A Geometric Approach to Average Problems on Multinomial and Negative Multinomial Models

This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 3; p. 306
Main Authors Li, Mingming, Sun, Huafei, Li, Didong
Format Journal Article
LanguageEnglish
Published MDPI 08.03.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models.
AbstractList This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models.This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models.
This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models.
This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the multinomial and negative multinomial models admit complementary geometric structures. Firstly, we investigate these geometric structures by providing various useful pre-derived expressions of some fundamental geometric quantities, such as Fisher-Riemannian metrics, α -connections and α -curvatures. Then, we proceed to consider some average methods based on these geometric structures. Specifically, we study the formulation and computation of the midpoint of two points and the Karcher mean of multiple points. In conclusion, we find some parallel results for the average problems on these two complementary models.
Author Li, Didong
Sun, Huafei
Li, Mingming
AuthorAffiliation 3 Department of Mathematics, Duke University, Durham, NC 27708, USA; didongli@math.duke.edu
1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120160587@bit.edu.cn
2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China
AuthorAffiliation_xml – name: 1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120160587@bit.edu.cn
– name: 3 Department of Mathematics, Duke University, Durham, NC 27708, USA; didongli@math.duke.edu
– name: 2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China
Author_xml – sequence: 1
  givenname: Mingming
  orcidid: 0000-0002-1026-9455
  surname: Li
  fullname: Li, Mingming
– sequence: 2
  givenname: Huafei
  surname: Sun
  fullname: Sun, Huafei
– sequence: 3
  givenname: Didong
  orcidid: 0000-0001-9146-705X
  surname: Li
  fullname: Li, Didong
BookMark eNpVkU9P3DAQxa2KqvxpD_0GPpbDwtiTOM6l0gpRQALaQ6seLceeLEZOvNjZlfj2TVmEWM1hRvOefiPNO2YHYxqJsa8CzhBbOCcpAedSH9iRgLZdVAhw8G4-ZMelPAJIlEJ9YoeIUivQcMT-LvkVpYGmHBxfrtc5WffAp8SXW8p2RfxXTl2kofA08rtNnMKYhmAjt6Pn97SyU9jSnnCXPMXymX3sbSz05bWfsD8_Ln9fXC9uf17dXCxvFw4bPS3qvhdaNqBqTxpqYWVbd1ZAr1vl6qrXGkVNiA7QK19Br6SkznaN6xxJsHjCbnZcn-yjWecw2Pxskg3mZZHyytg8BRfJKJKq0Q21XohKN6BV22k5v6RXtmt9PbO-71jrTTeQdzRO2cY96L4yhgezSlvT1EI1CmbAt1dATk8bKpMZQnEUox0pbYqRldJYgUacrac7q8uplEz92xkB5n-o5i1U_AeZqpOn
Cites_doi 10.1016/j.neucom.2015.05.143
10.1214/aos/1176346246
10.1002/cpa.3160300502
10.1007/978-3-540-69393-2
10.1007/b98852
10.1109/TSP.2009.2027754
10.4134/JKMS.2008.45.3.859
10.1007/978-3-319-07779-6
10.1007/978-4-431-55978-8
10.55937/sut/1279305629
10.1007/BF02481964
10.1007/978-1-4612-5056-2
10.1007/3-540-44533-1_2
10.3390/e17127866
10.1007/978-3-642-40020-9_25
10.1007/BF02570725
10.1112/plms/s3-61.2.371
10.1007/978-3-030-02520-5_11
10.1145/502122.502124
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/e22030306
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_6e26787e9d114870869b82232f6ab9d5
PMC7516760
10_3390_e22030306
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c378t-5ff1827065de8051a295ba10f896c54f88315e33c03d6d40f622ebab7cbce20a3
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:21:59 EDT 2025
Thu Aug 21 14:16:05 EDT 2025
Thu Jul 10 20:00:01 EDT 2025
Tue Jul 01 01:57:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-5ff1827065de8051a295ba10f896c54f88315e33c03d6d40f622ebab7cbce20a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9146-705X
0000-0002-1026-9455
OpenAccessLink https://doaj.org/article/6e26787e9d114870869b82232f6ab9d5
PMID 33286080
PQID 2468340833
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6e26787e9d114870869b82232f6ab9d5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516760
proquest_miscellaneous_2468340833
crossref_primary_10_3390_e22030306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200308
PublicationDateYYYYMMDD 2020-03-08
PublicationDate_xml – month: 3
  year: 2020
  text: 20200308
  day: 8
PublicationDecade 2020
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Karcher (ref_1) 1977; 30
Kurose (ref_20) 1990; 203
Takano (ref_11) 2010; 46
Eguchi (ref_3) 1983; 11
Zhang (ref_8) 2007; 9
Amari (ref_15) 2010; 58
Eguchi (ref_4) 1984; 36
ref_10
Ying (ref_13) 2016; 215
ref_21
ref_2
ref_19
ref_18
ref_17
Fiori (ref_14) 2010; 57
Ay (ref_16) 2015; 17
ref_9
Nielsen (ref_12) 2013; 20
Buss (ref_23) 2001; 20
ref_5
Kendall (ref_22) 1990; 61
ref_7
ref_6
References_xml – volume: 215
  start-page: 169
  year: 2016
  ident: ref_13
  article-title: Compute Karcher means on SO(n) by the geometric conjugate gradient method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.143
– volume: 58
  start-page: 183
  year: 2010
  ident: ref_15
  article-title: Information geometry of divergence functions
  publication-title: Bull. Pol. Acad. Sci.
– volume: 11
  start-page: 793
  year: 1983
  ident: ref_3
  article-title: Second order efficiency of minimum contrast estimations in a curved exponential family
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346246
– volume: 30
  start-page: 509
  year: 1977
  ident: ref_1
  article-title: Riemannian center of mass and mollifier smoothing
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160300502
– ident: ref_5
  doi: 10.1007/978-3-540-69393-2
– volume: 9
  start-page: 194
  year: 2007
  ident: ref_8
  article-title: Information geometry of the power inverse Gaussian distribution
  publication-title: Appl. Sci.
– ident: ref_19
  doi: 10.1007/b98852
– volume: 57
  start-page: 4734
  year: 2010
  ident: ref_14
  article-title: An algorithm to compute averages on matrix Lie groups
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2027754
– ident: ref_9
  doi: 10.4134/JKMS.2008.45.3.859
– ident: ref_6
  doi: 10.1007/978-3-319-07779-6
– ident: ref_7
  doi: 10.1007/978-4-431-55978-8
– volume: 46
  start-page: 1
  year: 2010
  ident: ref_11
  article-title: Exponential families admitting almost complex structures
  publication-title: SUT J. Math.
  doi: 10.55937/sut/1279305629
– volume: 36
  start-page: 199
  year: 1984
  ident: ref_4
  article-title: A characterization of second order efficiency in a curved exponential family
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF02481964
– ident: ref_10
  doi: 10.1007/978-1-4612-5056-2
– ident: ref_17
  doi: 10.1007/3-540-44533-1_2
– ident: ref_18
– volume: 17
  start-page: 8111
  year: 2015
  ident: ref_16
  article-title: A novel approach to canonical divergence within information geometry
  publication-title: Entropy
  doi: 10.3390/e17127866
– ident: ref_21
  doi: 10.1007/978-3-642-40020-9_25
– volume: 203
  start-page: 115
  year: 1990
  ident: ref_20
  article-title: Dual connections and affine geometry
  publication-title: Math. Z.
  doi: 10.1007/BF02570725
– volume: 61
  start-page: 371
  year: 1990
  ident: ref_22
  article-title: Probability, convexity and harmonic maps with small image I: uniqueness and fine existence
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s3-61.2.371
– ident: ref_2
  doi: 10.1007/978-3-030-02520-5_11
– volume: 20
  start-page: 269
  year: 2013
  ident: ref_12
  article-title: An information-geometric characterization of Chernoff information
  publication-title: IEEE SPL
– volume: 20
  start-page: 95
  year: 2001
  ident: ref_23
  article-title: Spherical averages and applications to spherical splines and interpolation
  publication-title: ACM Trans. Graph.
  doi: 10.1145/502122.502124
SSID ssj0023216
Score 2.1874547
Snippet This paper is concerned with the formulation and computation of average problems on the multinomial and negative multinomial models. It can be deduced that the...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 306
SubjectTerms average problem
geometric midpoints
karcher mean
structure characterization
Title A Geometric Approach to Average Problems on Multinomial and Negative Multinomial Models
URI https://www.proquest.com/docview/2468340833
https://pubmed.ncbi.nlm.nih.gov/PMC7516760
https://doaj.org/article/6e26787e9d114870869b82232f6ab9d5
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtswDBW69rLLsKIdlnUL1KJXI7JkydIxGZoEBRoURYvlZkgytRXo7GFx_r-U7QTxqZdefLAMmyBpkQ8iHwm51lL5TLMykbmXCcZbljjjTaK0DcwysF0X_91KLZ-y27VcH4z6ijVhHT1wp7iJAo77aQ6mjJl7jhm4cRjUBA_KOlO27KUY83Zgqodagqeq4xESCOonwDk6s4hjjQ6iT0vSP8gsh3WRB4Fm_pl86jNEOu0kOyVHUJ2RX1O6gPpvHH_l6bTnAadNTafoirgl0PtuMMyG1hVtm2pjuzG-xlYlXcHvlt57sBCHoL1szsnT_Obx5zLpZyIkXuS6SWQIiAji2WQJGn8oy410NmVBG-VlFrQWqQQhPBOlKjMWFOfgrMu988CZFV_IcVVX8JVQngUJKjjnLYYo4SxmYxl4Y3jQLigYkaudrop_HfVFgZAhKrTYK3REZlGL-wciW3V7A21Y9DYs3rLhiFzubFCgd8cjC1tBvd0UPFMoFAomRiQfGGfwxeFK9fyn5cnOZapyxb69h4gX5COPSDtWn-nv5Lj5v4UfmI40bkw-6PliTE5mN6v7h3Hrh3hdrNNXCqfiJQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Geometric+Approach+to+Average+Problems+on+Multinomial+and+Negative+Multinomial+Models&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Mingming&rft.au=Sun%2C+Huafei&rft.au=Li%2C+Didong&rft.date=2020-03-08&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=3&rft.spage=306&rft_id=info:doi/10.3390%2Fe22030306&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e22030306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon