A Geometric Approach to Average Problems on Multinomial and Negative Multinomial Models
This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 22; no. 3; p. 306 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
MDPI
08.03.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models. |
---|---|
AbstractList | This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models.This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models. This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models. This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models. |
Author | Li, Didong Sun, Huafei Li, Mingming |
AuthorAffiliation | 3 Department of Mathematics, Duke University, Durham, NC 27708, USA; didongli@math.duke.edu 1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120160587@bit.edu.cn 2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China |
AuthorAffiliation_xml | – name: 1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120160587@bit.edu.cn – name: 3 Department of Mathematics, Duke University, Durham, NC 27708, USA; didongli@math.duke.edu – name: 2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China |
Author_xml | – sequence: 1 givenname: Mingming orcidid: 0000-0002-1026-9455 surname: Li fullname: Li, Mingming – sequence: 2 givenname: Huafei surname: Sun fullname: Sun, Huafei – sequence: 3 givenname: Didong orcidid: 0000-0001-9146-705X surname: Li fullname: Li, Didong |
BookMark | eNpVkU9P3DAQxa2KqvxpD_0GPpbDwtiTOM6l0gpRQALaQ6seLceeLEZOvNjZlfj2TVmEWM1hRvOefiPNO2YHYxqJsa8CzhBbOCcpAedSH9iRgLZdVAhw8G4-ZMelPAJIlEJ9YoeIUivQcMT-LvkVpYGmHBxfrtc5WffAp8SXW8p2RfxXTl2kofA08rtNnMKYhmAjt6Pn97SyU9jSnnCXPMXymX3sbSz05bWfsD8_Ln9fXC9uf17dXCxvFw4bPS3qvhdaNqBqTxpqYWVbd1ZAr1vl6qrXGkVNiA7QK19Br6SkznaN6xxJsHjCbnZcn-yjWecw2Pxskg3mZZHyytg8BRfJKJKq0Q21XohKN6BV22k5v6RXtmt9PbO-71jrTTeQdzRO2cY96L4yhgezSlvT1EI1CmbAt1dATk8bKpMZQnEUox0pbYqRldJYgUacrac7q8uplEz92xkB5n-o5i1U_AeZqpOn |
Cites_doi | 10.1016/j.neucom.2015.05.143 10.1214/aos/1176346246 10.1002/cpa.3160300502 10.1007/978-3-540-69393-2 10.1007/b98852 10.1109/TSP.2009.2027754 10.4134/JKMS.2008.45.3.859 10.1007/978-3-319-07779-6 10.1007/978-4-431-55978-8 10.55937/sut/1279305629 10.1007/BF02481964 10.1007/978-1-4612-5056-2 10.1007/3-540-44533-1_2 10.3390/e17127866 10.1007/978-3-642-40020-9_25 10.1007/BF02570725 10.1112/plms/s3-61.2.371 10.1007/978-3-030-02520-5_11 10.1145/502122.502124 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/e22030306 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_6e26787e9d114870869b82232f6ab9d5 PMC7516760 10_3390_e22030306 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c378t-5ff1827065de8051a295ba10f896c54f88315e33c03d6d40f622ebab7cbce20a3 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:21:59 EDT 2025 Thu Aug 21 14:16:05 EDT 2025 Thu Jul 10 20:00:01 EDT 2025 Tue Jul 01 01:57:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-5ff1827065de8051a295ba10f896c54f88315e33c03d6d40f622ebab7cbce20a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9146-705X 0000-0002-1026-9455 |
OpenAccessLink | https://doaj.org/article/6e26787e9d114870869b82232f6ab9d5 |
PMID | 33286080 |
PQID | 2468340833 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e26787e9d114870869b82232f6ab9d5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516760 proquest_miscellaneous_2468340833 crossref_primary_10_3390_e22030306 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200308 |
PublicationDateYYYYMMDD | 2020-03-08 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200308 day: 8 |
PublicationDecade | 2020 |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Karcher (ref_1) 1977; 30 Kurose (ref_20) 1990; 203 Takano (ref_11) 2010; 46 Eguchi (ref_3) 1983; 11 Zhang (ref_8) 2007; 9 Amari (ref_15) 2010; 58 Eguchi (ref_4) 1984; 36 ref_10 Ying (ref_13) 2016; 215 ref_21 ref_2 ref_19 ref_18 ref_17 Fiori (ref_14) 2010; 57 Ay (ref_16) 2015; 17 ref_9 Nielsen (ref_12) 2013; 20 Buss (ref_23) 2001; 20 ref_5 Kendall (ref_22) 1990; 61 ref_7 ref_6 |
References_xml | – volume: 215 start-page: 169 year: 2016 ident: ref_13 article-title: Compute Karcher means on SO(n) by the geometric conjugate gradient method publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.143 – volume: 58 start-page: 183 year: 2010 ident: ref_15 article-title: Information geometry of divergence functions publication-title: Bull. Pol. Acad. Sci. – volume: 11 start-page: 793 year: 1983 ident: ref_3 article-title: Second order efficiency of minimum contrast estimations in a curved exponential family publication-title: Ann. Stat. doi: 10.1214/aos/1176346246 – volume: 30 start-page: 509 year: 1977 ident: ref_1 article-title: Riemannian center of mass and mollifier smoothing publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160300502 – ident: ref_5 doi: 10.1007/978-3-540-69393-2 – volume: 9 start-page: 194 year: 2007 ident: ref_8 article-title: Information geometry of the power inverse Gaussian distribution publication-title: Appl. Sci. – ident: ref_19 doi: 10.1007/b98852 – volume: 57 start-page: 4734 year: 2010 ident: ref_14 article-title: An algorithm to compute averages on matrix Lie groups publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2027754 – ident: ref_9 doi: 10.4134/JKMS.2008.45.3.859 – ident: ref_6 doi: 10.1007/978-3-319-07779-6 – ident: ref_7 doi: 10.1007/978-4-431-55978-8 – volume: 46 start-page: 1 year: 2010 ident: ref_11 article-title: Exponential families admitting almost complex structures publication-title: SUT J. Math. doi: 10.55937/sut/1279305629 – volume: 36 start-page: 199 year: 1984 ident: ref_4 article-title: A characterization of second order efficiency in a curved exponential family publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF02481964 – ident: ref_10 doi: 10.1007/978-1-4612-5056-2 – ident: ref_17 doi: 10.1007/3-540-44533-1_2 – ident: ref_18 – volume: 17 start-page: 8111 year: 2015 ident: ref_16 article-title: A novel approach to canonical divergence within information geometry publication-title: Entropy doi: 10.3390/e17127866 – ident: ref_21 doi: 10.1007/978-3-642-40020-9_25 – volume: 203 start-page: 115 year: 1990 ident: ref_20 article-title: Dual connections and affine geometry publication-title: Math. Z. doi: 10.1007/BF02570725 – volume: 61 start-page: 371 year: 1990 ident: ref_22 article-title: Probability, convexity and harmonic maps with small image I: uniqueness and fine existence publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/s3-61.2.371 – ident: ref_2 doi: 10.1007/978-3-030-02520-5_11 – volume: 20 start-page: 269 year: 2013 ident: ref_12 article-title: An information-geometric characterization of Chernoff information publication-title: IEEE SPL – volume: 20 start-page: 95 year: 2001 ident: ref_23 article-title: Spherical averages and applications to spherical splines and interpolation publication-title: ACM Trans. Graph. doi: 10.1145/502122.502124 |
SSID | ssj0023216 |
Score | 2.1874547 |
Snippet | This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 306 |
SubjectTerms | average problem geometric midpoints karcher mean structure characterization |
Title | A Geometric Approach to Average Problems on Multinomial and Negative Multinomial Models |
URI | https://www.proquest.com/docview/2468340833 https://pubmed.ncbi.nlm.nih.gov/PMC7516760 https://doaj.org/article/6e26787e9d114870869b82232f6ab9d5 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtswDBW69rLLsKIdlnUL1KJXI7JkydIxGZoEBRoURYvlZkgytRXo7GFx_r-U7QTxqZdefLAMmyBpkQ8iHwm51lL5TLMykbmXCcZbljjjTaK0DcwysF0X_91KLZ-y27VcH4z6ijVhHT1wp7iJAo77aQ6mjJl7jhm4cRjUBA_KOlO27KUY83Zgqodagqeq4xESCOonwDk6s4hjjQ6iT0vSP8gsh3WRB4Fm_pl86jNEOu0kOyVHUJ2RX1O6gPpvHH_l6bTnAadNTafoirgl0PtuMMyG1hVtm2pjuzG-xlYlXcHvlt57sBCHoL1szsnT_Obx5zLpZyIkXuS6SWQIiAji2WQJGn8oy410NmVBG-VlFrQWqQQhPBOlKjMWFOfgrMu988CZFV_IcVVX8JVQngUJKjjnLYYo4SxmYxl4Y3jQLigYkaudrop_HfVFgZAhKrTYK3REZlGL-wciW3V7A21Y9DYs3rLhiFzubFCgd8cjC1tBvd0UPFMoFAomRiQfGGfwxeFK9fyn5cnOZapyxb69h4gX5COPSDtWn-nv5Lj5v4UfmI40bkw-6PliTE5mN6v7h3Hrh3hdrNNXCqfiJQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Geometric+Approach+to+Average+Problems+on+Multinomial+and+Negative+Multinomial+Models&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Mingming&rft.au=Sun%2C+Huafei&rft.au=Li%2C+Didong&rft.date=2020-03-08&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=3&rft.spage=306&rft_id=info:doi/10.3390%2Fe22030306&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e22030306 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |