The principal-agent model in venture investment based on fairness preference

The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal circumstances, the capital invested by VC is often several times that of EN, which is one of the reasons for the profit gap between EN and VC. The...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 3; pp. 2171 - 2195
Main Authors Xu, Dongsheng, Liu, Qingqing, Jiang, Xin
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal circumstances, the capital invested by VC is often several times that of EN, which is one of the reasons for the profit gap between EN and VC. Therefore, when establishing a principal-agent model with fairness preferences, it is necessary to project the utility of VC to the level of EN and compare it with the utility of venture entrepreneurs, which will better reflect the profit gap between the two. On the basis of previous studies, this paper considers the amount of contribution of the participants, builds four principal-agent models to find the optimal distribution of income between the Venture Entrepreneur (EN) and the Venture Capital (VC) in a venture capital investment program, two without fairness preference and others with fairness preference. After the simulation we confirm that the fairness preference coefficient exerts a great impact on the distribution of income in both situations where information is symmetric and asymmetric, and a strong fairness preference will lead to a greater net profit gap between the EN and the VC. Thus, the EN should carefully choose the level of his efforts to realize the maximum return for him. In the case of information asymmetry, EN's optimal effort level decreases as the fairness preference coefficient increases.This will affect project revenue. And then affect the VC income.
AbstractList The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal circumstances, the capital invested by VC is often several times that of EN, which is one of the reasons for the profit gap between EN and VC. Therefore, when establishing a principal-agent model with fairness preferences, it is necessary to project the utility of VC to the level of EN and compare it with the utility of venture entrepreneurs, which will better reflect the profit gap between the two. On the basis of previous studies, this paper considers the amount of contribution of the participants, builds four principal-agent models to find the optimal distribution of income between the Venture Entrepreneur (EN) and the Venture Capital (VC) in a venture capital investment program, two without fairness preference and others with fairness preference. After the simulation we confirm that the fairness preference coefficient exerts a great impact on the distribution of income in both situations where information is symmetric and asymmetric, and a strong fairness preference will lead to a greater net profit gap between the EN and the VC. Thus, the EN should carefully choose the level of his efforts to realize the maximum return for him. In the case of information asymmetry, EN's optimal effort level decreases as the fairness preference coefficient increases.This will affect project revenue. And then affect the VC income.
Author Jiang, Xin
Xu, Dongsheng
Liu, Qingqing
Author_xml – sequence: 1
  givenname: Dongsheng
  surname: Xu
  fullname: Xu, Dongsheng
– sequence: 2
  givenname: Qingqing
  surname: Liu
  fullname: Liu, Qingqing
– sequence: 3
  givenname: Xin
  surname: Jiang
  fullname: Jiang, Xin
BookMark eNptkNtKAzEQhoNUsNbe-QD7AG7dHLa7eynFQ6HgTe_DbDJpU7ZJSWLBtze1RUS8mtM_HzP_LRk575CQe1rNeMfF4x7SdsYqRilnV2TMRMPLede2o1_5DZnGuKuqrGKCNWJMVustFodgnbIHGErYoEvF3mscCuuKY64-Aub0iDHtT7MeIurCu8KADQ5jzNtoMKBTeEeuDQwRp5c4IeuX5_XirVy9vy4XT6tS8aZNZa16IbBuecNZDxWnihkl-t7QRs1VqwzT-bh5CwLqSoPRgJ3hlCrkjWaaT8jyjNUedjIfv4fwKT1Y-d3wYSMhJKsGlJloOtO0ivFaUCr6WvNM77iuFeWqyayHM0sFH2P-5IdHK3nyVZ58lRdfs5z9kSubIFnvUgA7_L_0BfnmfyA
CitedBy_id crossref_primary_10_1057_s41599_024_03703_0
crossref_primary_10_3390_systems11090477
crossref_primary_10_1108_ECAM_02_2022_0107
crossref_primary_10_3390_su16177542
Cites_doi 10.1016/j.ejor.2015.10.051
10.1109/ICAL.2007.4338718
10.1111/1540-6261.00597
10.2307/2696354
10.1049/ep.1985.0356
10.1007/s11187-008-9158-2
10.1111/1468-0297.01399
10.1109/MC.2014.230
10.1109/KESE.2009.49
10.1016/S0929-1199(02)00045-7
10.1109/CDEE.2010.79
10.1016/S0378-4266(98)00017-X
10.1023/B:EUFI.0000022158.96140.f8
10.1257/jep.5.2.45
10.1111/j.1540-6261.1993.tb05123.x
10.1109/ICMSS.2010.5575329
10.2307/1912246
10.2307/2297391
10.1016/j.qref.2009.09.005
10.1016/j.jbusvent.2006.05.001
10.1109/APCCAS.2006.342068
10.1016/0022-0531(90)90066-S
10.1111/j.1540-6261.1995.tb05185.x
10.1016/j.jcorpfin.2012.07.002
10.1162/003355399556151
10.1093/rfs/hhr096
10.1016/0304-405X(90)90065-8
10.1109/ICIII.2009.194
ContentType Journal Article
CorporateAuthor School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China
CorporateAuthor_xml – name: School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021132
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 2195
ExternalDocumentID oai_doaj_org_article_17cf9f78c2354114b5d32d493d5c13c7
10_3934_math_2021132
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-5cb44e583732ba031c2fc4bbf17c6c8cf2d42768a4a50dafdae9f311ce37d2d3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Tue Jul 01 03:56:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-5cb44e583732ba031c2fc4bbf17c6c8cf2d42768a4a50dafdae9f311ce37d2d3
OpenAccessLink https://doaj.org/article/17cf9f78c2354114b5d32d493d5c13c7
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_17cf9f78c2354114b5d32d493d5c13c7
crossref_primary_10_3934_math_2021132
crossref_citationtrail_10_3934_math_2021132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021132-41
key-10.3934/math.2021132-42
key-10.3934/math.2021132-40
key-10.3934/math.2021132-45
key-10.3934/math.2021132-46
key-10.3934/math.2021132-43
key-10.3934/math.2021132-44
key-10.3934/math.2021132-49
key-10.3934/math.2021132-47
key-10.3934/math.2021132-48
key-10.3934/math.2021132-29
key-10.3934/math.2021132-30
key-10.3934/math.2021132-31
key-10.3934/math.2021132-34
key-10.3934/math.2021132-35
key-10.3934/math.2021132-32
key-10.3934/math.2021132-33
key-10.3934/math.2021132-38
key-10.3934/math.2021132-39
key-10.3934/math.2021132-36
key-10.3934/math.2021132-37
key-10.3934/math.2021132-18
key-10.3934/math.2021132-19
key-10.3934/math.2021132-20
key-10.3934/math.2021132-6
key-10.3934/math.2021132-23
key-10.3934/math.2021132-5
key-10.3934/math.2021132-24
key-10.3934/math.2021132-8
key-10.3934/math.2021132-21
key-10.3934/math.2021132-7
key-10.3934/math.2021132-22
key-10.3934/math.2021132-2
key-10.3934/math.2021132-27
key-10.3934/math.2021132-1
key-10.3934/math.2021132-28
key-10.3934/math.2021132-4
key-10.3934/math.2021132-25
key-10.3934/math.2021132-3
key-10.3934/math.2021132-26
key-10.3934/math.2021132-9
key-10.3934/math.2021132-50
key-10.3934/math.2021132-12
key-10.3934/math.2021132-13
key-10.3934/math.2021132-10
key-10.3934/math.2021132-11
key-10.3934/math.2021132-16
key-10.3934/math.2021132-17
key-10.3934/math.2021132-14
key-10.3934/math.2021132-15
References_xml – ident: key-10.3934/math.2021132-20
– ident: key-10.3934/math.2021132-24
– ident: key-10.3934/math.2021132-18
– ident: key-10.3934/math.2021132-36
  doi: 10.1016/j.ejor.2015.10.051
– ident: key-10.3934/math.2021132-43
– ident: key-10.3934/math.2021132-50
  doi: 10.1109/ICAL.2007.4338718
– ident: key-10.3934/math.2021132-14
– ident: key-10.3934/math.2021132-10
  doi: 10.1111/1540-6261.00597
– ident: key-10.3934/math.2021132-7
  doi: 10.2307/2696354
– ident: key-10.3934/math.2021132-1
  doi: 10.1049/ep.1985.0356
– ident: key-10.3934/math.2021132-40
  doi: 10.1007/s11187-008-9158-2
– ident: key-10.3934/math.2021132-47
  doi: 10.1111/1468-0297.01399
– ident: key-10.3934/math.2021132-8
  doi: 10.1109/MC.2014.230
– ident: key-10.3934/math.2021132-17
  doi: 10.1109/KESE.2009.49
– ident: key-10.3934/math.2021132-19
  doi: 10.1016/S0929-1199(02)00045-7
– ident: key-10.3934/math.2021132-48
– ident: key-10.3934/math.2021132-29
  doi: 10.1109/CDEE.2010.79
– ident: key-10.3934/math.2021132-44
– ident: key-10.3934/math.2021132-37
  doi: 10.1016/S0378-4266(98)00017-X
– ident: key-10.3934/math.2021132-4
  doi: 10.1023/B:EUFI.0000022158.96140.f8
– ident: key-10.3934/math.2021132-13
  doi: 10.1257/jep.5.2.45
– ident: key-10.3934/math.2021132-28
– ident: key-10.3934/math.2021132-3
– ident: key-10.3934/math.2021132-34
  doi: 10.1111/j.1540-6261.1993.tb05123.x
– ident: key-10.3934/math.2021132-45
– ident: key-10.3934/math.2021132-22
– ident: key-10.3934/math.2021132-42
  doi: 10.1109/ICMSS.2010.5575329
– ident: key-10.3934/math.2021132-41
– ident: key-10.3934/math.2021132-49
  doi: 10.2307/1912246
– ident: key-10.3934/math.2021132-38
  doi: 10.2307/2297391
– ident: key-10.3934/math.2021132-12
– ident: key-10.3934/math.2021132-35
  doi: 10.1016/j.qref.2009.09.005
– ident: key-10.3934/math.2021132-16
  doi: 10.1016/j.jbusvent.2006.05.001
– ident: key-10.3934/math.2021132-27
  doi: 10.1109/APCCAS.2006.342068
– ident: key-10.3934/math.2021132-33
  doi: 10.1016/0022-0531(90)90066-S
– ident: key-10.3934/math.2021132-2
  doi: 10.1111/j.1540-6261.1995.tb05185.x
– ident: key-10.3934/math.2021132-31
– ident: key-10.3934/math.2021132-23
  doi: 10.1016/j.jcorpfin.2012.07.002
– ident: key-10.3934/math.2021132-39
– ident: key-10.3934/math.2021132-9
– ident: key-10.3934/math.2021132-21
– ident: key-10.3934/math.2021132-25
  doi: 10.1162/003355399556151
– ident: key-10.3934/math.2021132-46
– ident: key-10.3934/math.2021132-6
  doi: 10.1093/rfs/hhr096
– ident: key-10.3934/math.2021132-32
  doi: 10.1016/0304-405X(90)90065-8
– ident: key-10.3934/math.2021132-15
– ident: key-10.3934/math.2021132-11
– ident: key-10.3934/math.2021132-30
  doi: 10.1109/ICIII.2009.194
– ident: key-10.3934/math.2021132-26
– ident: key-10.3934/math.2021132-5
SSID ssj0002124274
Score 2.1940563
Snippet The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 2171
SubjectTerms fairness preference
principal-agent model
venture capital
Title The principal-agent model in venture investment based on fairness preference
URI https://doaj.org/article/17cf9f78c2354114b5d32d493d5c13c7
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOehJwrZ5bJujissirqcV9laSSQLC0l109fc703aX9SBevJWSlvBNO9_MJPmGsWuMamUIGem2ghU6GCVKp50gagAbgskcFfTHL4PRq36amulGqy_aE9bKA7fA9fMCkk1FCVIZjcG7N0HJoK0KBnIFzTly5LyNZIp8MDpkjflWu9NdWaX7GP_R2oOkzuo_OGhDqr_hlOE-2-uCQX7XTuKAbcX6kO2O10qqH0fsGe3IF21F3M2Eo5NQvGlfw99q_tVQRsRLUsugQh8nWgp8XnNaqSE_hk-vxGSP2WT4OHkYia4DggBVlEthwGsdDSaRSnqH_x_IBNr7hKgMoISESEhMGBBdkwWXgos2qTyHqIoggzph2_W8jqeMq6LwmMtlHgMwjSZxCfOWzKF3iRaQwnvsdgVJBZ06ODWpmFWYJRCAFQFYdQD22M169KJVxfhl3D2hux5DWtbNDbRw1Vm4-svCZ__xknO2Q3NqiycXbHv5_hkvMZxY-qvmy_kGdmTH0g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+principal-agent+model+in+venture+investment+based+on+fairness+preference&rft.jtitle=AIMS+mathematics&rft.au=Dongsheng+Xu&rft.au=Qingqing+Liu&rft.au=Xin+Jiang&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=3&rft.spage=2171&rft.epage=2195&rft_id=info:doi/10.3934%2Fmath.2021132&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_17cf9f78c2354114b5d32d493d5c13c7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon