Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process
[Display omitted] •Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the process.•All four models demonstrated close agreement with results (R2 ≥ 90%).•PVI was able to assess the relative importance of the inputs.•Aceta...
Saved in:
Published in | Bioresource technology Vol. 343; p. 126111 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the process.•All four models demonstrated close agreement with results (R2 ≥ 90%).•PVI was able to assess the relative importance of the inputs.•Acetate, butyrate, ethanol, Fe and Ni showed high importance in decreasing order.
Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order. |
---|---|
AbstractList | Dark fermentation process for simultaneous wastewater treatment and H₂ production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H₂ production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R²) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H₂ production with high R² values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order. Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order. [Display omitted] •Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the process.•All four models demonstrated close agreement with results (R2 ≥ 90%).•PVI was able to assess the relative importance of the inputs.•Acetate, butyrate, ethanol, Fe and Ni showed high importance in decreasing order. Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order. |
ArticleNumber | 126111 |
Author | Altaee, Ali Hosseinzadeh, Ahmad Li, Donghao Zhou, John L. |
Author_xml | – sequence: 1 givenname: Ahmad surname: Hosseinzadeh fullname: Hosseinzadeh, Ahmad organization: Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia – sequence: 2 givenname: John L. surname: Zhou fullname: Zhou, John L. email: junliang.zhou@uts.edu.au organization: Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia – sequence: 3 givenname: Ali surname: Altaee fullname: Altaee, Ali organization: Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia – sequence: 4 givenname: Donghao surname: Li fullname: Li, Donghao organization: Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, China |
BookMark | eNqFkU9v1DAQxS1UJLaFr4B85JLF42z8R-JQVBWo1IoLnC3HnnS9JHaxva3225Ml7aWXPYxmDr83o3nvnJzFFJGQj8DWwEB83q37kHJFt11zxmENXADAG7ICJduGaynOyIppwRrV8c07cl7KjjHWguQrMt1Ztw0R6Yg2xxDv6ZQ8jsfBRj-XHQ8lFJoGOl_ZHnxO9xjpQ05-72pIkQ45TfTJlopPtmKm_YF6m__QAfOEsdr_0Mw7LOU9eTvYseCH535Bfn-7_nX1o7n9-f3m6utt41qpaiNarqH1Aja8lbzT2GvWg5di4FI7wZ3uNADrtfa-73rF1EZ1TgHvQAmQur0gn5a9892_eyzVTKE4HEcbMe2L4aIVYjO7pU6jneIKdCf5jH5ZUJdTKRkH48LyX802jAaYOQZiduYlEHMMxCyBzHLxSv6Qw2Tz4bTwchHibNljwGyKCxgd-pDRVeNTOLXiH5bBq8w |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_03_029 crossref_primary_10_1016_j_jenvman_2024_121855 crossref_primary_10_3389_fenrg_2022_980360 crossref_primary_10_1016_j_ijhydene_2022_07_082 crossref_primary_10_1039_D4RA06214K crossref_primary_10_1016_j_chemosphere_2024_142632 crossref_primary_10_1016_j_ijhydene_2023_05_312 crossref_primary_10_1016_j_jece_2024_112530 crossref_primary_10_1016_j_cogsc_2024_100928 crossref_primary_10_1016_j_biortech_2022_128523 crossref_primary_10_3390_fermentation9030243 crossref_primary_10_1016_j_eti_2024_103977 crossref_primary_10_3389_fchem_2022_978907 crossref_primary_10_1016_j_energy_2025_135704 crossref_primary_10_1016_j_ijhydene_2023_09_097 crossref_primary_10_1016_j_jhazmat_2023_132320 crossref_primary_10_1016_j_psep_2023_02_065 crossref_primary_10_1038_s44296_024_00009_9 crossref_primary_10_1016_j_ijbiomac_2024_137616 crossref_primary_10_1016_j_ijhydene_2023_07_114 crossref_primary_10_1016_j_jclepro_2022_131360 crossref_primary_10_3390_nano12152573 crossref_primary_10_1016_j_desal_2023_116992 crossref_primary_10_1016_j_biortech_2024_130496 crossref_primary_10_1016_j_jclepro_2022_133025 crossref_primary_10_1016_j_energy_2024_133490 crossref_primary_10_1016_j_jenvman_2022_114518 crossref_primary_10_1016_j_biortech_2022_128076 crossref_primary_10_1016_j_scca_2025_100064 crossref_primary_10_1007_s11274_023_03845_4 crossref_primary_10_1016_j_jenvman_2024_121724 crossref_primary_10_3390_app12125901 crossref_primary_10_1016_j_psep_2022_01_065 crossref_primary_10_1016_j_jwpe_2021_102480 crossref_primary_10_1007_s11783_023_1735_8 crossref_primary_10_1016_j_jenvman_2022_116191 crossref_primary_10_1016_j_ijhydene_2023_11_137 crossref_primary_10_1021_acssuschemeng_3c08356 crossref_primary_10_1016_j_jclepro_2022_135777 crossref_primary_10_1080_01614940_2022_2082650 crossref_primary_10_3390_membranes13110852 crossref_primary_10_1016_j_envpol_2022_120734 crossref_primary_10_1016_j_ijhydene_2024_04_242 crossref_primary_10_1016_j_indcrop_2024_120427 crossref_primary_10_1016_j_scitotenv_2023_164344 crossref_primary_10_1016_j_compchemeng_2024_108900 crossref_primary_10_1016_j_ijhydene_2024_08_342 crossref_primary_10_1016_j_seppur_2022_120775 crossref_primary_10_1016_j_seta_2024_104123 crossref_primary_10_1007_s13399_025_06506_8 crossref_primary_10_1016_j_biortech_2022_128386 crossref_primary_10_1016_j_coche_2023_100983 crossref_primary_10_1016_j_biortech_2022_128502 crossref_primary_10_1016_j_rineng_2024_103534 crossref_primary_10_1016_j_rser_2021_111991 crossref_primary_10_1007_s11356_024_35668_7 crossref_primary_10_1016_j_biortech_2023_128789 crossref_primary_10_23919_CHAIN_2024_100004 crossref_primary_10_1016_j_scenv_2025_100219 crossref_primary_10_1016_j_envres_2022_112953 crossref_primary_10_1016_j_asoc_2023_110215 crossref_primary_10_1007_s40726_025_00343_z crossref_primary_10_1002_jctb_7525 crossref_primary_10_1016_j_ijhydene_2024_01_326 crossref_primary_10_1016_j_cej_2024_152745 crossref_primary_10_1016_j_dajour_2024_100416 crossref_primary_10_1016_j_ijhydene_2024_04_173 crossref_primary_10_1007_s00477_023_02559_1 crossref_primary_10_1016_j_jechem_2024_07_045 crossref_primary_10_1016_j_biortech_2023_129444 crossref_primary_10_1016_j_ijhydene_2022_03_197 crossref_primary_10_1016_j_biortech_2022_128451 crossref_primary_10_1016_j_csite_2024_104087 crossref_primary_10_1016_j_ijbiomac_2024_130035 crossref_primary_10_1016_j_jwpe_2024_105512 crossref_primary_10_1016_j_gerr_2024_100112 crossref_primary_10_1016_j_rser_2023_113906 crossref_primary_10_1016_j_apenergy_2024_124851 crossref_primary_10_1016_j_fuel_2022_125478 crossref_primary_10_1002_ldr_5327 crossref_primary_10_3390_fermentation9020120 crossref_primary_10_1016_j_jwpe_2023_104758 crossref_primary_10_1016_j_mtsust_2025_101098 crossref_primary_10_1007_s11270_022_05739_x crossref_primary_10_1016_j_chemosphere_2023_139435 crossref_primary_10_3390_photonics9040241 crossref_primary_10_1016_j_chemosphere_2022_135294 crossref_primary_10_1007_s11095_024_03686_2 crossref_primary_10_1016_j_bidere_2025_100002 crossref_primary_10_1016_j_ijhydene_2023_01_339 crossref_primary_10_1021_acsestwater_2c00631 crossref_primary_10_1177_0958305X221109604 |
Cites_doi | 10.1016/j.biortech.2019.121541 10.1016/j.biortech.2021.124998 10.1016/j.biortech.2020.123391 10.1016/j.catena.2021.105178 10.1016/j.watres.2020.116221 10.1093/bioinformatics/btq134 10.1016/j.ijhydene.2010.04.174 10.1016/j.ress.2020.107312 10.1016/j.watres.2006.03.029 10.1016/j.envsoft.2015.04.015 10.1016/j.ijhydene.2020.06.081 10.1016/j.rser.2014.03.008 10.1016/j.jwpe.2021.101940 10.1016/j.engappai.2018.09.018 10.1016/j.biortech.2020.123549 10.1007/s10529-020-03051-4 10.1016/j.biortech.2020.123967 10.1016/j.compchemeng.2019.106711 10.1016/j.watres.2019.04.063 10.1016/j.jclepro.2018.07.164 10.1016/j.biortech.2014.01.090 10.1016/j.asoc.2021.107672 10.1016/j.biortech.2020.122926 10.1016/j.watres.2020.116133 10.1016/j.apenergy.2018.09.182 10.1016/j.rser.2021.110971 10.1016/j.chemosphere.2021.132135 10.1023/A:1010933404324 10.1016/j.rser.2020.110023 10.1016/j.cjche.2016.05.015 10.1016/j.apenergy.2016.08.096 10.1016/j.resconrec.2016.12.010 10.1016/j.watres.2018.09.025 10.1016/j.bej.2020.107850 10.1016/j.jenvman.2016.07.025 10.1016/j.watres.2020.116657 10.1016/j.apenergy.2020.114566 10.1016/j.scitotenv.2018.12.349 10.1016/j.watres.2016.04.063 10.1016/j.ejbt.2015.05.001 10.1016/j.scitotenv.2020.137088 10.1016/j.watres.2021.117073 10.1016/j.rser.2020.110496 10.1016/j.rser.2020.110027 10.1016/j.conbuildmat.2020.120950 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2021.126111 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 10_1016_j_biortech_2021_126111 S096085242101453X |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c378t-632913d614237259eb90b1d76f279c62c959110b99ddb5b808485c81251861793 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 15:46:43 EDT 2025 Mon Jul 21 10:02:34 EDT 2025 Tue Jul 01 03:18:59 EDT 2025 Thu Apr 24 23:05:45 EDT 2025 Fri Feb 23 02:40:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Process modelling Biohydrogen Dark fermentation Wastewater treatment Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-632913d614237259eb90b1d76f279c62c959110b99ddb5b808485c81251861793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2582819572 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636642028 proquest_miscellaneous_2582819572 crossref_citationtrail_10_1016_j_biortech_2021_126111 crossref_primary_10_1016_j_biortech_2021_126111 elsevier_sciencedirect_doi_10_1016_j_biortech_2021_126111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Bioresource technology |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hosseinzadeh, Zhou, Navidpour, Altaee (b0125) 2021 Zhou, Fujita, Ding, Ma (b0240) 2021; 110 Dessì, Asunis, Ravishankar, Cocco, De Gioannis, Muntoni, Lens (b0080) 2020; 45 Kamranifar, Al-Musawi, Amarzadeh, Hosseinzadeh, Nasseh, Qutob, Arghavan (b0135) 2021; 40 Boshagh, Rostami (b0050) 2021; 43 Nguyen, Vu, Vo, Thai (b0175) 2021; 266 Durán, Robles, Giménez, Ferrer, Ribes, Serralta (b0085) 2020; 184 Karadag, Puhakka (b0140) 2010; 35 Ma, Cheng (b0160) 2016; 183 Wong, Wu, Juan (b0210) 2014; 34 Grillone, Danov, Sumper, Cipriano, Mor (b0100) 2020; 131 Toquero, Bolado (b0200) 2014; 157 Zhuang, Tang, Bin, Li, Huang, Fu (b0245) 2021; 166 Baeyens, Zhang, Nie, Appels, Dewil, Ansart, Deng (b0035) 2020; 131 Zendehboudi, Baseer, Saidur (b0235) 2018; 199 Huang, Surawski, Organ, Zhou, Tang, Chan (b0130) 2019; 659 Almuhtaram, Zamyadi, Hofmann (b0015) 2021; 197 Pradhan, Dipasquale, d'Ippolito, Fontana, Panico, Pirozzi, Lens, Esposito (b0180) 2016; 99 Breiman (b0060) 2001; 45 Sekoai, Ghimire, Ezeokoli, Rao, Ngan, Habimana, Yao, Yang, Yiu Fung, Yoro, Daramola, Hung (b0185) 2021; 143 Bao, Damtie, Wei, Phong Vo, Nguyen, Hosseinzadeh, Cho, Yu, Jin, Wei, Wu, Frost, Ni (b0040) 2020; 125068 Li, Zou, Berecibar, Nanini-Maury, Chan, van den Bossche, Van Mierlo, Omar (b0150) 2018; 232 Cao, Sun, Lu, Zhou (b0070) 2019; 159 Hosseinzadeh, Zhou, Altaee, Baziar, Li (b0115) 2020; 316 Zaghloul, Iorhemen, Hamza, Tay, Achari (b0230) 2021; 189 Braga, Madureira, Coelho, Ajith (b0055) 2019; 77 Xia, Wang, Zhang, Yang, Yang, Ding, Jia, Yang, Liu, Ma, Lin, Wang, Hou, Zhang, Gao, Duan, Qian (b0215) 2020; 185 Bejani, Ghatee (b0045) 2021 Hosseinzadeh, Baziar, Alidadi, Zhou, Altaee, Najafpoor, Jafarpour (b0110) 2020; 303 Abdi, Hadipoor, Hadavimoghaddam, Hemmati-Sarapardeh (b0005) 2022; 287 Zorpas (b0250) 2020; 716 Altmann, Toloşi, Sander, Lengauer (b0020) 2010; 26 Hamedi, Mohammadzadeh, Rasouli, Zendehboudi (b0105) 2021; 106406 Gómez-Marín, Bridgwater (b0095) 2021; 137 Cai, Xu, Zhu, Hu, Li (b0065) 2020; 262 Hosseinzadeh, Zhou, Altaee, Baziar, Li (b0120) 2020; 310 Thompson, Dickenson (b0195) 2021; 117556 Serfidan, Uzman, Türkay (b0190) 2020; 134 Antoniadis, Lambert-Lacroix, Poggi (b0025) 2021; 206 Li, Zhang, Xia, Jing, Zhang, Li, Zhu, Jin (b0145) 2020; 311 Wei, Lu, Song (b0205) 2015; 70 Alidadi, Hosseinzadeh, Najafpoor, Esmaili, Zanganeh, Dolatabadi Takabi, Piranloo (b0010) 2016; 182 Baeten, van Loosdrecht, Volcke (b0030) 2018; 146 Chen, Li, Xu, Hou, Yang (b0075) 2015; 18 Friedman (b0090) 2001 You, Zhang (b0225) 2017; 120 Xing, Luo, Wang, Fan (b0220) 2019; 288 Mohammadifar, Gholami, Comino, Collins (b0170) 2021; 200 Min, Luo (b0165) 2016; 24 Liu, Liu, Zeng, Angelidaki (b0155) 2006; 40 Zhuang (10.1016/j.biortech.2021.126111_b0245) 2021; 166 Zendehboudi (10.1016/j.biortech.2021.126111_b0235) 2018; 199 Altmann (10.1016/j.biortech.2021.126111_b0020) 2010; 26 Hosseinzadeh (10.1016/j.biortech.2021.126111_b0115) 2020; 316 Mohammadifar (10.1016/j.biortech.2021.126111_b0170) 2021; 200 Cai (10.1016/j.biortech.2021.126111_b0065) 2020; 262 Gómez-Marín (10.1016/j.biortech.2021.126111_b0095) 2021; 137 Friedman (10.1016/j.biortech.2021.126111_b0090) 2001 Hosseinzadeh (10.1016/j.biortech.2021.126111_b0110) 2020; 303 Zorpas (10.1016/j.biortech.2021.126111_b0250) 2020; 716 Min (10.1016/j.biortech.2021.126111_b0165) 2016; 24 Durán (10.1016/j.biortech.2021.126111_b0085) 2020; 184 Toquero (10.1016/j.biortech.2021.126111_b0200) 2014; 157 Baeten (10.1016/j.biortech.2021.126111_b0030) 2018; 146 Braga (10.1016/j.biortech.2021.126111_b0055) 2019; 77 Hosseinzadeh (10.1016/j.biortech.2021.126111_b0125) 2021 Xia (10.1016/j.biortech.2021.126111_b0215) 2020; 185 Pradhan (10.1016/j.biortech.2021.126111_b0180) 2016; 99 Abdi (10.1016/j.biortech.2021.126111_b0005) 2022; 287 Kamranifar (10.1016/j.biortech.2021.126111_b0135) 2021; 40 Grillone (10.1016/j.biortech.2021.126111_b0100) 2020; 131 You (10.1016/j.biortech.2021.126111_b0225) 2017; 120 Serfidan (10.1016/j.biortech.2021.126111_b0190) 2020; 134 Wong (10.1016/j.biortech.2021.126111_b0210) 2014; 34 Xing (10.1016/j.biortech.2021.126111_b0220) 2019; 288 Breiman (10.1016/j.biortech.2021.126111_b0060) 2001; 45 Ma (10.1016/j.biortech.2021.126111_b0160) 2016; 183 Zaghloul (10.1016/j.biortech.2021.126111_b0230) 2021; 189 Sekoai (10.1016/j.biortech.2021.126111_b0185) 2021; 143 Zhou (10.1016/j.biortech.2021.126111_b0240) 2021; 110 Thompson (10.1016/j.biortech.2021.126111_b0195) 2021; 117556 Nguyen (10.1016/j.biortech.2021.126111_b0175) 2021; 266 Hamedi (10.1016/j.biortech.2021.126111_b0105) 2021; 106406 Baeyens (10.1016/j.biortech.2021.126111_b0035) 2020; 131 Alidadi (10.1016/j.biortech.2021.126111_b0010) 2016; 182 Cao (10.1016/j.biortech.2021.126111_b0070) 2019; 159 Li (10.1016/j.biortech.2021.126111_b0145) 2020; 311 Bao (10.1016/j.biortech.2021.126111_b0040) 2020; 125068 Antoniadis (10.1016/j.biortech.2021.126111_b0025) 2021; 206 Huang (10.1016/j.biortech.2021.126111_b0130) 2019; 659 Hosseinzadeh (10.1016/j.biortech.2021.126111_b0120) 2020; 310 Karadag (10.1016/j.biortech.2021.126111_b0140) 2010; 35 Dessì (10.1016/j.biortech.2021.126111_b0080) 2020; 45 Boshagh (10.1016/j.biortech.2021.126111_b0050) 2021; 43 Chen (10.1016/j.biortech.2021.126111_b0075) 2015; 18 Wei (10.1016/j.biortech.2021.126111_b0205) 2015; 70 Bejani (10.1016/j.biortech.2021.126111_b0045) 2021 Almuhtaram (10.1016/j.biortech.2021.126111_b0015) 2021; 197 Li (10.1016/j.biortech.2021.126111_b0150) 2018; 232 Liu (10.1016/j.biortech.2021.126111_b0155) 2006; 40 |
References_xml | – volume: 99 start-page: 225 year: 2016 end-page: 234 ident: b0180 article-title: Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana publication-title: Water Res. – volume: 311 year: 2020 ident: b0145 article-title: Photo-fermentation biohydrogen production and electrons distribution from dark fermentation effluents under batch, semi-continuous and continuous modes publication-title: Bioresour. Technol. – volume: 77 start-page: 148 year: 2019 end-page: 158 ident: b0055 article-title: Automatic detection of Parkinson’s disease based on acoustic analysis of speech publication-title: Eng. Appl. Artif. Intell. – volume: 197 year: 2021 ident: b0015 article-title: Machine learning for anomaly detection in cyanobacterial fluorescence signals publication-title: Water Res. – volume: 120 start-page: 1 year: 2017 end-page: 13 ident: b0225 article-title: Sustainable livelihoods and rural sustainability in China: ecologically secure, economically efficient or socially equitable? publication-title: Resour. Conserv. Recycl. – volume: 716 year: 2020 ident: b0250 article-title: Strategy development in the framework of waste management publication-title: Sci. Total Environ. – volume: 288 year: 2019 ident: b0220 article-title: Estimating biomass major chemical constituents from ultimate analysis using a random forest model publication-title: Bioresour. Technol. – volume: 266 year: 2021 ident: b0175 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. – volume: 157 start-page: 68 year: 2014 end-page: 76 ident: b0200 article-title: Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing publication-title: Bioresour. Technol. – volume: 185 year: 2020 ident: b0215 article-title: River algal blooms are well predicted by antecedent environmental conditions publication-title: Water Res. – volume: 134 year: 2020 ident: b0190 article-title: Optimal estimation of physical properties of the products of an atmospheric distillation column using support vector regression publication-title: Comput. Chem. Eng. – volume: 26 start-page: 1340 year: 2010 end-page: 1347 ident: b0020 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics – volume: 143 year: 2021 ident: b0185 article-title: Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept publication-title: Renew. Sust. Energ Rev. – volume: 40 start-page: 2230 year: 2006 end-page: 2236 ident: b0155 article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process publication-title: Water Res. – start-page: 124998 year: 2021 ident: b0125 article-title: Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater publication-title: Bioresour. Technol. – volume: 199 start-page: 272 year: 2018 end-page: 285 ident: b0235 article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review publication-title: J. Clean. Prod. – volume: 35 start-page: 8554 year: 2010 end-page: 8560 ident: b0140 article-title: Enhancement of anaerobic hydrogen production by iron and nickel publication-title: Int. J. Hydrogen Energ. – volume: 316 year: 2020 ident: b0115 article-title: Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system publication-title: Bioresour. Technol. – start-page: 1 year: 2021 end-page: 48 ident: b0045 article-title: A systematic review on overfitting control in shallow and deep neural networks publication-title: Artif. Intell. Rev. – volume: 206 year: 2021 ident: b0025 article-title: Random forests for global sensitivity analysis: A selective review publication-title: Reliab. Eng. Syst. Saf. – volume: 137 year: 2021 ident: b0095 article-title: Mapping bioenergy stakeholders: A systematic and scientometric review of capabilities and expertise in bioenergy research in the United Kingdom publication-title: Renew. Sust. Energ Rev. – volume: 310 year: 2020 ident: b0120 article-title: Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network publication-title: Bioresour. Technol. – volume: 232 start-page: 197 year: 2018 end-page: 210 ident: b0150 article-title: Random forest regression for online capacity estimation of lithium-ion batteries publication-title: Appl. Energy – volume: 40 year: 2021 ident: b0135 article-title: Quick adsorption followed by lengthy photodegradation using FeNi3@SiO2@ZnO: A promising method for complete removal of penicillin G from wastewater publication-title: J. Water Process. Eng. – start-page: 1189 year: 2001 end-page: 1232 ident: b0090 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 146 start-page: 134 year: 2018 end-page: 145 ident: b0030 article-title: Modelling aerobic granular sludge reactors through apparent half-saturation coefficients publication-title: Water Res. – volume: 24 start-page: 1038 year: 2016 end-page: 1046 ident: b0165 article-title: Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method publication-title: Chin. J. Chem. Eng. – volume: 110 year: 2021 ident: b0240 article-title: Credit risk modeling on data with two timestamps in peer-to-peer lending by gradient boosting publication-title: Appl. Soft Comput. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0060 article-title: Random forests publication-title: Mach. Learn. – volume: 34 start-page: 471 year: 2014 end-page: 482 ident: b0210 article-title: A review of sustainable hydrogen production using seed sludge via dark fermentation publication-title: Renew. Sust. Energ Rev. – volume: 184 year: 2020 ident: b0085 article-title: Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology publication-title: Water Res. – volume: 125068 year: 2020 ident: b0040 article-title: Simultaneous adsorption and degradation of bisphenol A on magnetic illite clay composite: eco-friendly preparation, characterizations, and catalytic mechanism publication-title: J. Clean. Prod. – volume: 106406 year: 2021 ident: b0105 article-title: A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems publication-title: J. Environ Chem. Eng. – volume: 131 year: 2020 ident: b0100 article-title: A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings publication-title: Renew. Sust. Energ Rev. – volume: 262 year: 2020 ident: b0065 article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest publication-title: Appl. Energy – volume: 182 start-page: 134 year: 2016 end-page: 140 ident: b0010 article-title: Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators publication-title: J. Environ. Manage. – volume: 18 start-page: 273 year: 2015 end-page: 280 ident: b0075 article-title: User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine publication-title: Electron. J. Biotechnol. – volume: 45 start-page: 24453 year: 2020 end-page: 24466 ident: b0080 article-title: Fermentative hydrogen production from cheese whey with in-line, concentration gradient-driven butyric acid extraction publication-title: Int. J. Hydrogen Energ. – volume: 183 start-page: 193 year: 2016 end-page: 201 ident: b0160 article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests publication-title: Appl. Energy – volume: 159 start-page: 135 year: 2019 end-page: 144 ident: b0070 article-title: Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation publication-title: Water Res. – volume: 189 year: 2021 ident: b0230 article-title: Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors publication-title: Water Res. – volume: 287 year: 2022 ident: b0005 article-title: Estimation of tetracycline antibiotic photodegradation from wastewater by heterogeneous metal-organic frameworks photocatalysts publication-title: Chemosphere – volume: 659 start-page: 275 year: 2019 end-page: 282 ident: b0130 article-title: Fuel consumption and emissions performance under real driving: comparison between hybrid and conventional vehicles publication-title: Sci. Total Environ. – volume: 303 year: 2020 ident: b0110 article-title: Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions publication-title: Bioresour. Technol. – volume: 117556 year: 2021 ident: b0195 article-title: Using machine learning classification to detect simulated increases of de facto reuse and urban stormwater surges in surface water publication-title: Water Res. – volume: 200 year: 2021 ident: b0170 article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory publication-title: Catena – volume: 43 start-page: 435 year: 2021 end-page: 443 ident: b0050 article-title: Kinetic models of biological hydrogen production by Enterobacter aerogenes publication-title: Biotechnol. Lett. – volume: 131 year: 2020 ident: b0035 article-title: Reviewing the potential of bio-hydrogen production by fermentation publication-title: Renew. Sust. Energ Rev. – volume: 166 year: 2021 ident: b0245 article-title: Performance prediction of an internal-circulation membrane bioreactor based on models comparison and data features analysis publication-title: Biochem. Eng. J. – volume: 70 start-page: 178 year: 2015 end-page: 190 ident: b0205 article-title: A comprehensive comparison of two variable importance analysis techniques in high dimensions: application to an environmental multi-indicators system publication-title: Environ. Model. Softw. – volume: 288 year: 2019 ident: 10.1016/j.biortech.2021.126111_b0220 article-title: Estimating biomass major chemical constituents from ultimate analysis using a random forest model publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121541 – start-page: 124998 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0125 article-title: Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.124998 – volume: 310 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0120 article-title: Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123391 – volume: 200 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0170 article-title: Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory publication-title: Catena doi: 10.1016/j.catena.2021.105178 – volume: 185 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0215 article-title: River algal blooms are well predicted by antecedent environmental conditions publication-title: Water Res. doi: 10.1016/j.watres.2020.116221 – volume: 26 start-page: 1340 issue: 10 year: 2010 ident: 10.1016/j.biortech.2021.126111_b0020 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq134 – volume: 35 start-page: 8554 issue: 16 year: 2010 ident: 10.1016/j.biortech.2021.126111_b0140 article-title: Enhancement of anaerobic hydrogen production by iron and nickel publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2010.04.174 – volume: 206 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0025 article-title: Random forests for global sensitivity analysis: A selective review publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107312 – volume: 40 start-page: 2230 issue: 11 year: 2006 ident: 10.1016/j.biortech.2021.126111_b0155 article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process publication-title: Water Res. doi: 10.1016/j.watres.2006.03.029 – volume: 70 start-page: 178 year: 2015 ident: 10.1016/j.biortech.2021.126111_b0205 article-title: A comprehensive comparison of two variable importance analysis techniques in high dimensions: application to an environmental multi-indicators system publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.04.015 – volume: 45 start-page: 24453 issue: 46 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0080 article-title: Fermentative hydrogen production from cheese whey with in-line, concentration gradient-driven butyric acid extraction publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2020.06.081 – volume: 34 start-page: 471 year: 2014 ident: 10.1016/j.biortech.2021.126111_b0210 article-title: A review of sustainable hydrogen production using seed sludge via dark fermentation publication-title: Renew. Sust. Energ Rev. doi: 10.1016/j.rser.2014.03.008 – volume: 40 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0135 article-title: Quick adsorption followed by lengthy photodegradation using FeNi3@SiO2@ZnO: A promising method for complete removal of penicillin G from wastewater publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2021.101940 – volume: 77 start-page: 148 year: 2019 ident: 10.1016/j.biortech.2021.126111_b0055 article-title: Automatic detection of Parkinson’s disease based on acoustic analysis of speech publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.018 – volume: 311 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0145 article-title: Photo-fermentation biohydrogen production and electrons distribution from dark fermentation effluents under batch, semi-continuous and continuous modes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123549 – start-page: 1 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0045 article-title: A systematic review on overfitting control in shallow and deep neural networks publication-title: Artif. Intell. Rev. – start-page: 1189 year: 2001 ident: 10.1016/j.biortech.2021.126111_b0090 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 43 start-page: 435 issue: 2 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0050 article-title: Kinetic models of biological hydrogen production by Enterobacter aerogenes publication-title: Biotechnol. Lett. doi: 10.1007/s10529-020-03051-4 – volume: 316 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0115 article-title: Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123967 – volume: 134 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0190 article-title: Optimal estimation of physical properties of the products of an atmospheric distillation column using support vector regression publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106711 – volume: 159 start-page: 135 year: 2019 ident: 10.1016/j.biortech.2021.126111_b0070 article-title: Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation publication-title: Water Res. doi: 10.1016/j.watres.2019.04.063 – volume: 199 start-page: 272 year: 2018 ident: 10.1016/j.biortech.2021.126111_b0235 article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.07.164 – volume: 157 start-page: 68 year: 2014 ident: 10.1016/j.biortech.2021.126111_b0200 article-title: Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.090 – volume: 110 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0240 article-title: Credit risk modeling on data with two timestamps in peer-to-peer lending by gradient boosting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107672 – volume: 303 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0110 article-title: Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122926 – volume: 184 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0085 article-title: Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology publication-title: Water Res. doi: 10.1016/j.watres.2020.116133 – volume: 232 start-page: 197 year: 2018 ident: 10.1016/j.biortech.2021.126111_b0150 article-title: Random forest regression for online capacity estimation of lithium-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.182 – volume: 143 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0185 article-title: Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept publication-title: Renew. Sust. Energ Rev. doi: 10.1016/j.rser.2021.110971 – volume: 287 year: 2022 ident: 10.1016/j.biortech.2021.126111_b0005 article-title: Estimation of tetracycline antibiotic photodegradation from wastewater by heterogeneous metal-organic frameworks photocatalysts publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132135 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.biortech.2021.126111_b0060 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 131 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0035 article-title: Reviewing the potential of bio-hydrogen production by fermentation publication-title: Renew. Sust. Energ Rev. doi: 10.1016/j.rser.2020.110023 – volume: 24 start-page: 1038 issue: 8 year: 2016 ident: 10.1016/j.biortech.2021.126111_b0165 article-title: Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2016.05.015 – volume: 183 start-page: 193 year: 2016 ident: 10.1016/j.biortech.2021.126111_b0160 article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.096 – volume: 120 start-page: 1 year: 2017 ident: 10.1016/j.biortech.2021.126111_b0225 article-title: Sustainable livelihoods and rural sustainability in China: ecologically secure, economically efficient or socially equitable? publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2016.12.010 – volume: 106406 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0105 article-title: A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems publication-title: J. Environ Chem. Eng. – volume: 146 start-page: 134 year: 2018 ident: 10.1016/j.biortech.2021.126111_b0030 article-title: Modelling aerobic granular sludge reactors through apparent half-saturation coefficients publication-title: Water Res. doi: 10.1016/j.watres.2018.09.025 – volume: 166 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0245 article-title: Performance prediction of an internal-circulation membrane bioreactor based on models comparison and data features analysis publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2020.107850 – volume: 182 start-page: 134 year: 2016 ident: 10.1016/j.biortech.2021.126111_b0010 article-title: Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.07.025 – volume: 117556 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0195 article-title: Using machine learning classification to detect simulated increases of de facto reuse and urban stormwater surges in surface water publication-title: Water Res. – volume: 189 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0230 article-title: Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors publication-title: Water Res. doi: 10.1016/j.watres.2020.116657 – volume: 125068 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0040 article-title: Simultaneous adsorption and degradation of bisphenol A on magnetic illite clay composite: eco-friendly preparation, characterizations, and catalytic mechanism publication-title: J. Clean. Prod. – volume: 262 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0065 article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114566 – volume: 659 start-page: 275 year: 2019 ident: 10.1016/j.biortech.2021.126111_b0130 article-title: Fuel consumption and emissions performance under real driving: comparison between hybrid and conventional vehicles publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.349 – volume: 99 start-page: 225 year: 2016 ident: 10.1016/j.biortech.2021.126111_b0180 article-title: Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana publication-title: Water Res. doi: 10.1016/j.watres.2016.04.063 – volume: 18 start-page: 273 issue: 4 year: 2015 ident: 10.1016/j.biortech.2021.126111_b0075 article-title: User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine publication-title: Electron. J. Biotechnol. doi: 10.1016/j.ejbt.2015.05.001 – volume: 716 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0250 article-title: Strategy development in the framework of waste management publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137088 – volume: 197 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0015 article-title: Machine learning for anomaly detection in cyanobacterial fluorescence signals publication-title: Water Res. doi: 10.1016/j.watres.2021.117073 – volume: 137 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0095 article-title: Mapping bioenergy stakeholders: A systematic and scientometric review of capabilities and expertise in bioenergy research in the United Kingdom publication-title: Renew. Sust. Energ Rev. doi: 10.1016/j.rser.2020.110496 – volume: 131 year: 2020 ident: 10.1016/j.biortech.2021.126111_b0100 article-title: A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings publication-title: Renew. Sust. Energ Rev. doi: 10.1016/j.rser.2020.110027 – volume: 266 year: 2021 ident: 10.1016/j.biortech.2021.126111_b0175 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120950 |
SSID | ssj0003172 |
Score | 2.6341906 |
Snippet | [Display omitted]
•Machine learning models developed for H2 production by dark fermentation.•GBM, SVR, RF and AdaBoost methods were robust models for the... Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML)... Dark fermentation process for simultaneous wastewater treatment and H₂ production is gaining attention. This study aimed to use machine learning (ML)... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126111 |
SubjectTerms | acetates Biohydrogen butyrates Dark fermentation ethanol fermentation hydrogen production Machine learning Process modelling support vector machines wastewater Wastewater treatment |
Title | Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process |
URI | https://dx.doi.org/10.1016/j.biortech.2021.126111 https://www.proquest.com/docview/2582819572 https://www.proquest.com/docview/2636642028 |
Volume | 343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEA-iB_XwUN8T9alEeNfumrRJmuOyKKuiFxX2FpKm1fWju6wrDy_vb3cmTdUnqAcPhdJOIHSm85GZ3wwhfxxIiau0SiD08kmG9Y250EUinba2ktxmKeKdT8_k4DI7HorhHOm3WBgsq4y6v9HpQVvHJ934NbuT0ah7js53LjCliamxdIgI9kyhlHf-vZZ5gH0MmQQgTpD6DUr4puNGWNEakhKcdRhEE4x9ZKDeqepgfw5XyI_oONJes7dVMlfWa2S5dzWNzTPKNbLYb6e3wZs3jQZ_kvvTUDNZ0jgk4oqGCTh4Y2sPV9OZhI4rCpu9fvLTMQgWnTTtYIF1FGEo9K99wLM2YAV1T9Tb6S2tQLNH-FKgR9TBL3J5eHDRHyRx0EJSpCqfJTLlmqUeLDVPFcRDpdP7jnklK650IXmhBejEfae19064HHvwiyJH3yiX-Ievk_l6XJcbhFbggWYiL70C34w7lTNhufXMKlEpWbhNItqva4rYhRyHYdyZttzsxrRcMcgV03Blk3Rf1k2aPhxfrtAt88x_EmXAWHy5dq_ltgG-YQ7F1uX48cFwTDMyLRT_hEamEsI68Ny2vrGH32SJI9QiHPdsk_nZ9LHcAQdo5naDhO-Shd7RyeDsGXeUBdg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9i5cA4IMY2jc950q6h2Knt-FhVoDJoL4DUm2XHCSvb0qoUTfz3ey9xECABhx0iRYmfZOX38j78vgC-e-QSXxqdoOsVkh7lN2bS5InyxrlSCddLqd55NFbDq96PiZyswKCthaG0yij7G5leS-v4pBu_Znc-nXYvyPjOJIU0KTSWTt7BKnWnkh1Y7Z-eDccPAhlVZB1MwPUJETwqFL459FNKaq3jEoIfcnQoOH9JRz2T1rUKOtmEjWg7sn6zvQ-wUlRbsN6_XsT-GcUWrA3aAW745lGvwY_wZ1SnTRYszom4ZvUQHLpxVcCraU7CZiXDzf68D4sZ8habNx1hET1GlSjsr7ul4zZEg_l7FtziFytRuMcKpno9FR58gquT48vBMImzFpI81dkyUakwPA2orEWq0SUqvDnyPGhVCm1yJXIjUSweeWNC8NJn1IZf5hmZR5min_wzdKpZVXwBVqIR2pNZETSaZ8LrjEsnXOBOy1Kr3G-DbL-uzWMjcpqH8du2GWc3tkXFEiq2QWUbug9086YVx5sUpgXPPmEqi_riTdpvLdoWcaMwiquK2d2tFRRp5EZq8coalSr07NB42_mPPXyFteHl6Nyen47PduG9oMqL-vRnDzrLxV2xj_bQ0h9Efv8HZ0AIiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+modeling+and+analysis+of+biohydrogen+production+from+wastewater+by+dark+fermentation+process&rft.jtitle=Bioresource+technology&rft.au=Hosseinzadeh%2C+Ahmad&rft.au=Zhou%2C+John+L&rft.au=Altaee%2C+Ali&rft.au=Li%2C+Donghao&rft.date=2022-01-01&rft.issn=0960-8524&rft.volume=343+p.126111-&rft_id=info:doi/10.1016%2Fj.biortech.2021.126111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |