Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative
The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo ($ \mathcal{ABC} $) derivative. A systematic and convergent technique known as the Laplace Ado...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 5; pp. 7847 - 7865 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022439 |
Cover
Loading…
Abstract | The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo ($ \mathcal{ABC} $) derivative. A systematic and convergent technique known as the Laplace Adomian decomposition method (LADM) is applied to extract a semi-analytical solution for the considered equation. The notion of fixed point theory is used for the derivation of the results related to the existence of at least one and unique solution of the mKdV equation involving under $ \mathcal{ABC} $-derivative. The theorems of fixed point theory are also used to derive results regarding to the convergence and Picard's X-stability of the proposed computational method. A proper investigation is conducted through graphical representation of the achieved solution to determine that the $ \mathcal{ABC} $ operator produces better dynamics of the obtained analytic soliton solution. Finally, 2D and 3D graphs are used to compare the exact solution and approximate solution. Also, a comparison between the exact solution, solution under Caputo-Fabrizio, and solution under the $ \mathcal{ABC} $ operator of the proposed equation is provided through graphs, which reflect that $ \mathcal{ABC} $-operator produces better dynamics of the proposed equation than the Caputo-Fabrizio one. |
---|---|
AbstractList | The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo ($ \mathcal{ABC} $) derivative. A systematic and convergent technique known as the Laplace Adomian decomposition method (LADM) is applied to extract a semi-analytical solution for the considered equation. The notion of fixed point theory is used for the derivation of the results related to the existence of at least one and unique solution of the mKdV equation involving under $ \mathcal{ABC} $-derivative. The theorems of fixed point theory are also used to derive results regarding to the convergence and Picard's X-stability of the proposed computational method. A proper investigation is conducted through graphical representation of the achieved solution to determine that the $ \mathcal{ABC} $ operator produces better dynamics of the obtained analytic soliton solution. Finally, 2D and 3D graphs are used to compare the exact solution and approximate solution. Also, a comparison between the exact solution, solution under Caputo-Fabrizio, and solution under the $ \mathcal{ABC} $ operator of the proposed equation is provided through graphs, which reflect that $ \mathcal{ABC} $-operator produces better dynamics of the proposed equation than the Caputo-Fabrizio one. The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV equation involving the Atangana-Baleanu Caputo (ABC) derivative. A systematic and convergent technique known as the Laplace Adomian decomposition method (LADM) is applied to extract a semi-analytical solution for the considered equation. The notion of fixed point theory is used for the derivation of the results related to the existence of at least one and unique solution of the mKdV equation involving under ABC-derivative. The theorems of fixed point theory are also used to derive results regarding to the convergence and Picard's X-stability of the proposed computational method. A proper investigation is conducted through graphical representation of the achieved solution to determine that the ABC operator produces better dynamics of the obtained analytic soliton solution. Finally, 2D and 3D graphs are used to compare the exact solution and approximate solution. Also, a comparison between the exact solution, solution under Caputo-Fabrizio, and solution under the ABC operator of the proposed equation is provided through graphs, which reflect that ABC-operator produces better dynamics of the proposed equation than the Caputo-Fabrizio one. |
Author | Gulalai Al-Mdallal, Qasem M. Ullah, Aman Rihan, Fathalla Ali Ahmad, Shabir Akgül, Ali |
Author_xml | – sequence: 1 surname: Gulalai fullname: Gulalai – sequence: 2 givenname: Shabir surname: Ahmad fullname: Ahmad, Shabir – sequence: 3 givenname: Fathalla Ali surname: Rihan fullname: Rihan, Fathalla Ali – sequence: 4 givenname: Aman surname: Ullah fullname: Ullah, Aman – sequence: 5 givenname: Qasem M. surname: Al-Mdallal fullname: Al-Mdallal, Qasem M. – sequence: 6 givenname: Ali surname: Akgül fullname: Akgül, Ali |
BookMark | eNptkMtOwzAQRS1UJErpjg_wB5DiV514WSoeFRVsgG2YxHZxldrFSSr170kfqhBiNaM7996RziXq-eANQteUjLji4nYFzdeIEcYEV2eoz0TKE6myrPdrv0DDul4SQhhlgqWijz5fgq-cNxAxeKi2tatxsBiwP-mroJ11RuNn_YHNdwuNCx63XpuIJw34RRfEd1AZ8C2ewrptAu5ubtMZN-YKnVuoajM8zgF6f7h_mz4l89fH2XQyT0qeZk0ytsJSSmVZZFbzVMsMFPCCFUar0qSFYqmyRlKq006WGZVK0rLglpc8YwB8gGaHXh1gma-jW0Hc5gFcvhdCXOQQG1dWJldGQKYFJUwVQvDulR5LIQrBCeESRNd1c-gqY6jraOypj5J8Bzvfwc6PsDs7-2MvXbOn1ERw1f-hH2oBhc0 |
CitedBy_id | crossref_primary_10_1016_j_physa_2022_128144 crossref_primary_10_1016_j_rinp_2022_106062 crossref_primary_10_3233_JIFS_223237 crossref_primary_10_3389_fphy_2023_1114319 crossref_primary_10_1016_j_chaos_2022_112113 crossref_primary_10_1142_S0218348X23400339 crossref_primary_10_3934_math_2023966 crossref_primary_10_3934_math_2022521 crossref_primary_10_1155_2022_2517602 crossref_primary_10_3390_sym14112316 crossref_primary_10_3390_sym14112459 crossref_primary_10_3934_math_2024896 crossref_primary_10_1088_1572_9494_acded7 crossref_primary_10_1155_2022_5099060 crossref_primary_10_3934_math_2025200 crossref_primary_10_1007_s40314_022_02047_2 crossref_primary_10_32604_cmes_2023_022289 crossref_primary_10_1155_2024_5531984 crossref_primary_10_1155_2022_3967328 crossref_primary_10_3390_fractalfract7080602 |
Cites_doi | 10.1186/s13662-017-1091-8 10.2298/TSCI160111018A 10.1016/j.camwa.2011.09.023 10.1016/j.aej.2021.01.054 10.1007/s11071-015-2519-x 10.1140/epjp/i2018-12051-9 10.1016/j.aej.2017.02.015 10.1016/j.chaos.2020.110233 10.1186/s13662-015-0682-5 10.11121/ijocta.01.2017.00368 10.1155/2008/418971 10.18576/pfda/020101 10.3390/fractalfract4020021 10.1002/num.22627 10.9734/ARJOM/2016/29279 10.1016/j.cnsns.2006.03.013 10.1016/j.physa.2019.121085 10.1186/s13662-018-1822-5 10.1016/j.physleta.2018.11.040 10.14456/WJST.2014.72 10.1186/s13662-020-02943-z 10.1016/j.rinp.2020.103559 10.1016/j.aml.2011.04.037 10.1016/j.camwa.2009.07.006 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE Art and Science Faculty, Department of Mathematics, Siirt University, TR-56100 Siirt, Turkey |
CorporateAuthor_xml | – name: Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE – name: Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan – name: Art and Science Faculty, Department of Mathematics, Siirt University, TR-56100 Siirt, Turkey |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022439 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 7865 |
ExternalDocumentID | oai_doaj_org_article_9e4a8d41029b44368ad5644b430036a4 10_3934_math_2022439 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-5f4f1116cb8fd37d68a9a3b2bed9ce7b9279fe611d7a3b6816961cb3f3c382aa3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:28:33 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Tue Jul 01 03:56:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-5f4f1116cb8fd37d68a9a3b2bed9ce7b9279fe611d7a3b6816961cb3f3c382aa3 |
OpenAccessLink | https://doaj.org/article/9e4a8d41029b44368ad5644b430036a4 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e4a8d41029b44368ad5644b430036a4 crossref_primary_10_3934_math_2022439 crossref_citationtrail_10_3934_math_2022439 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022439-20 key-10.3934/math.2022439-21 key-10.3934/math.2022439-24 key-10.3934/math.2022439-25 key-10.3934/math.2022439-22 key-10.3934/math.2022439-23 key-10.3934/math.2022439-4 key-10.3934/math.2022439-5 key-10.3934/math.2022439-6 key-10.3934/math.2022439-7 key-10.3934/math.2022439-1 key-10.3934/math.2022439-10 key-10.3934/math.2022439-2 key-10.3934/math.2022439-3 key-10.3934/math.2022439-8 key-10.3934/math.2022439-9 key-10.3934/math.2022439-19 key-10.3934/math.2022439-13 key-10.3934/math.2022439-14 key-10.3934/math.2022439-11 key-10.3934/math.2022439-12 key-10.3934/math.2022439-17 key-10.3934/math.2022439-18 key-10.3934/math.2022439-15 key-10.3934/math.2022439-16 |
References_xml | – ident: key-10.3934/math.2022439-8 doi: 10.1186/s13662-017-1091-8 – ident: key-10.3934/math.2022439-12 doi: 10.2298/TSCI160111018A – ident: key-10.3934/math.2022439-6 doi: 10.1016/j.camwa.2011.09.023 – ident: key-10.3934/math.2022439-9 doi: 10.1016/j.aej.2021.01.054 – ident: key-10.3934/math.2022439-3 doi: 10.1007/s11071-015-2519-x – ident: key-10.3934/math.2022439-16 doi: 10.1140/epjp/i2018-12051-9 – ident: key-10.3934/math.2022439-24 doi: 10.1016/j.aej.2017.02.015 – ident: key-10.3934/math.2022439-1 – ident: key-10.3934/math.2022439-15 doi: 10.1016/j.chaos.2020.110233 – ident: key-10.3934/math.2022439-5 doi: 10.1186/s13662-015-0682-5 – ident: key-10.3934/math.2022439-10 doi: 10.11121/ijocta.01.2017.00368 – ident: key-10.3934/math.2022439-25 doi: 10.1155/2008/418971 – ident: key-10.3934/math.2022439-11 doi: 10.18576/pfda/020101 – ident: key-10.3934/math.2022439-21 doi: 10.3390/fractalfract4020021 – ident: key-10.3934/math.2022439-22 doi: 10.1002/num.22627 – ident: key-10.3934/math.2022439-4 doi: 10.9734/ARJOM/2016/29279 – ident: key-10.3934/math.2022439-2 doi: 10.1016/j.cnsns.2006.03.013 – ident: key-10.3934/math.2022439-17 doi: 10.1016/j.physa.2019.121085 – ident: key-10.3934/math.2022439-18 doi: 10.1186/s13662-018-1822-5 – ident: key-10.3934/math.2022439-7 doi: 10.1016/j.physleta.2018.11.040 – ident: key-10.3934/math.2022439-20 doi: 10.14456/WJST.2014.72 – ident: key-10.3934/math.2022439-13 doi: 10.1186/s13662-020-02943-z – ident: key-10.3934/math.2022439-14 doi: 10.1016/j.rinp.2020.103559 – ident: key-10.3934/math.2022439-23 doi: 10.1016/j.aml.2011.04.037 – ident: key-10.3934/math.2022439-19 doi: 10.1016/j.camwa.2009.07.006 |
SSID | ssj0002124274 |
Score | 2.3047855 |
Snippet | The focus of the current manuscript is to provide a theoretical and computational analysis of the new nonlinear time-fractional (2+1)-dimensional modified KdV... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 7847 |
SubjectTerms | atangana-baleanu fractional operator fixed point theory laplace adomian decomposition |
Title | Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative |
URI | https://doaj.org/article/9e4a8d41029b44368ad5644b430036a4 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwFIUt1AkGxFOUlzzAhKKS2PFjbCuqCtROFHULfiIkaEtJ-f1cxyHKglhYHSeyjhOfe5P4uwhdSZunjomwY1nrANX2idLGJT7NPee3mfTVDrnJlI1n9H6ez1ulvsI_YREPHIXrSUeVsBR8UGoacOnK5uDhmpKAUlEVCRQ8r5VMhTUYFmQK-Vb8051IQnsQ_4VvD-BYoS54y4NaqP7KU0Z7aLcOBnE_DmIfbbnFAdqZNCTVz0P0PI0sC7XGquaH4KXHCi-a9velffUQSeIH-4TdR2R347A5bI37EPu9wIl4AEagFhs8VKtNucRwrCpr9uWO0Gx09zgcJ3VVhMQQLsok99TDAsWMFt4SbkERqYjOtLPSOK5lxqV3LE0th2YmUiZZajTxxBCRKUWOUQeG6E4QZoZpeJ4NhxwNAjOhKGM256l3njgleRfd_OhUmBoZHipXvBWQOgRVi6BqUavaRddN71VEZfzSbxAkb_oEwHXVANNe1NNe_DXtp_9xkTO0HcYU36ico0653rgLiDFKfVndTt8aDc6X |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+analysis+of+a+nonlinear+modified+KdV+equation+under+Atangana+Baleanu+Caputo+derivative&rft.jtitle=AIMS+mathematics&rft.au=Gulalai&rft.au=Ahmad%2C+Shabir&rft.au=Rihan%2C+Fathalla+Ali&rft.au=Ullah%2C+Aman&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=5&rft.spage=7847&rft.epage=7865&rft_id=info:doi/10.3934%2Fmath.2022439&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |