A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer

Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant impact on the efficiency of wind power generation systems. Due to the non-stationarity and stochasticity of the wind spee...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 100; p. 106996
Main Authors Altan, Aytaç, Karasu, Seçkin, Zio, Enrico
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant impact on the efficiency of wind power generation systems. Due to the non-stationarity and stochasticity of the wind speed (WS), a single model is often not sufficient in practice for the accurate estimation of the WS. Hybrid models are being proposed to overcome the limitations of single models and increase the WS forecasting performance. In this paper, a new hybrid WSF model is developed based on long short-term memory (LSTM) network and decomposition methods with grey wolf optimizer (GWO). In the pre-processing stage, the missing data is filled by the weighted moving average (WMA) method, the WS time series (WSTS) data are smoothed by WMA filtering and the smoothed data are used as model input after Z-score normalization. The forecasting model is formed by the combination of a single model, a decomposition method and an advanced optimization algorithm. Successively, the hybrid WSF model is developed by combining the LSTM and decomposition methods, and optimizing the intrinsic mode function (IMF) estimated outputs with a grey wolf optimizer (GWO). The developed non-linear hybrid model is utilized on the data collected from five wind farms in the Marmara region, Turkey. The obtained experimental results indicate that the proposed combined model can capture non-linear characteristics of WSTS, achieving better forecasting performance than single forecasting models, in terms of accuracy. [Display omitted] •The proposed combined model will significantly improve the forecasting accuracy.•The effectiveness of the model is tested on data from the wind farm in five regions.•The proposed model can capture non-linear features of the wind speed time series.
AbstractList Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant impact on the efficiency of wind power generation systems. Due to the non-stationarity and stochasticity of the wind speed (WS), a single model is often not sufficient in practice for the accurate estimation of the WS. Hybrid models are being proposed to overcome the limitations of single models and increase the WS forecasting performance. In this paper, a new hybrid WSF model is developed based on long short-term memory (LSTM) network and decomposition methods with grey wolf optimizer (GWO). In the pre-processing stage, the missing data is filled by the weighted moving average (WMA) method, the WS time series (WSTS) data are smoothed by WMA filtering and the smoothed data are used as model input after Z-score normalization. The forecasting model is formed by the combination of a single model, a decomposition method and an advanced optimization algorithm. Successively, the hybrid WSF model is developed by combining the LSTM and decomposition methods, and optimizing the intrinsic mode function (IMF) estimated outputs with a grey wolf optimizer (GWO). The developed non-linear hybrid model is utilized on the data collected from five wind farms in the Marmara region, Turkey. The obtained experimental results indicate that the proposed combined model can capture non-linear characteristics of WSTS, achieving better forecasting performance than single forecasting models, in terms of accuracy. [Display omitted] •The proposed combined model will significantly improve the forecasting accuracy.•The effectiveness of the model is tested on data from the wind farm in five regions.•The proposed model can capture non-linear features of the wind speed time series.
ArticleNumber 106996
Author Karasu, Seçkin
Altan, Aytaç
Zio, Enrico
Author_xml – sequence: 1
  givenname: Aytaç
  surname: Altan
  fullname: Altan, Aytaç
  email: aytacaltan@beun.edu.tr
  organization: Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey
– sequence: 2
  givenname: Seçkin
  surname: Karasu
  fullname: Karasu, Seçkin
  organization: Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey
– sequence: 3
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  organization: MINES ParisTech, PSL Research University, CRC, Sophia Antipolis, France
BackLink https://minesparis-psl.hal.science/hal-03479657$$DView record in HAL
BookMark eNp9kcGOFCEQholZE3dXX8ATVxN7pIGhIfEy2biuySRe9EwYKHYYu7smgDsZn8GHls7oxcNeqKLyf38F_htyNeMMhLzt2apnvfpwWLmCfsUZXwbKGPWCXPd64J1Rur9q_VrpThqpXpGbUg6sQYbra_J7Q2c40f15l1OgEwYYacRMT2kOtBwBwnIF70pN8yP1OO3SvHQjtqPsMdeuQp7oBBPmczP7md3YSj1h_vGeBmjIEUuqCecmqnsMhbpm_pjhTE84RorHmqb0C_Jr8jK6scCbv_WWfL__9O3uodt-_fzlbrPtvBh07ZQYBglKysCZ4AykU3rHuImyjyJGHZXTZlgLAVEL48ELGQfldhq4WkNjbsm7i-_ejfaY0-Ty2aJL9mGztcuMCTkYtR6e-qbVF63PWEqGaH2qbnlNzS6Ntmd2ScAe7JKAXRKwlwQayv9D_-16Fvp4gaB9wFOCbItPMHsIqcVQbcD0HP4HQdqkKA
CitedBy_id crossref_primary_10_1016_j_matpr_2022_02_546
crossref_primary_10_1016_j_engappai_2021_104500
crossref_primary_10_1016_j_apenergy_2021_117505
crossref_primary_10_1016_j_eswa_2022_117170
crossref_primary_10_1016_j_engappai_2021_104626
crossref_primary_10_1177_00202940221103606
crossref_primary_10_1016_j_rser_2022_112700
crossref_primary_10_1016_j_aej_2024_03_078
crossref_primary_10_1016_j_enconman_2022_116628
crossref_primary_10_3390_en17091996
crossref_primary_10_1016_j_eswa_2023_119878
crossref_primary_10_1016_j_apenergy_2023_121457
crossref_primary_10_1016_j_mlwa_2021_100110
crossref_primary_10_1016_j_renene_2022_07_016
crossref_primary_10_1016_j_engappai_2021_104511
crossref_primary_10_1016_j_eswa_2025_126979
crossref_primary_10_1080_17445302_2023_2218323
crossref_primary_10_1016_j_neunet_2022_10_009
crossref_primary_10_1016_j_energy_2024_130606
crossref_primary_10_3390_math13030464
crossref_primary_10_1016_j_eswa_2022_119223
crossref_primary_10_1177_00202940221101673
crossref_primary_10_1016_j_imu_2022_100863
crossref_primary_10_1038_s41598_023_45760_6
crossref_primary_10_1016_j_enconman_2021_114162
crossref_primary_10_1007_s10462_025_11140_x
crossref_primary_10_1016_j_apenergy_2024_122812
crossref_primary_10_1016_j_asoc_2022_108875
crossref_primary_10_1016_j_meaene_2024_100033
crossref_primary_10_1155_2021_3474077
crossref_primary_10_1177_00202940221101672
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1016_j_scs_2021_103269
crossref_primary_10_1016_j_apenergy_2021_117888
crossref_primary_10_1016_j_ins_2023_03_062
crossref_primary_10_1016_j_eswa_2022_118487
crossref_primary_10_1016_j_seta_2021_101698
crossref_primary_10_1177_03019233241254891
crossref_primary_10_1007_s12145_022_00839_y
crossref_primary_10_1016_j_measurement_2021_110399
crossref_primary_10_1016_j_mlwa_2021_100214
crossref_primary_10_1007_s13563_024_00483_6
crossref_primary_10_1016_j_measurement_2021_110272
crossref_primary_10_1038_s41598_024_63878_z
crossref_primary_10_1371_journal_pone_0294413
crossref_primary_10_1016_j_chaos_2022_112899
crossref_primary_10_1007_s11071_021_06631_9
crossref_primary_10_1016_j_apenergy_2024_125061
crossref_primary_10_1002_ese3_1047
crossref_primary_10_32604_EE_2022_017916
crossref_primary_10_1016_j_chaos_2021_111260
crossref_primary_10_1016_j_apenergy_2023_121120
crossref_primary_10_1016_j_mlwa_2021_100204
crossref_primary_10_1016_j_eswa_2023_119746
crossref_primary_10_1093_ce_zkad042
crossref_primary_10_1016_j_chaos_2022_112416
crossref_primary_10_1007_s10462_021_10090_4
crossref_primary_10_3233_JIFS_223242
crossref_primary_10_1016_j_engappai_2021_104425
crossref_primary_10_3389_fenrg_2024_1346000
crossref_primary_10_1016_j_oceaneng_2025_120737
crossref_primary_10_1016_j_swevo_2021_100987
crossref_primary_10_1016_j_energy_2025_135551
crossref_primary_10_1007_s11356_022_22286_4
crossref_primary_10_1109_TIE_2021_3139177
crossref_primary_10_1016_j_energy_2023_129415
crossref_primary_10_1016_j_meaene_2024_100001
crossref_primary_10_1016_j_nexus_2023_100250
crossref_primary_10_1016_j_energy_2023_130145
crossref_primary_10_1007_s42979_024_02648_0
crossref_primary_10_1016_j_ast_2024_108970
crossref_primary_10_1016_j_enconman_2024_118343
crossref_primary_10_1016_j_energy_2023_128565
crossref_primary_10_1016_j_engappai_2021_104439
crossref_primary_10_1080_08839514_2022_2146296
crossref_primary_10_1016_j_engappai_2021_104314
crossref_primary_10_1016_j_knosys_2021_107297
crossref_primary_10_1016_j_engappai_2021_104438
crossref_primary_10_3390_s24092749
crossref_primary_10_1016_j_applthermaleng_2024_122483
crossref_primary_10_1080_08839514_2021_1989168
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1016_j_chaos_2021_111129
crossref_primary_10_1016_j_eswa_2023_122971
crossref_primary_10_1080_10835547_2022_2110668
crossref_primary_10_1016_j_engappai_2021_104563
crossref_primary_10_1080_00949655_2021_1951266
crossref_primary_10_1016_j_apenergy_2021_117204
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1016_j_apenergy_2022_118936
crossref_primary_10_1016_j_energy_2021_120904
crossref_primary_10_1016_j_chaos_2021_111336
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1371_journal_pone_0301349
crossref_primary_10_1016_j_eswa_2021_115964
crossref_primary_10_1016_j_engappai_2024_108921
crossref_primary_10_1016_j_engappai_2021_104326
crossref_primary_10_1016_j_rser_2021_111278
crossref_primary_10_1016_j_engappai_2024_108924
crossref_primary_10_1016_j_apenergy_2021_117441
crossref_primary_10_1016_j_asoc_2021_108026
crossref_primary_10_1108_JM2_09_2023_0207
crossref_primary_10_1007_s11356_023_27556_3
crossref_primary_10_1016_j_apenergy_2024_124057
crossref_primary_10_1007_s00521_023_08998_9
crossref_primary_10_32604_cmc_2023_038564
crossref_primary_10_1016_j_jksuci_2024_101959
crossref_primary_10_1016_j_heliyon_2024_e33387
crossref_primary_10_1108_FS_01_2023_0016
crossref_primary_10_1016_j_chaos_2021_111106
crossref_primary_10_1080_15435075_2023_2228878
crossref_primary_10_1016_j_iswa_2021_200045
crossref_primary_10_1016_j_apenergy_2021_117228
crossref_primary_10_3390_app14135769
crossref_primary_10_1016_j_measurement_2021_109673
crossref_primary_10_3233_JIFS_230253
crossref_primary_10_1016_j_asoc_2022_109690
crossref_primary_10_1177_1045389X241230569
crossref_primary_10_1016_j_apenergy_2021_118302
crossref_primary_10_1016_j_eswa_2021_115659
crossref_primary_10_1016_j_eswa_2021_115414
crossref_primary_10_1371_journal_pone_0290117
crossref_primary_10_1016_j_apenergy_2024_124274
crossref_primary_10_1038_s41598_022_10496_2
crossref_primary_10_1016_j_eswa_2023_120119
crossref_primary_10_1016_j_spc_2023_06_012
crossref_primary_10_1016_j_asoc_2022_108477
crossref_primary_10_1016_j_engappai_2022_105150
crossref_primary_10_1016_j_energy_2021_121565
crossref_primary_10_1016_j_jksuci_2024_102068
crossref_primary_10_1007_s13563_024_00477_4
crossref_primary_10_1007_s10489_024_05450_w
crossref_primary_10_1016_j_apenergy_2022_118615
crossref_primary_10_1016_j_apenergy_2021_117248
crossref_primary_10_1016_j_engappai_2023_106986
crossref_primary_10_2139_ssrn_4148554
crossref_primary_10_3390_w15213724
crossref_primary_10_1016_j_energy_2024_133826
crossref_primary_10_1016_j_eswa_2021_114797
crossref_primary_10_3390_s24165224
crossref_primary_10_1016_j_eswa_2022_118089
crossref_primary_10_1016_j_seta_2022_102467
crossref_primary_10_1016_j_egyr_2021_10_075
crossref_primary_10_1016_j_enconman_2023_117868
crossref_primary_10_3390_su142215301
crossref_primary_10_1016_j_enconman_2021_115086
crossref_primary_10_2166_wcc_2023_257
crossref_primary_10_1109_LES_2024_3462638
crossref_primary_10_1177_00202940221089272
crossref_primary_10_3788_AOS240891
crossref_primary_10_1016_j_engappai_2025_110260
crossref_primary_10_1016_j_heliyon_2023_e21471
crossref_primary_10_1080_15567036_2021_1925379
crossref_primary_10_3390_math10071121
crossref_primary_10_1002_ese3_1562
crossref_primary_10_3233_JIFS_230343
crossref_primary_10_1007_s43674_022_00045_9
crossref_primary_10_1016_j_energy_2021_120258
crossref_primary_10_1016_j_asoc_2022_109221
crossref_primary_10_1016_j_jobe_2024_109408
crossref_primary_10_1016_j_mechmachtheory_2021_104639
crossref_primary_10_1016_j_rser_2023_113792
crossref_primary_10_21926_jept_2401008
crossref_primary_10_3390_en16186563
crossref_primary_10_1016_j_chaos_2021_111197
crossref_primary_10_1108_ECON_05_2022_0026
crossref_primary_10_1016_j_jweia_2025_106035
crossref_primary_10_1016_j_eswa_2021_115105
crossref_primary_10_1016_j_rser_2022_112188
crossref_primary_10_3390_en15114067
crossref_primary_10_1177_00202940231173752
crossref_primary_10_1007_s11269_022_03133_0
crossref_primary_10_1016_j_renene_2023_119732
crossref_primary_10_1177_00202940231193000
crossref_primary_10_1016_j_eswa_2022_116603
crossref_primary_10_1016_j_ecmx_2025_100891
crossref_primary_10_3390_biomimetics8040351
crossref_primary_10_1016_j_eswa_2022_116609
crossref_primary_10_1108_AJEB_01_2024_0007
crossref_primary_10_3390_w15244246
crossref_primary_10_1016_j_ins_2023_119613
crossref_primary_10_1016_j_energy_2023_129012
crossref_primary_10_1007_s00521_022_07303_4
crossref_primary_10_1016_j_measurement_2024_115222
crossref_primary_10_1016_j_oceaneng_2023_115435
crossref_primary_10_1016_j_measurement_2022_111701
crossref_primary_10_1177_03019233241265194
crossref_primary_10_1016_j_egyr_2022_05_110
crossref_primary_10_1016_j_energy_2021_121000
crossref_primary_10_1007_s00521_024_09531_2
crossref_primary_10_1093_ce_zkac011
crossref_primary_10_3390_en16104060
crossref_primary_10_1016_j_asoc_2022_109003
crossref_primary_10_1016_j_ast_2024_109579
crossref_primary_10_1016_j_engappai_2021_104284
crossref_primary_10_1007_s11071_021_06810_8
crossref_primary_10_1016_j_enconman_2022_116653
crossref_primary_10_1016_j_eswa_2021_115441
crossref_primary_10_1016_j_enconman_2023_116969
crossref_primary_10_3390_jmse11091636
crossref_primary_10_1016_j_egyr_2024_09_021
crossref_primary_10_1016_j_enconman_2021_115047
crossref_primary_10_3390_wind2010003
crossref_primary_10_1016_j_engappai_2021_104292
crossref_primary_10_1016_j_apenergy_2022_118775
crossref_primary_10_1108_JFMPC_08_2022_0041
crossref_primary_10_1016_j_engappai_2021_104290
crossref_primary_10_1016_j_iswa_2021_200052
crossref_primary_10_1007_s00521_021_06255_5
crossref_primary_10_1016_j_apenergy_2021_117038
crossref_primary_10_1016_j_ins_2022_05_088
crossref_primary_10_1016_j_engappai_2023_105982
crossref_primary_10_1155_2022_4514300
crossref_primary_10_3390_en15197434
crossref_primary_10_1016_j_enconman_2022_115209
crossref_primary_10_1016_j_enconman_2021_114069
crossref_primary_10_1016_j_energy_2021_120295
crossref_primary_10_1061_JCCEE5_CPENG_6133
crossref_primary_10_1007_s41870_022_00948_3
crossref_primary_10_1016_j_energy_2021_120179
crossref_primary_10_1007_s00500_023_08638_3
crossref_primary_10_1016_j_psep_2024_08_047
crossref_primary_10_1016_j_apenergy_2023_120914
crossref_primary_10_1016_j_energy_2021_120528
crossref_primary_10_1016_j_asoc_2021_107941
crossref_primary_10_1016_j_asoc_2021_107948
crossref_primary_10_3390_electronics11050824
crossref_primary_10_1016_j_memori_2023_100086
crossref_primary_10_1177_03019233241297720
crossref_primary_10_3390_en15041510
crossref_primary_10_1016_j_eswa_2021_115261
crossref_primary_10_1007_s42824_024_00123_y
crossref_primary_10_1016_j_measurement_2021_109821
crossref_primary_10_1016_j_apenergy_2022_118674
crossref_primary_10_1016_j_chaos_2021_110864
crossref_primary_10_1007_s11071_022_07424_4
crossref_primary_10_1093_ijlct_ctaf035
crossref_primary_10_1016_j_apenergy_2021_118029
crossref_primary_10_3389_fenrg_2023_1298088
crossref_primary_10_1109_JSEN_2022_3151932
crossref_primary_10_1016_j_chaos_2021_110751
crossref_primary_10_1016_j_renene_2024_121103
crossref_primary_10_1080_03610918_2024_2330700
crossref_primary_10_1016_j_sigpro_2023_109046
crossref_primary_10_1109_ACCESS_2024_3401038
crossref_primary_10_1016_j_apenergy_2024_123589
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1109_TIE_2022_3177788
crossref_primary_10_1155_2022_3316886
crossref_primary_10_3390_w14142157
crossref_primary_10_1007_s13563_024_00457_8
crossref_primary_10_1080_09599916_2021_1996446
crossref_primary_10_1016_j_renene_2024_120389
crossref_primary_10_1142_S0218348X22401557
crossref_primary_10_1016_j_ins_2022_11_145
crossref_primary_10_1093_jigpal_jzae034
crossref_primary_10_1016_j_heliyon_2022_e10338
crossref_primary_10_1016_j_enconman_2021_114950
crossref_primary_10_1016_j_asoc_2023_110334
crossref_primary_10_1016_j_energy_2022_125276
crossref_primary_10_1016_j_isatra_2023_09_019
crossref_primary_10_62520_fujece_1517615
crossref_primary_10_1063_5_0198183
crossref_primary_10_1016_j_engappai_2024_108172
crossref_primary_10_1016_j_segan_2024_101293
crossref_primary_10_3390_en16145281
crossref_primary_10_1007_s12665_023_11377_1
crossref_primary_10_1016_j_oceaneng_2021_110121
crossref_primary_10_1063_5_0144648
crossref_primary_10_1016_j_energy_2022_126383
crossref_primary_10_3390_su15076261
crossref_primary_10_1016_j_ecmx_2024_100700
crossref_primary_10_1007_s11760_022_02424_8
crossref_primary_10_1142_S0219477523500384
crossref_primary_10_31590_ejosat_1026742
crossref_primary_10_1016_j_knosys_2023_110472
crossref_primary_10_1016_j_iswa_2022_200083
crossref_primary_10_1016_j_iswa_2022_200084
crossref_primary_10_1016_j_energy_2022_126034
crossref_primary_10_1016_j_renene_2024_122102
crossref_primary_10_1016_j_renene_2022_09_114
crossref_primary_10_15672_hujms_939543
crossref_primary_10_3233_HIS_230004
crossref_primary_10_3390_pr10040689
crossref_primary_10_1016_j_energy_2021_121533
crossref_primary_10_1016_j_asoc_2021_107994
crossref_primary_10_1016_j_measurement_2021_109507
crossref_primary_10_1063_5_0245664
crossref_primary_10_3389_fncom_2022_1052140
crossref_primary_10_1007_s43674_023_00054_2
crossref_primary_10_1016_j_ast_2022_107884
crossref_primary_10_1016_j_istruc_2025_108266
crossref_primary_10_1177_00202940251316694
crossref_primary_10_1016_j_eswa_2021_115059
crossref_primary_10_1016_j_energy_2024_133515
crossref_primary_10_1016_j_eswa_2021_115057
crossref_primary_10_1016_j_enconman_2023_117507
crossref_primary_10_1016_j_measurement_2021_109857
crossref_primary_10_1109_ACCESS_2021_3097102
crossref_primary_10_1016_j_asoc_2021_107760
crossref_primary_10_1016_j_egyr_2023_11_040
crossref_primary_10_1111_jfpe_70016
crossref_primary_10_1016_j_heliyon_2022_e11599
crossref_primary_10_1016_j_apenergy_2022_119692
crossref_primary_10_1007_s11071_023_08298_w
crossref_primary_10_1016_j_sigpro_2023_109080
crossref_primary_10_7717_peerj_cs_2393
crossref_primary_10_1016_j_apenergy_2023_121708
crossref_primary_10_1016_j_energy_2024_130352
crossref_primary_10_1016_j_applthermaleng_2024_122718
crossref_primary_10_1155_2023_3056688
crossref_primary_10_1016_j_renene_2021_07_126
crossref_primary_10_1186_s44147_024_00535_2
crossref_primary_10_1016_j_iswa_2022_200061
crossref_primary_10_1016_j_ast_2022_107510
crossref_primary_10_1007_s00371_024_03372_9
crossref_primary_10_1016_j_apenergy_2022_120578
crossref_primary_10_1142_S2737599425500021
crossref_primary_10_1016_j_measurement_2021_109891
crossref_primary_10_1016_j_enconman_2023_117303
crossref_primary_10_1016_j_engappai_2022_104767
crossref_primary_10_1142_S2737599424500130
crossref_primary_10_1007_s11356_022_18839_2
crossref_primary_10_1016_j_renene_2023_118942
crossref_primary_10_1016_j_asoc_2023_110019
crossref_primary_10_1016_j_aej_2024_06_028
crossref_primary_10_3390_su15108333
crossref_primary_10_1016_j_mlwa_2022_100271
crossref_primary_10_1016_j_enconman_2023_117891
crossref_primary_10_1109_ACCESS_2024_3440631
crossref_primary_10_1016_j_ast_2022_107621
crossref_primary_10_1016_j_egyr_2022_07_005
crossref_primary_10_1016_j_eswa_2021_115039
crossref_primary_10_1007_s00477_023_02632_9
crossref_primary_10_3390_en14206501
crossref_primary_10_1016_j_egyr_2023_05_034
crossref_primary_10_1177_00202940221109777
crossref_primary_10_1016_j_asoc_2021_107863
crossref_primary_10_1016_j_mlwa_2021_100086
crossref_primary_10_1155_2022_5430622
crossref_primary_10_1016_j_apenergy_2023_120638
crossref_primary_10_1016_j_eswa_2023_123054
crossref_primary_10_1016_j_apenergy_2022_119249
crossref_primary_10_3390_systems12080309
crossref_primary_10_1002_isaf_1519
crossref_primary_10_1155_2022_3343505
crossref_primary_10_1016_j_ymssp_2021_108400
crossref_primary_10_1155_2021_2727218
crossref_primary_10_1016_j_istruc_2022_02_035
crossref_primary_10_1016_j_nexus_2023_100210
crossref_primary_10_1007_s11071_021_06336_z
crossref_primary_10_1016_j_ins_2023_119122
crossref_primary_10_1016_j_aej_2023_06_048
crossref_primary_10_1016_j_ast_2021_107183
crossref_primary_10_1007_s11071_022_08002_4
crossref_primary_10_1016_j_ijepes_2022_107994
crossref_primary_10_1016_j_knosys_2021_107139
crossref_primary_10_1142_S1469026823500244
crossref_primary_10_1016_j_asoc_2023_110294
crossref_primary_10_3233_JIFS_241607
crossref_primary_10_3390_en15134895
crossref_primary_10_1016_j_apenergy_2024_124954
crossref_primary_10_1016_j_apenergy_2022_119378
crossref_primary_10_1088_1674_1056_ad7e9a
crossref_primary_10_1016_j_energy_2023_129724
crossref_primary_10_3390_su14159021
crossref_primary_10_1016_j_energy_2023_129728
crossref_primary_10_1007_s41965_025_00186_z
crossref_primary_10_1007_s10586_024_04455_x
crossref_primary_10_3390_ma16113995
crossref_primary_10_1080_17509653_2025_2453902
crossref_primary_10_1016_j_ast_2022_107675
crossref_primary_10_1016_j_energy_2024_133023
crossref_primary_10_1016_j_asoc_2022_108814
crossref_primary_10_1016_j_energy_2023_128510
crossref_primary_10_3390_electronics11152432
crossref_primary_10_1016_j_seta_2021_101853
crossref_primary_10_1016_j_energy_2022_125556
crossref_primary_10_1016_j_imu_2021_100631
crossref_primary_10_1007_s13563_022_00311_9
crossref_primary_10_1016_j_apenergy_2022_119025
crossref_primary_10_3390_math10030315
crossref_primary_10_1016_j_ymssp_2024_111671
crossref_primary_10_1007_s13563_022_00357_9
crossref_primary_10_1016_j_eswa_2022_116692
crossref_primary_10_3390_en16176272
crossref_primary_10_1016_j_rser_2021_111525
crossref_primary_10_1109_ACCESS_2024_3392899
crossref_primary_10_1155_2022_1027495
crossref_primary_10_3390_su16010333
crossref_primary_10_1016_j_apenergy_2024_122996
crossref_primary_10_1016_j_chaos_2022_111848
crossref_primary_10_1080_03019233_2023_2218243
crossref_primary_10_1016_j_ins_2023_119112
crossref_primary_10_1016_j_ecmx_2023_100405
crossref_primary_10_1016_j_mlwa_2021_100162
crossref_primary_10_1109_TCC_2024_3449884
crossref_primary_10_1016_j_chaos_2023_113133
crossref_primary_10_1016_j_enconman_2024_118735
crossref_primary_10_1177_00202940221100538
crossref_primary_10_1016_j_asoc_2023_110083
crossref_primary_10_1007_s12145_024_01300_y
crossref_primary_10_1016_j_eswa_2022_117134
crossref_primary_10_1016_j_eswa_2022_119311
crossref_primary_10_1109_ACCESS_2021_3084536
crossref_primary_10_1016_j_enconman_2021_114775
crossref_primary_10_3390_su151712914
crossref_primary_10_1016_j_apenergy_2024_122624
crossref_primary_10_1016_j_renene_2024_120557
crossref_primary_10_7759_s44389_024_02010_8
crossref_primary_10_3390_s23167047
crossref_primary_10_1016_j_ins_2024_120447
crossref_primary_10_14710_ijred_2023_48672
crossref_primary_10_1016_j_cie_2023_109237
crossref_primary_10_1016_j_enconman_2023_117590
crossref_primary_10_1016_j_applthermaleng_2023_121612
crossref_primary_10_1016_j_energy_2021_121808
crossref_primary_10_1016_j_energy_2022_125231
crossref_primary_10_1007_s12667_024_00704_5
crossref_primary_10_1007_s11227_023_05207_1
crossref_primary_10_1007_s43621_024_00615_6
crossref_primary_10_1016_j_asoc_2021_107488
crossref_primary_10_1016_j_desal_2025_118765
crossref_primary_10_1016_j_cma_2023_116474
crossref_primary_10_1002_cta_4391
crossref_primary_10_1016_j_ast_2021_107031
crossref_primary_10_3390_app12199701
crossref_primary_10_1016_j_ast_2022_107592
crossref_primary_10_1371_journal_pone_0281294
crossref_primary_10_1016_j_engappai_2021_104603
crossref_primary_10_1016_j_eswa_2022_117358
crossref_primary_10_1016_j_apenergy_2023_121554
crossref_primary_10_1016_j_mlwa_2021_100134
crossref_primary_10_1007_s11356_021_14591_1
crossref_primary_10_1016_j_chaos_2021_111737
crossref_primary_10_1016_j_measurement_2021_109927
crossref_primary_10_1142_S2811034X24500060
crossref_primary_10_1016_j_ins_2023_119158
crossref_primary_10_3390_en16145347
crossref_primary_10_1088_1402_4896_ad6b58
crossref_primary_10_3390_electronics11091320
crossref_primary_10_1016_j_compbiomed_2022_105915
crossref_primary_10_3390_en18030542
crossref_primary_10_1016_j_eswa_2021_116075
crossref_primary_10_1016_j_chaos_2023_113284
crossref_primary_10_1016_j_renene_2021_05_142
crossref_primary_10_1007_s00500_023_08029_8
crossref_primary_10_1007_s00521_024_10270_7
crossref_primary_10_1142_S0219477522500596
crossref_primary_10_1016_j_apenergy_2024_122719
crossref_primary_10_1371_journal_pone_0264958
crossref_primary_10_3390_su17052081
crossref_primary_10_1016_j_chaos_2021_111627
Cites_doi 10.1016/j.enconman.2010.11.007
10.1016/j.enconman.2018.04.082
10.1016/j.apenergy.2011.01.037
10.1016/j.renene.2009.11.022
10.1142/S1793536909000047
10.1016/j.apenergy.2010.10.031
10.1162/neco.1997.9.8.1735
10.1016/j.apenergy.2012.03.054
10.1016/j.enconman.2017.11.053
10.2298/TSCI170919306A
10.1016/j.enconman.2016.08.086
10.1016/j.renene.2016.03.103
10.1016/j.apenergy.2015.07.043
10.1007/s00704-015-1469-z
10.1016/j.renene.2008.09.006
10.1016/j.apenergy.2017.01.063
10.1016/j.enconman.2018.02.006
10.1016/j.beproc.2011.09.006
10.1016/j.rser.2015.06.062
10.1016/j.apenergy.2018.05.054
10.1016/j.patcog.2005.01.012
10.1016/j.renene.2017.09.089
10.1016/j.enconman.2018.03.098
10.1098/rspa.1998.0193
10.1016/j.apenergy.2016.03.096
10.1016/j.enconman.2017.07.065
10.1016/j.advengsoft.2013.12.007
10.1016/j.apenergy.2015.08.014
10.1016/j.neucom.2016.03.061
10.1016/j.renene.2016.02.054
10.1016/j.knosys.2011.04.019
10.1016/j.enconman.2018.02.012
10.1016/j.enconman.2017.10.085
10.1016/j.rser.2008.02.002
10.1016/j.renene.2013.08.011
10.1016/j.apenergy.2015.02.032
10.1016/j.enconman.2018.02.015
10.1088/1674-1056/17/2/031
10.1016/j.enconman.2017.10.021
10.1016/S0196-8904(03)00108-0
10.1109/TEC.2003.821865
10.1016/j.renene.2012.12.041
10.1016/j.asoc.2019.02.037
10.1016/j.bspc.2014.06.009
10.1016/j.knosys.2019.05.009
10.1016/j.apenergy.2019.01.055
10.1016/j.energy.2004.05.026
10.1016/j.ijepes.2017.08.012
10.3390/en9020109
10.1016/j.enconman.2018.07.070
10.1016/j.enconman.2017.04.064
10.1109/EPC.2008.4763386
10.1016/j.enconman.2018.04.021
10.1016/j.envsoft.2012.01.019
10.1016/j.apenergy.2017.04.039
10.1016/j.enconman.2018.01.010
10.1016/j.asoc.2018.11.047
10.1016/j.energy.2014.06.056
10.1016/j.enconman.2017.04.007
10.1016/j.apenergy.2018.02.070
10.1016/j.renene.2007.01.014
10.1016/j.renene.2003.11.009
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
BXJBU
DOI 10.1016/j.asoc.2020.106996
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID oai_HAL_hal_03479657v1
10_1016_j_asoc_2020_106996
S1568494620309352
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
BXJBU
ID FETCH-LOGICAL-c378t-63774e644d20320e4a68b029f41f3ff8f6a897533ef839cec34f76ab8e265e203
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Fri May 09 12:21:27 EDT 2025
Tue Jul 01 01:50:08 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hybrid model
Decomposition
Wind speed
Long short-term memory (LSTM)
Grey wolf optimizer (GWO)
LSTM
Long short-term memory LSTM
Grey wolf optimizer
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-63774e644d20320e4a68b029f41f3ff8f6a897533ef839cec34f76ab8e265e203
ORCID 0000-0002-7108-637X
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S1568494620309352-fx1_lrg.jpg
ParticipantIDs hal_primary_oai_HAL_hal_03479657v1
crossref_citationtrail_10_1016_j_asoc_2020_106996
crossref_primary_10_1016_j_asoc_2020_106996
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
2021-03
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mirjalili, Mirjalili, Lewis (b68) 2014; 69
Erdem, Shi (b21) 2011; 88
Bouzgou, Benoudjit (b10) 2011; 88
Li, Wu, Liu (b65) 2018; 167
Muro, Escobedo, Spector, Coppinger (b67) 2011; 88
Dvorak, Archer, Jacobson (b12) 2010; 35
Maatallah, Achuthan, Janoyan, Marzocca (b31) 2015; 145
Cadenas, Rivera, Campos-Amezcua, Heard (b29) 2016; 9
Cheng, Liu, Liu, Zhang, Mahoney, Warner (b11) 2013; 55
Du, Wang, Guo, Yang (b16) 2017; 150
Akçay, Filik (b32) 2017; 191
Al-Yahyai, Charabi, Gastli (b15) 2010
Torres, Colominas, Schlotthauer, Flandrin (b62) 2011
Zhao, Ye, Li, Song, Lang, Su (b8) 2016; 177
Kiplangat, Asokan, Kumar (b48) 2016; 93
Lazić, Pejanović, Živković, Ilić (b14) 2014; 73
Poggi, Muselli, Notton, Cristofari, Louche (b18) 2003; 44
Peng, Zhou, Zhang, Zheng (b50) 2017; 153
Zhang, Wei, Xie, Shen, Zhang (b37) 2016; 205
Kavasseri, Seetharaman (b24) 2009; 34
Zhang, Wei, Zhao, Liu, Zhang (b26) 2016; 126
Riahy, Abedi (b20) 2008; 33
EC (b2) 2016
Liu, Mi, Li (b6) 2018; 166
Wang, Yang, Du, Niu (b45) 2018; 163
Liu, Wu, Li (b52) 2018; 161
Wu, Huang (b60) 2009; 1
Liu, Mi, Li (b36) 2018; 156
World Wind Energy Association (b4) 2019
Acar, Erbas, Arslan (b71) 2019; 23
Guo, Wu, Lu, Wang (b44) 2011; 24
Liu, Mi, Li (b46) 2018; 159
Karasu, Altan, Saraç, Hacioğlu (b28) 2017
Demirhan, Renwick (b57) 2018; 225
Liu, Mi, Li (b47) 2018; 155
Liu, Niu, Wang, Fan (b51) 2014; 62
He, Zhou, Feng, Liu, Yang (b66) 2019; 237
Cassola, Burlando (b23) 2012; 99
Karasu, Altan, Saraç, Hacıoğlu (b30) 2017; 4
Hochreiter, Schmidhuber (b64) 1997; 9
Zhang, Zhou, Li, Fu, Peng (b27) 2017; 143
Chen, Zeng, Zhou, Du, Lu (b53) 2018; 165
Qian-Li, Qi-Lun, Hong, Tan-Wei, Jiang-Wei (b38) 2008; 17
Song, Wang, Lu (b17) 2018; 215
Wu (b61) 2014
Ak, Li, Vitelli, Zio (b34) 2018; 95
Scarlat, Dallem, Monforti-Ferrario, Banja, Motola (b3) 2015; 51
Mohandes, Halawani, Rehman, Hussain (b43) 2004; 29
S.P. Kani, S.M. Mousavi, A.K. Kaviani, G.H. Riahy, A new integrated approach for very short-term wind speed prediction using linear regression among ANN and Markov chain, in: Proceeding on International Conference on Power System Analysis, Control and Optimization, 2008, October.
Çakır (b5) 2010; 13
Zhou, Shi, Li (b49) 2011; 52
Shamshad, Bawadi, Hussin, Majid, Sanusi (b22) 2005; 30
Xiao, Shao, Yu, Ma, Jin (b41) 2017; 198
Tu, Chen, Liu (b70) 2019; 76
Hu, Chen (b54) 2018; 173
Colominas, Schlotthauer, Torres (b63) 2014; 14
Wang, Zhang, Wu, Wang (b35) 2016; 94
Wang, Li, Bai (b55) 2018; 162
Benmouiza, Cheknane (b72) 2016; 124
Lei, Shiyan, Chuanwen, Hongling, Yan (b9) 2009; 13
Al-Dahidi, Baraldi, Zio, Legnani (b33) 2017
Damousis, Alexiadis, Theocharis, Dokopoulos (b42) 2004; 19
Carvalho, Rocha, Gómez-Gesteira, Santos (b13) 2012; 33
Jiang, Huang (b56) 2017; 144
Li, Wang, Lu, Guo (b7) 2018; 116
IEA (b1) 2012
Wang, Zhao, Han, Zhou, Li (b69) 2019; 78
Liu, Tian, Liang, Li (b39) 2015; 157
Huang, Shen, Long, Wu, Shih, Zheng, Liu (b59) 1998; 454
Mehrkanoon (b40) 2019; 179
Jain, Nandakumar, Ross (b58) 2005; 38
Zuluaga, Alvarez, Giraldo (b25) 2015; 156
Lei (10.1016/j.asoc.2020.106996_b9) 2009; 13
Shamshad (10.1016/j.asoc.2020.106996_b22) 2005; 30
Mehrkanoon (10.1016/j.asoc.2020.106996_b40) 2019; 179
Scarlat (10.1016/j.asoc.2020.106996_b3) 2015; 51
World Wind Energy Association (10.1016/j.asoc.2020.106996_b4) 2019
Karasu (10.1016/j.asoc.2020.106996_b30) 2017; 4
Liu (10.1016/j.asoc.2020.106996_b36) 2018; 156
Damousis (10.1016/j.asoc.2020.106996_b42) 2004; 19
Liu (10.1016/j.asoc.2020.106996_b46) 2018; 159
Guo (10.1016/j.asoc.2020.106996_b44) 2011; 24
Al-Yahyai (10.1016/j.asoc.2020.106996_b15) 2010
Demirhan (10.1016/j.asoc.2020.106996_b57) 2018; 225
Wu (10.1016/j.asoc.2020.106996_b60) 2009; 1
Du (10.1016/j.asoc.2020.106996_b16) 2017; 150
10.1016/j.asoc.2020.106996_b19
IEA (10.1016/j.asoc.2020.106996_b1) 2012
Li (10.1016/j.asoc.2020.106996_b65) 2018; 167
Song (10.1016/j.asoc.2020.106996_b17) 2018; 215
Karasu (10.1016/j.asoc.2020.106996_b28) 2017
Lazić (10.1016/j.asoc.2020.106996_b14) 2014; 73
Wang (10.1016/j.asoc.2020.106996_b69) 2019; 78
Çakır (10.1016/j.asoc.2020.106996_b5) 2010; 13
Liu (10.1016/j.asoc.2020.106996_b52) 2018; 161
Kavasseri (10.1016/j.asoc.2020.106996_b24) 2009; 34
Colominas (10.1016/j.asoc.2020.106996_b63) 2014; 14
Erdem (10.1016/j.asoc.2020.106996_b21) 2011; 88
Cassola (10.1016/j.asoc.2020.106996_b23) 2012; 99
Carvalho (10.1016/j.asoc.2020.106996_b13) 2012; 33
Poggi (10.1016/j.asoc.2020.106996_b18) 2003; 44
Peng (10.1016/j.asoc.2020.106996_b50) 2017; 153
Zhang (10.1016/j.asoc.2020.106996_b26) 2016; 126
Muro (10.1016/j.asoc.2020.106996_b67) 2011; 88
Xiao (10.1016/j.asoc.2020.106996_b41) 2017; 198
Acar (10.1016/j.asoc.2020.106996_b71) 2019; 23
Cadenas (10.1016/j.asoc.2020.106996_b29) 2016; 9
Mohandes (10.1016/j.asoc.2020.106996_b43) 2004; 29
Akçay (10.1016/j.asoc.2020.106996_b32) 2017; 191
Cheng (10.1016/j.asoc.2020.106996_b11) 2013; 55
Dvorak (10.1016/j.asoc.2020.106996_b12) 2010; 35
Chen (10.1016/j.asoc.2020.106996_b53) 2018; 165
Tu (10.1016/j.asoc.2020.106996_b70) 2019; 76
Zhang (10.1016/j.asoc.2020.106996_b37) 2016; 205
Torres (10.1016/j.asoc.2020.106996_b62) 2011
Mirjalili (10.1016/j.asoc.2020.106996_b68) 2014; 69
Jiang (10.1016/j.asoc.2020.106996_b56) 2017; 144
Hochreiter (10.1016/j.asoc.2020.106996_b64) 1997; 9
Riahy (10.1016/j.asoc.2020.106996_b20) 2008; 33
Wang (10.1016/j.asoc.2020.106996_b55) 2018; 162
Zhou (10.1016/j.asoc.2020.106996_b49) 2011; 52
Ak (10.1016/j.asoc.2020.106996_b34) 2018; 95
Wang (10.1016/j.asoc.2020.106996_b45) 2018; 163
Benmouiza (10.1016/j.asoc.2020.106996_b72) 2016; 124
Li (10.1016/j.asoc.2020.106996_b7) 2018; 116
Hu (10.1016/j.asoc.2020.106996_b54) 2018; 173
Huang (10.1016/j.asoc.2020.106996_b59) 1998; 454
Liu (10.1016/j.asoc.2020.106996_b47) 2018; 155
Liu (10.1016/j.asoc.2020.106996_b6) 2018; 166
Wang (10.1016/j.asoc.2020.106996_b35) 2016; 94
EC (10.1016/j.asoc.2020.106996_b2) 2016
Jain (10.1016/j.asoc.2020.106996_b58) 2005; 38
Liu (10.1016/j.asoc.2020.106996_b51) 2014; 62
Qian-Li (10.1016/j.asoc.2020.106996_b38) 2008; 17
Zuluaga (10.1016/j.asoc.2020.106996_b25) 2015; 156
Zhang (10.1016/j.asoc.2020.106996_b27) 2017; 143
Maatallah (10.1016/j.asoc.2020.106996_b31) 2015; 145
Zhao (10.1016/j.asoc.2020.106996_b8) 2016; 177
Kiplangat (10.1016/j.asoc.2020.106996_b48) 2016; 93
He (10.1016/j.asoc.2020.106996_b66) 2019; 237
Wu (10.1016/j.asoc.2020.106996_b61) 2014
Bouzgou (10.1016/j.asoc.2020.106996_b10) 2011; 88
Al-Dahidi (10.1016/j.asoc.2020.106996_b33) 2017
Liu (10.1016/j.asoc.2020.106996_b39) 2015; 157
References_xml – volume: 153
  start-page: 589
  year: 2017
  end-page: 602
  ident: b50
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine
  publication-title: Energy Convers. Manage.
– volume: 177
  start-page: 793
  year: 2016
  end-page: 803
  ident: b8
  article-title: A novel bidirectional mechanism based on time series model for wind power forecasting
  publication-title: Appl. Energy
– volume: 126
  start-page: 1084
  year: 2016
  end-page: 1092
  ident: b26
  article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers. Manage.
– volume: 124
  start-page: 945
  year: 2016
  end-page: 958
  ident: b72
  article-title: Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models
  publication-title: Theor. Appl. Climatol.
– volume: 205
  start-page: 53
  year: 2016
  end-page: 63
  ident: b37
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
– volume: 19
  start-page: 352
  year: 2004
  end-page: 361
  ident: b42
  article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
  publication-title: IEEE Trans. Energy Convers.
– volume: 191
  start-page: 653
  year: 2017
  end-page: 662
  ident: b32
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl. Energy
– start-page: 296
  year: 2017
  end-page: 302
  ident: b33
  article-title: A dynamic weighting ensemble approach for wind energy production prediction
  publication-title: 2017 2nd International Conference on System Reliability and Safety
– volume: 165
  start-page: 681
  year: 2018
  end-page: 695
  ident: b53
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Convers. Manage.
– volume: 157
  start-page: 183
  year: 2015
  end-page: 194
  ident: b39
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl. Energy
– volume: 30
  start-page: 693
  year: 2005
  end-page: 708
  ident: b22
  article-title: First and second order Markov chain models for synthetic generation of wind speed time series
  publication-title: Energy
– volume: 156
  start-page: 321
  year: 2015
  end-page: 330
  ident: b25
  article-title: Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison
  publication-title: Appl. Energy
– volume: 95
  start-page: 213
  year: 2018
  end-page: 226
  ident: b34
  article-title: Adequacy assessment of a wind-integrated system using neural network-based interval predictions of wind power generation and load
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 93
  start-page: 38
  year: 2016
  end-page: 44
  ident: b48
  article-title: Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition
  publication-title: Renew. Energy
– start-page: 27
  year: 2014
  end-page: 46
  ident: b61
  article-title: Ensemble empirical mode decomposition and its multi-dimensional extensions
  publication-title: Hilbert–Huang Transform and its Applications
– year: 2012
  ident: b1
  article-title: Energy technology perspectives 2012
  publication-title: Pathways to a Clean Energy System
– volume: 150
  start-page: 90
  year: 2017
  end-page: 107
  ident: b16
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 44
  start-page: 3177
  year: 2003
  end-page: 3196
  ident: b18
  article-title: Forecasting and simulating wind speed in Corsica by using an autoregressive model
  publication-title: Energy Convers. Manage.
– volume: 156
  start-page: 498
  year: 2018
  end-page: 514
  ident: b36
  article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network
  publication-title: Energy Convers. Manage.
– volume: 23
  start-page: 1189
  year: 2019
  end-page: 1201
  ident: b71
  article-title: The performance of vapor compression cooling system aided Ranque–Hilsch vortex tube
  publication-title: Therm. Sci.
– volume: 78
  start-page: 240
  year: 2019
  end-page: 260
  ident: b69
  article-title: A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem
  publication-title: Appl. Soft Comput.
– volume: 51
  start-page: 969
  year: 2015
  end-page: 985
  ident: b3
  article-title: Renewable energy policy framework and bioenergy contribution in the European Union–An overview from National Renewable Energy Action Plans and Progress Reports
  publication-title: Renew. Sustain. Energy Rev.
– volume: 88
  start-page: 192
  year: 2011
  end-page: 197
  ident: b67
  article-title: Wolf-pack (
  publication-title: Behav. Process.
– volume: 35
  start-page: 1244
  year: 2010
  end-page: 1254
  ident: b12
  article-title: California offshore wind energy potential
  publication-title: Renew. Energy
– volume: 163
  start-page: 134
  year: 2018
  end-page: 150
  ident: b45
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers. Manage.
– volume: 17
  start-page: 536
  year: 2008
  ident: b38
  article-title: Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
  publication-title: Chin. Phys. B
– volume: 52
  start-page: 1990
  year: 2011
  end-page: 1998
  ident: b49
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 73
  start-page: 567
  year: 2014
  end-page: 574
  ident: b14
  article-title: Improved wind forecasts for wind power generation using the Eta model and MOS (Model Output Statistics) method
  publication-title: Energy
– volume: 33
  start-page: 23
  year: 2012
  end-page: 34
  ident: b13
  article-title: A sensitivity study of the WRF model in wind simulation for an area of high wind energy
  publication-title: Environ. Model. Softw.
– volume: 143
  start-page: 360
  year: 2017
  end-page: 376
  ident: b27
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 4
  start-page: 137
  year: 2017
  end-page: 146
  ident: b30
  article-title: Estimation of fast varied wind speed based on NARX neural network by using curve fitting
  publication-title: Int. J. Energy Appl. Technol.
– volume: 76
  start-page: 16
  year: 2019
  end-page: 30
  ident: b70
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: b4
  article-title: Wind power capacity worldwide reaches 597 GW, 50, 1 GW added in 2018
– volume: 167
  start-page: 203
  year: 2018
  end-page: 219
  ident: b65
  article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction
  publication-title: Energy Convers. Manage.
– volume: 155
  start-page: 188
  year: 2018
  end-page: 200
  ident: b47
  article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks
  publication-title: Energy Convers. Manage.
– volume: 166
  start-page: 120
  year: 2018
  end-page: 131
  ident: b6
  article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network
  publication-title: Energy Convers. Manage.
– volume: 162
  start-page: 239
  year: 2018
  end-page: 250
  ident: b55
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manage.
– volume: 55
  start-page: 347
  year: 2013
  end-page: 356
  ident: b11
  article-title: The impact of model physics on numerical wind forecasts
  publication-title: Renew. Energy
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b68
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 116
  start-page: 669
  year: 2018
  end-page: 684
  ident: b7
  article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting
  publication-title: Renew. Energy
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: b43
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: b21
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
– volume: 33
  start-page: 35
  year: 2008
  end-page: 41
  ident: b20
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew. Energy
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: b24
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
– start-page: 536
  year: 2010
  end-page: 541
  ident: b15
  article-title: Estimating wind resource over Oman using meso-scale modeling
  publication-title: Energy Conference and Exhibition (EnergyCon), 2010 IEEE International
– volume: 14
  start-page: 19
  year: 2014
  end-page: 29
  ident: b63
  article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
– volume: 215
  start-page: 643
  year: 2018
  end-page: 658
  ident: b17
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl. Energy
– volume: 13
  start-page: 287
  year: 2010
  end-page: 293
  ident: b5
  article-title: Türkiye’nin Rüzgâr Enerji Potansiyeli ve AB Ülkeleri İçindeki Yeri
  publication-title: J. Polytech.
– volume: 24
  start-page: 1048
  year: 2011
  end-page: 1056
  ident: b44
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl.-Based Syst.
– volume: 173
  start-page: 123
  year: 2018
  end-page: 142
  ident: b54
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm
  publication-title: Energy Convers. Manage.
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: b35
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew. Energy
– volume: 99
  start-page: 154
  year: 2012
  end-page: 166
  ident: b23
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl. Energy
– volume: 62
  start-page: 592
  year: 2014
  end-page: 597
  ident: b51
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew. Energy
– volume: 159
  start-page: 54
  year: 2018
  end-page: 64
  ident: b46
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM
  publication-title: Energy Convers. Manage.
– volume: 179
  start-page: 120
  year: 2019
  end-page: 128
  ident: b40
  article-title: Deep shared representation learning for weather elements forecasting
  publication-title: Knowl.-Based Syst.
– reference: S.P. Kani, S.M. Mousavi, A.K. Kaviani, G.H. Riahy, A new integrated approach for very short-term wind speed prediction using linear regression among ANN and Markov chain, in: Proceeding on International Conference on Power System Analysis, Control and Optimization, 2008, October.
– year: 2016
  ident: b2
  article-title: Progress Reports
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b59
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b9
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1
  year: 2017
  end-page: 4
  ident: b28
  article-title: Prediction of wind speed with non-linear autoregressive (NAR) neural networks
  publication-title: Signal Processing and Communications Applications Conference (SIU), 2017 25th
– volume: 225
  start-page: 998
  year: 2018
  end-page: 1012
  ident: b57
  article-title: Missing value imputation for short to mid-term horizontal solar irradiance data
  publication-title: Appl. Energy
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b64
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 38
  start-page: 2270
  year: 2005
  end-page: 2285
  ident: b58
  article-title: Score normalization in multimodal biometric systems
  publication-title: Pattern Recognit.
– volume: 237
  start-page: 103
  year: 2019
  end-page: 116
  ident: b66
  article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm
  publication-title: Appl. Energy
– volume: 161
  start-page: 266
  year: 2018
  end-page: 283
  ident: b52
  article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction
  publication-title: Energy Convers. Manage.
– volume: 144
  start-page: 340
  year: 2017
  end-page: 350
  ident: b56
  article-title: Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction
  publication-title: Energy Convers. Manage.
– volume: 145
  start-page: 191
  year: 2015
  end-page: 197
  ident: b31
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl. Energy
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b60
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 9
  start-page: 109
  year: 2016
  ident: b29
  article-title: Wind speed prediction using a univariate ARIMA model and a multivariate NARX model
  publication-title: Energies
– volume: 198
  start-page: 203
  year: 2017
  end-page: 222
  ident: b41
  article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
  publication-title: Appl. Energy
– start-page: 4144
  year: 2011
  end-page: 4147
  ident: b62
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
– volume: 88
  start-page: 2463
  year: 2011
  end-page: 2471
  ident: b10
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl. Energy
– volume: 52
  start-page: 1990
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106996_b49
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.11.007
– volume: 13
  start-page: 287
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2020.106996_b5
  article-title: Türkiye’nin Rüzgâr Enerji Potansiyeli ve AB Ülkeleri İçindeki Yeri
  publication-title: J. Polytech.
– volume: 167
  start-page: 203
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b65
  article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.04.082
– volume: 88
  start-page: 2463
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2020.106996_b10
  article-title: Multiple architecture system for wind speed prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.037
– volume: 35
  start-page: 1244
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2020.106996_b12
  article-title: California offshore wind energy potential
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.11.022
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.asoc.2020.106996_b60
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 88
  start-page: 1405
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106996_b21
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2020.106996_b64
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 99
  start-page: 154
  year: 2012
  ident: 10.1016/j.asoc.2020.106996_b23
  article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.054
– volume: 4
  start-page: 137
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b30
  article-title: Estimation of fast varied wind speed based on NARX neural network by using curve fitting
  publication-title: Int. J. Energy Appl. Technol.
– volume: 156
  start-page: 498
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b36
  article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.11.053
– volume: 23
  start-page: 1189
  issue: 2 Part B
  year: 2019
  ident: 10.1016/j.asoc.2020.106996_b71
  article-title: The performance of vapor compression cooling system aided Ranque–Hilsch vortex tube
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI170919306A
– volume: 126
  start-page: 1084
  year: 2016
  ident: 10.1016/j.asoc.2020.106996_b26
  article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.08.086
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.asoc.2020.106996_b35
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.03.103
– year: 2012
  ident: 10.1016/j.asoc.2020.106996_b1
  article-title: Energy technology perspectives 2012
– volume: 156
  start-page: 321
  year: 2015
  ident: 10.1016/j.asoc.2020.106996_b25
  article-title: Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.07.043
– volume: 124
  start-page: 945
  issue: 3–4
  year: 2016
  ident: 10.1016/j.asoc.2020.106996_b72
  article-title: Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1469-z
– volume: 34
  start-page: 1388
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2020.106996_b24
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 191
  start-page: 653
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b32
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.063
– volume: 161
  start-page: 266
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b52
  article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.006
– volume: 88
  start-page: 192
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2020.106996_b67
  article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
  doi: 10.1016/j.beproc.2011.09.006
– volume: 51
  start-page: 969
  year: 2015
  ident: 10.1016/j.asoc.2020.106996_b3
  article-title: Renewable energy policy framework and bioenergy contribution in the European Union–An overview from National Renewable Energy Action Plans and Progress Reports
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.06.062
– volume: 225
  start-page: 998
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b57
  article-title: Missing value imputation for short to mid-term horizontal solar irradiance data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.05.054
– volume: 38
  start-page: 2270
  issue: 12
  year: 2005
  ident: 10.1016/j.asoc.2020.106996_b58
  article-title: Score normalization in multimodal biometric systems
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.01.012
– volume: 116
  start-page: 669
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b7
  article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.09.089
– volume: 165
  start-page: 681
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b53
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.03.098
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.asoc.2020.106996_b59
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 177
  start-page: 793
  year: 2016
  ident: 10.1016/j.asoc.2020.106996_b8
  article-title: A novel bidirectional mechanism based on time series model for wind power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.096
– volume: 150
  start-page: 90
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b16
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.07.065
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2020.106996_b68
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 157
  start-page: 183
  year: 2015
  ident: 10.1016/j.asoc.2020.106996_b39
  article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.014
– volume: 205
  start-page: 53
  year: 2016
  ident: 10.1016/j.asoc.2020.106996_b37
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.061
– volume: 93
  start-page: 38
  year: 2016
  ident: 10.1016/j.asoc.2020.106996_b48
  article-title: Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.02.054
– start-page: 4144
  year: 2011
  ident: 10.1016/j.asoc.2020.106996_b62
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
– start-page: 296
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b33
  article-title: A dynamic weighting ensemble approach for wind energy production prediction
– volume: 24
  start-page: 1048
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2020.106996_b44
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.04.019
– volume: 163
  start-page: 134
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b45
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.012
– start-page: 27
  year: 2014
  ident: 10.1016/j.asoc.2020.106996_b61
  article-title: Ensemble empirical mode decomposition and its multi-dimensional extensions
– year: 2016
  ident: 10.1016/j.asoc.2020.106996_b2
– volume: 155
  start-page: 188
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b47
  article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.10.085
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2020.106996_b9
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2008.02.002
– volume: 62
  start-page: 592
  year: 2014
  ident: 10.1016/j.asoc.2020.106996_b51
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.08.011
– volume: 145
  start-page: 191
  year: 2015
  ident: 10.1016/j.asoc.2020.106996_b31
  article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.02.032
– start-page: 536
  year: 2010
  ident: 10.1016/j.asoc.2020.106996_b15
  article-title: Estimating wind resource over Oman using meso-scale modeling
– year: 2019
  ident: 10.1016/j.asoc.2020.106996_b4
– volume: 162
  start-page: 239
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b55
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.015
– volume: 17
  start-page: 536
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2020.106996_b38
  article-title: Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/17/2/031
– volume: 153
  start-page: 589
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b50
  article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.10.021
– volume: 44
  start-page: 3177
  issue: 20
  year: 2003
  ident: 10.1016/j.asoc.2020.106996_b18
  article-title: Forecasting and simulating wind speed in Corsica by using an autoregressive model
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(03)00108-0
– volume: 19
  start-page: 352
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2020.106996_b42
  article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2003.821865
– volume: 55
  start-page: 347
  year: 2013
  ident: 10.1016/j.asoc.2020.106996_b11
  article-title: The impact of model physics on numerical wind forecasts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.12.041
– volume: 78
  start-page: 240
  year: 2019
  ident: 10.1016/j.asoc.2020.106996_b69
  article-title: A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.037
– volume: 14
  start-page: 19
  year: 2014
  ident: 10.1016/j.asoc.2020.106996_b63
  article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.06.009
– volume: 179
  start-page: 120
  year: 2019
  ident: 10.1016/j.asoc.2020.106996_b40
  article-title: Deep shared representation learning for weather elements forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.05.009
– volume: 237
  start-page: 103
  year: 2019
  ident: 10.1016/j.asoc.2020.106996_b66
  article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.055
– volume: 30
  start-page: 693
  issue: 5
  year: 2005
  ident: 10.1016/j.asoc.2020.106996_b22
  article-title: First and second order Markov chain models for synthetic generation of wind speed time series
  publication-title: Energy
  doi: 10.1016/j.energy.2004.05.026
– volume: 95
  start-page: 213
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b34
  article-title: Adequacy assessment of a wind-integrated system using neural network-based interval predictions of wind power generation and load
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.08.012
– volume: 9
  start-page: 109
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2020.106996_b29
  article-title: Wind speed prediction using a univariate ARIMA model and a multivariate NARX model
  publication-title: Energies
  doi: 10.3390/en9020109
– volume: 173
  start-page: 123
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b54
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.07.070
– volume: 144
  start-page: 340
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b56
  article-title: Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.064
– ident: 10.1016/j.asoc.2020.106996_b19
  doi: 10.1109/EPC.2008.4763386
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b28
  article-title: Prediction of wind speed with non-linear autoregressive (NAR) neural networks
– volume: 166
  start-page: 120
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b6
  article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.04.021
– volume: 33
  start-page: 23
  year: 2012
  ident: 10.1016/j.asoc.2020.106996_b13
  article-title: A sensitivity study of the WRF model in wind simulation for an area of high wind energy
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2012.01.019
– volume: 198
  start-page: 203
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b41
  article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.039
– volume: 159
  start-page: 54
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b46
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.01.010
– volume: 76
  start-page: 16
  year: 2019
  ident: 10.1016/j.asoc.2020.106996_b70
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.047
– volume: 73
  start-page: 567
  year: 2014
  ident: 10.1016/j.asoc.2020.106996_b14
  article-title: Improved wind forecasts for wind power generation using the Eta model and MOS (Model Output Statistics) method
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.056
– volume: 143
  start-page: 360
  year: 2017
  ident: 10.1016/j.asoc.2020.106996_b27
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.007
– volume: 215
  start-page: 643
  year: 2018
  ident: 10.1016/j.asoc.2020.106996_b17
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.070
– volume: 33
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2020.106996_b20
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2007.01.014
– volume: 29
  start-page: 939
  issue: 6
  year: 2004
  ident: 10.1016/j.asoc.2020.106996_b43
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.11.009
SSID ssj0016928
Score 2.695595
Snippet Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106996
SubjectTerms Decomposition
domain_shs.gest-risq
Grey wolf optimizer (GWO)
Humanities and Social Sciences
Hybrid model
Long short-term memory (LSTM)
Wind speed
Title A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
URI https://dx.doi.org/10.1016/j.asoc.2020.106996
https://minesparis-psl.hal.science/hal-03479657
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4BvXChLxCBFo2q3qiJ412v7WMUFaUtRagFiZu1Xs8qQSGJSApKD_0F_dGdWa8jIVUcuNjyah_2znr2G_ubGSE-OlXJ2sZplFvUkdI2i0xMazmuEF1da4de0t_P9fBKfb1OrzfEoPWFYVpl0P2NTvfaOpR0w2x25-Nx9ydZHrkqlE6av3msh5XKeJWf_FnTPHq68PlVuXLEtYPjTMPxMjQDZCMmXKALDtz__81pc9R-ZvXbzukrsRPwIvSbW3otNnD6RrxsczFAeDXfir99IIAMoxV7YIHPbwOER-GBbG5YzGmP4ku0ZsE8Z6DHrXxqCJjM6LAYEQqPWEvDLVNvV8BxLmncacMS_wQ1Mvk8MLygyTu9AEOdk8G-gofZxMGM1M_t-Dfe7Yqr08-Xg2EUMi1EVmb5MtKSUCASNKp9QnVURudVnBRO9Zx0Lnfa5OyBK9ERoLJopXKZNlWOiU6R2uyJrelsivsCjEzIAjHS6syoxBKArJySdUEdFFhj1hG9dopLG8KQczaMSdnyzW5KFkvJYikbsXTE8brNvAnC8WTttJVc-WgplbRLPNnuA4l5PQDH3R72z0oui9nfVqfZfe_gmZ0fiu2E2TCevfZObC3vfuF7gjPL6siv1yPxoj_4cXbB5y_fhuf_AG9c99s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF215QAXvlHL5wjBCUyc9XptHzhEQJXStBdaqTezXs-SoDSJ6kAUDvwC_g1_kJn1OhIS6gGpl0heedfWzGbmTfJmnxAvnKqS2sZplFvUkdI2i0xMezmuEF1da4fe00fHeniqPp6lZ1vid9cLw7TKEPvbmO6jdRjpBWv2FpNJ7xNVHrkqlJbtv3kyMCsPcb2iuq15e_CenPxSyv0PJ--GUZAWiGyS5ctIJwR7kLBA7RXEURmdV7EsnOq7xLncaZNzy2mCjhCERZsol2lT5Sh1ijSH1t0W1xSFC5ZNePNzwyvp68ILuvLbRfx6oVOnJZUZMjkVpZIHdMFKAf_Ohtvj7nddn-f2b4ubAaDCoLXBHbGFs7viVif-ACEW3BO_BkCIHMZrbvkCL6gDBIBhRUU-NAtKinyJ1jRMrAayb-W1KGA6p49mTLA_4rQA58z1XQMfrEnPnbW09NdQI7PdA6UMWqHrBgwt_oV2H6zmUwdzinfnkx94cV-cXon9H4id2XyGuwJMIqnkMYnVmVHSEmKtnErqghYosMZsT_Q7E5c2nHvO8hvTsiO4fS3ZLSW7pWzdsidebeYs2lM_Lr077TxX_rV3S0pLl857Tm7ePIAP-h4ORiWPxdzgq9Pse__hfy7-TFwfnhyNytHB8eEjcUMyFcdT5x6LneXFN3xCWGpZPfV7F8Tnq_6y_AGiPzDZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+model+for+wind+speed+forecasting+combining+long+short-term+memory+neural+network%2C+decomposition+methods+and+grey+wolf+optimizer&rft.jtitle=Applied+soft+computing&rft.au=Altan%2C+Ayta%C3%A7&rft.au=Karasu%2C+Se%C3%A7kin&rft.au=Zio%2C+Enrico&rft.date=2021-03-01&rft.pub=Elsevier&rft.issn=1568-4946&rft.volume=100&rft_id=info:doi/10.1016%2Fj.asoc.2020.106996&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03479657v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon