Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals
In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained ine...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 11494 - 11507 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided. |
---|---|
AbstractList | In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided. |
Author | Wang, ShuHong Hai, XuRan |
Author_xml | – sequence: 1 givenname: XuRan surname: Hai fullname: Hai, XuRan – sequence: 2 givenname: ShuHong surname: Wang fullname: Wang, ShuHong |
BookMark | eNptUMtOwzAQtFCRKKU3PiAfQIpfsZMjqgqtqMQBOFsbe9O6SpPimEM_ie_gx0hpkRDisrNazYxm55IMmrZBQq4ZnYhCyNstxPWEU86UUmdkyKUWqSryfPBrvyDjrttQ2rO45FoOyfMcw9ZHTOfgYAvBJXG_w8Q3-PYOtY8eu6SEDl3SNklcYzIL7vOj3vv0sS0xJFUAG33bQN1rIq4C1N0VOa96wPEJR-T1fvYynafLp4fF9G6ZWqHzmCrJBS0zySrAMkNAJ7iiOc21kq6seGYZE4xmZcG1ljqHzDpE5hQ6BcI6MSKLo69rYWN2wff596YFb74PbVgZCNHbGo3lmSorIZzOhETFiqIfZa5lnhVWFbT34kcvG9quC1gZ6yMcPosBfG0YNYeWzaFlc2q5F938Ef2E-Jf-BXQbgYM |
CitedBy_id | crossref_primary_10_3390_math11081953 |
Cites_doi | 10.1007/978-3-319-52141-1 10.1155/S102558340000031X 10.1006/jath.2001.3658 10.1515/mjpaa-2017-0003 10.20944/preprints201609.0105.v1 10.1007/s13398-019-00680-x 10.1007/BF02189414 10.1186/s13662-017-1306-z 10.1016/j.jmaa.2016.09.018 10.1007/978-1-4020-6042-7 10.1002/mma.5893 10.1137/S0036142903435958 10.2298/FIL1715989C 10.1016/j.amc.2011.03.062 10.1090/S0025-5718-03-01622-3 |
ContentType | Journal Article |
CorporateAuthor | College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028000, China |
CorporateAuthor_xml | – name: College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028000, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021666 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 11507 |
ExternalDocumentID | oai_doaj_org_article_c256bf33d7534e6199e61b874859c690 10_3934_math_2021666 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-64230b541faeb5eaed3260808764dbf25c113105b9277478a5cdee1d6ed6a3cd3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:30:59 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-64230b541faeb5eaed3260808764dbf25c113105b9277478a5cdee1d6ed6a3cd3 |
OpenAccessLink | https://doaj.org/article/c256bf33d7534e6199e61b874859c690 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c256bf33d7534e6199e61b874859c690 crossref_citationtrail_10_3934_math_2021666 crossref_primary_10_3934_math_2021666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021666-14 key-10.3934/math.2021666-15 key-10.3934/math.2021666-12 key-10.3934/math.2021666-23 key-10.3934/math.2021666-13 key-10.3934/math.2021666-24 key-10.3934/math.2021666-10 key-10.3934/math.2021666-21 key-10.3934/math.2021666-11 key-10.3934/math.2021666-22 key-10.3934/math.2021666-20 key-10.3934/math.2021666-8 key-10.3934/math.2021666-7 key-10.3934/math.2021666-9 key-10.3934/math.2021666-4 key-10.3934/math.2021666-18 key-10.3934/math.2021666-3 key-10.3934/math.2021666-19 key-10.3934/math.2021666-6 key-10.3934/math.2021666-16 key-10.3934/math.2021666-5 key-10.3934/math.2021666-17 key-10.3934/math.2021666-2 key-10.3934/math.2021666-1 |
References_xml | – ident: key-10.3934/math.2021666-12 – ident: key-10.3934/math.2021666-13 – ident: key-10.3934/math.2021666-1 doi: 10.1007/978-3-319-52141-1 – ident: key-10.3934/math.2021666-7 doi: 10.1155/S102558340000031X – ident: key-10.3934/math.2021666-11 doi: 10.1006/jath.2001.3658 – ident: key-10.3934/math.2021666-24 doi: 10.1515/mjpaa-2017-0003 – ident: key-10.3934/math.2021666-3 doi: 10.20944/preprints201609.0105.v1 – ident: key-10.3934/math.2021666-8 doi: 10.1007/s13398-019-00680-x – ident: key-10.3934/math.2021666-19 doi: 10.1007/BF02189414 – ident: key-10.3934/math.2021666-15 doi: 10.1186/s13662-017-1306-z – ident: key-10.3934/math.2021666-5 doi: 10.1016/j.jmaa.2016.09.018 – ident: key-10.3934/math.2021666-21 doi: 10.1007/978-1-4020-6042-7 – ident: key-10.3934/math.2021666-23 – ident: key-10.3934/math.2021666-6 doi: 10.1002/mma.5893 – ident: key-10.3934/math.2021666-9 doi: 10.1137/S0036142903435958 – ident: key-10.3934/math.2021666-22 – ident: key-10.3934/math.2021666-20 – ident: key-10.3934/math.2021666-4 doi: 10.2298/FIL1715989C – ident: key-10.3934/math.2021666-17 – ident: key-10.3934/math.2021666-2 – ident: key-10.3934/math.2021666-14 – ident: key-10.3934/math.2021666-16 doi: 10.1016/j.amc.2011.03.062 – ident: key-10.3934/math.2021666-10 doi: 10.1090/S0025-5718-03-01622-3 – ident: key-10.3934/math.2021666-18 |
SSID | ssj0002124274 |
Score | 2.1386082 |
Snippet | In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a,... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 11494 |
SubjectTerms | convex function erdélyi-kober fractional integrals error estimations hermite-hadamard inequality riemann-liouville fractional integrals |
Title | Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals |
URI | https://doaj.org/article/c256bf33d7534e6199e61b874859c690 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATsprUzsMjoFYVqCxQqVvkx0VCKilqw8BP4nfwx7iLQ1UGxMKSIbok1nfR3Xf2-TNjFybKwcQQC-lcLhQkXuhMOuEBs4lV2upGZ3b8kI4m6m6aTNeO-qKesCAPHIDrOczJtpTSI69WgHRf48XmmcoT7bC0o-iLOW-tmKIYjAFZYb0VOt2llqqH_I_WHvq0TPYjB61J9Tc5ZbjDtlsyyK_DIHbZBlR7bGu8UlJd7rPHEXWr1CAwRJgXdCenSVOO3DBsh8RCl1Mm8nxecXyODxb-82P2_izuqWeal4uwcwE_0ypDzJYHbDIcPN2ORHsQgnAyy2uBNYKMbKLi0oBNwIBH0oVUDyOZ8rbsJy6OkaYlBCzp4ZvEeYDYp-BTI52Xh6xTzSs4Ytwbj5zB9bUzqUrBaWWyyLg8p27QKIUuu_qGpnCtSjgdVjErsFogIAsCsmiB7LLLlfVrUMf4xe6GUF7ZkKZ1cwM9XbSeLv7y9PF_vOSEbdKYwiTKKevUizc4Q1pR2_PmD_oC8yXL0A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hermite-Hadamard+type+inequalities+based+on+the+Erd%C3%A9lyi-Kober+fractional+integrals&rft.jtitle=AIMS+mathematics&rft.au=XuRan+Hai&rft.au=ShuHong+Wang&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=11494&rft.epage=11507&rft_id=info:doi/10.3934%2Fmath.2021666&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c256bf33d7534e6199e61b874859c690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |