Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process

[Display omitted] •Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the process.•All four models demonstrated close agreement with results (R2 ≥ 90%).•PVI was able to assess the relative importance of the inputs.•Aceta...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 343; p. 126111
Main Authors Hosseinzadeh, Ahmad, Zhou, John L., Altaee, Ali, Li, Donghao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the process.•All four models demonstrated close agreement with results (R2 ≥ 90%).•PVI was able to assess the relative importance of the inputs.•Acetate, butyrate, ethanol, Fe and Ni showed high importance in decreasing order. Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.
AbstractList Dark fermentation process for simultaneous wastewater treatment and H₂ production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H₂ production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R²) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H₂ production with high R² values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.
Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.
[Display omitted] •Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the process.•All four models demonstrated close agreement with results (R2 ≥ 90%).•PVI was able to assess the relative importance of the inputs.•Acetate, butyrate, ethanol, Fe and Ni showed high importance in decreasing order. Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.
ArticleNumber 126111
Author Altaee, Ali
Hosseinzadeh, Ahmad
Li, Donghao
Zhou, John L.
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Ahmad
  organization: Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
– sequence: 2
  givenname: John L.
  surname: Zhou
  fullname: Zhou, John L.
  email: junliang.zhou@uts.edu.au
  organization: Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
– sequence: 3
  givenname: Ali
  surname: Altaee
  fullname: Altaee, Ali
  organization: Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
– sequence: 4
  givenname: Donghao
  surname: Li
  fullname: Li, Donghao
  organization: Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China
BookMark eNqFkU9v1DAQxS1UJLaFr4B85JLF42z8R-JQVBWo1IoLnC3HnnS9JHaxva3225Ml7aWXPYxmDr83o3nvnJzFFJGQj8DWwEB83q37kHJFt11zxmENXADAG7ICJduGaynOyIppwRrV8c07cl7KjjHWguQrMt1Ztw0R6Yg2xxDv6ZQ8jsfBRj-XHQ8lFJoGOl_ZHnxO9xjpQ05-72pIkQ45TfTJlopPtmKm_YF6m__QAfOEsdr_0Mw7LOU9eTvYseCH535Bfn-7_nX1o7n9-f3m6utt41qpaiNarqH1Aja8lbzT2GvWg5di4FI7wZ3uNADrtfa-73rF1EZ1TgHvQAmQur0gn5a9892_eyzVTKE4HEcbMe2L4aIVYjO7pU6jneIKdCf5jH5ZUJdTKRkH48LyX802jAaYOQZiduYlEHMMxCyBzHLxSv6Qw2Tz4bTwchHibNljwGyKCxgd-pDRVeNTOLXiH5bBq8w
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_03_029
crossref_primary_10_1016_j_jenvman_2024_121855
crossref_primary_10_3389_fenrg_2022_980360
crossref_primary_10_1016_j_ijhydene_2022_07_082
crossref_primary_10_1039_D4RA06214K
crossref_primary_10_1016_j_chemosphere_2024_142632
crossref_primary_10_1016_j_ijhydene_2023_05_312
crossref_primary_10_1016_j_jece_2024_112530
crossref_primary_10_1016_j_cogsc_2024_100928
crossref_primary_10_1016_j_biortech_2022_128523
crossref_primary_10_3390_fermentation9030243
crossref_primary_10_1016_j_eti_2024_103977
crossref_primary_10_3389_fchem_2022_978907
crossref_primary_10_1016_j_energy_2025_135704
crossref_primary_10_1016_j_ijhydene_2023_09_097
crossref_primary_10_1016_j_jhazmat_2023_132320
crossref_primary_10_1016_j_psep_2023_02_065
crossref_primary_10_1038_s44296_024_00009_9
crossref_primary_10_1016_j_ijbiomac_2024_137616
crossref_primary_10_1016_j_ijhydene_2023_07_114
crossref_primary_10_1016_j_jclepro_2022_131360
crossref_primary_10_3390_nano12152573
crossref_primary_10_1016_j_desal_2023_116992
crossref_primary_10_1016_j_biortech_2024_130496
crossref_primary_10_1016_j_jclepro_2022_133025
crossref_primary_10_1016_j_energy_2024_133490
crossref_primary_10_1016_j_jenvman_2022_114518
crossref_primary_10_1016_j_biortech_2022_128076
crossref_primary_10_1016_j_scca_2025_100064
crossref_primary_10_1007_s11274_023_03845_4
crossref_primary_10_1016_j_jenvman_2024_121724
crossref_primary_10_3390_app12125901
crossref_primary_10_1016_j_psep_2022_01_065
crossref_primary_10_1016_j_jwpe_2021_102480
crossref_primary_10_1007_s11783_023_1735_8
crossref_primary_10_1016_j_jenvman_2022_116191
crossref_primary_10_1016_j_ijhydene_2023_11_137
crossref_primary_10_1021_acssuschemeng_3c08356
crossref_primary_10_1016_j_jclepro_2022_135777
crossref_primary_10_1080_01614940_2022_2082650
crossref_primary_10_3390_membranes13110852
crossref_primary_10_1016_j_envpol_2022_120734
crossref_primary_10_1016_j_ijhydene_2024_04_242
crossref_primary_10_1016_j_indcrop_2024_120427
crossref_primary_10_1016_j_scitotenv_2023_164344
crossref_primary_10_1016_j_compchemeng_2024_108900
crossref_primary_10_1016_j_ijhydene_2024_08_342
crossref_primary_10_1016_j_seppur_2022_120775
crossref_primary_10_1016_j_seta_2024_104123
crossref_primary_10_1007_s13399_025_06506_8
crossref_primary_10_1016_j_biortech_2022_128386
crossref_primary_10_1016_j_coche_2023_100983
crossref_primary_10_1016_j_biortech_2022_128502
crossref_primary_10_1016_j_rineng_2024_103534
crossref_primary_10_1016_j_rser_2021_111991
crossref_primary_10_1007_s11356_024_35668_7
crossref_primary_10_1016_j_biortech_2023_128789
crossref_primary_10_23919_CHAIN_2024_100004
crossref_primary_10_1016_j_scenv_2025_100219
crossref_primary_10_1016_j_envres_2022_112953
crossref_primary_10_1016_j_asoc_2023_110215
crossref_primary_10_1007_s40726_025_00343_z
crossref_primary_10_1002_jctb_7525
crossref_primary_10_1016_j_ijhydene_2024_01_326
crossref_primary_10_1016_j_cej_2024_152745
crossref_primary_10_1016_j_dajour_2024_100416
crossref_primary_10_1016_j_ijhydene_2024_04_173
crossref_primary_10_1007_s00477_023_02559_1
crossref_primary_10_1016_j_jechem_2024_07_045
crossref_primary_10_1016_j_biortech_2023_129444
crossref_primary_10_1016_j_ijhydene_2022_03_197
crossref_primary_10_1016_j_biortech_2022_128451
crossref_primary_10_1016_j_csite_2024_104087
crossref_primary_10_1016_j_ijbiomac_2024_130035
crossref_primary_10_1016_j_jwpe_2024_105512
crossref_primary_10_1016_j_gerr_2024_100112
crossref_primary_10_1016_j_rser_2023_113906
crossref_primary_10_1016_j_apenergy_2024_124851
crossref_primary_10_1016_j_fuel_2022_125478
crossref_primary_10_1002_ldr_5327
crossref_primary_10_3390_fermentation9020120
crossref_primary_10_1016_j_jwpe_2023_104758
crossref_primary_10_1016_j_mtsust_2025_101098
crossref_primary_10_1007_s11270_022_05739_x
crossref_primary_10_1016_j_chemosphere_2023_139435
crossref_primary_10_3390_photonics9040241
crossref_primary_10_1016_j_chemosphere_2022_135294
crossref_primary_10_1007_s11095_024_03686_2
crossref_primary_10_1016_j_bidere_2025_100002
crossref_primary_10_1016_j_ijhydene_2023_01_339
crossref_primary_10_1021_acsestwater_2c00631
crossref_primary_10_1177_0958305X221109604
Cites_doi 10.1016/j.biortech.2019.121541
10.1016/j.biortech.2021.124998
10.1016/j.biortech.2020.123391
10.1016/j.catena.2021.105178
10.1016/j.watres.2020.116221
10.1093/bioinformatics/btq134
10.1016/j.ijhydene.2010.04.174
10.1016/j.ress.2020.107312
10.1016/j.watres.2006.03.029
10.1016/j.envsoft.2015.04.015
10.1016/j.ijhydene.2020.06.081
10.1016/j.rser.2014.03.008
10.1016/j.jwpe.2021.101940
10.1016/j.engappai.2018.09.018
10.1016/j.biortech.2020.123549
10.1007/s10529-020-03051-4
10.1016/j.biortech.2020.123967
10.1016/j.compchemeng.2019.106711
10.1016/j.watres.2019.04.063
10.1016/j.jclepro.2018.07.164
10.1016/j.biortech.2014.01.090
10.1016/j.asoc.2021.107672
10.1016/j.biortech.2020.122926
10.1016/j.watres.2020.116133
10.1016/j.apenergy.2018.09.182
10.1016/j.rser.2021.110971
10.1016/j.chemosphere.2021.132135
10.1023/A:1010933404324
10.1016/j.rser.2020.110023
10.1016/j.cjche.2016.05.015
10.1016/j.apenergy.2016.08.096
10.1016/j.resconrec.2016.12.010
10.1016/j.watres.2018.09.025
10.1016/j.bej.2020.107850
10.1016/j.jenvman.2016.07.025
10.1016/j.watres.2020.116657
10.1016/j.apenergy.2020.114566
10.1016/j.scitotenv.2018.12.349
10.1016/j.watres.2016.04.063
10.1016/j.ejbt.2015.05.001
10.1016/j.scitotenv.2020.137088
10.1016/j.watres.2021.117073
10.1016/j.rser.2020.110496
10.1016/j.rser.2020.110027
10.1016/j.conbuildmat.2020.120950
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.biortech.2021.126111
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 10_1016_j_biortech_2021_126111
S096085242101453X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c378t-632913d614237259eb90b1d76f279c62c959110b99ddb5b808485c81251861793
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 15:46:43 EDT 2025
Mon Jul 21 10:02:34 EDT 2025
Tue Jul 01 03:18:59 EDT 2025
Thu Apr 24 23:05:45 EDT 2025
Fri Feb 23 02:40:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process modelling
Biohydrogen
Dark fermentation
Wastewater treatment
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-632913d614237259eb90b1d76f279c62c959110b99ddb5b808485c81251861793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2582819572
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636642028
proquest_miscellaneous_2582819572
crossref_citationtrail_10_1016_j_biortech_2021_126111
crossref_primary_10_1016_j_biortech_2021_126111
elsevier_sciencedirect_doi_10_1016_j_biortech_2021_126111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Bioresource technology
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hosseinzadeh, Zhou, Navidpour, Altaee (b0125) 2021
Zhou, Fujita, Ding, Ma (b0240) 2021; 110
Dessì, Asunis, Ravishankar, Cocco, De Gioannis, Muntoni, Lens (b0080) 2020; 45
Kamranifar, Al-Musawi, Amarzadeh, Hosseinzadeh, Nasseh, Qutob, Arghavan (b0135) 2021; 40
Boshagh, Rostami (b0050) 2021; 43
Nguyen, Vu, Vo, Thai (b0175) 2021; 266
Durán, Robles, Giménez, Ferrer, Ribes, Serralta (b0085) 2020; 184
Karadag, Puhakka (b0140) 2010; 35
Ma, Cheng (b0160) 2016; 183
Wong, Wu, Juan (b0210) 2014; 34
Grillone, Danov, Sumper, Cipriano, Mor (b0100) 2020; 131
Toquero, Bolado (b0200) 2014; 157
Zhuang, Tang, Bin, Li, Huang, Fu (b0245) 2021; 166
Baeyens, Zhang, Nie, Appels, Dewil, Ansart, Deng (b0035) 2020; 131
Zendehboudi, Baseer, Saidur (b0235) 2018; 199
Huang, Surawski, Organ, Zhou, Tang, Chan (b0130) 2019; 659
Almuhtaram, Zamyadi, Hofmann (b0015) 2021; 197
Pradhan, Dipasquale, d'Ippolito, Fontana, Panico, Pirozzi, Lens, Esposito (b0180) 2016; 99
Breiman (b0060) 2001; 45
Sekoai, Ghimire, Ezeokoli, Rao, Ngan, Habimana, Yao, Yang, Yiu Fung, Yoro, Daramola, Hung (b0185) 2021; 143
Bao, Damtie, Wei, Phong Vo, Nguyen, Hosseinzadeh, Cho, Yu, Jin, Wei, Wu, Frost, Ni (b0040) 2020; 125068
Li, Zou, Berecibar, Nanini-Maury, Chan, van den Bossche, Van Mierlo, Omar (b0150) 2018; 232
Cao, Sun, Lu, Zhou (b0070) 2019; 159
Hosseinzadeh, Zhou, Altaee, Baziar, Li (b0115) 2020; 316
Zaghloul, Iorhemen, Hamza, Tay, Achari (b0230) 2021; 189
Braga, Madureira, Coelho, Ajith (b0055) 2019; 77
Xia, Wang, Zhang, Yang, Yang, Ding, Jia, Yang, Liu, Ma, Lin, Wang, Hou, Zhang, Gao, Duan, Qian (b0215) 2020; 185
Bejani, Ghatee (b0045) 2021
Hosseinzadeh, Baziar, Alidadi, Zhou, Altaee, Najafpoor, Jafarpour (b0110) 2020; 303
Abdi, Hadipoor, Hadavimoghaddam, Hemmati-Sarapardeh (b0005) 2022; 287
Zorpas (b0250) 2020; 716
Altmann, Toloşi, Sander, Lengauer (b0020) 2010; 26
Hamedi, Mohammadzadeh, Rasouli, Zendehboudi (b0105) 2021; 106406
Gómez-Marín, Bridgwater (b0095) 2021; 137
Cai, Xu, Zhu, Hu, Li (b0065) 2020; 262
Hosseinzadeh, Zhou, Altaee, Baziar, Li (b0120) 2020; 310
Thompson, Dickenson (b0195) 2021; 117556
Serfidan, Uzman, Türkay (b0190) 2020; 134
Antoniadis, Lambert-Lacroix, Poggi (b0025) 2021; 206
Li, Zhang, Xia, Jing, Zhang, Li, Zhu, Jin (b0145) 2020; 311
Wei, Lu, Song (b0205) 2015; 70
Alidadi, Hosseinzadeh, Najafpoor, Esmaili, Zanganeh, Dolatabadi Takabi, Piranloo (b0010) 2016; 182
Baeten, van Loosdrecht, Volcke (b0030) 2018; 146
Chen, Li, Xu, Hou, Yang (b0075) 2015; 18
Friedman (b0090) 2001
You, Zhang (b0225) 2017; 120
Xing, Luo, Wang, Fan (b0220) 2019; 288
Mohammadifar, Gholami, Comino, Collins (b0170) 2021; 200
Min, Luo (b0165) 2016; 24
Liu, Liu, Zeng, Angelidaki (b0155) 2006; 40
Zhuang (10.1016/j.biortech.2021.126111_b0245) 2021; 166
Zendehboudi (10.1016/j.biortech.2021.126111_b0235) 2018; 199
Altmann (10.1016/j.biortech.2021.126111_b0020) 2010; 26
Hosseinzadeh (10.1016/j.biortech.2021.126111_b0115) 2020; 316
Mohammadifar (10.1016/j.biortech.2021.126111_b0170) 2021; 200
Cai (10.1016/j.biortech.2021.126111_b0065) 2020; 262
Gómez-Marín (10.1016/j.biortech.2021.126111_b0095) 2021; 137
Friedman (10.1016/j.biortech.2021.126111_b0090) 2001
Hosseinzadeh (10.1016/j.biortech.2021.126111_b0110) 2020; 303
Zorpas (10.1016/j.biortech.2021.126111_b0250) 2020; 716
Min (10.1016/j.biortech.2021.126111_b0165) 2016; 24
Durán (10.1016/j.biortech.2021.126111_b0085) 2020; 184
Toquero (10.1016/j.biortech.2021.126111_b0200) 2014; 157
Baeten (10.1016/j.biortech.2021.126111_b0030) 2018; 146
Braga (10.1016/j.biortech.2021.126111_b0055) 2019; 77
Hosseinzadeh (10.1016/j.biortech.2021.126111_b0125) 2021
Xia (10.1016/j.biortech.2021.126111_b0215) 2020; 185
Pradhan (10.1016/j.biortech.2021.126111_b0180) 2016; 99
Abdi (10.1016/j.biortech.2021.126111_b0005) 2022; 287
Kamranifar (10.1016/j.biortech.2021.126111_b0135) 2021; 40
Grillone (10.1016/j.biortech.2021.126111_b0100) 2020; 131
You (10.1016/j.biortech.2021.126111_b0225) 2017; 120
Serfidan (10.1016/j.biortech.2021.126111_b0190) 2020; 134
Wong (10.1016/j.biortech.2021.126111_b0210) 2014; 34
Xing (10.1016/j.biortech.2021.126111_b0220) 2019; 288
Breiman (10.1016/j.biortech.2021.126111_b0060) 2001; 45
Ma (10.1016/j.biortech.2021.126111_b0160) 2016; 183
Zaghloul (10.1016/j.biortech.2021.126111_b0230) 2021; 189
Sekoai (10.1016/j.biortech.2021.126111_b0185) 2021; 143
Zhou (10.1016/j.biortech.2021.126111_b0240) 2021; 110
Thompson (10.1016/j.biortech.2021.126111_b0195) 2021; 117556
Nguyen (10.1016/j.biortech.2021.126111_b0175) 2021; 266
Hamedi (10.1016/j.biortech.2021.126111_b0105) 2021; 106406
Baeyens (10.1016/j.biortech.2021.126111_b0035) 2020; 131
Alidadi (10.1016/j.biortech.2021.126111_b0010) 2016; 182
Cao (10.1016/j.biortech.2021.126111_b0070) 2019; 159
Li (10.1016/j.biortech.2021.126111_b0145) 2020; 311
Bao (10.1016/j.biortech.2021.126111_b0040) 2020; 125068
Antoniadis (10.1016/j.biortech.2021.126111_b0025) 2021; 206
Huang (10.1016/j.biortech.2021.126111_b0130) 2019; 659
Hosseinzadeh (10.1016/j.biortech.2021.126111_b0120) 2020; 310
Karadag (10.1016/j.biortech.2021.126111_b0140) 2010; 35
Dessì (10.1016/j.biortech.2021.126111_b0080) 2020; 45
Boshagh (10.1016/j.biortech.2021.126111_b0050) 2021; 43
Chen (10.1016/j.biortech.2021.126111_b0075) 2015; 18
Wei (10.1016/j.biortech.2021.126111_b0205) 2015; 70
Bejani (10.1016/j.biortech.2021.126111_b0045) 2021
Almuhtaram (10.1016/j.biortech.2021.126111_b0015) 2021; 197
Li (10.1016/j.biortech.2021.126111_b0150) 2018; 232
Liu (10.1016/j.biortech.2021.126111_b0155) 2006; 40
References_xml – volume: 99
  start-page: 225
  year: 2016
  end-page: 234
  ident: b0180
  article-title: Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana
  publication-title: Water Res.
– volume: 311
  year: 2020
  ident: b0145
  article-title: Photo-fermentation biohydrogen production and electrons distribution from dark fermentation effluents under batch, semi-continuous and continuous modes
  publication-title: Bioresour. Technol.
– volume: 77
  start-page: 148
  year: 2019
  end-page: 158
  ident: b0055
  article-title: Automatic detection of Parkinson’s disease based on acoustic analysis of speech
  publication-title: Eng. Appl. Artif. Intell.
– volume: 197
  year: 2021
  ident: b0015
  article-title: Machine learning for anomaly detection in cyanobacterial fluorescence signals
  publication-title: Water Res.
– volume: 120
  start-page: 1
  year: 2017
  end-page: 13
  ident: b0225
  article-title: Sustainable livelihoods and rural sustainability in China: ecologically secure, economically efficient or socially equitable?
  publication-title: Resour. Conserv. Recycl.
– volume: 716
  year: 2020
  ident: b0250
  article-title: Strategy development in the framework of waste management
  publication-title: Sci. Total Environ.
– volume: 288
  year: 2019
  ident: b0220
  article-title: Estimating biomass major chemical constituents from ultimate analysis using a random forest model
  publication-title: Bioresour. Technol.
– volume: 266
  year: 2021
  ident: b0175
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
– volume: 157
  start-page: 68
  year: 2014
  end-page: 76
  ident: b0200
  article-title: Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing
  publication-title: Bioresour. Technol.
– volume: 185
  year: 2020
  ident: b0215
  article-title: River algal blooms are well predicted by antecedent environmental conditions
  publication-title: Water Res.
– volume: 134
  year: 2020
  ident: b0190
  article-title: Optimal estimation of physical properties of the products of an atmospheric distillation column using support vector regression
  publication-title: Comput. Chem. Eng.
– volume: 26
  start-page: 1340
  year: 2010
  end-page: 1347
  ident: b0020
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
– volume: 143
  year: 2021
  ident: b0185
  article-title: Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept
  publication-title: Renew. Sust. Energ Rev.
– volume: 40
  start-page: 2230
  year: 2006
  end-page: 2236
  ident: b0155
  article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process
  publication-title: Water Res.
– start-page: 124998
  year: 2021
  ident: b0125
  article-title: Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater
  publication-title: Bioresour. Technol.
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: b0235
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review
  publication-title: J. Clean. Prod.
– volume: 35
  start-page: 8554
  year: 2010
  end-page: 8560
  ident: b0140
  article-title: Enhancement of anaerobic hydrogen production by iron and nickel
  publication-title: Int. J. Hydrogen Energ.
– volume: 316
  year: 2020
  ident: b0115
  article-title: Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system
  publication-title: Bioresour. Technol.
– start-page: 1
  year: 2021
  end-page: 48
  ident: b0045
  article-title: A systematic review on overfitting control in shallow and deep neural networks
  publication-title: Artif. Intell. Rev.
– volume: 206
  year: 2021
  ident: b0025
  article-title: Random forests for global sensitivity analysis: A selective review
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 137
  year: 2021
  ident: b0095
  article-title: Mapping bioenergy stakeholders: A systematic and scientometric review of capabilities and expertise in bioenergy research in the United Kingdom
  publication-title: Renew. Sust. Energ Rev.
– volume: 310
  year: 2020
  ident: b0120
  article-title: Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network
  publication-title: Bioresour. Technol.
– volume: 232
  start-page: 197
  year: 2018
  end-page: 210
  ident: b0150
  article-title: Random forest regression for online capacity estimation of lithium-ion batteries
  publication-title: Appl. Energy
– volume: 40
  year: 2021
  ident: b0135
  article-title: Quick adsorption followed by lengthy photodegradation using FeNi3@SiO2@ZnO: A promising method for complete removal of penicillin G from wastewater
  publication-title: J. Water Process. Eng.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0090
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 146
  start-page: 134
  year: 2018
  end-page: 145
  ident: b0030
  article-title: Modelling aerobic granular sludge reactors through apparent half-saturation coefficients
  publication-title: Water Res.
– volume: 24
  start-page: 1038
  year: 2016
  end-page: 1046
  ident: b0165
  article-title: Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method
  publication-title: Chin. J. Chem. Eng.
– volume: 110
  year: 2021
  ident: b0240
  article-title: Credit risk modeling on data with two timestamps in peer-to-peer lending by gradient boosting
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0060
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 34
  start-page: 471
  year: 2014
  end-page: 482
  ident: b0210
  article-title: A review of sustainable hydrogen production using seed sludge via dark fermentation
  publication-title: Renew. Sust. Energ Rev.
– volume: 184
  year: 2020
  ident: b0085
  article-title: Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology
  publication-title: Water Res.
– volume: 125068
  year: 2020
  ident: b0040
  article-title: Simultaneous adsorption and degradation of bisphenol A on magnetic illite clay composite: eco-friendly preparation, characterizations, and catalytic mechanism
  publication-title: J. Clean. Prod.
– volume: 106406
  year: 2021
  ident: b0105
  article-title: A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems
  publication-title: J. Environ Chem. Eng.
– volume: 131
  year: 2020
  ident: b0100
  article-title: A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings
  publication-title: Renew. Sust. Energ Rev.
– volume: 262
  year: 2020
  ident: b0065
  article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
  publication-title: Appl. Energy
– volume: 182
  start-page: 134
  year: 2016
  end-page: 140
  ident: b0010
  article-title: Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators
  publication-title: J. Environ. Manage.
– volume: 18
  start-page: 273
  year: 2015
  end-page: 280
  ident: b0075
  article-title: User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine
  publication-title: Electron. J. Biotechnol.
– volume: 45
  start-page: 24453
  year: 2020
  end-page: 24466
  ident: b0080
  article-title: Fermentative hydrogen production from cheese whey with in-line, concentration gradient-driven butyric acid extraction
  publication-title: Int. J. Hydrogen Energ.
– volume: 183
  start-page: 193
  year: 2016
  end-page: 201
  ident: b0160
  article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests
  publication-title: Appl. Energy
– volume: 159
  start-page: 135
  year: 2019
  end-page: 144
  ident: b0070
  article-title: Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation
  publication-title: Water Res.
– volume: 189
  year: 2021
  ident: b0230
  article-title: Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors
  publication-title: Water Res.
– volume: 287
  year: 2022
  ident: b0005
  article-title: Estimation of tetracycline antibiotic photodegradation from wastewater by heterogeneous metal-organic frameworks photocatalysts
  publication-title: Chemosphere
– volume: 659
  start-page: 275
  year: 2019
  end-page: 282
  ident: b0130
  article-title: Fuel consumption and emissions performance under real driving: comparison between hybrid and conventional vehicles
  publication-title: Sci. Total Environ.
– volume: 303
  year: 2020
  ident: b0110
  article-title: Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions
  publication-title: Bioresour. Technol.
– volume: 117556
  year: 2021
  ident: b0195
  article-title: Using machine learning classification to detect simulated increases of de facto reuse and urban stormwater surges in surface water
  publication-title: Water Res.
– volume: 200
  year: 2021
  ident: b0170
  article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory
  publication-title: Catena
– volume: 43
  start-page: 435
  year: 2021
  end-page: 443
  ident: b0050
  article-title: Kinetic models of biological hydrogen production by Enterobacter aerogenes
  publication-title: Biotechnol. Lett.
– volume: 131
  year: 2020
  ident: b0035
  article-title: Reviewing the potential of bio-hydrogen production by fermentation
  publication-title: Renew. Sust. Energ Rev.
– volume: 166
  year: 2021
  ident: b0245
  article-title: Performance prediction of an internal-circulation membrane bioreactor based on models comparison and data features analysis
  publication-title: Biochem. Eng. J.
– volume: 70
  start-page: 178
  year: 2015
  end-page: 190
  ident: b0205
  article-title: A comprehensive comparison of two variable importance analysis techniques in high dimensions: application to an environmental multi-indicators system
  publication-title: Environ. Model. Softw.
– volume: 288
  year: 2019
  ident: 10.1016/j.biortech.2021.126111_b0220
  article-title: Estimating biomass major chemical constituents from ultimate analysis using a random forest model
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121541
– start-page: 124998
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0125
  article-title: Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.124998
– volume: 310
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0120
  article-title: Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123391
– volume: 200
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0170
  article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105178
– volume: 185
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0215
  article-title: River algal blooms are well predicted by antecedent environmental conditions
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116221
– volume: 26
  start-page: 1340
  issue: 10
  year: 2010
  ident: 10.1016/j.biortech.2021.126111_b0020
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– volume: 35
  start-page: 8554
  issue: 16
  year: 2010
  ident: 10.1016/j.biortech.2021.126111_b0140
  article-title: Enhancement of anaerobic hydrogen production by iron and nickel
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2010.04.174
– volume: 206
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0025
  article-title: Random forests for global sensitivity analysis: A selective review
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107312
– volume: 40
  start-page: 2230
  issue: 11
  year: 2006
  ident: 10.1016/j.biortech.2021.126111_b0155
  article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.03.029
– volume: 70
  start-page: 178
  year: 2015
  ident: 10.1016/j.biortech.2021.126111_b0205
  article-title: A comprehensive comparison of two variable importance analysis techniques in high dimensions: application to an environmental multi-indicators system
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.04.015
– volume: 45
  start-page: 24453
  issue: 46
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0080
  article-title: Fermentative hydrogen production from cheese whey with in-line, concentration gradient-driven butyric acid extraction
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2020.06.081
– volume: 34
  start-page: 471
  year: 2014
  ident: 10.1016/j.biortech.2021.126111_b0210
  article-title: A review of sustainable hydrogen production using seed sludge via dark fermentation
  publication-title: Renew. Sust. Energ Rev.
  doi: 10.1016/j.rser.2014.03.008
– volume: 40
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0135
  article-title: Quick adsorption followed by lengthy photodegradation using FeNi3@SiO2@ZnO: A promising method for complete removal of penicillin G from wastewater
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2021.101940
– volume: 77
  start-page: 148
  year: 2019
  ident: 10.1016/j.biortech.2021.126111_b0055
  article-title: Automatic detection of Parkinson’s disease based on acoustic analysis of speech
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.018
– volume: 311
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0145
  article-title: Photo-fermentation biohydrogen production and electrons distribution from dark fermentation effluents under batch, semi-continuous and continuous modes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123549
– start-page: 1
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0045
  article-title: A systematic review on overfitting control in shallow and deep neural networks
  publication-title: Artif. Intell. Rev.
– start-page: 1189
  year: 2001
  ident: 10.1016/j.biortech.2021.126111_b0090
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 43
  start-page: 435
  issue: 2
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0050
  article-title: Kinetic models of biological hydrogen production by Enterobacter aerogenes
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-020-03051-4
– volume: 316
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0115
  article-title: Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123967
– volume: 134
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0190
  article-title: Optimal estimation of physical properties of the products of an atmospheric distillation column using support vector regression
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106711
– volume: 159
  start-page: 135
  year: 2019
  ident: 10.1016/j.biortech.2021.126111_b0070
  article-title: Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.04.063
– volume: 199
  start-page: 272
  year: 2018
  ident: 10.1016/j.biortech.2021.126111_b0235
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.164
– volume: 157
  start-page: 68
  year: 2014
  ident: 10.1016/j.biortech.2021.126111_b0200
  article-title: Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.090
– volume: 110
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0240
  article-title: Credit risk modeling on data with two timestamps in peer-to-peer lending by gradient boosting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107672
– volume: 303
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0110
  article-title: Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122926
– volume: 184
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0085
  article-title: Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116133
– volume: 232
  start-page: 197
  year: 2018
  ident: 10.1016/j.biortech.2021.126111_b0150
  article-title: Random forest regression for online capacity estimation of lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.182
– volume: 143
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0185
  article-title: Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept
  publication-title: Renew. Sust. Energ Rev.
  doi: 10.1016/j.rser.2021.110971
– volume: 287
  year: 2022
  ident: 10.1016/j.biortech.2021.126111_b0005
  article-title: Estimation of tetracycline antibiotic photodegradation from wastewater by heterogeneous metal-organic frameworks photocatalysts
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132135
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.biortech.2021.126111_b0060
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 131
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0035
  article-title: Reviewing the potential of bio-hydrogen production by fermentation
  publication-title: Renew. Sust. Energ Rev.
  doi: 10.1016/j.rser.2020.110023
– volume: 24
  start-page: 1038
  issue: 8
  year: 2016
  ident: 10.1016/j.biortech.2021.126111_b0165
  article-title: Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2016.05.015
– volume: 183
  start-page: 193
  year: 2016
  ident: 10.1016/j.biortech.2021.126111_b0160
  article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.096
– volume: 120
  start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2021.126111_b0225
  article-title: Sustainable livelihoods and rural sustainability in China: ecologically secure, economically efficient or socially equitable?
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2016.12.010
– volume: 106406
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0105
  article-title: A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems
  publication-title: J. Environ Chem. Eng.
– volume: 146
  start-page: 134
  year: 2018
  ident: 10.1016/j.biortech.2021.126111_b0030
  article-title: Modelling aerobic granular sludge reactors through apparent half-saturation coefficients
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.09.025
– volume: 166
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0245
  article-title: Performance prediction of an internal-circulation membrane bioreactor based on models comparison and data features analysis
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2020.107850
– volume: 182
  start-page: 134
  year: 2016
  ident: 10.1016/j.biortech.2021.126111_b0010
  article-title: Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.07.025
– volume: 117556
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0195
  article-title: Using machine learning classification to detect simulated increases of de facto reuse and urban stormwater surges in surface water
  publication-title: Water Res.
– volume: 189
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0230
  article-title: Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116657
– volume: 125068
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0040
  article-title: Simultaneous adsorption and degradation of bisphenol A on magnetic illite clay composite: eco-friendly preparation, characterizations, and catalytic mechanism
  publication-title: J. Clean. Prod.
– volume: 262
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0065
  article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114566
– volume: 659
  start-page: 275
  year: 2019
  ident: 10.1016/j.biortech.2021.126111_b0130
  article-title: Fuel consumption and emissions performance under real driving: comparison between hybrid and conventional vehicles
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.349
– volume: 99
  start-page: 225
  year: 2016
  ident: 10.1016/j.biortech.2021.126111_b0180
  article-title: Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.063
– volume: 18
  start-page: 273
  issue: 4
  year: 2015
  ident: 10.1016/j.biortech.2021.126111_b0075
  article-title: User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine
  publication-title: Electron. J. Biotechnol.
  doi: 10.1016/j.ejbt.2015.05.001
– volume: 716
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0250
  article-title: Strategy development in the framework of waste management
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137088
– volume: 197
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0015
  article-title: Machine learning for anomaly detection in cyanobacterial fluorescence signals
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117073
– volume: 137
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0095
  article-title: Mapping bioenergy stakeholders: A systematic and scientometric review of capabilities and expertise in bioenergy research in the United Kingdom
  publication-title: Renew. Sust. Energ Rev.
  doi: 10.1016/j.rser.2020.110496
– volume: 131
  year: 2020
  ident: 10.1016/j.biortech.2021.126111_b0100
  article-title: A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings
  publication-title: Renew. Sust. Energ Rev.
  doi: 10.1016/j.rser.2020.110027
– volume: 266
  year: 2021
  ident: 10.1016/j.biortech.2021.126111_b0175
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120950
SSID ssj0003172
Score 2.6341906
Snippet [Display omitted] •Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the...
Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML)...
Dark fermentation process for simultaneous wastewater treatment and H₂ production is gaining attention. This study aimed to use machine learning (ML)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126111
SubjectTerms acetates
Biohydrogen
butyrates
Dark fermentation
ethanol
fermentation
hydrogen production
Machine learning
Process modelling
support vector machines
wastewater
Wastewater treatment
Title Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process
URI https://dx.doi.org/10.1016/j.biortech.2021.126111
https://www.proquest.com/docview/2582819572
https://www.proquest.com/docview/2636642028
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEA-iB_XwUN8T9alEeNfumrRJmuOyKKuiFxX2FpKm1fWju6wrDy_vb3cmTdUnqAcPhdJOIHSm85GZ3wwhfxxIiau0SiD08kmG9Y250EUinba2ktxmKeKdT8_k4DI7HorhHOm3WBgsq4y6v9HpQVvHJ934NbuT0ah7js53LjCliamxdIgI9kyhlHf-vZZ5gH0MmQQgTpD6DUr4puNGWNEakhKcdRhEE4x9ZKDeqepgfw5XyI_oONJes7dVMlfWa2S5dzWNzTPKNbLYb6e3wZs3jQZ_kvvTUDNZ0jgk4oqGCTh4Y2sPV9OZhI4rCpu9fvLTMQgWnTTtYIF1FGEo9K99wLM2YAV1T9Tb6S2tQLNH-FKgR9TBL3J5eHDRHyRx0EJSpCqfJTLlmqUeLDVPFcRDpdP7jnklK650IXmhBejEfae19064HHvwiyJH3yiX-Ievk_l6XJcbhFbggWYiL70C34w7lTNhufXMKlEpWbhNItqva4rYhRyHYdyZttzsxrRcMcgV03Blk3Rf1k2aPhxfrtAt88x_EmXAWHy5dq_ltgG-YQ7F1uX48cFwTDMyLRT_hEamEsI68Ny2vrGH32SJI9QiHPdsk_nZ9LHcAQdo5naDhO-Shd7RyeDsGXeUBdg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9i5cA4IMY2jc950q6h2Knt-FhVoDJoL4DUm2XHCSvb0qoUTfz3ey9xECABhx0iRYmfZOX38j78vgC-e-QSXxqdoOsVkh7lN2bS5InyxrlSCddLqd55NFbDq96PiZyswKCthaG0yij7G5leS-v4pBu_Znc-nXYvyPjOJIU0KTSWTt7BKnWnkh1Y7Z-eDccPAhlVZB1MwPUJETwqFL459FNKaq3jEoIfcnQoOH9JRz2T1rUKOtmEjWg7sn6zvQ-wUlRbsN6_XsT-GcUWrA3aAW745lGvwY_wZ1SnTRYszom4ZvUQHLpxVcCraU7CZiXDzf68D4sZ8habNx1hET1GlSjsr7ul4zZEg_l7FtziFytRuMcKpno9FR58gquT48vBMImzFpI81dkyUakwPA2orEWq0SUqvDnyPGhVCm1yJXIjUSweeWNC8NJn1IZf5hmZR5min_wzdKpZVXwBVqIR2pNZETSaZ8LrjEsnXOBOy1Kr3G-DbL-uzWMjcpqH8du2GWc3tkXFEiq2QWUbug9086YVx5sUpgXPPmEqi_riTdpvLdoWcaMwiquK2d2tFRRp5EZq8coalSr07NB42_mPPXyFteHl6Nyen47PduG9oMqL-vRnDzrLxV2xj_bQ0h9Efv8HZ0AIiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+modeling+and+analysis+of+biohydrogen+production+from+wastewater+by+dark+fermentation+process&rft.jtitle=Bioresource+technology&rft.au=Hosseinzadeh%2C+Ahmad&rft.au=Zhou%2C+John+L&rft.au=Altaee%2C+Ali&rft.au=Li%2C+Donghao&rft.date=2022-01-01&rft.issn=0960-8524&rft.volume=343+p.126111-&rft_id=info:doi/10.1016%2Fj.biortech.2021.126111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon