Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy
Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within pla...
Saved in:
Published in | Environmental science. Nano Vol. 6; no. 8; pp. 258 - 2519 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
08.08.2019
Royal Society of Chemistry (RSC) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO
2
NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO
2
NP interactions with roots for all plant species. Positively charged CeO
2
NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants.
Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge. |
---|---|
AbstractList | Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO
2
NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO
2
NP interactions with roots for all plant species. Positively charged CeO
2
NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants.
Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge. Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge. Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO 2 NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO 2 NP interactions with roots for all plant species. Positively charged CeO 2 NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants. Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate the influence of NP surface charge and differences in root structure and vasculature on cerium distribution and spatial distribution within plants, two monocotyledons (corn and rice) and two dicotyledons (tomato and lettuce) were exposed hydroponically to positively-charged, negatively-charged, and neutral ∼4 nm CeO2 NPs. Leaves were analyzed using synchrotron-based X-ray fluorescence microscopy to provide lateral Ce spatial distribution. Surface charge mediated CeO2 NP interactions with roots for all plant species. Positively charged CeO2 NPs associated to the roots more than the negatively charged NPs due to electrostatic attraction/repulsion to the negatively charged root surfaces, with the highest association for the tomato, likely due to higher root surface area. The positive NPs remained primarily adhered to the roots untransformed, while the neutral and negative NPs were more efficiently translocated from the roots to shoots. This translocation efficiency was highest for the tomato and lettuce compared to corn and rice. Across all plant species, the positive and neutral treatments resulted in the formation of Ce clusters outside of the main vasculature in the mesophyll, while the negative treatment resulted in Ce primarily in the main vasculature of the leaves. Comparing leaf vasculature, Ce was able to move much further outside of the main vasculature in the dicot plants than monocot plants, likely due to the larger airspace volume in dicot leaves compared to monocot leaves. These results provide valuable insight into the influence of plant structure and NP properties on metal transport and distribution of NPs in plants. |
Author | Avellan, Astrid Bland, Garret D Lowry, Gregory V Unrine, Jason M Giraldo, Juan Pablo Acerbo, Alvin S Spielman-Sun, Eleanor Tappero, Ryan V |
AuthorAffiliation | Civil and Environmental Engineering Carnegie Mellon University National Synchrotron Light Source II University of Kentucky Department of Plant and Soil Sciences University of California Department of Botany and Plant Sciences Center for Advanced Radiation Sources University of Chicago Brookhaven National Laboratory |
AuthorAffiliation_xml | – sequence: 0 name: Department of Plant and Soil Sciences – sequence: 0 name: University of Kentucky – sequence: 0 name: University of California – sequence: 0 name: Center for Advanced Radiation Sources University of Chicago – sequence: 0 name: Carnegie Mellon University – sequence: 0 name: Brookhaven National Laboratory – sequence: 0 name: National Synchrotron Light Source II – sequence: 0 name: Civil and Environmental Engineering – sequence: 0 name: Department of Botany and Plant Sciences |
Author_xml | – sequence: 1 givenname: Eleanor surname: Spielman-Sun fullname: Spielman-Sun, Eleanor – sequence: 2 givenname: Astrid surname: Avellan fullname: Avellan, Astrid – sequence: 3 givenname: Garret D surname: Bland fullname: Bland, Garret D – sequence: 4 givenname: Ryan V surname: Tappero fullname: Tappero, Ryan V – sequence: 5 givenname: Alvin S surname: Acerbo fullname: Acerbo, Alvin S – sequence: 6 givenname: Jason M surname: Unrine fullname: Unrine, Jason M – sequence: 7 givenname: Juan Pablo surname: Giraldo fullname: Giraldo, Juan Pablo – sequence: 8 givenname: Gregory V surname: Lowry fullname: Lowry, Gregory V |
BackLink | https://ut3-toulouseinp.hal.science/hal-03707346$$DView record in HAL https://www.osti.gov/biblio/1542518$$D View this record in Osti.gov |
BookMark | eNptkUGLFDEQhRtZwXXdi3ch6ElhNOl0ks5xGUZXGNaLnkN1unonSzYZk_TI_nsz0zKCeKpQfO9Vpd7L5iLEgE3zmtGPjHL9yWoMlMpW4rPmsqWCrXom2cX5LfiL5jrnB0opY63gUl02hzsIcQ-pOOuR5DlNYJHYHaR7JC5MfsZgMZOSIGQfLRQXA4EwEo8wkdHlktwwn7oukANkO3tIZO8hlEx-ubIjNoYqz8WF-6qEEh-fXjXPJ_AZr__Uq-bH58339e1q--3L1_XNdmW56stKiJGNqKeBThY58EF0bEDZaa3lhIoLqnvkI2gKVFilrNLYcSYHLXquWuBXzdvFN9bxJltX0O7qPgFtMUx0rWB9hd4v0A682Sf3COnJRHDm9mZrjj3KFVW8kwdW2XcLu0_x54y5mIc4p1D_YNpWat5pSY_Uh4WyKeaccDrbMmqOWZm13tydstpUmP4D1zVPd65Xc_7_kjeLJGV7tv4bP_8NbZKi7Q |
CitedBy_id | crossref_primary_10_3390_agronomy11061086 crossref_primary_10_1016_j_jclepro_2023_137232 crossref_primary_10_1016_j_plaphy_2021_01_039 crossref_primary_10_1021_acsagscitech_2c00160 crossref_primary_10_1016_j_envint_2024_108859 crossref_primary_10_1111_brv_12928 crossref_primary_10_3390_nano10122534 crossref_primary_10_1016_j_ecoenv_2020_111220 crossref_primary_10_1016_j_envpol_2021_118296 crossref_primary_10_1021_acs_est_3c09757 crossref_primary_10_3390_plants10020335 crossref_primary_10_1021_acs_est_3c01154 crossref_primary_10_3389_fpls_2023_1158031 crossref_primary_10_1016_j_impact_2021_100311 crossref_primary_10_1186_s11671_021_03612_0 crossref_primary_10_1002_smll_202304588 crossref_primary_10_1360_TB_2022_0617 crossref_primary_10_1073_pnas_2414822121 crossref_primary_10_3389_fnano_2020_579954 crossref_primary_10_1021_acsnano_4c06282 crossref_primary_10_3390_nano13060974 crossref_primary_10_1021_acs_est_1c00178 crossref_primary_10_1021_acsnano_0c03140 crossref_primary_10_1016_j_cej_2024_151953 crossref_primary_10_1080_03235408_2022_2111247 crossref_primary_10_3390_coatings11020225 crossref_primary_10_1016_j_jece_2024_114748 crossref_primary_10_1021_acs_jafc_2c01601 crossref_primary_10_1039_D3NR02221H crossref_primary_10_1021_acsami_1c11200 crossref_primary_10_1051_bioconf_202412201014 crossref_primary_10_1016_j_scitotenv_2023_168826 crossref_primary_10_1016_j_plana_2022_100003 crossref_primary_10_1016_j_nantod_2021_101078 crossref_primary_10_3390_plants14010017 crossref_primary_10_1038_s41565_024_01667_5 crossref_primary_10_3390_agronomy12071601 crossref_primary_10_1007_s11101_024_10022_4 crossref_primary_10_2174_2665980801999200607174608 crossref_primary_10_1007_s11356_023_28161_0 crossref_primary_10_1021_acs_jafc_4c07914 crossref_primary_10_1016_j_ecoenv_2024_116120 crossref_primary_10_1016_j_onano_2023_100198 crossref_primary_10_1134_S1021443724607882 crossref_primary_10_1016_j_sab_2022_106526 crossref_primary_10_1021_acsnano_9b09178 crossref_primary_10_3390_nano11020267 crossref_primary_10_1021_acs_est_0c08813 crossref_primary_10_1021_acsnano_4c05362 crossref_primary_10_1016_j_ecoenv_2022_113939 crossref_primary_10_1021_acs_est_1c08185 crossref_primary_10_1016_j_cj_2021_06_002 crossref_primary_10_1007_s42729_022_00760_9 crossref_primary_10_1021_acsagscitech_3c00469 crossref_primary_10_1016_j_plaphy_2023_01_017 crossref_primary_10_1039_D4NR01354A crossref_primary_10_1021_acssensors_1c01159 crossref_primary_10_1016_j_scitotenv_2024_171433 crossref_primary_10_1016_j_impact_2022_100431 crossref_primary_10_1002_smll_202000705 crossref_primary_10_1016_j_ijbiomac_2024_137476 crossref_primary_10_3390_ijms241210356 crossref_primary_10_31857_S0015330324060021 crossref_primary_10_1111_pce_15115 crossref_primary_10_1002_EXP_20210002 crossref_primary_10_1016_j_xplc_2022_100346 |
Cites_doi | 10.1021/jp109819u 10.1021/acs.est.7b01133 10.1021/acsnano.7b05723 10.1007/s00299-014-1624-5 10.1093/aob/mcm283 10.3109/17435390.2015.1048326 10.1021/es903891g 10.1071/EN10003 10.1021/acs.est.7b03363 10.1021/acs.est.5b02761 10.1021/es501425r 10.1039/C5SC00792E 10.1007/978-981-13-2224-2_8 10.1021/acs.est.6b05998 10.1107/S0909049505012719 10.1007/s004250000487 10.1016/j.plaphy.2016.04.024 10.1016/j.taap.2017.05.025 10.1021/acsnano.5b03091 10.1016/j.envpol.2017.02.019 10.1104/pp.18.00759 10.1021/acs.est.7b05816 10.1238/Physica.Topical.115a01011 10.1016/j.impact.2018.08.003 10.1039/b922024k 10.1021/acs.estlett.7b00359 10.1038/nmat3890 10.1080/10643389.2012.671750 10.1021/es3019397 10.1038/srep15613 10.1155/2014/327153 10.1021/nn302975u 10.1016/j.jece.2016.12.036 10.1021/nn303543n 10.1021/es5050562 10.1007/s11051-015-2907-7 10.1007/s10725-011-9649-z 10.1021/es404503c 10.1007/BF01373871 10.1021/acs.jafc.7b02004 10.1016/j.biomaterials.2011.05.073 10.1016/j.jhazmat.2016.04.043 10.1016/j.chemosphere.2009.10.050 10.1021/es2027295 10.1021/nl052024f 10.1021/acsnano.8b09781 10.1111/pce.12115 10.1016/j.scitotenv.2015.08.029 10.1002/aenm.201201014 10.1021/jf5052442 10.1021/nn100816s 10.1146/annurev-bioeng-071811-150124 10.1016/j.envpol.2016.09.060 10.1021/acs.est.7b00813 10.1111/j.1469-8137.1976.tb01464.x 10.1073/pnas.190334497 10.1021/es301977w 10.1016/j.plaphy.2016.04.017 10.1103/PhysRevB.69.125415 10.1039/C5MT00168D 10.1117/12.2272585 10.1186/1471-2229-9-45 10.1016/j.chemosphere.2012.12.025 10.1039/c1mt00049g 10.1021/acs.est.8b02111 10.1016/j.tplants.2016.04.005 10.1117/12.528651 10.1080/17458080.2016.1184766 10.1007/s11356-017-0501-5 10.1002/cplu.201402080 10.1007/s11051-014-2668-8 10.1021/es300955b 10.1039/C4MT00343H 10.3109/17435390.2013.855829 10.2147/IJN.S596 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI 1XC OTOTI |
DOI | 10.1039/c9en00626e |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Hyper Article en Ligne (HAL) OSTI.GOV |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2051-8161 |
EndPage | 2519 |
ExternalDocumentID | 1542518 oai_HAL_hal_03707346v1 10_1039_C9EN00626E c9en00626e |
GroupedDBID | -JG 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI 1XC AAGNR ABGFH OTOTI |
ID | FETCH-LOGICAL-c378t-55d1de9fb0fce3a3b541be649996fe735098e3da90a05c77c79e4316b958372a3 |
ISSN | 2051-8153 |
IngestDate | Fri May 19 00:40:07 EDT 2023 Sat Jun 21 06:30:19 EDT 2025 Mon Jun 30 12:08:21 EDT 2025 Tue Jul 01 02:35:36 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Dec 17 20:59:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-55d1de9fb0fce3a3b541be649996fe735098e3da90a05c77c79e4316b958372a3 |
Notes | 10.1039/c9en00626e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE SC0012704; FG02-92ER14244 |
ORCID | 0000-0001-9879-7879 0000-0003-3012-5261 0000-0001-8599-008X 0000-0001-9626-2969 0000-0001-6081-4389 0000-0002-8400-8944 0000-0002-3560-2461 0000000284008944 0000000235602461 0000000330125261 000000018599008X 0000000198797879 0000000196262969 0000000160814389 |
OpenAccessLink | https://www.osti.gov/biblio/1670663 |
PQID | 2269349601 |
PQPubID | 2047519 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1039_C9EN00626E rsc_primary_c9en00626e crossref_citationtrail_10_1039_C9EN00626E osti_scitechconnect_1542518 proquest_journals_2269349601 hal_primary_oai_HAL_hal_03707346v1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190808 |
PublicationDateYYYYMMDD | 2019-08-08 |
PublicationDate_xml | – month: 8 year: 2019 text: 20190808 day: 8 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: United Kingdom |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
References | Li (C9EN00626E-(cit23)/*[position()=1]) 2018; 6 Ravel (C9EN00626E-(cit55)/*[position()=1]) 2005; 12 Ma (C9EN00626E-(cit69)/*[position()=1]) 2017; 51 Zhao (C9EN00626E-(cit5)/*[position()=1]) 2017; 66 Yan (C9EN00626E-(cit57)/*[position()=1]) 2017 Zhang (C9EN00626E-(cit37)/*[position()=1]) 2017; 5 Avellan (C9EN00626E-(cit38)/*[position()=1]) 2017; 51 Wang (C9EN00626E-(cit60)/*[position()=1]) 2014; 48 Lv (C9EN00626E-(cit76)/*[position()=1]) 2015; 2 Servin (C9EN00626E-(cit2)/*[position()=1]) 2015; 17 Cao (C9EN00626E-(cit64)/*[position()=1]) 2018; 25 Cao (C9EN00626E-(cit47)/*[position()=1]) 2017; 4 Sun (C9EN00626E-(cit32)/*[position()=1]) 2014; 33 Koo (C9EN00626E-(cit82)/*[position()=1]) 2015; 49 Ma (C9EN00626E-(cit30)/*[position()=1]) 2010; 78 Byott (C9EN00626E-(cit81)/*[position()=1]) 1976; 76 Conway (C9EN00626E-(cit45)/*[position()=1]) 2015; 9 Newville (C9EN00626E-(cit58)/*[position()=1]) 2013; 430 Li (C9EN00626E-(cit25)/*[position()=1]) 2016; 314 Zhang (C9EN00626E-(cit71)/*[position()=1]) 2017; 4 Crooke (C9EN00626E-(cit63)/*[position()=1]) 1964; 21 Gutierrez-Alcala (C9EN00626E-(cit84)/*[position()=1]) 2000; 97 Servin (C9EN00626E-(cit87)/*[position()=1]) 2012; 46 Hong (C9EN00626E-(cit17)/*[position()=1]) 2016; 563–564 Corredor (C9EN00626E-(cit86)/*[position()=1]) 2009; 9 Gao (C9EN00626E-(cit11)/*[position()=1]) 2018; 52 Ma (C9EN00626E-(cit78)/*[position()=1]) 2015; 49 Arora (C9EN00626E-(cit15)/*[position()=1]) 2012; 66 Spielman-Sun (C9EN00626E-(cit22)/*[position()=1]) 2017; 51 Lowry (C9EN00626E-(cit59)/*[position()=1]) 2016; 3 Tarnuzzer (C9EN00626E-(cit40)/*[position()=1]) 2005; 5 Zhang (C9EN00626E-(cit68)/*[position()=1]) 2015; 9 Pirmohamed (C9EN00626E-(cit41)/*[position()=1]) 2010; 46 Zhang (C9EN00626E-(cit70)/*[position()=1]) 2012; 6 Choi (C9EN00626E-(cit85)/*[position()=1]) 2001; 213 Zhao (C9EN00626E-(cit46)/*[position()=1]) 2012; 6 Zhang (C9EN00626E-(cit83)/*[position()=1]) 2011; 3 Elmer (C9EN00626E-(cit19)/*[position()=1]) 2016; 3 Zhang (C9EN00626E-(cit35)/*[position()=1]) 2015; 63 Kah (C9EN00626E-(cit3)/*[position()=1]) 2013; 43 Mirecki (C9EN00626E-(cit62)/*[position()=1]) 2015; 24 De Jong (C9EN00626E-(cit9)/*[position()=1]) 2008; 3 Feng (C9EN00626E-(cit66)/*[position()=1]) 2015; 6 Rodrigues (C9EN00626E-(cit1)/*[position()=1]) 2017; 7 Schwabe (C9EN00626E-(cit75)/*[position()=1]) 2014; 16 Kopittke (C9EN00626E-(cit80)/*[position()=1]) 2018; 178 Gui (C9EN00626E-(cit49)/*[position()=1]) 2015; 10 Lopez-Moreno (C9EN00626E-(cit61)/*[position()=1]) 2010; 44 Asati (C9EN00626E-(cit67)/*[position()=1]) 2010; 4 Rossi (C9EN00626E-(cit36)/*[position()=1]) 2017; 51 Zhu (C9EN00626E-(cit24)/*[position()=1]) 2012; 46 Rossi (C9EN00626E-(cit18)/*[position()=1]) 2016; 219 Graham (C9EN00626E-(cit56)/*[position()=1]) 2014; 79 Loriaux (C9EN00626E-(cit65)/*[position()=1]) 2013; 36 Barrios (C9EN00626E-(cit48)/*[position()=1]) 2016; 110 Judy (C9EN00626E-(cit29)/*[position()=1]) 2012; 46 Bandyopadhyay (C9EN00626E-(cit21)/*[position()=1]) 2014; 2014 Wang (C9EN00626E-(cit31)/*[position()=1]) 2017; 4 Spielman-Sun (C9EN00626E-(cit12)/*[position()=1]) 2018; 52 Zhang (C9EN00626E-(cit77)/*[position()=1]) 2012; 46 Schwab (C9EN00626E-(cit7)/*[position()=1]) 2015; 10 Wu (C9EN00626E-(cit43)/*[position()=1]) 2017; 11 Singh (C9EN00626E-(cit74)/*[position()=1]) 2011; 32 Xue (C9EN00626E-(cit39)/*[position()=1]) 2011; 115 Pulido-Reyes (C9EN00626E-(cit50)/*[position()=1]) 2015; 5 C9EN00626E-(cit53)/*[position()=1] Ponmurugan (C9EN00626E-(cit20)/*[position()=1]) 2016; 11 Schwabe (C9EN00626E-(cit34)/*[position()=1]) 2015; 7 Avellan (C9EN00626E-(cit6)/*[position()=1]) 2019; 13 Collin (C9EN00626E-(cit51)/*[position()=1]) 2014; 48 Boghossian (C9EN00626E-(cit42)/*[position()=1]) 2013; 3 Wu (C9EN00626E-(cit44)/*[position()=1]) 2018; 5 Zhang (C9EN00626E-(cit52)/*[position()=1]) 2019; 6 Iavicoli (C9EN00626E-(cit13)/*[position()=1]) 2017; 329 Raliya (C9EN00626E-(cit16)/*[position()=1]) 2015; 7 González-Melendi (C9EN00626E-(cit10)/*[position()=1]) 2008; 101 Baalousha (C9EN00626E-(cit72)/*[position()=1]) 2010; 7 Rico (C9EN00626E-(cit28)/*[position()=1]) 2018; 11 Giraldo (C9EN00626E-(cit14)/*[position()=1]) 2014; 13 Wang (C9EN00626E-(cit79)/*[position()=1]) 2017; 224 Du (C9EN00626E-(cit8)/*[position()=1]) 2017; 110 Albanese (C9EN00626E-(cit26)/*[position()=1]) 2012; 14 Wu (C9EN00626E-(cit73)/*[position()=1]) 2004; 69 Wang (C9EN00626E-(cit4)/*[position()=1]) 2016; 21 Lew (C9EN00626E-(cit27)/*[position()=1]) 2018; 14 Schwabe (C9EN00626E-(cit33)/*[position()=1]) 2013; 91 Webb (C9EN00626E-(cit54)/*[position()=1]) 2005; T115 |
References_xml | – issn: 2017 end-page: 30 publication-title: X-Ray Nanoimaging Instruments Methods III doi: Yan Xu Yu Heroux Lee Li Campbell Chu – publication-title: United States Environmental Protection Agency, Method 3050B - Acid digestion of sediments, sludges, and soils, Method 3050B – volume: 115 start-page: 4433 year: 2011 ident: C9EN00626E-(cit39)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp109819u – volume: 51 start-page: 8682 year: 2017 ident: C9EN00626E-(cit38)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01133 – volume: 2 start-page: 68 year: 2015 ident: C9EN00626E-(cit76)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 11 start-page: 11283 year: 2017 ident: C9EN00626E-(cit43)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05723 – volume: 33 start-page: 1389 year: 2014 ident: C9EN00626E-(cit32)/*[position()=1] publication-title: Plant Cell Rep. doi: 10.1007/s00299-014-1624-5 – volume: 101 start-page: 187 year: 2008 ident: C9EN00626E-(cit10)/*[position()=1] publication-title: Ann. Bot. doi: 10.1093/aob/mcm283 – volume: 10 start-page: 257 year: 2015 ident: C9EN00626E-(cit7)/*[position()=1] publication-title: Nanotoxicology doi: 10.3109/17435390.2015.1048326 – volume: 44 start-page: 7315 year: 2010 ident: C9EN00626E-(cit61)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es903891g – volume: 3 start-page: 953 year: 2016 ident: C9EN00626E-(cit59)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 7 start-page: 377 year: 2010 ident: C9EN00626E-(cit72)/*[position()=1] publication-title: Environ. Chem. doi: 10.1071/EN10003 – volume: 51 start-page: 12815 year: 2017 ident: C9EN00626E-(cit36)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03363 – volume: 49 start-page: 10667 year: 2015 ident: C9EN00626E-(cit78)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02761 – volume: 48 start-page: 6754 year: 2014 ident: C9EN00626E-(cit60)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es501425r – volume: 6 start-page: 5186 year: 2015 ident: C9EN00626E-(cit66)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC00792E – volume: 6 start-page: 60 year: 2019 ident: C9EN00626E-(cit52)/*[position()=1] publication-title: Environ. Sci.: Nano doi: 10.1007/978-981-13-2224-2_8 – volume: 51 start-page: 5215 year: 2017 ident: C9EN00626E-(cit69)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05998 – volume: 12 start-page: 537 year: 2005 ident: C9EN00626E-(cit55)/*[position()=1] publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 213 start-page: 45 year: 2001 ident: C9EN00626E-(cit85)/*[position()=1] publication-title: Planta doi: 10.1007/s004250000487 – volume: 110 start-page: 210 year: 2017 ident: C9EN00626E-(cit8)/*[position()=1] publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.04.024 – volume: 329 start-page: 96 year: 2017 ident: C9EN00626E-(cit13)/*[position()=1] publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2017.05.025 – volume: 5 start-page: 1567 year: 2018 ident: C9EN00626E-(cit44)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 9 start-page: 11737 year: 2015 ident: C9EN00626E-(cit45)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b03091 – volume: 224 start-page: 392 year: 2017 ident: C9EN00626E-(cit79)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.02.019 – volume: 178 start-page: 507 year: 2018 ident: C9EN00626E-(cit80)/*[position()=1] publication-title: Plant Physiol. doi: 10.1104/pp.18.00759 – volume: 52 start-page: 2888 year: 2018 ident: C9EN00626E-(cit11)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05816 – volume: T115 start-page: 1011 year: 2005 ident: C9EN00626E-(cit54)/*[position()=1] publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.115a01011 – volume: 11 start-page: 156 year: 2018 ident: C9EN00626E-(cit28)/*[position()=1] publication-title: NanoImpact doi: 10.1016/j.impact.2018.08.003 – volume: 46 start-page: 2736 year: 2010 ident: C9EN00626E-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b922024k – volume: 4 start-page: 380 year: 2017 ident: C9EN00626E-(cit71)/*[position()=1] publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.7b00359 – volume: 13 start-page: 400 year: 2014 ident: C9EN00626E-(cit14)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3890 – volume: 43 start-page: 1823 year: 2013 ident: C9EN00626E-(cit3)/*[position()=1] publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2012.671750 – volume: 46 start-page: 8467 year: 2012 ident: C9EN00626E-(cit29)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es3019397 – volume: 4 start-page: 1086 year: 2017 ident: C9EN00626E-(cit47)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 5 start-page: 15613 year: 2015 ident: C9EN00626E-(cit50)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep15613 – volume: 2014 start-page: 1 year: 2014 ident: C9EN00626E-(cit21)/*[position()=1] publication-title: Int. J. Chem. Eng. doi: 10.1155/2014/327153 – volume: 6 start-page: 9615 year: 2012 ident: C9EN00626E-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn302975u – volume: 5 start-page: 572 year: 2017 ident: C9EN00626E-(cit37)/*[position()=1] publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.12.036 – volume: 6 start-page: 9943 year: 2012 ident: C9EN00626E-(cit70)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn303543n – volume: 49 start-page: 626 year: 2015 ident: C9EN00626E-(cit82)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es5050562 – volume: 17 start-page: 92 year: 2015 ident: C9EN00626E-(cit2)/*[position()=1] publication-title: J. Nanopart. Res. doi: 10.1007/s11051-015-2907-7 – volume: 66 start-page: 303 year: 2012 ident: C9EN00626E-(cit15)/*[position()=1] publication-title: Plant Growth Regul. doi: 10.1007/s10725-011-9649-z – volume: 48 start-page: 1280 year: 2014 ident: C9EN00626E-(cit51)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es404503c – volume: 21 start-page: 43 year: 1964 ident: C9EN00626E-(cit63)/*[position()=1] publication-title: Plant Soil doi: 10.1007/BF01373871 – volume: 66 start-page: 6504 year: 2017 ident: C9EN00626E-(cit5)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b02004 – volume: 24 start-page: 4212 year: 2015 ident: C9EN00626E-(cit62)/*[position()=1] publication-title: Fresenius Environ. Bull. – volume: 32 start-page: 6745 year: 2011 ident: C9EN00626E-(cit74)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.073 – volume: 314 start-page: 188 year: 2016 ident: C9EN00626E-(cit25)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.04.043 – volume: 78 start-page: 273 year: 2010 ident: C9EN00626E-(cit30)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.10.050 – volume: 46 start-page: 1834 year: 2012 ident: C9EN00626E-(cit77)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es2027295 – volume: 5 start-page: 2573 year: 2005 ident: C9EN00626E-(cit40)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl052024f – volume: 13 start-page: 5291 year: 2019 ident: C9EN00626E-(cit6)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b09781 – volume: 3 start-page: 1072 year: 2016 ident: C9EN00626E-(cit19)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 36 start-page: 1755 year: 2013 ident: C9EN00626E-(cit65)/*[position()=1] publication-title: Plant, Cell Environ. doi: 10.1111/pce.12115 – volume: 563–564 start-page: 904 year: 2016 ident: C9EN00626E-(cit17)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.08.029 – volume: 3 start-page: 881 year: 2013 ident: C9EN00626E-(cit42)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201201014 – volume: 63 start-page: 382 year: 2015 ident: C9EN00626E-(cit35)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf5052442 – volume: 4 start-page: 5321 year: 2010 ident: C9EN00626E-(cit67)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn100816s – volume: 14 start-page: 1 year: 2012 ident: C9EN00626E-(cit26)/*[position()=1] publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071811-150124 – volume: 219 start-page: 28 year: 2016 ident: C9EN00626E-(cit18)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.09.060 – volume: 51 start-page: 7361 year: 2017 ident: C9EN00626E-(cit22)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00813 – volume: 430 start-page: 012007 year: 2013 ident: C9EN00626E-(cit58)/*[position()=1] publication-title: J. Phys.: Conf. Ser. – volume: 76 start-page: 295 year: 1976 ident: C9EN00626E-(cit81)/*[position()=1] publication-title: New Phytol. doi: 10.1111/j.1469-8137.1976.tb01464.x – volume: 97 start-page: 11108 year: 2000 ident: C9EN00626E-(cit84)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.190334497 – volume: 46 start-page: 12391 year: 2012 ident: C9EN00626E-(cit24)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es301977w – volume: 7 start-page: 899 year: 2017 ident: C9EN00626E-(cit1)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 110 start-page: 100 year: 2016 ident: C9EN00626E-(cit48)/*[position()=1] publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.04.017 – volume: 69 start-page: 125415 year: 2004 ident: C9EN00626E-(cit73)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.69.125415 – volume: 7 start-page: 1584 year: 2015 ident: C9EN00626E-(cit16)/*[position()=1] publication-title: Metallomics doi: 10.1039/C5MT00168D – volume: 14 start-page: 1 year: 2018 ident: C9EN00626E-(cit27)/*[position()=1] publication-title: Small – start-page: 30 volume-title: X-Ray Nanoimaging Instruments Methods III year: 2017 ident: C9EN00626E-(cit57)/*[position()=1] doi: 10.1117/12.2272585 – volume: 6 start-page: 273 year: 2018 ident: C9EN00626E-(cit23)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 9 start-page: 45 year: 2009 ident: C9EN00626E-(cit86)/*[position()=1] publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-9-45 – volume: 91 start-page: 512 year: 2013 ident: C9EN00626E-(cit33)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.12.025 – volume: 4 start-page: 448 year: 2017 ident: C9EN00626E-(cit31)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 3 start-page: 816 year: 2011 ident: C9EN00626E-(cit83)/*[position()=1] publication-title: Metallomics doi: 10.1039/c1mt00049g – volume: 52 start-page: 9777 year: 2018 ident: C9EN00626E-(cit12)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02111 – volume: 21 start-page: 699 year: 2016 ident: C9EN00626E-(cit4)/*[position()=1] publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.04.005 – volume-title: United States Environmental Protection Agency, Method 3050B - Acid digestion of sediments, sludges, and soils, Method 3050B ident: C9EN00626E-(cit53)/*[position()=1] doi: 10.1117/12.528651 – volume: 11 start-page: 1019 year: 2016 ident: C9EN00626E-(cit20)/*[position()=1] publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2016.1184766 – volume: 25 start-page: 930 year: 2018 ident: C9EN00626E-(cit64)/*[position()=1] publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0501-5 – volume: 79 start-page: 1083 year: 2014 ident: C9EN00626E-(cit56)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201402080 – volume: 16 start-page: 2668 year: 2014 ident: C9EN00626E-(cit75)/*[position()=1] publication-title: J. Nanopart. Res. doi: 10.1007/s11051-014-2668-8 – volume: 46 start-page: 7637 year: 2012 ident: C9EN00626E-(cit87)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es300955b – volume: 7 start-page: 466 year: 2015 ident: C9EN00626E-(cit34)/*[position()=1] publication-title: Metallomics doi: 10.1039/C4MT00343H – volume: 9 start-page: 1 year: 2015 ident: C9EN00626E-(cit68)/*[position()=1] publication-title: Nanotoxicology doi: 10.3109/17435390.2013.855829 – volume: 3 start-page: 133 year: 2008 ident: C9EN00626E-(cit9)/*[position()=1] publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S596 – volume: 10 start-page: 1 year: 2015 ident: C9EN00626E-(cit49)/*[position()=1] publication-title: PLoS One |
SSID | ssj0001125367 |
Score | 2.4718902 |
Snippet | Root uptake and translocation of engineered nanoparticles (NPs) by plants are dependent on both plant species and NP physicochemical properties. To evaluate... Root uptake, translocation, and distribution of engineered nanoparticles by plants are dependent on both plant species and nanoparticle surface charge. |
SourceID | osti hal proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 258 |
SubjectTerms | Airspace Cerium Cerium oxides Charge distribution Corn Distribution Environmental Sciences Flowers & plants Fluorescence Fluorescence microscopy Hydroponics Leaves Mesophyll Metals Nanoparticles Physicochemical processes Physicochemical properties Plant species Plant structures Plants Roots Shoots Spatial distribution Species Surface charge Tomatoes Translocation Uptake Vegetables X ray fluorescence analysis X-ray fluorescence |
Title | Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy |
URI | https://www.proquest.com/docview/2269349601 https://ut3-toulouseinp.hal.science/hal-03707346 https://www.osti.gov/biblio/1542518 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXa7oULAsGKsguygAtCLmkd5-NYoUJBCxe6aG-RYzvi0E2rJq3E_oP918zEiZ1KRQIuUeW4SZR5GXvsN28IeZPjm-ehYFxrwUIVCJZzrRi4S1VoDRG0wWzkr9-i5XX45UbcDAb3PdbSvs4n6u5kXsn_WBXawK6YJfsPlnUXhQb4DfaFI1gYjn9lY3CNEPPa9nfVfldI-Eob7SOUAmmrj1RYBqKscNCqO-7x2sgC92ZcuStc9nCk1O1aurS3hsouq9rmMkKEfnu0D7zweXJddqUyE_TZm_6-_PpWluz73q71wM3LjeMEzw_Iv7JCBvg82i0QdJzLTw2b2FOTV3KL6uYNOH6Be_rRX7nAZCkUw_YObgYOgSVTKxY8Mf02K9DeeeioB8Sk722t6ns7cGMO7slBIeCoqapSU2LGaGT80OcIif7kkJzNIOIAl3k2X6w-X_kFO5gK8qYisXvuTu6Wp-_9BY4mOMOfSK8dbcBMRyHMcNfVl2nmMatH5GEbgNC5Rc1jMjDlE3LoI4m2SKIWSdQjiR4hiYJ9KCKJ9pEE3WmHJGqRRBFJtIck2iLpKbn-uFh9WLK2IgdTPE5qJoSeapMWeVAowyXPRTjNTdREzYWJOcw-E8O1TAMZCBXHKk4Nai3kqUh4PJP8nIzKTWmeEWpQHA78P0TUMMM0udSztAgLLrQxcA05Jm-715ipVq4eq6ass4Y2wdMM1d6aV74Yk9eu79aKtJzs9Qqs4TqgrvpyfpVhW8BjGOrC6DAdkws0VgYfDIooK2SbqTqDQAPglYzJZWfDrPUDVQYBTIplFwL48znY1d3BY-L5n05ckAf-y7gko3q3Ny9gllvnL1v8_QZID64V |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+surface+charge+influences+translocation+and+leaf+distribution+in+vascular+plants+with+contrasting+anatomy&rft.jtitle=Environmental+science.+Nano&rft.au=Spielman-Sun%2C+Eleanor&rft.au=Avellan%2C+Astrid&rft.au=Bland%2C+Garret+D&rft.au=Tappero%2C+Ryan+V&rft.date=2019-08-08&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=6&rft.issue=8&rft.spage=258&rft.epage=2519&rft_id=info:doi/10.1039%2Fc9en00626e&rft.externalDocID=c9en00626e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |