2017.1298597
10.1017/CBO9780511618352
10.2514/1.33117
10.1016/0021-9991(87)90002-7
10.1093/imamat/21.4.455
10.1007/BF00934475
10.1017/CBO9780511626357
10.2307/1911976
10.1016/j.cam.2012.10.020
10.3934/jimo.2017056
10.1137/080741574
10.1080/00207160.2018.1554860
10.1016/S0898-1221(97)00034-5
10.1080/00207721.2020.1849862
10.1017/S0962492900002440
10.1002/oca.2541
10.1007/BF00938602
10.1016/j.ifacol.2018.11.396
10.1002/mma.5135
10.1049/iet-syb.2020.0054
10.1007/s11006-005-0147-3
10.1017/S0022112071002842
10.1017/S0004972713001044
10.1016/j.apnum.2018.01.018
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023181
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3605
ExternalDocumentID oai_doaj_org_article_01d12673ae16430f819d93ac1a9602fd
10_3934_math_2023181
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-688201a34d4666743c2b23781308080aef848827766cd5659e4bb91cd5d805493
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:29:41 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-688201a34d4666743c2b23781308080aef848827766cd5659e4bb91cd5d805493
OpenAccessLink https://doaj.org/article/01d12673ae16430f819d93ac1a9602fd
PageCount 45
ParticipantIDs doaj_primary_oai_doaj_org_article_01d12673ae16430f819d93ac1a9602fd
crossref_primary_10_3934_math_2023181
crossref_citationtrail_10_3934_math_2023181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023181-73
key-10.3934/math.2023181-72
key-10.3934/math.2023181-31
key-10.3934/math.2023181-30
key-10.3934/math.2023181-74
key-10.3934/math.2023181-71
key-10.3934/math.2023181-70
key-10.3934/math.2023181-26
key-10.3934/math.2023181-25
key-10.3934/math.2023181-69
key-10.3934/math.2023181-28
key-10.3934/math.2023181-27
key-10.3934/math.2023181-22
key-10.3934/math.2023181-66
key-10.3934/math.2023181-21
key-10.3934/math.2023181-65
key-10.3934/math.2023181-24
key-10.3934/math.2023181-68
key-10.3934/math.2023181-23
key-10.3934/math.2023181-67
key-10.3934/math.2023181-29
key-10.3934/math.2023181-62
key-10.3934/math.2023181-61
key-10.3934/math.2023181-20
key-10.3934/math.2023181-64
key-10.3934/math.2023181-63
key-10.3934/math.2023181-60
key-10.3934/math.2023181-15
key-10.3934/math.2023181-59
key-10.3934/math.2023181-14
key-10.3934/math.2023181-58
key-10.3934/math.2023181-17
key-10.3934/math.2023181-16
key-10.3934/math.2023181-11
key-10.3934/math.2023181-55
key-10.3934/math.2023181-10
key-10.3934/math.2023181-54
key-10.3934/math.2023181-13
key-10.3934/math.2023181-57
key-10.3934/math.2023181-12
key-10.3934/math.2023181-56
key-10.3934/math.2023181-19
key-10.3934/math.2023181-18
key-10.3934/math.2023181-2
key-10.3934/math.2023181-1
key-10.3934/math.2023181-4
key-10.3934/math.2023181-3
key-10.3934/math.2023181-6
key-10.3934/math.2023181-5
key-10.3934/math.2023181-8
key-10.3934/math.2023181-7
key-10.3934/math.2023181-51
key-10.3934/math.2023181-9
key-10.3934/math.2023181-50
key-10.3934/math.2023181-53
key-10.3934/math.2023181-52
key-10.3934/math.2023181-48
key-10.3934/math.2023181-47
key-10.3934/math.2023181-49
key-10.3934/math.2023181-44
key-10.3934/math.2023181-43
key-10.3934/math.2023181-46
key-10.3934/math.2023181-45
key-10.3934/math.2023181-40
key-10.3934/math.2023181-42
key-10.3934/math.2023181-41
key-10.3934/math.2023181-37
key-10.3934/math.2023181-36
key-10.3934/math.2023181-39
key-10.3934/math.2023181-38
key-10.3934/math.2023181-33
key-10.3934/math.2023181-32
key-10.3934/math.2023181-35
key-10.3934/math.2023181-34
References_xml – ident: key-10.3934/math.2023181-31
  doi: 10.1007/BF00935304
– ident: key-10.3934/math.2023181-38
  doi: 10.1134/s0001434618010182
– ident: key-10.3934/math.2023181-43
  doi: 10.2514/6.2010-7890
– ident: key-10.3934/math.2023181-5
  doi: 10.1016/j.cam.2019.03.032
– ident: key-10.3934/math.2023181-57
  doi: 10.1090/S0025-5718-2014-02821-4
– ident: key-10.3934/math.2023181-70
  doi: 10.1137/S1052623499350013
– ident: key-10.3934/math.2023181-18
  doi: 10.1016/j.cam.2013.03.032
– ident: key-10.3934/math.2023181-48
  doi: 10.2307/2153484
– ident: key-10.3934/math.2023181-30
  doi: 10.1007/BF00934054
– ident: key-10.3934/math.2023181-44
  doi: 10.1016/j.automatica.2011.01.085
– ident: key-10.3934/math.2023181-71
  doi: 10.1137/S0036144504446096
– ident: key-10.3934/math.2023181-12
– ident: key-10.3934/math.2023181-34
  doi: 10.1016/0022-247x(83)90143-9
– ident: key-10.3934/math.2023181-47
  doi: 10.1093/imamci/dnw051
– ident: key-10.3934/math.2023181-63
  doi: 10.1016/j.jat.2013.01.004
– ident: key-10.3934/math.2023181-65
  doi: 10.1016/j.cam.2011.04.004
– ident: key-10.3934/math.2023181-59
  doi: 10.1090/psapm/048/1314853
– ident: key-10.3934/math.2023181-26
  doi: 10.1093/comjnl/12.3.282
– ident: key-10.3934/math.2023181-29
  doi: 10.1007/s00422-022-00922-z
– ident: key-10.3934/math.2023181-16
  doi: 10.1007/BF02071065
– ident: key-10.3934/math.2023181-68
– ident: key-10.3934/math.2023181-64
  doi: 10.1016/0898-1221(88)90067-3
– ident: key-10.3934/math.2023181-46
  doi: 10.1109/JAS.2016.7451105
– ident: key-10.3934/math.2023181-45
  doi: 10.1007/s10589-009-9291-0
– ident: key-10.3934/math.2023181-50
  doi: 10.1002/cnm.1207
– ident: key-10.3934/math.2023181-28
  doi: 10.1007/s10462-021-10118-9
– ident: key-10.3934/math.2023181-66
  doi: 10.1016/j.apnum.2016.10.014
– ident: key-10.3934/math.2023181-41
  doi: 10.1007/s00030-019-0553-y
– ident: key-10.3934/math.2023181-54
– ident: key-10.3934/math.2023181-49
  doi: 10.1137/S0036144596301390
– ident: key-10.3934/math.2023181-17
– ident: key-10.3934/math.2023181-33
– ident: key-10.3934/math.2023181-2
  doi: 10.1063/1.1693365
– ident: key-10.3934/math.2023181-22
  doi: 10.5139/IJASS.2015.16.2.264
– ident: key-10.3934/math.2023181-74
  doi: 10.3846/13926292.2013.841598
– ident: key-10.3934/math.2023181-13
– ident: key-10.3934/math.2023181-27
– ident: key-10.3934/math.2023181-25
  doi: 10.1007/bf01386223
– ident: key-10.3934/math.2023181-36
  doi: 10.1155/IJMMS.2005.837
– ident: key-10.3934/math.2023181-37
  doi: 10.1007/s11228-014-0304-5
– ident: key-10.3934/math.2023181-61
  doi: 10.1007/s11075-010-9399-4
– ident: key-10.3934/math.2023181-3
– ident: key-10.3934/math.2023181-67
  doi: 10.1007/BF00927673
– ident: key-10.3934/math.2023181-69
  doi: 10.1007/s12190-016-1076-x
– ident: key-10.3934/math.2023181-73
  doi: 10.1080/00207160.2019.1628949
– ident: key-10.3934/math.2023181-58
  doi: 10.1080/02331934.2017.1298597
– ident: key-10.3934/math.2023181-72
– ident: key-10.3934/math.2023181-14
– ident: key-10.3934/math.2023181-10
  doi: 10.1017/CBO9780511618352
– ident: key-10.3934/math.2023181-55
  doi: 10.2514/1.33117
– ident: key-10.3934/math.2023181-53
  doi: 10.1016/0021-9991(87)90002-7
– ident: key-10.3934/math.2023181-52
  doi: 10.1093/imamat/21.4.455
– ident: key-10.3934/math.2023181-32
  doi: 10.1007/BF00934475
– ident: key-10.3934/math.2023181-9
  doi: 10.1017/CBO9780511626357
– ident: key-10.3934/math.2023181-42
  doi: 10.2307/1911976
– ident: key-10.3934/math.2023181-20
  doi: 10.1016/j.cam.2012.10.020
– ident: key-10.3934/math.2023181-51
  doi: 10.3934/jimo.2017056
– ident: key-10.3934/math.2023181-62
  doi: 10.1137/080741574
– ident: key-10.3934/math.2023181-7
  doi: 10.1080/00207160.2018.1554860
– ident: key-10.3934/math.2023181-60
  doi: 10.1016/S0898-1221(97)00034-5
– ident: key-10.3934/math.2023181-4
  doi: 10.1080/00207721.2020.1849862
– ident: key-10.3934/math.2023181-8
  doi: 10.1017/S0962492900002440
– ident: key-10.3934/math.2023181-21
  doi: 10.1002/oca.2541
– ident: key-10.3934/math.2023181-35
  doi: 10.1007/BF00938602
– ident: key-10.3934/math.2023181-56
– ident: key-10.3934/math.2023181-40
  doi: 10.1016/j.ifacol.2018.11.396
– ident: key-10.3934/math.2023181-23
  doi: 10.1002/mma.5135
– ident: key-10.3934/math.2023181-15
– ident: key-10.3934/math.2023181-6
  doi: 10.1049/iet-syb.2020.0054
– ident: key-10.3934/math.2023181-11
– ident: key-10.3934/math.2023181-39
  doi: 10.1007/s11006-005-0147-3
– ident: key-10.3934/math.2023181-1
  doi: 10.1017/S0022112071002842
– ident: key-10.3934/math.2023181-19
  doi: 10.1017/S0004972713001044
– ident: key-10.3934/math.2023181-24
  doi: 10.1016/j.apnum.2018.01.018
SSID ssj0002124274
Score 2.2411456
Snippet We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3561
SubjectTerms algebraic map
gauss-radau points
gegenbauer polynomials
infinite horizon
integration matrix
logarithmic map
optimal control
pseudospectral method
Title A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps
URI https://doaj.org/article/01d12673ae16430f819d93ac1a9602fd
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygv3QATitrEbuKMBVEqpDJRqVvk2A5UapOojwH-Df-Uu9hUZUAsbHnYluW73H3nnL9j7FryOM91aAPE1l3aulFBLkIRaI2-GBVAS0kHhYfP8WAknsbd8UapL8oJc_TAbuHandCEUZxwZRHY806BHsykXOlQIfaOCkPWF33eRjBFNhgNssB4y2W685SLNuI_-veAcEaGP3zQBlV_41P6-2zPg0HouUkcsC1bHrLd4ZpJdXHEPnvgvA54Yocp1Au7MlVzRJJuXQ1oQPAJqEe0PwAKNIFiqArsVUwIVgZv1XzyUZVQoY2YYTefow6-oswCKAP-FR4talSuVnYOdTV9p0PLqKCgSgPaZQ8AsYXPqBCXhpmqF8ds1H94uR8EvqxCoHkil0EsyesrLozA2AURhI7yCN-gNyOSSWULiV91lCRxrA3ivdSKPE9DvDYSAV7KT9h2WZX2lAGOITuCG1EQKY0mOryoKyOd2jTWVokWu_1e6Ex7znEqfTHNMPYgsWQklsyLpcVu1q1rx7XxS7s7ktm6DTFkNw9QbzKvN9lfenP2H4Ocsx2ak9uSuWDby_nKXiJIWeZXjT5-ARLN5p8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+direct+integral+pseudospectral+method+for+solving+a+class+of+infinite-horizon+optimal+control+problems+using+Gegenbauer+polynomials+and+certain+parametric+maps&rft.jtitle=AIMS+mathematics&rft.au=Elgindy%2C+Kareem+T.&rft.au=Refat%2C+Hareth+M.&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=3561&rft.epage=3605&rft_id=info:doi/10.3934%2Fmath.2023181&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon