The principal-agent model in venture investment based on fairness preference
The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal circumstances, the capital invested by VC is often several times that of EN, which is one of the reasons for the profit gap between EN and VC. The...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 3; pp. 2171 - 2195 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal circumstances, the capital invested by VC is often several times that of EN, which is one of the reasons for the profit gap between EN and VC. Therefore, when establishing a principal-agent model with fairness preferences, it is necessary to project the utility of VC to the level of EN and compare it with the utility of venture entrepreneurs, which will better reflect the profit gap between the two. On the basis of previous studies, this paper considers the amount of contribution of the participants, builds four principal-agent models to find the optimal distribution of income between the Venture Entrepreneur (EN) and the Venture Capital (VC) in a venture capital investment program, two without fairness preference and others with fairness preference. After the simulation we confirm that the fairness preference coefficient exerts a great impact on the distribution of income in both situations where information is symmetric and asymmetric, and a strong fairness preference will lead to a greater net profit gap between the EN and the VC. Thus, the EN should carefully choose the level of his efforts to realize the maximum return for him. In the case of information asymmetry, EN's optimal effort level decreases as the fairness preference coefficient increases.This will affect project revenue. And then affect the VC income. |
---|---|
AbstractList | The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal circumstances, the capital invested by VC is often several times that of EN, which is one of the reasons for the profit gap between EN and VC. Therefore, when establishing a principal-agent model with fairness preferences, it is necessary to project the utility of VC to the level of EN and compare it with the utility of venture entrepreneurs, which will better reflect the profit gap between the two. On the basis of previous studies, this paper considers the amount of contribution of the participants, builds four principal-agent models to find the optimal distribution of income between the Venture Entrepreneur (EN) and the Venture Capital (VC) in a venture capital investment program, two without fairness preference and others with fairness preference. After the simulation we confirm that the fairness preference coefficient exerts a great impact on the distribution of income in both situations where information is symmetric and asymmetric, and a strong fairness preference will lead to a greater net profit gap between the EN and the VC. Thus, the EN should carefully choose the level of his efforts to realize the maximum return for him. In the case of information asymmetry, EN's optimal effort level decreases as the fairness preference coefficient increases.This will affect project revenue. And then affect the VC income. |
Author | Jiang, Xin Xu, Dongsheng Liu, Qingqing |
Author_xml | – sequence: 1 givenname: Dongsheng surname: Xu fullname: Xu, Dongsheng – sequence: 2 givenname: Qingqing surname: Liu fullname: Liu, Qingqing – sequence: 3 givenname: Xin surname: Jiang fullname: Jiang, Xin |
BookMark | eNptkNtKAzEQhoNUsNbe-QD7AG7dHLa7eynFQ6HgTe_DbDJpU7ZJSWLBtze1RUS8mtM_HzP_LRk575CQe1rNeMfF4x7SdsYqRilnV2TMRMPLede2o1_5DZnGuKuqrGKCNWJMVustFodgnbIHGErYoEvF3mscCuuKY64-Aub0iDHtT7MeIurCu8KADQ5jzNtoMKBTeEeuDQwRp5c4IeuX5_XirVy9vy4XT6tS8aZNZa16IbBuecNZDxWnihkl-t7QRs1VqwzT-bh5CwLqSoPRgJ3hlCrkjWaaT8jyjNUedjIfv4fwKT1Y-d3wYSMhJKsGlJloOtO0ivFaUCr6WvNM77iuFeWqyayHM0sFH2P-5IdHK3nyVZ58lRdfs5z9kSubIFnvUgA7_L_0BfnmfyA |
CitedBy_id | crossref_primary_10_1057_s41599_024_03703_0 crossref_primary_10_3390_systems11090477 crossref_primary_10_1108_ECAM_02_2022_0107 crossref_primary_10_3390_su16177542 |
Cites_doi | 10.1016/j.ejor.2015.10.051 10.1109/ICAL.2007.4338718 10.1111/1540-6261.00597 10.2307/2696354 10.1049/ep.1985.0356 10.1007/s11187-008-9158-2 10.1111/1468-0297.01399 10.1109/MC.2014.230 10.1109/KESE.2009.49 10.1016/S0929-1199(02)00045-7 10.1109/CDEE.2010.79 10.1016/S0378-4266(98)00017-X 10.1023/B:EUFI.0000022158.96140.f8 10.1257/jep.5.2.45 10.1111/j.1540-6261.1993.tb05123.x 10.1109/ICMSS.2010.5575329 10.2307/1912246 10.2307/2297391 10.1016/j.qref.2009.09.005 10.1016/j.jbusvent.2006.05.001 10.1109/APCCAS.2006.342068 10.1016/0022-0531(90)90066-S 10.1111/j.1540-6261.1995.tb05185.x 10.1016/j.jcorpfin.2012.07.002 10.1162/003355399556151 10.1093/rfs/hhr096 10.1016/0304-405X(90)90065-8 10.1109/ICIII.2009.194 |
ContentType | Journal Article |
CorporateAuthor | School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China |
CorporateAuthor_xml | – name: School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021132 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 2195 |
ExternalDocumentID | oai_doaj_org_article_17cf9f78c2354114b5d32d493d5c13c7 10_3934_math_2021132 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-5cb44e583732ba031c2fc4bbf17c6c8cf2d42768a4a50dafdae9f311ce37d2d3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Tue Jul 01 03:56:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-5cb44e583732ba031c2fc4bbf17c6c8cf2d42768a4a50dafdae9f311ce37d2d3 |
OpenAccessLink | https://doaj.org/article/17cf9f78c2354114b5d32d493d5c13c7 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17cf9f78c2354114b5d32d493d5c13c7 crossref_primary_10_3934_math_2021132 crossref_citationtrail_10_3934_math_2021132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021132-41 key-10.3934/math.2021132-42 key-10.3934/math.2021132-40 key-10.3934/math.2021132-45 key-10.3934/math.2021132-46 key-10.3934/math.2021132-43 key-10.3934/math.2021132-44 key-10.3934/math.2021132-49 key-10.3934/math.2021132-47 key-10.3934/math.2021132-48 key-10.3934/math.2021132-29 key-10.3934/math.2021132-30 key-10.3934/math.2021132-31 key-10.3934/math.2021132-34 key-10.3934/math.2021132-35 key-10.3934/math.2021132-32 key-10.3934/math.2021132-33 key-10.3934/math.2021132-38 key-10.3934/math.2021132-39 key-10.3934/math.2021132-36 key-10.3934/math.2021132-37 key-10.3934/math.2021132-18 key-10.3934/math.2021132-19 key-10.3934/math.2021132-20 key-10.3934/math.2021132-6 key-10.3934/math.2021132-23 key-10.3934/math.2021132-5 key-10.3934/math.2021132-24 key-10.3934/math.2021132-8 key-10.3934/math.2021132-21 key-10.3934/math.2021132-7 key-10.3934/math.2021132-22 key-10.3934/math.2021132-2 key-10.3934/math.2021132-27 key-10.3934/math.2021132-1 key-10.3934/math.2021132-28 key-10.3934/math.2021132-4 key-10.3934/math.2021132-25 key-10.3934/math.2021132-3 key-10.3934/math.2021132-26 key-10.3934/math.2021132-9 key-10.3934/math.2021132-50 key-10.3934/math.2021132-12 key-10.3934/math.2021132-13 key-10.3934/math.2021132-10 key-10.3934/math.2021132-11 key-10.3934/math.2021132-16 key-10.3934/math.2021132-17 key-10.3934/math.2021132-14 key-10.3934/math.2021132-15 |
References_xml | – ident: key-10.3934/math.2021132-20 – ident: key-10.3934/math.2021132-24 – ident: key-10.3934/math.2021132-18 – ident: key-10.3934/math.2021132-36 doi: 10.1016/j.ejor.2015.10.051 – ident: key-10.3934/math.2021132-43 – ident: key-10.3934/math.2021132-50 doi: 10.1109/ICAL.2007.4338718 – ident: key-10.3934/math.2021132-14 – ident: key-10.3934/math.2021132-10 doi: 10.1111/1540-6261.00597 – ident: key-10.3934/math.2021132-7 doi: 10.2307/2696354 – ident: key-10.3934/math.2021132-1 doi: 10.1049/ep.1985.0356 – ident: key-10.3934/math.2021132-40 doi: 10.1007/s11187-008-9158-2 – ident: key-10.3934/math.2021132-47 doi: 10.1111/1468-0297.01399 – ident: key-10.3934/math.2021132-8 doi: 10.1109/MC.2014.230 – ident: key-10.3934/math.2021132-17 doi: 10.1109/KESE.2009.49 – ident: key-10.3934/math.2021132-19 doi: 10.1016/S0929-1199(02)00045-7 – ident: key-10.3934/math.2021132-48 – ident: key-10.3934/math.2021132-29 doi: 10.1109/CDEE.2010.79 – ident: key-10.3934/math.2021132-44 – ident: key-10.3934/math.2021132-37 doi: 10.1016/S0378-4266(98)00017-X – ident: key-10.3934/math.2021132-4 doi: 10.1023/B:EUFI.0000022158.96140.f8 – ident: key-10.3934/math.2021132-13 doi: 10.1257/jep.5.2.45 – ident: key-10.3934/math.2021132-28 – ident: key-10.3934/math.2021132-3 – ident: key-10.3934/math.2021132-34 doi: 10.1111/j.1540-6261.1993.tb05123.x – ident: key-10.3934/math.2021132-45 – ident: key-10.3934/math.2021132-22 – ident: key-10.3934/math.2021132-42 doi: 10.1109/ICMSS.2010.5575329 – ident: key-10.3934/math.2021132-41 – ident: key-10.3934/math.2021132-49 doi: 10.2307/1912246 – ident: key-10.3934/math.2021132-38 doi: 10.2307/2297391 – ident: key-10.3934/math.2021132-12 – ident: key-10.3934/math.2021132-35 doi: 10.1016/j.qref.2009.09.005 – ident: key-10.3934/math.2021132-16 doi: 10.1016/j.jbusvent.2006.05.001 – ident: key-10.3934/math.2021132-27 doi: 10.1109/APCCAS.2006.342068 – ident: key-10.3934/math.2021132-33 doi: 10.1016/0022-0531(90)90066-S – ident: key-10.3934/math.2021132-2 doi: 10.1111/j.1540-6261.1995.tb05185.x – ident: key-10.3934/math.2021132-31 – ident: key-10.3934/math.2021132-23 doi: 10.1016/j.jcorpfin.2012.07.002 – ident: key-10.3934/math.2021132-39 – ident: key-10.3934/math.2021132-9 – ident: key-10.3934/math.2021132-21 – ident: key-10.3934/math.2021132-25 doi: 10.1162/003355399556151 – ident: key-10.3934/math.2021132-46 – ident: key-10.3934/math.2021132-6 doi: 10.1093/rfs/hhr096 – ident: key-10.3934/math.2021132-32 doi: 10.1016/0304-405X(90)90065-8 – ident: key-10.3934/math.2021132-15 – ident: key-10.3934/math.2021132-11 – ident: key-10.3934/math.2021132-30 doi: 10.1109/ICIII.2009.194 – ident: key-10.3934/math.2021132-26 – ident: key-10.3934/math.2021132-5 |
SSID | ssj0002124274 |
Score | 2.1940563 |
Snippet | The fairness preference in the principal-agent relationship is a vital factor that can even determine the success or failure of one program. Under normal... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 2171 |
SubjectTerms | fairness preference principal-agent model venture capital |
Title | The principal-agent model in venture investment based on fairness preference |
URI | https://doaj.org/article/17cf9f78c2354114b5d32d493d5c13c7 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOehJwrZ5bJujissirqcV9laSSQLC0l109fc703aX9SBevJWSlvBNO9_MJPmGsWuMamUIGem2ghU6GCVKp50gagAbgskcFfTHL4PRq36amulGqy_aE9bKA7fA9fMCkk1FCVIZjcG7N0HJoK0KBnIFzTly5LyNZIp8MDpkjflWu9NdWaX7GP_R2oOkzuo_OGhDqr_hlOE-2-uCQX7XTuKAbcX6kO2O10qqH0fsGe3IF21F3M2Eo5NQvGlfw99q_tVQRsRLUsugQh8nWgp8XnNaqSE_hk-vxGSP2WT4OHkYia4DggBVlEthwGsdDSaRSnqH_x_IBNr7hKgMoISESEhMGBBdkwWXgos2qTyHqIoggzph2_W8jqeMq6LwmMtlHgMwjSZxCfOWzKF3iRaQwnvsdgVJBZ06ODWpmFWYJRCAFQFYdQD22M169KJVxfhl3D2hux5DWtbNDbRw1Vm4-svCZ__xknO2Q3NqiycXbHv5_hkvMZxY-qvmy_kGdmTH0g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+principal-agent+model+in+venture+investment+based+on+fairness+preference&rft.jtitle=AIMS+mathematics&rft.au=Dongsheng+Xu&rft.au=Qingqing+Liu&rft.au=Xin+Jiang&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=3&rft.spage=2171&rft.epage=2195&rft_id=info:doi/10.3934%2Fmath.2021132&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_17cf9f78c2354114b5d32d493d5c13c7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |