Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative

The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo ($ \mathcal{ABC} $) derivative. A systematic and convergent technique known as the Laplace Ado...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 5; pp. 7847 - 7865
Main Authors Gulalai, Ahmad, Shabir, Rihan, Fathalla Ali, Ullah, Aman, Al-Mdallal, Qasem M., Akgül, Ali
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022439

Cover

Loading…
Abstract The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo ($ \mathcal{ABC} $) derivative. A systematic and convergent technique known as the Laplace Adomian decomposition method (LADM) is applied to extract a semi-analytical solution for the considered equation. The notion of fixed point theory is used for the derivation of the results related to the existence of at least one and unique solution of the mKdV equation involving under $ \mathcal{ABC} $-derivative. The theorems of fixed point theory are also used to derive results regarding to the convergence and Picard's X-stability of the proposed computational method. A proper investigation is conducted through graphical representation of the achieved solution to determine that the $ \mathcal{ABC} $ operator produces better dynamics of the obtained analytic soliton solution. Finally, 2D and 3D graphs are used to compare the exact solution and approximate solution. Also, a comparison between the exact solution, solution under Caputo-Fabrizio, and solution under the $ \mathcal{ABC} $ operator of the proposed equation is provided through graphs, which reflect that $ \mathcal{ABC} $-operator produces better dynamics of the proposed equation than the Caputo-Fabrizio one.
AbstractList The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo ($ \mathcal{ABC} $) derivative. A systematic and convergent technique known as the Laplace Adomian decomposition method (LADM) is applied to extract a semi-analytical solution for the considered equation. The notion of fixed point theory is used for the derivation of the results related to the existence of at least one and unique solution of the mKdV equation involving under $ \mathcal{ABC} $-derivative. The theorems of fixed point theory are also used to derive results regarding to the convergence and Picard's X-stability of the proposed computational method. A proper investigation is conducted through graphical representation of the achieved solution to determine that the $ \mathcal{ABC} $ operator produces better dynamics of the obtained analytic soliton solution. Finally, 2D and 3D graphs are used to compare the exact solution and approximate solution. Also, a comparison between the exact solution, solution under Caputo-Fabrizio, and solution under the $ \mathcal{ABC} $ operator of the proposed equation is provided through graphs, which reflect that $ \mathcal{ABC} $-operator produces better dynamics of the proposed equation than the Caputo-Fabrizio one.
The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo (ABC) derivative. A systematic and convergent technique known as the Laplace Adomian decomposition method (LADM) is applied to extract a semi-analytical solution for the considered equation. The notion of fixed point theory is used for the derivation of the results related to the existence of at least one and unique solution of the mKdV equation involving under ABC-derivative. The theorems of fixed point theory are also used to derive results regarding to the convergence and Picard's X-stability of the proposed computational method. A proper investigation is conducted through graphical representation of the achieved solution to determine that the ABC operator produces better dynamics of the obtained analytic soliton solution. Finally, 2D and 3D graphs are used to compare the exact solution and approximate solution. Also, a comparison between the exact solution, solution under Caputo-Fabrizio, and solution under the ABC operator of the proposed equation is provided through graphs, which reflect that ABC-operator produces better dynamics of the proposed equation than the Caputo-Fabrizio one.
Author Gulalai
Al-Mdallal, Qasem M.
Ullah, Aman
Rihan, Fathalla Ali
Ahmad, Shabir
Akgül, Ali
Author_xml – sequence: 1
  surname: Gulalai
  fullname: Gulalai
– sequence: 2
  givenname: Shabir
  surname: Ahmad
  fullname: Ahmad, Shabir
– sequence: 3
  givenname: Fathalla Ali
  surname: Rihan
  fullname: Rihan, Fathalla Ali
– sequence: 4
  givenname: Aman
  surname: Ullah
  fullname: Ullah, Aman
– sequence: 5
  givenname: Qasem M.
  surname: Al-Mdallal
  fullname: Al-Mdallal, Qasem M.
– sequence: 6
  givenname: Ali
  surname: Akgül
  fullname: Akgül, Ali
BookMark eNptkMtOwzAQRS1UJErpjg_wB5DiV514WSoeFRVsgG2YxHZxldrFSSr170kfqhBiNaM7996RziXq-eANQteUjLji4nYFzdeIEcYEV2eoz0TKE6myrPdrv0DDul4SQhhlgqWijz5fgq-cNxAxeKi2tatxsBiwP-mroJ11RuNn_YHNdwuNCx63XpuIJw34RRfEd1AZ8C2ewrptAu5ubtMZN-YKnVuoajM8zgF6f7h_mz4l89fH2XQyT0qeZk0ytsJSSmVZZFbzVMsMFPCCFUar0qSFYqmyRlKq006WGZVK0rLglpc8YwB8gGaHXh1gma-jW0Hc5gFcvhdCXOQQG1dWJldGQKYFJUwVQvDulR5LIQrBCeESRNd1c-gqY6jraOypj5J8Bzvfwc6PsDs7-2MvXbOn1ERw1f-hH2oBhc0
CitedBy_id crossref_primary_10_1016_j_physa_2022_128144
crossref_primary_10_1016_j_rinp_2022_106062
crossref_primary_10_3233_JIFS_223237
crossref_primary_10_3389_fphy_2023_1114319
crossref_primary_10_1016_j_chaos_2022_112113
crossref_primary_10_1142_S0218348X23400339
crossref_primary_10_3934_math_2023966
crossref_primary_10_3934_math_2022521
crossref_primary_10_1155_2022_2517602
crossref_primary_10_3390_sym14112316
crossref_primary_10_3390_sym14112459
crossref_primary_10_3934_math_2024896
crossref_primary_10_1088_1572_9494_acded7
crossref_primary_10_1155_2022_5099060
crossref_primary_10_3934_math_2025200
crossref_primary_10_1007_s40314_022_02047_2
crossref_primary_10_32604_cmes_2023_022289
crossref_primary_10_1155_2024_5531984
crossref_primary_10_1155_2022_3967328
crossref_primary_10_3390_fractalfract7080602
Cites_doi 10.1186/s13662-017-1091-8
10.2298/TSCI160111018A
10.1016/j.camwa.2011.09.023
10.1016/j.aej.2021.01.054
10.1007/s11071-015-2519-x
10.1140/epjp/i2018-12051-9
10.1016/j.aej.2017.02.015
10.1016/j.chaos.2020.110233
10.1186/s13662-015-0682-5
10.11121/ijocta.01.2017.00368
10.1155/2008/418971
10.18576/pfda/020101
10.3390/fractalfract4020021
10.1002/num.22627
10.9734/ARJOM/2016/29279
10.1016/j.cnsns.2006.03.013
10.1016/j.physa.2019.121085
10.1186/s13662-018-1822-5
10.1016/j.physleta.2018.11.040
10.14456/WJST.2014.72
10.1186/s13662-020-02943-z
10.1016/j.rinp.2020.103559
10.1016/j.aml.2011.04.037
10.1016/j.camwa.2009.07.006
ContentType Journal Article
CorporateAuthor Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan
Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
Art and Science Faculty, Department of Mathematics, Siirt University, TR-56100 Siirt, Turkey
CorporateAuthor_xml – name: Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE
– name: Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan
– name: Art and Science Faculty, Department of Mathematics, Siirt University, TR-56100 Siirt, Turkey
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022439
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7865
ExternalDocumentID oai_doaj_org_article_9e4a8d41029b44368ad5644b430036a4
10_3934_math_2022439
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-5f4f1116cb8fd37d68a9a3b2bed9ce7b9279fe611d7a3b6816961cb3f3c382aa3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:28:33 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Tue Jul 01 03:56:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-5f4f1116cb8fd37d68a9a3b2bed9ce7b9279fe611d7a3b6816961cb3f3c382aa3
OpenAccessLink https://doaj.org/article/9e4a8d41029b44368ad5644b430036a4
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_9e4a8d41029b44368ad5644b430036a4
crossref_primary_10_3934_math_2022439
crossref_citationtrail_10_3934_math_2022439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022439-20
key-10.3934/math.2022439-21
key-10.3934/math.2022439-24
key-10.3934/math.2022439-25
key-10.3934/math.2022439-22
key-10.3934/math.2022439-23
key-10.3934/math.2022439-4
key-10.3934/math.2022439-5
key-10.3934/math.2022439-6
key-10.3934/math.2022439-7
key-10.3934/math.2022439-1
key-10.3934/math.2022439-10
key-10.3934/math.2022439-2
key-10.3934/math.2022439-3
key-10.3934/math.2022439-8
key-10.3934/math.2022439-9
key-10.3934/math.2022439-19
key-10.3934/math.2022439-13
key-10.3934/math.2022439-14
key-10.3934/math.2022439-11
key-10.3934/math.2022439-12
key-10.3934/math.2022439-17
key-10.3934/math.2022439-18
key-10.3934/math.2022439-15
key-10.3934/math.2022439-16
References_xml – ident: key-10.3934/math.2022439-8
  doi: 10.1186/s13662-017-1091-8
– ident: key-10.3934/math.2022439-12
  doi: 10.2298/TSCI160111018A
– ident: key-10.3934/math.2022439-6
  doi: 10.1016/j.camwa.2011.09.023
– ident: key-10.3934/math.2022439-9
  doi: 10.1016/j.aej.2021.01.054
– ident: key-10.3934/math.2022439-3
  doi: 10.1007/s11071-015-2519-x
– ident: key-10.3934/math.2022439-16
  doi: 10.1140/epjp/i2018-12051-9
– ident: key-10.3934/math.2022439-24
  doi: 10.1016/j.aej.2017.02.015
– ident: key-10.3934/math.2022439-1
– ident: key-10.3934/math.2022439-15
  doi: 10.1016/j.chaos.2020.110233
– ident: key-10.3934/math.2022439-5
  doi: 10.1186/s13662-015-0682-5
– ident: key-10.3934/math.2022439-10
  doi: 10.11121/ijocta.01.2017.00368
– ident: key-10.3934/math.2022439-25
  doi: 10.1155/2008/418971
– ident: key-10.3934/math.2022439-11
  doi: 10.18576/pfda/020101
– ident: key-10.3934/math.2022439-21
  doi: 10.3390/fractalfract4020021
– ident: key-10.3934/math.2022439-22
  doi: 10.1002/num.22627
– ident: key-10.3934/math.2022439-4
  doi: 10.9734/ARJOM/2016/29279
– ident: key-10.3934/math.2022439-2
  doi: 10.1016/j.cnsns.2006.03.013
– ident: key-10.3934/math.2022439-17
  doi: 10.1016/j.physa.2019.121085
– ident: key-10.3934/math.2022439-18
  doi: 10.1186/s13662-018-1822-5
– ident: key-10.3934/math.2022439-7
  doi: 10.1016/j.physleta.2018.11.040
– ident: key-10.3934/math.2022439-20
  doi: 10.14456/WJST.2014.72
– ident: key-10.3934/math.2022439-13
  doi: 10.1186/s13662-020-02943-z
– ident: key-10.3934/math.2022439-14
  doi: 10.1016/j.rinp.2020.103559
– ident: key-10.3934/math.2022439-23
  doi: 10.1016/j.aml.2011.04.037
– ident: key-10.3934/math.2022439-19
  doi: 10.1016/j.camwa.2009.07.006
SSID ssj0002124274
Score 2.3047855
Snippet The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 7847
SubjectTerms atangana-baleanu fractional operator
fixed point theory
laplace adomian decomposition
Title Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative
URI https://doaj.org/article/9e4a8d41029b44368ad5644b430036a4
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwFIUt1AkGxFOUlzzAhKKS2PFjbCuqCtROFHULfiIkaEtJ-f1cxyHKglhYHSeyjhOfe5P4uwhdSZunjomwY1nrANX2idLGJT7NPee3mfTVDrnJlI1n9H6ez1ulvsI_YREPHIXrSUeVsBR8UGoacOnK5uDhmpKAUlEVCRQ8r5VMhTUYFmQK-Vb8051IQnsQ_4VvD-BYoS54y4NaqP7KU0Z7aLcOBnE_DmIfbbnFAdqZNCTVz0P0PI0sC7XGquaH4KXHCi-a9velffUQSeIH-4TdR2R347A5bI37EPu9wIl4AEagFhs8VKtNucRwrCpr9uWO0Gx09zgcJ3VVhMQQLsok99TDAsWMFt4SbkERqYjOtLPSOK5lxqV3LE0th2YmUiZZajTxxBCRKUWOUQeG6E4QZoZpeJ4NhxwNAjOhKGM256l3njgleRfd_OhUmBoZHipXvBWQOgRVi6BqUavaRddN71VEZfzSbxAkb_oEwHXVANNe1NNe_DXtp_9xkTO0HcYU36ico0653rgLiDFKfVndTt8aDc6X
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+analysis+of+a+nonlinear+modified+KdV+equation+under+Atangana+Baleanu+Caputo+derivative&rft.jtitle=AIMS+mathematics&rft.au=Gulalai&rft.au=Ahmad%2C+Shabir&rft.au=Rihan%2C+Fathalla+Ali&rft.au=Ullah%2C+Aman&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=5&rft.spage=7847&rft.epage=7865&rft_id=info:doi/10.3934%2Fmath.2022439&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon