Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy

Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within pla...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 6; no. 8; pp. 258 - 2519
Main Authors Spielman-Sun, Eleanor, Avellan, Astrid, Bland, Garret D, Tappero, Ryan V, Acerbo, Alvin S, Unrine, Jason M, Giraldo, Juan Pablo, Lowry, Gregory V
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 08.08.2019
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO 2 NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO 2 NP interactions with roots for all plant species. Positively charged CeO 2 NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants. Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge.
AbstractList Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO 2 NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO 2 NP interactions with roots for all plant species. Positively charged CeO 2 NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants. Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge.
Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge.
Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO 2 NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO 2 NP interactions with roots for all plant species. Positively charged CeO 2 NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants.
Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO2 NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO2 NP interactions with roots for all plant species. Positively charged CeO2 NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants.
Author Avellan, Astrid
Bland, Garret D
Lowry, Gregory V
Unrine, Jason M
Giraldo, Juan Pablo
Acerbo, Alvin S
Spielman-Sun, Eleanor
Tappero, Ryan V
AuthorAffiliation Civil and Environmental Engineering
Carnegie Mellon University
National Synchrotron Light Source II
University of Kentucky
Department of Plant and Soil Sciences
University of California
Department of Botany and Plant Sciences
Center for Advanced Radiation Sources University of Chicago
Brookhaven National Laboratory
AuthorAffiliation_xml – sequence: 0
  name: Department of Plant and Soil Sciences
– sequence: 0
  name: University of Kentucky
– sequence: 0
  name: University of California
– sequence: 0
  name: Center for Advanced Radiation Sources University of Chicago
– sequence: 0
  name: Carnegie Mellon University
– sequence: 0
  name: Brookhaven National Laboratory
– sequence: 0
  name: National Synchrotron Light Source II
– sequence: 0
  name: Civil and Environmental Engineering
– sequence: 0
  name: Department of Botany and Plant Sciences
Author_xml – sequence: 1
  givenname: Eleanor
  surname: Spielman-Sun
  fullname: Spielman-Sun, Eleanor
– sequence: 2
  givenname: Astrid
  surname: Avellan
  fullname: Avellan, Astrid
– sequence: 3
  givenname: Garret D
  surname: Bland
  fullname: Bland, Garret D
– sequence: 4
  givenname: Ryan V
  surname: Tappero
  fullname: Tappero, Ryan V
– sequence: 5
  givenname: Alvin S
  surname: Acerbo
  fullname: Acerbo, Alvin S
– sequence: 6
  givenname: Jason M
  surname: Unrine
  fullname: Unrine, Jason M
– sequence: 7
  givenname: Juan Pablo
  surname: Giraldo
  fullname: Giraldo, Juan Pablo
– sequence: 8
  givenname: Gregory V
  surname: Lowry
  fullname: Lowry, Gregory V
BackLink https://ut3-toulouseinp.hal.science/hal-03707346$$DView record in HAL
https://www.osti.gov/biblio/1542518$$D View this record in Osti.gov
BookMark eNptkUGLFDEQhRtZwXXdi3ch6ElhNOl0ks5xGUZXGNaLnkN1unonSzYZk_TI_nsz0zKCeKpQfO9Vpd7L5iLEgE3zmtGPjHL9yWoMlMpW4rPmsqWCrXom2cX5LfiL5jrnB0opY63gUl02hzsIcQ-pOOuR5DlNYJHYHaR7JC5MfsZgMZOSIGQfLRQXA4EwEo8wkdHlktwwn7oukANkO3tIZO8hlEx-ubIjNoYqz8WF-6qEEh-fXjXPJ_AZr__Uq-bH58339e1q--3L1_XNdmW56stKiJGNqKeBThY58EF0bEDZaa3lhIoLqnvkI2gKVFilrNLYcSYHLXquWuBXzdvFN9bxJltX0O7qPgFtMUx0rWB9hd4v0A682Sf3COnJRHDm9mZrjj3KFVW8kwdW2XcLu0_x54y5mIc4p1D_YNpWat5pSY_Uh4WyKeaccDrbMmqOWZm13tydstpUmP4D1zVPd65Xc_7_kjeLJGV7tv4bP_8NbZKi7Q
CitedBy_id crossref_primary_10_3390_agronomy11061086
crossref_primary_10_1016_j_jclepro_2023_137232
crossref_primary_10_1016_j_plaphy_2021_01_039
crossref_primary_10_1021_acsagscitech_2c00160
crossref_primary_10_1016_j_envint_2024_108859
crossref_primary_10_1111_brv_12928
crossref_primary_10_3390_nano10122534
crossref_primary_10_1016_j_ecoenv_2020_111220
crossref_primary_10_1016_j_envpol_2021_118296
crossref_primary_10_1021_acs_est_3c09757
crossref_primary_10_3390_plants10020335
crossref_primary_10_1021_acs_est_3c01154
crossref_primary_10_3389_fpls_2023_1158031
crossref_primary_10_1016_j_impact_2021_100311
crossref_primary_10_1186_s11671_021_03612_0
crossref_primary_10_1002_smll_202304588
crossref_primary_10_1360_TB_2022_0617
crossref_primary_10_1073_pnas_2414822121
crossref_primary_10_3389_fnano_2020_579954
crossref_primary_10_1021_acsnano_4c06282
crossref_primary_10_3390_nano13060974
crossref_primary_10_1021_acs_est_1c00178
crossref_primary_10_1021_acsnano_0c03140
crossref_primary_10_1016_j_cej_2024_151953
crossref_primary_10_1080_03235408_2022_2111247
crossref_primary_10_3390_coatings11020225
crossref_primary_10_1016_j_jece_2024_114748
crossref_primary_10_1021_acs_jafc_2c01601
crossref_primary_10_1039_D3NR02221H
crossref_primary_10_1021_acsami_1c11200
crossref_primary_10_1051_bioconf_202412201014
crossref_primary_10_1016_j_scitotenv_2023_168826
crossref_primary_10_1016_j_plana_2022_100003
crossref_primary_10_1016_j_nantod_2021_101078
crossref_primary_10_3390_plants14010017
crossref_primary_10_1038_s41565_024_01667_5
crossref_primary_10_3390_agronomy12071601
crossref_primary_10_1007_s11101_024_10022_4
crossref_primary_10_2174_2665980801999200607174608
crossref_primary_10_1007_s11356_023_28161_0
crossref_primary_10_1021_acs_jafc_4c07914
crossref_primary_10_1016_j_ecoenv_2024_116120
crossref_primary_10_1016_j_onano_2023_100198
crossref_primary_10_1134_S1021443724607882
crossref_primary_10_1016_j_sab_2022_106526
crossref_primary_10_1021_acsnano_9b09178
crossref_primary_10_3390_nano11020267
crossref_primary_10_1021_acs_est_0c08813
crossref_primary_10_1021_acsnano_4c05362
crossref_primary_10_1016_j_ecoenv_2022_113939
crossref_primary_10_1021_acs_est_1c08185
crossref_primary_10_1016_j_cj_2021_06_002
crossref_primary_10_1007_s42729_022_00760_9
crossref_primary_10_1021_acsagscitech_3c00469
crossref_primary_10_1016_j_plaphy_2023_01_017
crossref_primary_10_1039_D4NR01354A
crossref_primary_10_1021_acssensors_1c01159
crossref_primary_10_1016_j_scitotenv_2024_171433
crossref_primary_10_1016_j_impact_2022_100431
crossref_primary_10_1002_smll_202000705
crossref_primary_10_1016_j_ijbiomac_2024_137476
crossref_primary_10_3390_ijms241210356
crossref_primary_10_31857_S0015330324060021
crossref_primary_10_1111_pce_15115
crossref_primary_10_1002_EXP_20210002
crossref_primary_10_1016_j_xplc_2022_100346
Cites_doi 10.1021/jp109819u
10.1021/acs.est.7b01133
10.1021/acsnano.7b05723
10.1007/s00299-014-1624-5
10.1093/aob/mcm283
10.3109/17435390.2015.1048326
10.1021/es903891g
10.1071/EN10003
10.1021/acs.est.7b03363
10.1021/acs.est.5b02761
10.1021/es501425r
10.1039/C5SC00792E
10.1007/978-981-13-2224-2_8
10.1021/acs.est.6b05998
10.1107/S0909049505012719
10.1007/s004250000487
10.1016/j.plaphy.2016.04.024
10.1016/j.taap.2017.05.025
10.1021/acsnano.5b03091
10.1016/j.envpol.2017.02.019
10.1104/pp.18.00759
10.1021/acs.est.7b05816
10.1238/Physica.Topical.115a01011
10.1016/j.impact.2018.08.003
10.1039/b922024k
10.1021/acs.estlett.7b00359
10.1038/nmat3890
10.1080/10643389.2012.671750
10.1021/es3019397
10.1038/srep15613
10.1155/2014/327153
10.1021/nn302975u
10.1016/j.jece.2016.12.036
10.1021/nn303543n
10.1021/es5050562
10.1007/s11051-015-2907-7
10.1007/s10725-011-9649-z
10.1021/es404503c
10.1007/BF01373871
10.1021/acs.jafc.7b02004
10.1016/j.biomaterials.2011.05.073
10.1016/j.jhazmat.2016.04.043
10.1016/j.chemosphere.2009.10.050
10.1021/es2027295
10.1021/nl052024f
10.1021/acsnano.8b09781
10.1111/pce.12115
10.1016/j.scitotenv.2015.08.029
10.1002/aenm.201201014
10.1021/jf5052442
10.1021/nn100816s
10.1146/annurev-bioeng-071811-150124
10.1016/j.envpol.2016.09.060
10.1021/acs.est.7b00813
10.1111/j.1469-8137.1976.tb01464.x
10.1073/pnas.190334497
10.1021/es301977w
10.1016/j.plaphy.2016.04.017
10.1103/PhysRevB.69.125415
10.1039/C5MT00168D
10.1117/12.2272585
10.1186/1471-2229-9-45
10.1016/j.chemosphere.2012.12.025
10.1039/c1mt00049g
10.1021/acs.est.8b02111
10.1016/j.tplants.2016.04.005
10.1117/12.528651
10.1080/17458080.2016.1184766
10.1007/s11356-017-0501-5
10.1002/cplu.201402080
10.1007/s11051-014-2668-8
10.1021/es300955b
10.1039/C4MT00343H
10.3109/17435390.2013.855829
10.2147/IJN.S596
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
1XC
OTOTI
DOI 10.1039/c9en00626e
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2051-8161
EndPage 2519
ExternalDocumentID 1542518
oai_HAL_hal_03707346v1
10_1039_C9EN00626E
c9en00626e
GroupedDBID -JG
0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
1XC
AAGNR
ABGFH
OTOTI
ID FETCH-LOGICAL-c378t-55d1de9fb0fce3a3b541be649996fe735098e3da90a05c77c79e4316b958372a3
ISSN 2051-8153
IngestDate Fri May 19 00:40:07 EDT 2023
Sat Jun 21 06:30:19 EDT 2025
Mon Jun 30 12:08:21 EDT 2025
Tue Jul 01 02:35:36 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Tue Dec 17 20:59:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-55d1de9fb0fce3a3b541be649996fe735098e3da90a05c77c79e4316b958372a3
Notes 10.1039/c9en00626e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
SC0012704; FG02-92ER14244
ORCID 0000-0001-9879-7879
0000-0003-3012-5261
0000-0001-8599-008X
0000-0001-9626-2969
0000-0001-6081-4389
0000-0002-8400-8944
0000-0002-3560-2461
0000000284008944
0000000235602461
0000000330125261
000000018599008X
0000000198797879
0000000196262969
0000000160814389
OpenAccessLink https://www.osti.gov/biblio/1670663
PQID 2269349601
PQPubID 2047519
PageCount 12
ParticipantIDs crossref_primary_10_1039_C9EN00626E
rsc_primary_c9en00626e
crossref_citationtrail_10_1039_C9EN00626E
osti_scitechconnect_1542518
proquest_journals_2269349601
hal_primary_oai_HAL_hal_03707346v1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190808
PublicationDateYYYYMMDD 2019-08-08
PublicationDate_xml – month: 8
  year: 2019
  text: 20190808
  day: 8
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United Kingdom
PublicationTitle Environmental science. Nano
PublicationYear 2019
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Li (C9EN00626E-(cit23)/*[position()=1]) 2018; 6
Ravel (C9EN00626E-(cit55)/*[position()=1]) 2005; 12
Ma (C9EN00626E-(cit69)/*[position()=1]) 2017; 51
Zhao (C9EN00626E-(cit5)/*[position()=1]) 2017; 66
Yan (C9EN00626E-(cit57)/*[position()=1]) 2017
Zhang (C9EN00626E-(cit37)/*[position()=1]) 2017; 5
Avellan (C9EN00626E-(cit38)/*[position()=1]) 2017; 51
Wang (C9EN00626E-(cit60)/*[position()=1]) 2014; 48
Lv (C9EN00626E-(cit76)/*[position()=1]) 2015; 2
Servin (C9EN00626E-(cit2)/*[position()=1]) 2015; 17
Cao (C9EN00626E-(cit64)/*[position()=1]) 2018; 25
Cao (C9EN00626E-(cit47)/*[position()=1]) 2017; 4
Sun (C9EN00626E-(cit32)/*[position()=1]) 2014; 33
Koo (C9EN00626E-(cit82)/*[position()=1]) 2015; 49
Ma (C9EN00626E-(cit30)/*[position()=1]) 2010; 78
Byott (C9EN00626E-(cit81)/*[position()=1]) 1976; 76
Conway (C9EN00626E-(cit45)/*[position()=1]) 2015; 9
Newville (C9EN00626E-(cit58)/*[position()=1]) 2013; 430
Li (C9EN00626E-(cit25)/*[position()=1]) 2016; 314
Zhang (C9EN00626E-(cit71)/*[position()=1]) 2017; 4
Crooke (C9EN00626E-(cit63)/*[position()=1]) 1964; 21
Gutierrez-Alcala (C9EN00626E-(cit84)/*[position()=1]) 2000; 97
Servin (C9EN00626E-(cit87)/*[position()=1]) 2012; 46
Hong (C9EN00626E-(cit17)/*[position()=1]) 2016; 563–564
Corredor (C9EN00626E-(cit86)/*[position()=1]) 2009; 9
Gao (C9EN00626E-(cit11)/*[position()=1]) 2018; 52
Ma (C9EN00626E-(cit78)/*[position()=1]) 2015; 49
Arora (C9EN00626E-(cit15)/*[position()=1]) 2012; 66
Spielman-Sun (C9EN00626E-(cit22)/*[position()=1]) 2017; 51
Lowry (C9EN00626E-(cit59)/*[position()=1]) 2016; 3
Tarnuzzer (C9EN00626E-(cit40)/*[position()=1]) 2005; 5
Zhang (C9EN00626E-(cit68)/*[position()=1]) 2015; 9
Pirmohamed (C9EN00626E-(cit41)/*[position()=1]) 2010; 46
Zhang (C9EN00626E-(cit70)/*[position()=1]) 2012; 6
Choi (C9EN00626E-(cit85)/*[position()=1]) 2001; 213
Zhao (C9EN00626E-(cit46)/*[position()=1]) 2012; 6
Zhang (C9EN00626E-(cit83)/*[position()=1]) 2011; 3
Elmer (C9EN00626E-(cit19)/*[position()=1]) 2016; 3
Zhang (C9EN00626E-(cit35)/*[position()=1]) 2015; 63
Kah (C9EN00626E-(cit3)/*[position()=1]) 2013; 43
Mirecki (C9EN00626E-(cit62)/*[position()=1]) 2015; 24
De Jong (C9EN00626E-(cit9)/*[position()=1]) 2008; 3
Feng (C9EN00626E-(cit66)/*[position()=1]) 2015; 6
Rodrigues (C9EN00626E-(cit1)/*[position()=1]) 2017; 7
Schwabe (C9EN00626E-(cit75)/*[position()=1]) 2014; 16
Kopittke (C9EN00626E-(cit80)/*[position()=1]) 2018; 178
Gui (C9EN00626E-(cit49)/*[position()=1]) 2015; 10
Lopez-Moreno (C9EN00626E-(cit61)/*[position()=1]) 2010; 44
Asati (C9EN00626E-(cit67)/*[position()=1]) 2010; 4
Rossi (C9EN00626E-(cit36)/*[position()=1]) 2017; 51
Zhu (C9EN00626E-(cit24)/*[position()=1]) 2012; 46
Rossi (C9EN00626E-(cit18)/*[position()=1]) 2016; 219
Graham (C9EN00626E-(cit56)/*[position()=1]) 2014; 79
Loriaux (C9EN00626E-(cit65)/*[position()=1]) 2013; 36
Barrios (C9EN00626E-(cit48)/*[position()=1]) 2016; 110
Judy (C9EN00626E-(cit29)/*[position()=1]) 2012; 46
Bandyopadhyay (C9EN00626E-(cit21)/*[position()=1]) 2014; 2014
Wang (C9EN00626E-(cit31)/*[position()=1]) 2017; 4
Spielman-Sun (C9EN00626E-(cit12)/*[position()=1]) 2018; 52
Zhang (C9EN00626E-(cit77)/*[position()=1]) 2012; 46
Schwab (C9EN00626E-(cit7)/*[position()=1]) 2015; 10
Wu (C9EN00626E-(cit43)/*[position()=1]) 2017; 11
Singh (C9EN00626E-(cit74)/*[position()=1]) 2011; 32
Xue (C9EN00626E-(cit39)/*[position()=1]) 2011; 115
Pulido-Reyes (C9EN00626E-(cit50)/*[position()=1]) 2015; 5
C9EN00626E-(cit53)/*[position()=1]
Ponmurugan (C9EN00626E-(cit20)/*[position()=1]) 2016; 11
Schwabe (C9EN00626E-(cit34)/*[position()=1]) 2015; 7
Avellan (C9EN00626E-(cit6)/*[position()=1]) 2019; 13
Collin (C9EN00626E-(cit51)/*[position()=1]) 2014; 48
Boghossian (C9EN00626E-(cit42)/*[position()=1]) 2013; 3
Wu (C9EN00626E-(cit44)/*[position()=1]) 2018; 5
Zhang (C9EN00626E-(cit52)/*[position()=1]) 2019; 6
Iavicoli (C9EN00626E-(cit13)/*[position()=1]) 2017; 329
Raliya (C9EN00626E-(cit16)/*[position()=1]) 2015; 7
González-Melendi (C9EN00626E-(cit10)/*[position()=1]) 2008; 101
Baalousha (C9EN00626E-(cit72)/*[position()=1]) 2010; 7
Rico (C9EN00626E-(cit28)/*[position()=1]) 2018; 11
Giraldo (C9EN00626E-(cit14)/*[position()=1]) 2014; 13
Wang (C9EN00626E-(cit79)/*[position()=1]) 2017; 224
Du (C9EN00626E-(cit8)/*[position()=1]) 2017; 110
Albanese (C9EN00626E-(cit26)/*[position()=1]) 2012; 14
Wu (C9EN00626E-(cit73)/*[position()=1]) 2004; 69
Wang (C9EN00626E-(cit4)/*[position()=1]) 2016; 21
Lew (C9EN00626E-(cit27)/*[position()=1]) 2018; 14
Schwabe (C9EN00626E-(cit33)/*[position()=1]) 2013; 91
Webb (C9EN00626E-(cit54)/*[position()=1]) 2005; T115
References_xml – issn: 2017
  end-page: 30
  publication-title: X-Ray Nanoimaging Instruments Methods III
  doi: Yan Xu Yu Heroux Lee Li Campbell Chu
– publication-title: United States Environmental Protection Agency, Method 3050B - Acid digestion of sediments, sludges, and soils, Method 3050B
– volume: 115
  start-page: 4433
  year: 2011
  ident: C9EN00626E-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109819u
– volume: 51
  start-page: 8682
  year: 2017
  ident: C9EN00626E-(cit38)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01133
– volume: 2
  start-page: 68
  year: 2015
  ident: C9EN00626E-(cit76)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 11
  start-page: 11283
  year: 2017
  ident: C9EN00626E-(cit43)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05723
– volume: 33
  start-page: 1389
  year: 2014
  ident: C9EN00626E-(cit32)/*[position()=1]
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-014-1624-5
– volume: 101
  start-page: 187
  year: 2008
  ident: C9EN00626E-(cit10)/*[position()=1]
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm283
– volume: 10
  start-page: 257
  year: 2015
  ident: C9EN00626E-(cit7)/*[position()=1]
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2015.1048326
– volume: 44
  start-page: 7315
  year: 2010
  ident: C9EN00626E-(cit61)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903891g
– volume: 3
  start-page: 953
  year: 2016
  ident: C9EN00626E-(cit59)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 7
  start-page: 377
  year: 2010
  ident: C9EN00626E-(cit72)/*[position()=1]
  publication-title: Environ. Chem.
  doi: 10.1071/EN10003
– volume: 51
  start-page: 12815
  year: 2017
  ident: C9EN00626E-(cit36)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03363
– volume: 49
  start-page: 10667
  year: 2015
  ident: C9EN00626E-(cit78)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b02761
– volume: 48
  start-page: 6754
  year: 2014
  ident: C9EN00626E-(cit60)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501425r
– volume: 6
  start-page: 5186
  year: 2015
  ident: C9EN00626E-(cit66)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00792E
– volume: 6
  start-page: 60
  year: 2019
  ident: C9EN00626E-(cit52)/*[position()=1]
  publication-title: Environ. Sci.: Nano
  doi: 10.1007/978-981-13-2224-2_8
– volume: 51
  start-page: 5215
  year: 2017
  ident: C9EN00626E-(cit69)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05998
– volume: 12
  start-page: 537
  year: 2005
  ident: C9EN00626E-(cit55)/*[position()=1]
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 213
  start-page: 45
  year: 2001
  ident: C9EN00626E-(cit85)/*[position()=1]
  publication-title: Planta
  doi: 10.1007/s004250000487
– volume: 110
  start-page: 210
  year: 2017
  ident: C9EN00626E-(cit8)/*[position()=1]
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.04.024
– volume: 329
  start-page: 96
  year: 2017
  ident: C9EN00626E-(cit13)/*[position()=1]
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2017.05.025
– volume: 5
  start-page: 1567
  year: 2018
  ident: C9EN00626E-(cit44)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 9
  start-page: 11737
  year: 2015
  ident: C9EN00626E-(cit45)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03091
– volume: 224
  start-page: 392
  year: 2017
  ident: C9EN00626E-(cit79)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.02.019
– volume: 178
  start-page: 507
  year: 2018
  ident: C9EN00626E-(cit80)/*[position()=1]
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00759
– volume: 52
  start-page: 2888
  year: 2018
  ident: C9EN00626E-(cit11)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05816
– volume: T115
  start-page: 1011
  year: 2005
  ident: C9EN00626E-(cit54)/*[position()=1]
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.115a01011
– volume: 11
  start-page: 156
  year: 2018
  ident: C9EN00626E-(cit28)/*[position()=1]
  publication-title: NanoImpact
  doi: 10.1016/j.impact.2018.08.003
– volume: 46
  start-page: 2736
  year: 2010
  ident: C9EN00626E-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b922024k
– volume: 4
  start-page: 380
  year: 2017
  ident: C9EN00626E-(cit71)/*[position()=1]
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.7b00359
– volume: 13
  start-page: 400
  year: 2014
  ident: C9EN00626E-(cit14)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3890
– volume: 43
  start-page: 1823
  year: 2013
  ident: C9EN00626E-(cit3)/*[position()=1]
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2012.671750
– volume: 46
  start-page: 8467
  year: 2012
  ident: C9EN00626E-(cit29)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3019397
– volume: 4
  start-page: 1086
  year: 2017
  ident: C9EN00626E-(cit47)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 5
  start-page: 15613
  year: 2015
  ident: C9EN00626E-(cit50)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep15613
– volume: 2014
  start-page: 1
  year: 2014
  ident: C9EN00626E-(cit21)/*[position()=1]
  publication-title: Int. J. Chem. Eng.
  doi: 10.1155/2014/327153
– volume: 6
  start-page: 9615
  year: 2012
  ident: C9EN00626E-(cit46)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn302975u
– volume: 5
  start-page: 572
  year: 2017
  ident: C9EN00626E-(cit37)/*[position()=1]
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.12.036
– volume: 6
  start-page: 9943
  year: 2012
  ident: C9EN00626E-(cit70)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn303543n
– volume: 49
  start-page: 626
  year: 2015
  ident: C9EN00626E-(cit82)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5050562
– volume: 17
  start-page: 92
  year: 2015
  ident: C9EN00626E-(cit2)/*[position()=1]
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-015-2907-7
– volume: 66
  start-page: 303
  year: 2012
  ident: C9EN00626E-(cit15)/*[position()=1]
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-011-9649-z
– volume: 48
  start-page: 1280
  year: 2014
  ident: C9EN00626E-(cit51)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404503c
– volume: 21
  start-page: 43
  year: 1964
  ident: C9EN00626E-(cit63)/*[position()=1]
  publication-title: Plant Soil
  doi: 10.1007/BF01373871
– volume: 66
  start-page: 6504
  year: 2017
  ident: C9EN00626E-(cit5)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b02004
– volume: 24
  start-page: 4212
  year: 2015
  ident: C9EN00626E-(cit62)/*[position()=1]
  publication-title: Fresenius Environ. Bull.
– volume: 32
  start-page: 6745
  year: 2011
  ident: C9EN00626E-(cit74)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.05.073
– volume: 314
  start-page: 188
  year: 2016
  ident: C9EN00626E-(cit25)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.04.043
– volume: 78
  start-page: 273
  year: 2010
  ident: C9EN00626E-(cit30)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.10.050
– volume: 46
  start-page: 1834
  year: 2012
  ident: C9EN00626E-(cit77)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2027295
– volume: 5
  start-page: 2573
  year: 2005
  ident: C9EN00626E-(cit40)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl052024f
– volume: 13
  start-page: 5291
  year: 2019
  ident: C9EN00626E-(cit6)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09781
– volume: 3
  start-page: 1072
  year: 2016
  ident: C9EN00626E-(cit19)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 36
  start-page: 1755
  year: 2013
  ident: C9EN00626E-(cit65)/*[position()=1]
  publication-title: Plant, Cell Environ.
  doi: 10.1111/pce.12115
– volume: 563–564
  start-page: 904
  year: 2016
  ident: C9EN00626E-(cit17)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.029
– volume: 3
  start-page: 881
  year: 2013
  ident: C9EN00626E-(cit42)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201201014
– volume: 63
  start-page: 382
  year: 2015
  ident: C9EN00626E-(cit35)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf5052442
– volume: 4
  start-page: 5321
  year: 2010
  ident: C9EN00626E-(cit67)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn100816s
– volume: 14
  start-page: 1
  year: 2012
  ident: C9EN00626E-(cit26)/*[position()=1]
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071811-150124
– volume: 219
  start-page: 28
  year: 2016
  ident: C9EN00626E-(cit18)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.09.060
– volume: 51
  start-page: 7361
  year: 2017
  ident: C9EN00626E-(cit22)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00813
– volume: 430
  start-page: 012007
  year: 2013
  ident: C9EN00626E-(cit58)/*[position()=1]
  publication-title: J. Phys.: Conf. Ser.
– volume: 76
  start-page: 295
  year: 1976
  ident: C9EN00626E-(cit81)/*[position()=1]
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1976.tb01464.x
– volume: 97
  start-page: 11108
  year: 2000
  ident: C9EN00626E-(cit84)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.190334497
– volume: 46
  start-page: 12391
  year: 2012
  ident: C9EN00626E-(cit24)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301977w
– volume: 7
  start-page: 899
  year: 2017
  ident: C9EN00626E-(cit1)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 110
  start-page: 100
  year: 2016
  ident: C9EN00626E-(cit48)/*[position()=1]
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.04.017
– volume: 69
  start-page: 125415
  year: 2004
  ident: C9EN00626E-(cit73)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.69.125415
– volume: 7
  start-page: 1584
  year: 2015
  ident: C9EN00626E-(cit16)/*[position()=1]
  publication-title: Metallomics
  doi: 10.1039/C5MT00168D
– volume: 14
  start-page: 1
  year: 2018
  ident: C9EN00626E-(cit27)/*[position()=1]
  publication-title: Small
– start-page: 30
  volume-title: X-Ray Nanoimaging Instruments Methods III
  year: 2017
  ident: C9EN00626E-(cit57)/*[position()=1]
  doi: 10.1117/12.2272585
– volume: 6
  start-page: 273
  year: 2018
  ident: C9EN00626E-(cit23)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 9
  start-page: 45
  year: 2009
  ident: C9EN00626E-(cit86)/*[position()=1]
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-9-45
– volume: 91
  start-page: 512
  year: 2013
  ident: C9EN00626E-(cit33)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.12.025
– volume: 4
  start-page: 448
  year: 2017
  ident: C9EN00626E-(cit31)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 3
  start-page: 816
  year: 2011
  ident: C9EN00626E-(cit83)/*[position()=1]
  publication-title: Metallomics
  doi: 10.1039/c1mt00049g
– volume: 52
  start-page: 9777
  year: 2018
  ident: C9EN00626E-(cit12)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02111
– volume: 21
  start-page: 699
  year: 2016
  ident: C9EN00626E-(cit4)/*[position()=1]
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.04.005
– volume-title: United States Environmental Protection Agency, Method 3050B - Acid digestion of sediments, sludges, and soils, Method 3050B
  ident: C9EN00626E-(cit53)/*[position()=1]
  doi: 10.1117/12.528651
– volume: 11
  start-page: 1019
  year: 2016
  ident: C9EN00626E-(cit20)/*[position()=1]
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2016.1184766
– volume: 25
  start-page: 930
  year: 2018
  ident: C9EN00626E-(cit64)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0501-5
– volume: 79
  start-page: 1083
  year: 2014
  ident: C9EN00626E-(cit56)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201402080
– volume: 16
  start-page: 2668
  year: 2014
  ident: C9EN00626E-(cit75)/*[position()=1]
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-014-2668-8
– volume: 46
  start-page: 7637
  year: 2012
  ident: C9EN00626E-(cit87)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300955b
– volume: 7
  start-page: 466
  year: 2015
  ident: C9EN00626E-(cit34)/*[position()=1]
  publication-title: Metallomics
  doi: 10.1039/C4MT00343H
– volume: 9
  start-page: 1
  year: 2015
  ident: C9EN00626E-(cit68)/*[position()=1]
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2013.855829
– volume: 3
  start-page: 133
  year: 2008
  ident: C9EN00626E-(cit9)/*[position()=1]
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S596
– volume: 10
  start-page: 1
  year: 2015
  ident: C9EN00626E-(cit49)/*[position()=1]
  publication-title: PLoS One
SSID ssj0001125367
Score 2.4718902
Snippet Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate...
Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge.
SourceID osti
hal
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 258
SubjectTerms Airspace
Cerium
Cerium oxides
Charge distribution
Corn
Distribution
Environmental Sciences
Flowers & plants
Fluorescence
Fluorescence microscopy
Hydroponics
Leaves
Mesophyll
Metals
Nanoparticles
Physicochemical processes
Physicochemical properties
Plant species
Plant structures
Plants
Roots
Shoots
Spatial distribution
Species
Surface charge
Tomatoes
Translocation
Uptake
Vegetables
X ray fluorescence analysis
X-ray fluorescence
Title Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy
URI https://www.proquest.com/docview/2269349601
https://ut3-toulouseinp.hal.science/hal-03707346
https://www.osti.gov/biblio/1542518
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXa7oULAsGKsguygAtCLmkd5-NYoUJBCxe6aG-RYzvi0E2rJq3E_oP918zEiZ1KRQIuUeW4SZR5GXvsN28IeZPjm-ehYFxrwUIVCJZzrRi4S1VoDRG0wWzkr9-i5XX45UbcDAb3PdbSvs4n6u5kXsn_WBXawK6YJfsPlnUXhQb4DfaFI1gYjn9lY3CNEPPa9nfVfldI-Eob7SOUAmmrj1RYBqKscNCqO-7x2sgC92ZcuStc9nCk1O1aurS3hsouq9rmMkKEfnu0D7zweXJddqUyE_TZm_6-_PpWluz73q71wM3LjeMEzw_Iv7JCBvg82i0QdJzLTw2b2FOTV3KL6uYNOH6Be_rRX7nAZCkUw_YObgYOgSVTKxY8Mf02K9DeeeioB8Sk722t6ns7cGMO7slBIeCoqapSU2LGaGT80OcIif7kkJzNIOIAl3k2X6w-X_kFO5gK8qYisXvuTu6Wp-_9BY4mOMOfSK8dbcBMRyHMcNfVl2nmMatH5GEbgNC5Rc1jMjDlE3LoI4m2SKIWSdQjiR4hiYJ9KCKJ9pEE3WmHJGqRRBFJtIck2iLpKbn-uFh9WLK2IgdTPE5qJoSeapMWeVAowyXPRTjNTdREzYWJOcw-E8O1TAMZCBXHKk4Nai3kqUh4PJP8nIzKTWmeEWpQHA78P0TUMMM0udSztAgLLrQxcA05Jm-715ipVq4eq6ass4Y2wdMM1d6aV74Yk9eu79aKtJzs9Qqs4TqgrvpyfpVhW8BjGOrC6DAdkws0VgYfDIooK2SbqTqDQAPglYzJZWfDrPUDVQYBTIplFwL48znY1d3BY-L5n05ckAf-y7gko3q3Ny9gllvnL1v8_QZID64V
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+surface+charge+influences+translocation+and+leaf+distribution+in+vascular+plants+with+contrasting+anatomy&rft.jtitle=Environmental+science.+Nano&rft.au=Spielman-Sun%2C+Eleanor&rft.au=Avellan%2C+Astrid&rft.au=Bland%2C+Garret+D&rft.au=Tappero%2C+Ryan+V&rft.date=2019-08-08&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=6&rft.issue=8&rft.spage=258&rft.epage=2519&rft_id=info:doi/10.1039%2Fc9en00626e&rft.externalDocID=c9en00626e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon