A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant impact on the efficiency of wind power generation systems. Due to the non-stationarity and stochasticity of the wind spee...
Saved in:
Published in | Applied soft computing Vol. 100; p. 106996 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant impact on the efficiency of wind power generation systems. Due to the non-stationarity and stochasticity of the wind speed (WS), a single model is often not sufficient in practice for the accurate estimation of the WS. Hybrid models are being proposed to overcome the limitations of single models and increase the WS forecasting performance. In this paper, a new hybrid WSF model is developed based on long short-term memory (LSTM) network and decomposition methods with grey wolf optimizer (GWO). In the pre-processing stage, the missing data is filled by the weighted moving average (WMA) method, the WS time series (WSTS) data are smoothed by WMA filtering and the smoothed data are used as model input after Z-score normalization. The forecasting model is formed by the combination of a single model, a decomposition method and an advanced optimization algorithm. Successively, the hybrid WSF model is developed by combining the LSTM and decomposition methods, and optimizing the intrinsic mode function (IMF) estimated outputs with a grey wolf optimizer (GWO). The developed non-linear hybrid model is utilized on the data collected from five wind farms in the Marmara region, Turkey. The obtained experimental results indicate that the proposed combined model can capture non-linear characteristics of WSTS, achieving better forecasting performance than single forecasting models, in terms of accuracy.
[Display omitted]
•The proposed combined model will significantly improve the forecasting accuracy.•The effectiveness of the model is tested on data from the wind farm in five regions.•The proposed model can capture non-linear features of the wind speed time series. |
---|---|
AbstractList | Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant impact on the efficiency of wind power generation systems. Due to the non-stationarity and stochasticity of the wind speed (WS), a single model is often not sufficient in practice for the accurate estimation of the WS. Hybrid models are being proposed to overcome the limitations of single models and increase the WS forecasting performance. In this paper, a new hybrid WSF model is developed based on long short-term memory (LSTM) network and decomposition methods with grey wolf optimizer (GWO). In the pre-processing stage, the missing data is filled by the weighted moving average (WMA) method, the WS time series (WSTS) data are smoothed by WMA filtering and the smoothed data are used as model input after Z-score normalization. The forecasting model is formed by the combination of a single model, a decomposition method and an advanced optimization algorithm. Successively, the hybrid WSF model is developed by combining the LSTM and decomposition methods, and optimizing the intrinsic mode function (IMF) estimated outputs with a grey wolf optimizer (GWO). The developed non-linear hybrid model is utilized on the data collected from five wind farms in the Marmara region, Turkey. The obtained experimental results indicate that the proposed combined model can capture non-linear characteristics of WSTS, achieving better forecasting performance than single forecasting models, in terms of accuracy.
[Display omitted]
•The proposed combined model will significantly improve the forecasting accuracy.•The effectiveness of the model is tested on data from the wind farm in five regions.•The proposed model can capture non-linear features of the wind speed time series. |
ArticleNumber | 106996 |
Author | Karasu, Seçkin Altan, Aytaç Zio, Enrico |
Author_xml | – sequence: 1 givenname: Aytaç surname: Altan fullname: Altan, Aytaç email: aytacaltan@beun.edu.tr organization: Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey – sequence: 2 givenname: Seçkin surname: Karasu fullname: Karasu, Seçkin organization: Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey – sequence: 3 givenname: Enrico surname: Zio fullname: Zio, Enrico organization: MINES ParisTech, PSL Research University, CRC, Sophia Antipolis, France |
BackLink | https://minesparis-psl.hal.science/hal-03479657$$DView record in HAL |
BookMark | eNp9kcGOFCEQholZE3dXX8ATVxN7pIGhIfEy2biuySRe9EwYKHYYu7smgDsZn8GHls7oxcNeqKLyf38F_htyNeMMhLzt2apnvfpwWLmCfsUZXwbKGPWCXPd64J1Rur9q_VrpThqpXpGbUg6sQYbra_J7Q2c40f15l1OgEwYYacRMT2kOtBwBwnIF70pN8yP1OO3SvHQjtqPsMdeuQp7oBBPmczP7md3YSj1h_vGeBmjIEUuqCecmqnsMhbpm_pjhTE84RorHmqb0C_Jr8jK6scCbv_WWfL__9O3uodt-_fzlbrPtvBh07ZQYBglKysCZ4AykU3rHuImyjyJGHZXTZlgLAVEL48ELGQfldhq4WkNjbsm7i-_ejfaY0-Ty2aJL9mGztcuMCTkYtR6e-qbVF63PWEqGaH2qbnlNzS6Ntmd2ScAe7JKAXRKwlwQayv9D_-16Fvp4gaB9wFOCbItPMHsIqcVQbcD0HP4HQdqkKA |
CitedBy_id | crossref_primary_10_1016_j_matpr_2022_02_546 crossref_primary_10_1016_j_engappai_2021_104500 crossref_primary_10_1016_j_apenergy_2021_117505 crossref_primary_10_1016_j_eswa_2022_117170 crossref_primary_10_1016_j_engappai_2021_104626 crossref_primary_10_1177_00202940221103606 crossref_primary_10_1016_j_rser_2022_112700 crossref_primary_10_1016_j_aej_2024_03_078 crossref_primary_10_1016_j_enconman_2022_116628 crossref_primary_10_3390_en17091996 crossref_primary_10_1016_j_eswa_2023_119878 crossref_primary_10_1016_j_apenergy_2023_121457 crossref_primary_10_1016_j_mlwa_2021_100110 crossref_primary_10_1016_j_renene_2022_07_016 crossref_primary_10_1016_j_engappai_2021_104511 crossref_primary_10_1016_j_eswa_2025_126979 crossref_primary_10_1080_17445302_2023_2218323 crossref_primary_10_1016_j_neunet_2022_10_009 crossref_primary_10_1016_j_energy_2024_130606 crossref_primary_10_3390_math13030464 crossref_primary_10_1016_j_eswa_2022_119223 crossref_primary_10_1177_00202940221101673 crossref_primary_10_1016_j_imu_2022_100863 crossref_primary_10_1038_s41598_023_45760_6 crossref_primary_10_1016_j_enconman_2021_114162 crossref_primary_10_1007_s10462_025_11140_x crossref_primary_10_1016_j_apenergy_2024_122812 crossref_primary_10_1016_j_asoc_2022_108875 crossref_primary_10_1016_j_meaene_2024_100033 crossref_primary_10_1155_2021_3474077 crossref_primary_10_1177_00202940221101672 crossref_primary_10_1016_j_apenergy_2021_117766 crossref_primary_10_1016_j_scs_2021_103269 crossref_primary_10_1016_j_apenergy_2021_117888 crossref_primary_10_1016_j_ins_2023_03_062 crossref_primary_10_1016_j_eswa_2022_118487 crossref_primary_10_1016_j_seta_2021_101698 crossref_primary_10_1177_03019233241254891 crossref_primary_10_1007_s12145_022_00839_y crossref_primary_10_1016_j_measurement_2021_110399 crossref_primary_10_1016_j_mlwa_2021_100214 crossref_primary_10_1007_s13563_024_00483_6 crossref_primary_10_1016_j_measurement_2021_110272 crossref_primary_10_1038_s41598_024_63878_z crossref_primary_10_1371_journal_pone_0294413 crossref_primary_10_1016_j_chaos_2022_112899 crossref_primary_10_1007_s11071_021_06631_9 crossref_primary_10_1016_j_apenergy_2024_125061 crossref_primary_10_1002_ese3_1047 crossref_primary_10_32604_EE_2022_017916 crossref_primary_10_1016_j_chaos_2021_111260 crossref_primary_10_1016_j_apenergy_2023_121120 crossref_primary_10_1016_j_mlwa_2021_100204 crossref_primary_10_1016_j_eswa_2023_119746 crossref_primary_10_1093_ce_zkad042 crossref_primary_10_1016_j_chaos_2022_112416 crossref_primary_10_1007_s10462_021_10090_4 crossref_primary_10_3233_JIFS_223242 crossref_primary_10_1016_j_engappai_2021_104425 crossref_primary_10_3389_fenrg_2024_1346000 crossref_primary_10_1016_j_oceaneng_2025_120737 crossref_primary_10_1016_j_swevo_2021_100987 crossref_primary_10_1016_j_energy_2025_135551 crossref_primary_10_1007_s11356_022_22286_4 crossref_primary_10_1109_TIE_2021_3139177 crossref_primary_10_1016_j_energy_2023_129415 crossref_primary_10_1016_j_meaene_2024_100001 crossref_primary_10_1016_j_nexus_2023_100250 crossref_primary_10_1016_j_energy_2023_130145 crossref_primary_10_1007_s42979_024_02648_0 crossref_primary_10_1016_j_ast_2024_108970 crossref_primary_10_1016_j_enconman_2024_118343 crossref_primary_10_1016_j_energy_2023_128565 crossref_primary_10_1016_j_engappai_2021_104439 crossref_primary_10_1080_08839514_2022_2146296 crossref_primary_10_1016_j_engappai_2021_104314 crossref_primary_10_1016_j_knosys_2021_107297 crossref_primary_10_1016_j_engappai_2021_104438 crossref_primary_10_3390_s24092749 crossref_primary_10_1016_j_applthermaleng_2024_122483 crossref_primary_10_1080_08839514_2021_1989168 crossref_primary_10_61435_ijred_2024_60387 crossref_primary_10_1016_j_chaos_2021_111129 crossref_primary_10_1016_j_eswa_2023_122971 crossref_primary_10_1080_10835547_2022_2110668 crossref_primary_10_1016_j_engappai_2021_104563 crossref_primary_10_1080_00949655_2021_1951266 crossref_primary_10_1016_j_apenergy_2021_117204 crossref_primary_10_1016_j_apenergy_2021_117446 crossref_primary_10_1016_j_apenergy_2022_118936 crossref_primary_10_1016_j_energy_2021_120904 crossref_primary_10_1016_j_chaos_2021_111336 crossref_primary_10_1007_s40815_023_01544_8 crossref_primary_10_1016_j_apenergy_2021_117449 crossref_primary_10_1371_journal_pone_0301349 crossref_primary_10_1016_j_eswa_2021_115964 crossref_primary_10_1016_j_engappai_2024_108921 crossref_primary_10_1016_j_engappai_2021_104326 crossref_primary_10_1016_j_rser_2021_111278 crossref_primary_10_1016_j_engappai_2024_108924 crossref_primary_10_1016_j_apenergy_2021_117441 crossref_primary_10_1016_j_asoc_2021_108026 crossref_primary_10_1108_JM2_09_2023_0207 crossref_primary_10_1007_s11356_023_27556_3 crossref_primary_10_1016_j_apenergy_2024_124057 crossref_primary_10_1007_s00521_023_08998_9 crossref_primary_10_32604_cmc_2023_038564 crossref_primary_10_1016_j_jksuci_2024_101959 crossref_primary_10_1016_j_heliyon_2024_e33387 crossref_primary_10_1108_FS_01_2023_0016 crossref_primary_10_1016_j_chaos_2021_111106 crossref_primary_10_1080_15435075_2023_2228878 crossref_primary_10_1016_j_iswa_2021_200045 crossref_primary_10_1016_j_apenergy_2021_117228 crossref_primary_10_3390_app14135769 crossref_primary_10_1016_j_measurement_2021_109673 crossref_primary_10_3233_JIFS_230253 crossref_primary_10_1016_j_asoc_2022_109690 crossref_primary_10_1177_1045389X241230569 crossref_primary_10_1016_j_apenergy_2021_118302 crossref_primary_10_1016_j_eswa_2021_115659 crossref_primary_10_1016_j_eswa_2021_115414 crossref_primary_10_1371_journal_pone_0290117 crossref_primary_10_1016_j_apenergy_2024_124274 crossref_primary_10_1038_s41598_022_10496_2 crossref_primary_10_1016_j_eswa_2023_120119 crossref_primary_10_1016_j_spc_2023_06_012 crossref_primary_10_1016_j_asoc_2022_108477 crossref_primary_10_1016_j_engappai_2022_105150 crossref_primary_10_1016_j_energy_2021_121565 crossref_primary_10_1016_j_jksuci_2024_102068 crossref_primary_10_1007_s13563_024_00477_4 crossref_primary_10_1007_s10489_024_05450_w crossref_primary_10_1016_j_apenergy_2022_118615 crossref_primary_10_1016_j_apenergy_2021_117248 crossref_primary_10_1016_j_engappai_2023_106986 crossref_primary_10_2139_ssrn_4148554 crossref_primary_10_3390_w15213724 crossref_primary_10_1016_j_energy_2024_133826 crossref_primary_10_1016_j_eswa_2021_114797 crossref_primary_10_3390_s24165224 crossref_primary_10_1016_j_eswa_2022_118089 crossref_primary_10_1016_j_seta_2022_102467 crossref_primary_10_1016_j_egyr_2021_10_075 crossref_primary_10_1016_j_enconman_2023_117868 crossref_primary_10_3390_su142215301 crossref_primary_10_1016_j_enconman_2021_115086 crossref_primary_10_2166_wcc_2023_257 crossref_primary_10_1109_LES_2024_3462638 crossref_primary_10_1177_00202940221089272 crossref_primary_10_3788_AOS240891 crossref_primary_10_1016_j_engappai_2025_110260 crossref_primary_10_1016_j_heliyon_2023_e21471 crossref_primary_10_1080_15567036_2021_1925379 crossref_primary_10_3390_math10071121 crossref_primary_10_1002_ese3_1562 crossref_primary_10_3233_JIFS_230343 crossref_primary_10_1007_s43674_022_00045_9 crossref_primary_10_1016_j_energy_2021_120258 crossref_primary_10_1016_j_asoc_2022_109221 crossref_primary_10_1016_j_jobe_2024_109408 crossref_primary_10_1016_j_mechmachtheory_2021_104639 crossref_primary_10_1016_j_rser_2023_113792 crossref_primary_10_21926_jept_2401008 crossref_primary_10_3390_en16186563 crossref_primary_10_1016_j_chaos_2021_111197 crossref_primary_10_1108_ECON_05_2022_0026 crossref_primary_10_1016_j_jweia_2025_106035 crossref_primary_10_1016_j_eswa_2021_115105 crossref_primary_10_1016_j_rser_2022_112188 crossref_primary_10_3390_en15114067 crossref_primary_10_1177_00202940231173752 crossref_primary_10_1007_s11269_022_03133_0 crossref_primary_10_1016_j_renene_2023_119732 crossref_primary_10_1177_00202940231193000 crossref_primary_10_1016_j_eswa_2022_116603 crossref_primary_10_1016_j_ecmx_2025_100891 crossref_primary_10_3390_biomimetics8040351 crossref_primary_10_1016_j_eswa_2022_116609 crossref_primary_10_1108_AJEB_01_2024_0007 crossref_primary_10_3390_w15244246 crossref_primary_10_1016_j_ins_2023_119613 crossref_primary_10_1016_j_energy_2023_129012 crossref_primary_10_1007_s00521_022_07303_4 crossref_primary_10_1016_j_measurement_2024_115222 crossref_primary_10_1016_j_oceaneng_2023_115435 crossref_primary_10_1016_j_measurement_2022_111701 crossref_primary_10_1177_03019233241265194 crossref_primary_10_1016_j_egyr_2022_05_110 crossref_primary_10_1016_j_energy_2021_121000 crossref_primary_10_1007_s00521_024_09531_2 crossref_primary_10_1093_ce_zkac011 crossref_primary_10_3390_en16104060 crossref_primary_10_1016_j_asoc_2022_109003 crossref_primary_10_1016_j_ast_2024_109579 crossref_primary_10_1016_j_engappai_2021_104284 crossref_primary_10_1007_s11071_021_06810_8 crossref_primary_10_1016_j_enconman_2022_116653 crossref_primary_10_1016_j_eswa_2021_115441 crossref_primary_10_1016_j_enconman_2023_116969 crossref_primary_10_3390_jmse11091636 crossref_primary_10_1016_j_egyr_2024_09_021 crossref_primary_10_1016_j_enconman_2021_115047 crossref_primary_10_3390_wind2010003 crossref_primary_10_1016_j_engappai_2021_104292 crossref_primary_10_1016_j_apenergy_2022_118775 crossref_primary_10_1108_JFMPC_08_2022_0041 crossref_primary_10_1016_j_engappai_2021_104290 crossref_primary_10_1016_j_iswa_2021_200052 crossref_primary_10_1007_s00521_021_06255_5 crossref_primary_10_1016_j_apenergy_2021_117038 crossref_primary_10_1016_j_ins_2022_05_088 crossref_primary_10_1016_j_engappai_2023_105982 crossref_primary_10_1155_2022_4514300 crossref_primary_10_3390_en15197434 crossref_primary_10_1016_j_enconman_2022_115209 crossref_primary_10_1016_j_enconman_2021_114069 crossref_primary_10_1016_j_energy_2021_120295 crossref_primary_10_1061_JCCEE5_CPENG_6133 crossref_primary_10_1007_s41870_022_00948_3 crossref_primary_10_1016_j_energy_2021_120179 crossref_primary_10_1007_s00500_023_08638_3 crossref_primary_10_1016_j_psep_2024_08_047 crossref_primary_10_1016_j_apenergy_2023_120914 crossref_primary_10_1016_j_energy_2021_120528 crossref_primary_10_1016_j_asoc_2021_107941 crossref_primary_10_1016_j_asoc_2021_107948 crossref_primary_10_3390_electronics11050824 crossref_primary_10_1016_j_memori_2023_100086 crossref_primary_10_1177_03019233241297720 crossref_primary_10_3390_en15041510 crossref_primary_10_1016_j_eswa_2021_115261 crossref_primary_10_1007_s42824_024_00123_y crossref_primary_10_1016_j_measurement_2021_109821 crossref_primary_10_1016_j_apenergy_2022_118674 crossref_primary_10_1016_j_chaos_2021_110864 crossref_primary_10_1007_s11071_022_07424_4 crossref_primary_10_1093_ijlct_ctaf035 crossref_primary_10_1016_j_apenergy_2021_118029 crossref_primary_10_3389_fenrg_2023_1298088 crossref_primary_10_1109_JSEN_2022_3151932 crossref_primary_10_1016_j_chaos_2021_110751 crossref_primary_10_1016_j_renene_2024_121103 crossref_primary_10_1080_03610918_2024_2330700 crossref_primary_10_1016_j_sigpro_2023_109046 crossref_primary_10_1109_ACCESS_2024_3401038 crossref_primary_10_1016_j_apenergy_2024_123589 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1109_TIE_2022_3177788 crossref_primary_10_1155_2022_3316886 crossref_primary_10_3390_w14142157 crossref_primary_10_1007_s13563_024_00457_8 crossref_primary_10_1080_09599916_2021_1996446 crossref_primary_10_1016_j_renene_2024_120389 crossref_primary_10_1142_S0218348X22401557 crossref_primary_10_1016_j_ins_2022_11_145 crossref_primary_10_1093_jigpal_jzae034 crossref_primary_10_1016_j_heliyon_2022_e10338 crossref_primary_10_1016_j_enconman_2021_114950 crossref_primary_10_1016_j_asoc_2023_110334 crossref_primary_10_1016_j_energy_2022_125276 crossref_primary_10_1016_j_isatra_2023_09_019 crossref_primary_10_62520_fujece_1517615 crossref_primary_10_1063_5_0198183 crossref_primary_10_1016_j_engappai_2024_108172 crossref_primary_10_1016_j_segan_2024_101293 crossref_primary_10_3390_en16145281 crossref_primary_10_1007_s12665_023_11377_1 crossref_primary_10_1016_j_oceaneng_2021_110121 crossref_primary_10_1063_5_0144648 crossref_primary_10_1016_j_energy_2022_126383 crossref_primary_10_3390_su15076261 crossref_primary_10_1016_j_ecmx_2024_100700 crossref_primary_10_1007_s11760_022_02424_8 crossref_primary_10_1142_S0219477523500384 crossref_primary_10_31590_ejosat_1026742 crossref_primary_10_1016_j_knosys_2023_110472 crossref_primary_10_1016_j_iswa_2022_200083 crossref_primary_10_1016_j_iswa_2022_200084 crossref_primary_10_1016_j_energy_2022_126034 crossref_primary_10_1016_j_renene_2024_122102 crossref_primary_10_1016_j_renene_2022_09_114 crossref_primary_10_15672_hujms_939543 crossref_primary_10_3233_HIS_230004 crossref_primary_10_3390_pr10040689 crossref_primary_10_1016_j_energy_2021_121533 crossref_primary_10_1016_j_asoc_2021_107994 crossref_primary_10_1016_j_measurement_2021_109507 crossref_primary_10_1063_5_0245664 crossref_primary_10_3389_fncom_2022_1052140 crossref_primary_10_1007_s43674_023_00054_2 crossref_primary_10_1016_j_ast_2022_107884 crossref_primary_10_1016_j_istruc_2025_108266 crossref_primary_10_1177_00202940251316694 crossref_primary_10_1016_j_eswa_2021_115059 crossref_primary_10_1016_j_energy_2024_133515 crossref_primary_10_1016_j_eswa_2021_115057 crossref_primary_10_1016_j_enconman_2023_117507 crossref_primary_10_1016_j_measurement_2021_109857 crossref_primary_10_1109_ACCESS_2021_3097102 crossref_primary_10_1016_j_asoc_2021_107760 crossref_primary_10_1016_j_egyr_2023_11_040 crossref_primary_10_1111_jfpe_70016 crossref_primary_10_1016_j_heliyon_2022_e11599 crossref_primary_10_1016_j_apenergy_2022_119692 crossref_primary_10_1007_s11071_023_08298_w crossref_primary_10_1016_j_sigpro_2023_109080 crossref_primary_10_7717_peerj_cs_2393 crossref_primary_10_1016_j_apenergy_2023_121708 crossref_primary_10_1016_j_energy_2024_130352 crossref_primary_10_1016_j_applthermaleng_2024_122718 crossref_primary_10_1155_2023_3056688 crossref_primary_10_1016_j_renene_2021_07_126 crossref_primary_10_1186_s44147_024_00535_2 crossref_primary_10_1016_j_iswa_2022_200061 crossref_primary_10_1016_j_ast_2022_107510 crossref_primary_10_1007_s00371_024_03372_9 crossref_primary_10_1016_j_apenergy_2022_120578 crossref_primary_10_1142_S2737599425500021 crossref_primary_10_1016_j_measurement_2021_109891 crossref_primary_10_1016_j_enconman_2023_117303 crossref_primary_10_1016_j_engappai_2022_104767 crossref_primary_10_1142_S2737599424500130 crossref_primary_10_1007_s11356_022_18839_2 crossref_primary_10_1016_j_renene_2023_118942 crossref_primary_10_1016_j_asoc_2023_110019 crossref_primary_10_1016_j_aej_2024_06_028 crossref_primary_10_3390_su15108333 crossref_primary_10_1016_j_mlwa_2022_100271 crossref_primary_10_1016_j_enconman_2023_117891 crossref_primary_10_1109_ACCESS_2024_3440631 crossref_primary_10_1016_j_ast_2022_107621 crossref_primary_10_1016_j_egyr_2022_07_005 crossref_primary_10_1016_j_eswa_2021_115039 crossref_primary_10_1007_s00477_023_02632_9 crossref_primary_10_3390_en14206501 crossref_primary_10_1016_j_egyr_2023_05_034 crossref_primary_10_1177_00202940221109777 crossref_primary_10_1016_j_asoc_2021_107863 crossref_primary_10_1016_j_mlwa_2021_100086 crossref_primary_10_1155_2022_5430622 crossref_primary_10_1016_j_apenergy_2023_120638 crossref_primary_10_1016_j_eswa_2023_123054 crossref_primary_10_1016_j_apenergy_2022_119249 crossref_primary_10_3390_systems12080309 crossref_primary_10_1002_isaf_1519 crossref_primary_10_1155_2022_3343505 crossref_primary_10_1016_j_ymssp_2021_108400 crossref_primary_10_1155_2021_2727218 crossref_primary_10_1016_j_istruc_2022_02_035 crossref_primary_10_1016_j_nexus_2023_100210 crossref_primary_10_1007_s11071_021_06336_z crossref_primary_10_1016_j_ins_2023_119122 crossref_primary_10_1016_j_aej_2023_06_048 crossref_primary_10_1016_j_ast_2021_107183 crossref_primary_10_1007_s11071_022_08002_4 crossref_primary_10_1016_j_ijepes_2022_107994 crossref_primary_10_1016_j_knosys_2021_107139 crossref_primary_10_1142_S1469026823500244 crossref_primary_10_1016_j_asoc_2023_110294 crossref_primary_10_3233_JIFS_241607 crossref_primary_10_3390_en15134895 crossref_primary_10_1016_j_apenergy_2024_124954 crossref_primary_10_1016_j_apenergy_2022_119378 crossref_primary_10_1088_1674_1056_ad7e9a crossref_primary_10_1016_j_energy_2023_129724 crossref_primary_10_3390_su14159021 crossref_primary_10_1016_j_energy_2023_129728 crossref_primary_10_1007_s41965_025_00186_z crossref_primary_10_1007_s10586_024_04455_x crossref_primary_10_3390_ma16113995 crossref_primary_10_1080_17509653_2025_2453902 crossref_primary_10_1016_j_ast_2022_107675 crossref_primary_10_1016_j_energy_2024_133023 crossref_primary_10_1016_j_asoc_2022_108814 crossref_primary_10_1016_j_energy_2023_128510 crossref_primary_10_3390_electronics11152432 crossref_primary_10_1016_j_seta_2021_101853 crossref_primary_10_1016_j_energy_2022_125556 crossref_primary_10_1016_j_imu_2021_100631 crossref_primary_10_1007_s13563_022_00311_9 crossref_primary_10_1016_j_apenergy_2022_119025 crossref_primary_10_3390_math10030315 crossref_primary_10_1016_j_ymssp_2024_111671 crossref_primary_10_1007_s13563_022_00357_9 crossref_primary_10_1016_j_eswa_2022_116692 crossref_primary_10_3390_en16176272 crossref_primary_10_1016_j_rser_2021_111525 crossref_primary_10_1109_ACCESS_2024_3392899 crossref_primary_10_1155_2022_1027495 crossref_primary_10_3390_su16010333 crossref_primary_10_1016_j_apenergy_2024_122996 crossref_primary_10_1016_j_chaos_2022_111848 crossref_primary_10_1080_03019233_2023_2218243 crossref_primary_10_1016_j_ins_2023_119112 crossref_primary_10_1016_j_ecmx_2023_100405 crossref_primary_10_1016_j_mlwa_2021_100162 crossref_primary_10_1109_TCC_2024_3449884 crossref_primary_10_1016_j_chaos_2023_113133 crossref_primary_10_1016_j_enconman_2024_118735 crossref_primary_10_1177_00202940221100538 crossref_primary_10_1016_j_asoc_2023_110083 crossref_primary_10_1007_s12145_024_01300_y crossref_primary_10_1016_j_eswa_2022_117134 crossref_primary_10_1016_j_eswa_2022_119311 crossref_primary_10_1109_ACCESS_2021_3084536 crossref_primary_10_1016_j_enconman_2021_114775 crossref_primary_10_3390_su151712914 crossref_primary_10_1016_j_apenergy_2024_122624 crossref_primary_10_1016_j_renene_2024_120557 crossref_primary_10_7759_s44389_024_02010_8 crossref_primary_10_3390_s23167047 crossref_primary_10_1016_j_ins_2024_120447 crossref_primary_10_14710_ijred_2023_48672 crossref_primary_10_1016_j_cie_2023_109237 crossref_primary_10_1016_j_enconman_2023_117590 crossref_primary_10_1016_j_applthermaleng_2023_121612 crossref_primary_10_1016_j_energy_2021_121808 crossref_primary_10_1016_j_energy_2022_125231 crossref_primary_10_1007_s12667_024_00704_5 crossref_primary_10_1007_s11227_023_05207_1 crossref_primary_10_1007_s43621_024_00615_6 crossref_primary_10_1016_j_asoc_2021_107488 crossref_primary_10_1016_j_desal_2025_118765 crossref_primary_10_1016_j_cma_2023_116474 crossref_primary_10_1002_cta_4391 crossref_primary_10_1016_j_ast_2021_107031 crossref_primary_10_3390_app12199701 crossref_primary_10_1016_j_ast_2022_107592 crossref_primary_10_1371_journal_pone_0281294 crossref_primary_10_1016_j_engappai_2021_104603 crossref_primary_10_1016_j_eswa_2022_117358 crossref_primary_10_1016_j_apenergy_2023_121554 crossref_primary_10_1016_j_mlwa_2021_100134 crossref_primary_10_1007_s11356_021_14591_1 crossref_primary_10_1016_j_chaos_2021_111737 crossref_primary_10_1016_j_measurement_2021_109927 crossref_primary_10_1142_S2811034X24500060 crossref_primary_10_1016_j_ins_2023_119158 crossref_primary_10_3390_en16145347 crossref_primary_10_1088_1402_4896_ad6b58 crossref_primary_10_3390_electronics11091320 crossref_primary_10_1016_j_compbiomed_2022_105915 crossref_primary_10_3390_en18030542 crossref_primary_10_1016_j_eswa_2021_116075 crossref_primary_10_1016_j_chaos_2023_113284 crossref_primary_10_1016_j_renene_2021_05_142 crossref_primary_10_1007_s00500_023_08029_8 crossref_primary_10_1007_s00521_024_10270_7 crossref_primary_10_1142_S0219477522500596 crossref_primary_10_1016_j_apenergy_2024_122719 crossref_primary_10_1371_journal_pone_0264958 crossref_primary_10_3390_su17052081 crossref_primary_10_1016_j_chaos_2021_111627 |
Cites_doi | 10.1016/j.enconman.2010.11.007 10.1016/j.enconman.2018.04.082 10.1016/j.apenergy.2011.01.037 10.1016/j.renene.2009.11.022 10.1142/S1793536909000047 10.1016/j.apenergy.2010.10.031 10.1162/neco.1997.9.8.1735 10.1016/j.apenergy.2012.03.054 10.1016/j.enconman.2017.11.053 10.2298/TSCI170919306A 10.1016/j.enconman.2016.08.086 10.1016/j.renene.2016.03.103 10.1016/j.apenergy.2015.07.043 10.1007/s00704-015-1469-z 10.1016/j.renene.2008.09.006 10.1016/j.apenergy.2017.01.063 10.1016/j.enconman.2018.02.006 10.1016/j.beproc.2011.09.006 10.1016/j.rser.2015.06.062 10.1016/j.apenergy.2018.05.054 10.1016/j.patcog.2005.01.012 10.1016/j.renene.2017.09.089 10.1016/j.enconman.2018.03.098 10.1098/rspa.1998.0193 10.1016/j.apenergy.2016.03.096 10.1016/j.enconman.2017.07.065 10.1016/j.advengsoft.2013.12.007 10.1016/j.apenergy.2015.08.014 10.1016/j.neucom.2016.03.061 10.1016/j.renene.2016.02.054 10.1016/j.knosys.2011.04.019 10.1016/j.enconman.2018.02.012 10.1016/j.enconman.2017.10.085 10.1016/j.rser.2008.02.002 10.1016/j.renene.2013.08.011 10.1016/j.apenergy.2015.02.032 10.1016/j.enconman.2018.02.015 10.1088/1674-1056/17/2/031 10.1016/j.enconman.2017.10.021 10.1016/S0196-8904(03)00108-0 10.1109/TEC.2003.821865 10.1016/j.renene.2012.12.041 10.1016/j.asoc.2019.02.037 10.1016/j.bspc.2014.06.009 10.1016/j.knosys.2019.05.009 10.1016/j.apenergy.2019.01.055 10.1016/j.energy.2004.05.026 10.1016/j.ijepes.2017.08.012 10.3390/en9020109 10.1016/j.enconman.2018.07.070 10.1016/j.enconman.2017.04.064 10.1109/EPC.2008.4763386 10.1016/j.enconman.2018.04.021 10.1016/j.envsoft.2012.01.019 10.1016/j.apenergy.2017.04.039 10.1016/j.enconman.2018.01.010 10.1016/j.asoc.2018.11.047 10.1016/j.energy.2014.06.056 10.1016/j.enconman.2017.04.007 10.1016/j.apenergy.2018.02.070 10.1016/j.renene.2007.01.014 10.1016/j.renene.2003.11.009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC BXJBU |
DOI | 10.1016/j.asoc.2020.106996 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | oai_HAL_hal_03479657v1 10_1016_j_asoc_2020_106996 S1568494620309352 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC BXJBU |
ID | FETCH-LOGICAL-c378t-63774e644d20320e4a68b029f41f3ff8f6a897533ef839cec34f76ab8e265e203 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Fri May 09 12:21:27 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hybrid model Decomposition Wind speed Long short-term memory (LSTM) Grey wolf optimizer (GWO) LSTM Long short-term memory LSTM Grey wolf optimizer |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-63774e644d20320e4a68b029f41f3ff8f6a897533ef839cec34f76ab8e265e203 |
ORCID | 0000-0002-7108-637X |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S1568494620309352-fx1_lrg.jpg |
ParticipantIDs | hal_primary_oai_HAL_hal_03479657v1 crossref_citationtrail_10_1016_j_asoc_2020_106996 crossref_primary_10_1016_j_asoc_2020_106996 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106996 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 2021-03 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mirjalili, Mirjalili, Lewis (b68) 2014; 69 Erdem, Shi (b21) 2011; 88 Bouzgou, Benoudjit (b10) 2011; 88 Li, Wu, Liu (b65) 2018; 167 Muro, Escobedo, Spector, Coppinger (b67) 2011; 88 Dvorak, Archer, Jacobson (b12) 2010; 35 Maatallah, Achuthan, Janoyan, Marzocca (b31) 2015; 145 Cadenas, Rivera, Campos-Amezcua, Heard (b29) 2016; 9 Cheng, Liu, Liu, Zhang, Mahoney, Warner (b11) 2013; 55 Du, Wang, Guo, Yang (b16) 2017; 150 Akçay, Filik (b32) 2017; 191 Al-Yahyai, Charabi, Gastli (b15) 2010 Torres, Colominas, Schlotthauer, Flandrin (b62) 2011 Zhao, Ye, Li, Song, Lang, Su (b8) 2016; 177 Kiplangat, Asokan, Kumar (b48) 2016; 93 Lazić, Pejanović, Živković, Ilić (b14) 2014; 73 Poggi, Muselli, Notton, Cristofari, Louche (b18) 2003; 44 Peng, Zhou, Zhang, Zheng (b50) 2017; 153 Zhang, Wei, Xie, Shen, Zhang (b37) 2016; 205 Kavasseri, Seetharaman (b24) 2009; 34 Zhang, Wei, Zhao, Liu, Zhang (b26) 2016; 126 Riahy, Abedi (b20) 2008; 33 EC (b2) 2016 Liu, Mi, Li (b6) 2018; 166 Wang, Yang, Du, Niu (b45) 2018; 163 Liu, Wu, Li (b52) 2018; 161 Wu, Huang (b60) 2009; 1 Liu, Mi, Li (b36) 2018; 156 World Wind Energy Association (b4) 2019 Acar, Erbas, Arslan (b71) 2019; 23 Guo, Wu, Lu, Wang (b44) 2011; 24 Liu, Mi, Li (b46) 2018; 159 Karasu, Altan, Saraç, Hacioğlu (b28) 2017 Demirhan, Renwick (b57) 2018; 225 Liu, Mi, Li (b47) 2018; 155 Liu, Niu, Wang, Fan (b51) 2014; 62 He, Zhou, Feng, Liu, Yang (b66) 2019; 237 Cassola, Burlando (b23) 2012; 99 Karasu, Altan, Saraç, Hacıoğlu (b30) 2017; 4 Hochreiter, Schmidhuber (b64) 1997; 9 Zhang, Zhou, Li, Fu, Peng (b27) 2017; 143 Chen, Zeng, Zhou, Du, Lu (b53) 2018; 165 Qian-Li, Qi-Lun, Hong, Tan-Wei, Jiang-Wei (b38) 2008; 17 Song, Wang, Lu (b17) 2018; 215 Wu (b61) 2014 Ak, Li, Vitelli, Zio (b34) 2018; 95 Scarlat, Dallem, Monforti-Ferrario, Banja, Motola (b3) 2015; 51 Mohandes, Halawani, Rehman, Hussain (b43) 2004; 29 S.P. Kani, S.M. Mousavi, A.K. Kaviani, G.H. Riahy, A new integrated approach for very short-term wind speed prediction using linear regression among ANN and Markov chain, in: Proceeding on International Conference on Power System Analysis, Control and Optimization, 2008, October. Çakır (b5) 2010; 13 Zhou, Shi, Li (b49) 2011; 52 Shamshad, Bawadi, Hussin, Majid, Sanusi (b22) 2005; 30 Xiao, Shao, Yu, Ma, Jin (b41) 2017; 198 Tu, Chen, Liu (b70) 2019; 76 Hu, Chen (b54) 2018; 173 Colominas, Schlotthauer, Torres (b63) 2014; 14 Wang, Zhang, Wu, Wang (b35) 2016; 94 Wang, Li, Bai (b55) 2018; 162 Benmouiza, Cheknane (b72) 2016; 124 Lei, Shiyan, Chuanwen, Hongling, Yan (b9) 2009; 13 Al-Dahidi, Baraldi, Zio, Legnani (b33) 2017 Damousis, Alexiadis, Theocharis, Dokopoulos (b42) 2004; 19 Carvalho, Rocha, Gómez-Gesteira, Santos (b13) 2012; 33 Jiang, Huang (b56) 2017; 144 Li, Wang, Lu, Guo (b7) 2018; 116 IEA (b1) 2012 Wang, Zhao, Han, Zhou, Li (b69) 2019; 78 Liu, Tian, Liang, Li (b39) 2015; 157 Huang, Shen, Long, Wu, Shih, Zheng, Liu (b59) 1998; 454 Mehrkanoon (b40) 2019; 179 Jain, Nandakumar, Ross (b58) 2005; 38 Zuluaga, Alvarez, Giraldo (b25) 2015; 156 Lei (10.1016/j.asoc.2020.106996_b9) 2009; 13 Shamshad (10.1016/j.asoc.2020.106996_b22) 2005; 30 Mehrkanoon (10.1016/j.asoc.2020.106996_b40) 2019; 179 Scarlat (10.1016/j.asoc.2020.106996_b3) 2015; 51 World Wind Energy Association (10.1016/j.asoc.2020.106996_b4) 2019 Karasu (10.1016/j.asoc.2020.106996_b30) 2017; 4 Liu (10.1016/j.asoc.2020.106996_b36) 2018; 156 Damousis (10.1016/j.asoc.2020.106996_b42) 2004; 19 Liu (10.1016/j.asoc.2020.106996_b46) 2018; 159 Guo (10.1016/j.asoc.2020.106996_b44) 2011; 24 Al-Yahyai (10.1016/j.asoc.2020.106996_b15) 2010 Demirhan (10.1016/j.asoc.2020.106996_b57) 2018; 225 Wu (10.1016/j.asoc.2020.106996_b60) 2009; 1 Du (10.1016/j.asoc.2020.106996_b16) 2017; 150 10.1016/j.asoc.2020.106996_b19 IEA (10.1016/j.asoc.2020.106996_b1) 2012 Li (10.1016/j.asoc.2020.106996_b65) 2018; 167 Song (10.1016/j.asoc.2020.106996_b17) 2018; 215 Karasu (10.1016/j.asoc.2020.106996_b28) 2017 Lazić (10.1016/j.asoc.2020.106996_b14) 2014; 73 Wang (10.1016/j.asoc.2020.106996_b69) 2019; 78 Çakır (10.1016/j.asoc.2020.106996_b5) 2010; 13 Liu (10.1016/j.asoc.2020.106996_b52) 2018; 161 Kavasseri (10.1016/j.asoc.2020.106996_b24) 2009; 34 Colominas (10.1016/j.asoc.2020.106996_b63) 2014; 14 Erdem (10.1016/j.asoc.2020.106996_b21) 2011; 88 Cassola (10.1016/j.asoc.2020.106996_b23) 2012; 99 Carvalho (10.1016/j.asoc.2020.106996_b13) 2012; 33 Poggi (10.1016/j.asoc.2020.106996_b18) 2003; 44 Peng (10.1016/j.asoc.2020.106996_b50) 2017; 153 Zhang (10.1016/j.asoc.2020.106996_b26) 2016; 126 Muro (10.1016/j.asoc.2020.106996_b67) 2011; 88 Xiao (10.1016/j.asoc.2020.106996_b41) 2017; 198 Acar (10.1016/j.asoc.2020.106996_b71) 2019; 23 Cadenas (10.1016/j.asoc.2020.106996_b29) 2016; 9 Mohandes (10.1016/j.asoc.2020.106996_b43) 2004; 29 Akçay (10.1016/j.asoc.2020.106996_b32) 2017; 191 Cheng (10.1016/j.asoc.2020.106996_b11) 2013; 55 Dvorak (10.1016/j.asoc.2020.106996_b12) 2010; 35 Chen (10.1016/j.asoc.2020.106996_b53) 2018; 165 Tu (10.1016/j.asoc.2020.106996_b70) 2019; 76 Zhang (10.1016/j.asoc.2020.106996_b37) 2016; 205 Torres (10.1016/j.asoc.2020.106996_b62) 2011 Mirjalili (10.1016/j.asoc.2020.106996_b68) 2014; 69 Jiang (10.1016/j.asoc.2020.106996_b56) 2017; 144 Hochreiter (10.1016/j.asoc.2020.106996_b64) 1997; 9 Riahy (10.1016/j.asoc.2020.106996_b20) 2008; 33 Wang (10.1016/j.asoc.2020.106996_b55) 2018; 162 Zhou (10.1016/j.asoc.2020.106996_b49) 2011; 52 Ak (10.1016/j.asoc.2020.106996_b34) 2018; 95 Wang (10.1016/j.asoc.2020.106996_b45) 2018; 163 Benmouiza (10.1016/j.asoc.2020.106996_b72) 2016; 124 Li (10.1016/j.asoc.2020.106996_b7) 2018; 116 Hu (10.1016/j.asoc.2020.106996_b54) 2018; 173 Huang (10.1016/j.asoc.2020.106996_b59) 1998; 454 Liu (10.1016/j.asoc.2020.106996_b47) 2018; 155 Liu (10.1016/j.asoc.2020.106996_b6) 2018; 166 Wang (10.1016/j.asoc.2020.106996_b35) 2016; 94 EC (10.1016/j.asoc.2020.106996_b2) 2016 Jain (10.1016/j.asoc.2020.106996_b58) 2005; 38 Liu (10.1016/j.asoc.2020.106996_b51) 2014; 62 Qian-Li (10.1016/j.asoc.2020.106996_b38) 2008; 17 Zuluaga (10.1016/j.asoc.2020.106996_b25) 2015; 156 Zhang (10.1016/j.asoc.2020.106996_b27) 2017; 143 Maatallah (10.1016/j.asoc.2020.106996_b31) 2015; 145 Zhao (10.1016/j.asoc.2020.106996_b8) 2016; 177 Kiplangat (10.1016/j.asoc.2020.106996_b48) 2016; 93 He (10.1016/j.asoc.2020.106996_b66) 2019; 237 Wu (10.1016/j.asoc.2020.106996_b61) 2014 Bouzgou (10.1016/j.asoc.2020.106996_b10) 2011; 88 Al-Dahidi (10.1016/j.asoc.2020.106996_b33) 2017 Liu (10.1016/j.asoc.2020.106996_b39) 2015; 157 |
References_xml | – volume: 153 start-page: 589 year: 2017 end-page: 602 ident: b50 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine publication-title: Energy Convers. Manage. – volume: 177 start-page: 793 year: 2016 end-page: 803 ident: b8 article-title: A novel bidirectional mechanism based on time series model for wind power forecasting publication-title: Appl. Energy – volume: 126 start-page: 1084 year: 2016 end-page: 1092 ident: b26 article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction publication-title: Energy Convers. Manage. – volume: 124 start-page: 945 year: 2016 end-page: 958 ident: b72 article-title: Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models publication-title: Theor. Appl. Climatol. – volume: 205 start-page: 53 year: 2016 end-page: 63 ident: b37 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing – volume: 19 start-page: 352 year: 2004 end-page: 361 ident: b42 article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation publication-title: IEEE Trans. Energy Convers. – volume: 191 start-page: 653 year: 2017 end-page: 662 ident: b32 article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values publication-title: Appl. Energy – start-page: 296 year: 2017 end-page: 302 ident: b33 article-title: A dynamic weighting ensemble approach for wind energy production prediction publication-title: 2017 2nd International Conference on System Reliability and Safety – volume: 165 start-page: 681 year: 2018 end-page: 695 ident: b53 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy Convers. Manage. – volume: 157 start-page: 183 year: 2015 end-page: 194 ident: b39 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl. Energy – volume: 30 start-page: 693 year: 2005 end-page: 708 ident: b22 article-title: First and second order Markov chain models for synthetic generation of wind speed time series publication-title: Energy – volume: 156 start-page: 321 year: 2015 end-page: 330 ident: b25 article-title: Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison publication-title: Appl. Energy – volume: 95 start-page: 213 year: 2018 end-page: 226 ident: b34 article-title: Adequacy assessment of a wind-integrated system using neural network-based interval predictions of wind power generation and load publication-title: Int. J. Electr. Power Energy Syst. – volume: 93 start-page: 38 year: 2016 end-page: 44 ident: b48 article-title: Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition publication-title: Renew. Energy – start-page: 27 year: 2014 end-page: 46 ident: b61 article-title: Ensemble empirical mode decomposition and its multi-dimensional extensions publication-title: Hilbert–Huang Transform and its Applications – year: 2012 ident: b1 article-title: Energy technology perspectives 2012 publication-title: Pathways to a Clean Energy System – volume: 150 start-page: 90 year: 2017 end-page: 107 ident: b16 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manage. – volume: 44 start-page: 3177 year: 2003 end-page: 3196 ident: b18 article-title: Forecasting and simulating wind speed in Corsica by using an autoregressive model publication-title: Energy Convers. Manage. – volume: 156 start-page: 498 year: 2018 end-page: 514 ident: b36 article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network publication-title: Energy Convers. Manage. – volume: 23 start-page: 1189 year: 2019 end-page: 1201 ident: b71 article-title: The performance of vapor compression cooling system aided Ranque–Hilsch vortex tube publication-title: Therm. Sci. – volume: 78 start-page: 240 year: 2019 end-page: 260 ident: b69 article-title: A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem publication-title: Appl. Soft Comput. – volume: 51 start-page: 969 year: 2015 end-page: 985 ident: b3 article-title: Renewable energy policy framework and bioenergy contribution in the European Union–An overview from National Renewable Energy Action Plans and Progress Reports publication-title: Renew. Sustain. Energy Rev. – volume: 88 start-page: 192 year: 2011 end-page: 197 ident: b67 article-title: Wolf-pack ( publication-title: Behav. Process. – volume: 35 start-page: 1244 year: 2010 end-page: 1254 ident: b12 article-title: California offshore wind energy potential publication-title: Renew. Energy – volume: 163 start-page: 134 year: 2018 end-page: 150 ident: b45 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Convers. Manage. – volume: 17 start-page: 536 year: 2008 ident: b38 article-title: Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network publication-title: Chin. Phys. B – volume: 52 start-page: 1990 year: 2011 end-page: 1998 ident: b49 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manage. – volume: 73 start-page: 567 year: 2014 end-page: 574 ident: b14 article-title: Improved wind forecasts for wind power generation using the Eta model and MOS (Model Output Statistics) method publication-title: Energy – volume: 33 start-page: 23 year: 2012 end-page: 34 ident: b13 article-title: A sensitivity study of the WRF model in wind simulation for an area of high wind energy publication-title: Environ. Model. Softw. – volume: 143 start-page: 360 year: 2017 end-page: 376 ident: b27 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energy Convers. Manage. – volume: 4 start-page: 137 year: 2017 end-page: 146 ident: b30 article-title: Estimation of fast varied wind speed based on NARX neural network by using curve fitting publication-title: Int. J. Energy Appl. Technol. – volume: 76 start-page: 16 year: 2019 end-page: 30 ident: b70 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Appl. Soft Comput. – year: 2019 ident: b4 article-title: Wind power capacity worldwide reaches 597 GW, 50, 1 GW added in 2018 – volume: 167 start-page: 203 year: 2018 end-page: 219 ident: b65 article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction publication-title: Energy Convers. Manage. – volume: 155 start-page: 188 year: 2018 end-page: 200 ident: b47 article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks publication-title: Energy Convers. Manage. – volume: 166 start-page: 120 year: 2018 end-page: 131 ident: b6 article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network publication-title: Energy Convers. Manage. – volume: 162 start-page: 239 year: 2018 end-page: 250 ident: b55 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manage. – volume: 55 start-page: 347 year: 2013 end-page: 356 ident: b11 article-title: The impact of model physics on numerical wind forecasts publication-title: Renew. Energy – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b68 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 116 start-page: 669 year: 2018 end-page: 684 ident: b7 article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting publication-title: Renew. Energy – volume: 29 start-page: 939 year: 2004 end-page: 947 ident: b43 article-title: Support vector machines for wind speed prediction publication-title: Renew. Energy – volume: 88 start-page: 1405 year: 2011 end-page: 1414 ident: b21 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy – volume: 33 start-page: 35 year: 2008 end-page: 41 ident: b20 article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method publication-title: Renew. Energy – volume: 34 start-page: 1388 year: 2009 end-page: 1393 ident: b24 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy – start-page: 536 year: 2010 end-page: 541 ident: b15 article-title: Estimating wind resource over Oman using meso-scale modeling publication-title: Energy Conference and Exhibition (EnergyCon), 2010 IEEE International – volume: 14 start-page: 19 year: 2014 end-page: 29 ident: b63 article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing publication-title: Biomed. Signal Process. Control – volume: 215 start-page: 643 year: 2018 end-page: 658 ident: b17 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl. Energy – volume: 13 start-page: 287 year: 2010 end-page: 293 ident: b5 article-title: Türkiye’nin Rüzgâr Enerji Potansiyeli ve AB Ülkeleri İçindeki Yeri publication-title: J. Polytech. – volume: 24 start-page: 1048 year: 2011 end-page: 1056 ident: b44 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl.-Based Syst. – volume: 173 start-page: 123 year: 2018 end-page: 142 ident: b54 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm publication-title: Energy Convers. Manage. – volume: 94 start-page: 629 year: 2016 end-page: 636 ident: b35 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew. Energy – volume: 99 start-page: 154 year: 2012 end-page: 166 ident: b23 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl. Energy – volume: 62 start-page: 592 year: 2014 end-page: 597 ident: b51 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renew. Energy – volume: 159 start-page: 54 year: 2018 end-page: 64 ident: b46 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM publication-title: Energy Convers. Manage. – volume: 179 start-page: 120 year: 2019 end-page: 128 ident: b40 article-title: Deep shared representation learning for weather elements forecasting publication-title: Knowl.-Based Syst. – reference: S.P. Kani, S.M. Mousavi, A.K. Kaviani, G.H. Riahy, A new integrated approach for very short-term wind speed prediction using linear regression among ANN and Markov chain, in: Proceeding on International Conference on Power System Analysis, Control and Optimization, 2008, October. – year: 2016 ident: b2 article-title: Progress Reports – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b59 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. – volume: 13 start-page: 915 year: 2009 end-page: 920 ident: b9 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2017 end-page: 4 ident: b28 article-title: Prediction of wind speed with non-linear autoregressive (NAR) neural networks publication-title: Signal Processing and Communications Applications Conference (SIU), 2017 25th – volume: 225 start-page: 998 year: 2018 end-page: 1012 ident: b57 article-title: Missing value imputation for short to mid-term horizontal solar irradiance data publication-title: Appl. Energy – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b64 article-title: Long short-term memory publication-title: Neural Comput. – volume: 38 start-page: 2270 year: 2005 end-page: 2285 ident: b58 article-title: Score normalization in multimodal biometric systems publication-title: Pattern Recognit. – volume: 237 start-page: 103 year: 2019 end-page: 116 ident: b66 article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm publication-title: Appl. Energy – volume: 161 start-page: 266 year: 2018 end-page: 283 ident: b52 article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction publication-title: Energy Convers. Manage. – volume: 144 start-page: 340 year: 2017 end-page: 350 ident: b56 article-title: Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction publication-title: Energy Convers. Manage. – volume: 145 start-page: 191 year: 2015 end-page: 197 ident: b31 article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model publication-title: Appl. Energy – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b60 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 9 start-page: 109 year: 2016 ident: b29 article-title: Wind speed prediction using a univariate ARIMA model and a multivariate NARX model publication-title: Energies – volume: 198 start-page: 203 year: 2017 end-page: 222 ident: b41 article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting publication-title: Appl. Energy – start-page: 4144 year: 2011 end-page: 4147 ident: b62 article-title: A complete ensemble empirical mode decomposition with adaptive noise publication-title: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on – volume: 88 start-page: 2463 year: 2011 end-page: 2471 ident: b10 article-title: Multiple architecture system for wind speed prediction publication-title: Appl. Energy – volume: 52 start-page: 1990 issue: 4 year: 2011 ident: 10.1016/j.asoc.2020.106996_b49 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.11.007 – volume: 13 start-page: 287 issue: 4 year: 2010 ident: 10.1016/j.asoc.2020.106996_b5 article-title: Türkiye’nin Rüzgâr Enerji Potansiyeli ve AB Ülkeleri İçindeki Yeri publication-title: J. Polytech. – volume: 167 start-page: 203 year: 2018 ident: 10.1016/j.asoc.2020.106996_b65 article-title: Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.04.082 – volume: 88 start-page: 2463 issue: 7 year: 2011 ident: 10.1016/j.asoc.2020.106996_b10 article-title: Multiple architecture system for wind speed prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.037 – volume: 35 start-page: 1244 issue: 6 year: 2010 ident: 10.1016/j.asoc.2020.106996_b12 article-title: California offshore wind energy potential publication-title: Renew. Energy doi: 10.1016/j.renene.2009.11.022 – volume: 1 start-page: 1 issue: 01 year: 2009 ident: 10.1016/j.asoc.2020.106996_b60 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 88 start-page: 1405 issue: 4 year: 2011 ident: 10.1016/j.asoc.2020.106996_b21 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.asoc.2020.106996_b64 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 99 start-page: 154 year: 2012 ident: 10.1016/j.asoc.2020.106996_b23 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.03.054 – volume: 4 start-page: 137 issue: 3 year: 2017 ident: 10.1016/j.asoc.2020.106996_b30 article-title: Estimation of fast varied wind speed based on NARX neural network by using curve fitting publication-title: Int. J. Energy Appl. Technol. – volume: 156 start-page: 498 year: 2018 ident: 10.1016/j.asoc.2020.106996_b36 article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.11.053 – volume: 23 start-page: 1189 issue: 2 Part B year: 2019 ident: 10.1016/j.asoc.2020.106996_b71 article-title: The performance of vapor compression cooling system aided Ranque–Hilsch vortex tube publication-title: Therm. Sci. doi: 10.2298/TSCI170919306A – volume: 126 start-page: 1084 year: 2016 ident: 10.1016/j.asoc.2020.106996_b26 article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.08.086 – volume: 94 start-page: 629 year: 2016 ident: 10.1016/j.asoc.2020.106996_b35 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew. Energy doi: 10.1016/j.renene.2016.03.103 – year: 2012 ident: 10.1016/j.asoc.2020.106996_b1 article-title: Energy technology perspectives 2012 – volume: 156 start-page: 321 year: 2015 ident: 10.1016/j.asoc.2020.106996_b25 article-title: Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.07.043 – volume: 124 start-page: 945 issue: 3–4 year: 2016 ident: 10.1016/j.asoc.2020.106996_b72 article-title: Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1469-z – volume: 34 start-page: 1388 issue: 5 year: 2009 ident: 10.1016/j.asoc.2020.106996_b24 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy doi: 10.1016/j.renene.2008.09.006 – volume: 191 start-page: 653 year: 2017 ident: 10.1016/j.asoc.2020.106996_b32 article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.063 – volume: 161 start-page: 266 year: 2018 ident: 10.1016/j.asoc.2020.106996_b52 article-title: Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.02.006 – volume: 88 start-page: 192 issue: 3 year: 2011 ident: 10.1016/j.asoc.2020.106996_b67 article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav. Process. doi: 10.1016/j.beproc.2011.09.006 – volume: 51 start-page: 969 year: 2015 ident: 10.1016/j.asoc.2020.106996_b3 article-title: Renewable energy policy framework and bioenergy contribution in the European Union–An overview from National Renewable Energy Action Plans and Progress Reports publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.06.062 – volume: 225 start-page: 998 year: 2018 ident: 10.1016/j.asoc.2020.106996_b57 article-title: Missing value imputation for short to mid-term horizontal solar irradiance data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.054 – volume: 38 start-page: 2270 issue: 12 year: 2005 ident: 10.1016/j.asoc.2020.106996_b58 article-title: Score normalization in multimodal biometric systems publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.012 – volume: 116 start-page: 669 year: 2018 ident: 10.1016/j.asoc.2020.106996_b7 article-title: Research and application of a combined model based on variable weight for short term wind speed forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2017.09.089 – volume: 165 start-page: 681 year: 2018 ident: 10.1016/j.asoc.2020.106996_b53 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.03.098 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.asoc.2020.106996_b59 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 177 start-page: 793 year: 2016 ident: 10.1016/j.asoc.2020.106996_b8 article-title: A novel bidirectional mechanism based on time series model for wind power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.096 – volume: 150 start-page: 90 year: 2017 ident: 10.1016/j.asoc.2020.106996_b16 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.07.065 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2020.106996_b68 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 157 start-page: 183 year: 2015 ident: 10.1016/j.asoc.2020.106996_b39 article-title: Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.014 – volume: 205 start-page: 53 year: 2016 ident: 10.1016/j.asoc.2020.106996_b37 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.061 – volume: 93 start-page: 38 year: 2016 ident: 10.1016/j.asoc.2020.106996_b48 article-title: Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition publication-title: Renew. Energy doi: 10.1016/j.renene.2016.02.054 – start-page: 4144 year: 2011 ident: 10.1016/j.asoc.2020.106996_b62 article-title: A complete ensemble empirical mode decomposition with adaptive noise – start-page: 296 year: 2017 ident: 10.1016/j.asoc.2020.106996_b33 article-title: A dynamic weighting ensemble approach for wind energy production prediction – volume: 24 start-page: 1048 issue: 7 year: 2011 ident: 10.1016/j.asoc.2020.106996_b44 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.04.019 – volume: 163 start-page: 134 year: 2018 ident: 10.1016/j.asoc.2020.106996_b45 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.02.012 – start-page: 27 year: 2014 ident: 10.1016/j.asoc.2020.106996_b61 article-title: Ensemble empirical mode decomposition and its multi-dimensional extensions – year: 2016 ident: 10.1016/j.asoc.2020.106996_b2 – volume: 155 start-page: 188 year: 2018 ident: 10.1016/j.asoc.2020.106996_b47 article-title: Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.10.085 – volume: 13 start-page: 915 issue: 4 year: 2009 ident: 10.1016/j.asoc.2020.106996_b9 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2008.02.002 – volume: 62 start-page: 592 year: 2014 ident: 10.1016/j.asoc.2020.106996_b51 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2013.08.011 – volume: 145 start-page: 191 year: 2015 ident: 10.1016/j.asoc.2020.106996_b31 article-title: Recursive wind speed forecasting based on Hammerstein Auto-Regressive model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.02.032 – start-page: 536 year: 2010 ident: 10.1016/j.asoc.2020.106996_b15 article-title: Estimating wind resource over Oman using meso-scale modeling – year: 2019 ident: 10.1016/j.asoc.2020.106996_b4 – volume: 162 start-page: 239 year: 2018 ident: 10.1016/j.asoc.2020.106996_b55 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.02.015 – volume: 17 start-page: 536 issue: 2 year: 2008 ident: 10.1016/j.asoc.2020.106996_b38 article-title: Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network publication-title: Chin. Phys. B doi: 10.1088/1674-1056/17/2/031 – volume: 153 start-page: 589 year: 2017 ident: 10.1016/j.asoc.2020.106996_b50 article-title: Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.10.021 – volume: 44 start-page: 3177 issue: 20 year: 2003 ident: 10.1016/j.asoc.2020.106996_b18 article-title: Forecasting and simulating wind speed in Corsica by using an autoregressive model publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(03)00108-0 – volume: 19 start-page: 352 issue: 2 year: 2004 ident: 10.1016/j.asoc.2020.106996_b42 article-title: A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2003.821865 – volume: 55 start-page: 347 year: 2013 ident: 10.1016/j.asoc.2020.106996_b11 article-title: The impact of model physics on numerical wind forecasts publication-title: Renew. Energy doi: 10.1016/j.renene.2012.12.041 – volume: 78 start-page: 240 year: 2019 ident: 10.1016/j.asoc.2020.106996_b69 article-title: A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.037 – volume: 14 start-page: 19 year: 2014 ident: 10.1016/j.asoc.2020.106996_b63 article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.06.009 – volume: 179 start-page: 120 year: 2019 ident: 10.1016/j.asoc.2020.106996_b40 article-title: Deep shared representation learning for weather elements forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.05.009 – volume: 237 start-page: 103 year: 2019 ident: 10.1016/j.asoc.2020.106996_b66 article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.055 – volume: 30 start-page: 693 issue: 5 year: 2005 ident: 10.1016/j.asoc.2020.106996_b22 article-title: First and second order Markov chain models for synthetic generation of wind speed time series publication-title: Energy doi: 10.1016/j.energy.2004.05.026 – volume: 95 start-page: 213 year: 2018 ident: 10.1016/j.asoc.2020.106996_b34 article-title: Adequacy assessment of a wind-integrated system using neural network-based interval predictions of wind power generation and load publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.08.012 – volume: 9 start-page: 109 issue: 2 year: 2016 ident: 10.1016/j.asoc.2020.106996_b29 article-title: Wind speed prediction using a univariate ARIMA model and a multivariate NARX model publication-title: Energies doi: 10.3390/en9020109 – volume: 173 start-page: 123 year: 2018 ident: 10.1016/j.asoc.2020.106996_b54 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.07.070 – volume: 144 start-page: 340 year: 2017 ident: 10.1016/j.asoc.2020.106996_b56 article-title: Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.04.064 – ident: 10.1016/j.asoc.2020.106996_b19 doi: 10.1109/EPC.2008.4763386 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2020.106996_b28 article-title: Prediction of wind speed with non-linear autoregressive (NAR) neural networks – volume: 166 start-page: 120 year: 2018 ident: 10.1016/j.asoc.2020.106996_b6 article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.04.021 – volume: 33 start-page: 23 year: 2012 ident: 10.1016/j.asoc.2020.106996_b13 article-title: A sensitivity study of the WRF model in wind simulation for an area of high wind energy publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.01.019 – volume: 198 start-page: 203 year: 2017 ident: 10.1016/j.asoc.2020.106996_b41 article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.039 – volume: 159 start-page: 54 year: 2018 ident: 10.1016/j.asoc.2020.106996_b46 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.01.010 – volume: 76 start-page: 16 year: 2019 ident: 10.1016/j.asoc.2020.106996_b70 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.047 – volume: 73 start-page: 567 year: 2014 ident: 10.1016/j.asoc.2020.106996_b14 article-title: Improved wind forecasts for wind power generation using the Eta model and MOS (Model Output Statistics) method publication-title: Energy doi: 10.1016/j.energy.2014.06.056 – volume: 143 start-page: 360 year: 2017 ident: 10.1016/j.asoc.2020.106996_b27 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.04.007 – volume: 215 start-page: 643 year: 2018 ident: 10.1016/j.asoc.2020.106996_b17 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.070 – volume: 33 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.asoc.2020.106996_b20 article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method publication-title: Renew. Energy doi: 10.1016/j.renene.2007.01.014 – volume: 29 start-page: 939 issue: 6 year: 2004 ident: 10.1016/j.asoc.2020.106996_b43 article-title: Support vector machines for wind speed prediction publication-title: Renew. Energy doi: 10.1016/j.renene.2003.11.009 |
SSID | ssj0016928 |
Score | 2.695595 |
Snippet | Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation of wind power. In particular, high accuracy short-term WSF... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 106996 |
SubjectTerms | Decomposition domain_shs.gest-risq Grey wolf optimizer (GWO) Humanities and Social Sciences Hybrid model Long short-term memory (LSTM) Wind speed |
Title | A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106996 https://minesparis-psl.hal.science/hal-03479657 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4BvXChLxCBFo2q3qiJ412v7WMUFaUtRagFiZu1Xs8qQSGJSApKD_0F_dGdWa8jIVUcuNjyah_2znr2G_ubGSE-OlXJ2sZplFvUkdI2i0xMazmuEF1da4de0t_P9fBKfb1OrzfEoPWFYVpl0P2NTvfaOpR0w2x25-Nx9ydZHrkqlE6av3msh5XKeJWf_FnTPHq68PlVuXLEtYPjTMPxMjQDZCMmXKALDtz__81pc9R-ZvXbzukrsRPwIvSbW3otNnD6RrxsczFAeDXfir99IIAMoxV7YIHPbwOER-GBbG5YzGmP4ku0ZsE8Z6DHrXxqCJjM6LAYEQqPWEvDLVNvV8BxLmncacMS_wQ1Mvk8MLygyTu9AEOdk8G-gofZxMGM1M_t-Dfe7Yqr08-Xg2EUMi1EVmb5MtKSUCASNKp9QnVURudVnBRO9Zx0Lnfa5OyBK9ERoLJopXKZNlWOiU6R2uyJrelsivsCjEzIAjHS6syoxBKArJySdUEdFFhj1hG9dopLG8KQczaMSdnyzW5KFkvJYikbsXTE8brNvAnC8WTttJVc-WgplbRLPNnuA4l5PQDH3R72z0oui9nfVqfZfe_gmZ0fiu2E2TCevfZObC3vfuF7gjPL6siv1yPxoj_4cXbB5y_fhuf_AG9c99s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF215QAXvlHL5wjBCUyc9XptHzhEQJXStBdaqTezXs-SoDSJ6kAUDvwC_g1_kJn1OhIS6gGpl0heedfWzGbmTfJmnxAvnKqS2sZplFvUkdI2i0xMezmuEF1da4fe00fHeniqPp6lZ1vid9cLw7TKEPvbmO6jdRjpBWv2FpNJ7xNVHrkqlJbtv3kyMCsPcb2iuq15e_CenPxSyv0PJ--GUZAWiGyS5ctIJwR7kLBA7RXEURmdV7EsnOq7xLncaZNzy2mCjhCERZsol2lT5Sh1ijSH1t0W1xSFC5ZNePNzwyvp68ILuvLbRfx6oVOnJZUZMjkVpZIHdMFKAf_Ohtvj7nddn-f2b4ubAaDCoLXBHbGFs7viVif-ACEW3BO_BkCIHMZrbvkCL6gDBIBhRUU-NAtKinyJ1jRMrAayb-W1KGA6p49mTLA_4rQA58z1XQMfrEnPnbW09NdQI7PdA6UMWqHrBgwt_oV2H6zmUwdzinfnkx94cV-cXon9H4id2XyGuwJMIqnkMYnVmVHSEmKtnErqghYosMZsT_Q7E5c2nHvO8hvTsiO4fS3ZLSW7pWzdsidebeYs2lM_Lr077TxX_rV3S0pLl857Tm7ePIAP-h4ORiWPxdzgq9Pse__hfy7-TFwfnhyNytHB8eEjcUMyFcdT5x6LneXFN3xCWGpZPfV7F8Tnq_6y_AGiPzDZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+model+for+wind+speed+forecasting+combining+long+short-term+memory+neural+network%2C+decomposition+methods+and+grey+wolf+optimizer&rft.jtitle=Applied+soft+computing&rft.au=Altan%2C+Ayta%C3%A7&rft.au=Karasu%2C+Se%C3%A7kin&rft.au=Zio%2C+Enrico&rft.date=2021-03-01&rft.pub=Elsevier&rft.issn=1568-4946&rft.volume=100&rft_id=info:doi/10.1016%2Fj.asoc.2020.106996&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03479657v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |