Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus

Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses, adjuvants (immune potentiators or enhancers) are needed to improve immune responses, to conserve scarce vaccine, and for cross-protection aga...

Full description

Saved in:
Bibliographic Details
Published inScience translational medicine Vol. 2; no. 15; p. 15ra5
Main Authors Khurana, Surender, Chearwae, Wanida, Castellino, Flora, Manischewitz, Jody, King, Lisa R, Honorkiewicz, Agnieszka, Rock, Michael T, Edwards, Kathryn M, Del Giudice, Giuseppe, Rappuoli, Rino, Golding, Hana
Format Journal Article
LanguageEnglish
Published United States 20.01.2010
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses, adjuvants (immune potentiators or enhancers) are needed to improve immune responses, to conserve scarce vaccine, and for cross-protection against strains that have drifted evolutionarily from the original. Aluminum-based adjuvants do not improve vaccine immunogenicity for influenza subunit vaccines, whereas oil-in-water adjuvants are effective, especially with H5N1-inactivated vaccines. We used whole-genome-fragment phage display libraries followed by surface plasmon resonance (SPR) technologies to elucidate the effect of different adjuvants on the antibody repertoire against H5N1 vaccine in humans. The oil-in-water adjuvant MF59 induced epitope spreading from HA2 to HA1 in hemagglutinin (HA) and neuraminidase relative to unadjuvanted or aluminum-adjuvanted vaccines. Moreover, we observed an increase by a factor of 20 in the frequency of HA1-to-HA2-specific phage clones in sera after MF59-adjuvanted vaccine administration and a factor of 2 to 3 increase in the avidity of antibodies binding to properly folded HA1(28-319), as measured by SPR. The adjuvant-dependent increase in binding to conformational HA1 epitopes correlated with broadening of cross-clade neutralization and predicted improved in vivo protection. Thus, MF59 adjuvant improves the immune response to a H5N1 vaccine by inducing qualitative and quantitative expansion of the antibody repertoires with protective potential.
AbstractList Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses, adjuvants (immune potentiators or enhancers) are needed to improve immune responses, to conserve scarce vaccine, and for cross-protection against strains that have drifted evolutionarily from the original. Aluminum-based adjuvants do not improve vaccine immunogenicity for influenza subunit vaccines, whereas oil-in-water adjuvants are effective, especially with H5N1-inactivated vaccines. We used whole-genome-fragment phage display libraries followed by surface plasmon resonance (SPR) technologies to elucidate the effect of different adjuvants on the antibody repertoire against H5N1 vaccine in humans. The oil-in-water adjuvant MF59 induced epitope spreading from HA2 to HA1 in hemagglutinin (HA) and neuraminidase relative to unadjuvanted or aluminum-adjuvanted vaccines. Moreover, we observed an increase by a factor of 20 in the frequency of HA1-to-HA2-specific phage clones in sera after MF59-adjuvanted vaccine administration and a factor of 2 to 3 increase in the avidity of antibodies binding to properly folded HA1(28-319), as measured by SPR. The adjuvant-dependent increase in binding to conformational HA1 epitopes correlated with broadening of cross-clade neutralization and predicted improved in vivo protection. Thus, MF59 adjuvant improves the immune response to a H5N1 vaccine by inducing qualitative and quantitative expansion of the antibody repertoires with protective potential.
Author Khurana, Surender
King, Lisa R
Honorkiewicz, Agnieszka
Rock, Michael T
Del Giudice, Giuseppe
Golding, Hana
Manischewitz, Jody
Castellino, Flora
Edwards, Kathryn M
Rappuoli, Rino
Chearwae, Wanida
Author_xml – sequence: 1
  givenname: Surender
  surname: Khurana
  fullname: Khurana, Surender
  organization: Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Wanida
  surname: Chearwae
  fullname: Chearwae, Wanida
– sequence: 3
  givenname: Flora
  surname: Castellino
  fullname: Castellino, Flora
– sequence: 4
  givenname: Jody
  surname: Manischewitz
  fullname: Manischewitz, Jody
– sequence: 5
  givenname: Lisa R
  surname: King
  fullname: King, Lisa R
– sequence: 6
  givenname: Agnieszka
  surname: Honorkiewicz
  fullname: Honorkiewicz, Agnieszka
– sequence: 7
  givenname: Michael T
  surname: Rock
  fullname: Rock, Michael T
– sequence: 8
  givenname: Kathryn M
  surname: Edwards
  fullname: Edwards, Kathryn M
– sequence: 9
  givenname: Giuseppe
  surname: Del Giudice
  fullname: Del Giudice, Giuseppe
– sequence: 10
  givenname: Rino
  surname: Rappuoli
  fullname: Rappuoli, Rino
– sequence: 11
  givenname: Hana
  surname: Golding
  fullname: Golding, Hana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20371470$$D View this record in MEDLINE/PubMed
BookMark eNo1UN1KwzAYDaI4N30Dke8FOvPTJu2lDOeEqTfD25E0X13GlpYknU58eCvqzfmDcy7OmJz61iMh14xOGePyNtYuBe3jbo92Kiilkucn5IJVucwGyUdkHON2iEtRyHMy4lQolit6Qb5edV07jxHeXdrA07yoQNttf9A-AX502ltIG4TBOtPaIwTsMKTWBYTUQtLhDRN0oU1YJ3dAiC4NY20DP1Xcuxr0wWkPi-KZgfPNrkf_qeHgQh8vyVmjdxGv_nhCVvP71WyRLV8eHmd3y6wWqkxZLpQ1XCsqjKAKjS4LWShV28pYpgqujBEDKkvRSmEbqZTSRttKMiZLySfk5ne2681w0LoLbq_Dcf3_Av8G0Bpjfw
CitedBy_id crossref_primary_10_1016_j_chom_2015_02_015
crossref_primary_10_1146_annurev_immunol_032712_095916
crossref_primary_10_2165_11586770_000000000_00000
crossref_primary_10_1159_000366162
crossref_primary_10_3390_vaccines12050531
crossref_primary_10_1016_S2213_2600_18_30108_5
crossref_primary_10_1038_s41467_024_51021_5
crossref_primary_10_1016_j_vaccine_2020_10_036
crossref_primary_10_1016_j_chom_2015_02_012
crossref_primary_10_1080_21645515_2023_2193119
crossref_primary_10_1016_j_intimp_2023_109887
crossref_primary_10_1016_j_celrep_2019_07_047
crossref_primary_10_1111_j_1750_2659_2011_00242_x
crossref_primary_10_1093_infdis_jiv210
crossref_primary_10_3389_fimmu_2020_576748
crossref_primary_10_4049_jimmunol_1402389
crossref_primary_10_1002_rmv_1729
crossref_primary_10_1016_j_trivac_2014_07_001
crossref_primary_10_1038_srep46426
crossref_primary_10_1038_s41598_018_36426_9
crossref_primary_10_1128_CVI_00553_16
crossref_primary_10_1097_QAD_0b013e328341afa8
crossref_primary_10_1038_s41541_018_0076_2
crossref_primary_10_1016_j_yrtph_2019_104436
crossref_primary_10_1016_j_coi_2018_04_019
crossref_primary_10_1038_srep24897
crossref_primary_10_2217_fvl_2016_0045
crossref_primary_10_1016_j_immuni_2021_11_009
crossref_primary_10_1007_s10989_020_10144_1
crossref_primary_10_1038_s41541_021_00418_0
crossref_primary_10_1016_j_coi_2014_01_009
crossref_primary_10_1016_j_molmed_2016_09_002
crossref_primary_10_4049_jimmunol_2100210
crossref_primary_10_1021_pr400329k
crossref_primary_10_4161_hv_26495
crossref_primary_10_1074_jbc_M111_270553
crossref_primary_10_1016_j_vaccine_2011_05_012
crossref_primary_10_1093_infdis_jir791
crossref_primary_10_1128_JVI_03309_13
crossref_primary_10_1038_ncomms9855
crossref_primary_10_1038_s41541_019_0132_6
crossref_primary_10_1038_s41591_024_03189_y
crossref_primary_10_1586_14760584_2013_811193
crossref_primary_10_1016_j_chom_2020_01_001
crossref_primary_10_1586_erv_11_131
crossref_primary_10_3389_fimmu_2019_00646
crossref_primary_10_1016_j_vaccine_2010_04_030
crossref_primary_10_1586_erv_10_52
crossref_primary_10_1586_erv_11_23
crossref_primary_10_1128_CVI_00626_12
crossref_primary_10_1016_j_vaccine_2015_06_047
crossref_primary_10_1517_14712598_2013_748030
crossref_primary_10_1016_j_isci_2020_100920
crossref_primary_10_1038_s41598_018_22874_w
crossref_primary_10_1371_journal_pone_0011548
crossref_primary_10_1038_s41541_022_00523_8
crossref_primary_10_18527_2500_2236_2014_1_1_1_11
crossref_primary_10_2119_molmed_2012_00147
crossref_primary_10_1371_journal_pone_0233632
crossref_primary_10_1093_infdis_jit178
crossref_primary_10_1126_scitranslmed_3008409
crossref_primary_10_1126_scitranslmed_3008761
crossref_primary_10_1016_j_smim_2018_05_001
crossref_primary_10_1016_j_smim_2013_05_004
crossref_primary_10_3389_fimmu_2018_00171
crossref_primary_10_1371_journal_pone_0190947
crossref_primary_10_1097_INF_0000000000000462
crossref_primary_10_1093_infdis_jiu284
crossref_primary_10_3390_vaccines11101528
crossref_primary_10_3389_fimmu_2018_00600
crossref_primary_10_1016_j_vaccine_2020_09_058
crossref_primary_10_1038_srep42428
crossref_primary_10_1186_s40064_016_2948_0
crossref_primary_10_1016_j_vaccine_2012_10_048
crossref_primary_10_1586_erv_11_192
crossref_primary_10_1038_nm_2963
crossref_primary_10_1016_j_clim_2017_06_001
crossref_primary_10_3389_fimmu_2023_1043109
crossref_primary_10_1016_j_molimm_2021_05_003
crossref_primary_10_1016_j_vaccine_2014_07_013
crossref_primary_10_1016_j_vaccine_2018_06_054
crossref_primary_10_1016_j_smim_2020_101426
crossref_primary_10_3390_vaccines10101683
crossref_primary_10_1371_journal_pone_0103550
crossref_primary_10_3389_fcimb_2020_545371
crossref_primary_10_1128_microbiolspec_AID_0021_2014
crossref_primary_10_1016_j_coi_2022_102229
crossref_primary_10_1016_j_vaccine_2014_08_068
crossref_primary_10_1016_j_micinf_2011_01_007
crossref_primary_10_1002_eji_201242563
crossref_primary_10_1126_scitranslmed_3006366
crossref_primary_10_1186_s12985_017_0918_y
crossref_primary_10_1038_srep19570
crossref_primary_10_1038_s41467_019_11296_5
crossref_primary_10_1128_JVI_05406_11
crossref_primary_10_1016_j_yrtph_2016_08_003
crossref_primary_10_1038_s41467_021_21463_2
crossref_primary_10_1016_j_vaccine_2018_05_029
crossref_primary_10_1016_j_biologicals_2010_06_002
crossref_primary_10_1038_nm_4201
crossref_primary_10_1080_21645515_2016_1168954
crossref_primary_10_1038_srep29368
crossref_primary_10_1016_j_vaccine_2017_04_029
crossref_primary_10_1016_j_vaccine_2023_02_034
crossref_primary_10_1186_s12865_015_0090_3
crossref_primary_10_1038_nrmicro_2017_118
crossref_primary_10_1038_s41541_021_00354_z
crossref_primary_10_1002_wnan_1824
crossref_primary_10_1128_CVI_00373_12
crossref_primary_10_1128_JVI_01596_12
crossref_primary_10_3390_pathogens12070863
crossref_primary_10_3109_08830185_2015_1082177
crossref_primary_10_1080_14760584_2020_1857736
crossref_primary_10_1126_science_1192517
crossref_primary_10_4161_hv_23239
crossref_primary_10_1016_j_coph_2018_03_014
crossref_primary_10_1002_biot_201300116
crossref_primary_10_1016_S0140_6736_11_60407_8
crossref_primary_10_1038_s41586_021_04356_8
crossref_primary_10_1016_j_ijid_2019_04_023
crossref_primary_10_3109_1040841X_2013_826177
crossref_primary_10_4161_hv_28371
crossref_primary_10_1016_j_celrep_2017_12_014
crossref_primary_10_1038_s41541_020_00238_8
crossref_primary_10_1097_INF_0000000000002727
crossref_primary_10_1128_JVI_01939_10
crossref_primary_10_3390_vaccines10040497
crossref_primary_10_1016_j_vaccine_2012_02_027
crossref_primary_10_1126_scitranslmed_3002336
crossref_primary_10_3389_fimmu_2021_692151
crossref_primary_10_1016_j_coi_2012_03_008
crossref_primary_10_1016_j_vaccine_2011_09_061
crossref_primary_10_3389_fimmu_2017_00943
crossref_primary_10_1016_j_jviromet_2014_09_006
crossref_primary_10_1073_pnas_1109797109
crossref_primary_10_1007_s11357_021_00323_3
crossref_primary_10_3390_vaccines2020252
crossref_primary_10_1038_s41541_022_00524_7
crossref_primary_10_1016_j_vaccine_2012_10_117
crossref_primary_10_1016_j_vaccine_2014_02_049
crossref_primary_10_3390_pharmaceutics11090437
crossref_primary_10_1016_j_virusres_2013_05_006
crossref_primary_10_1093_infdis_jiaa728
crossref_primary_10_18527_2500_2236_2014_1_1_12_26
crossref_primary_10_1021_acsnano_4c00278
crossref_primary_10_1016_j_vaccine_2020_01_066
crossref_primary_10_1126_sciadv_abf2467
crossref_primary_10_1111_ijcp_13249
crossref_primary_10_1586_14760584_2014_938641
crossref_primary_10_1016_j_vaccine_2012_02_003
crossref_primary_10_1016_j_immuni_2025_02_025
crossref_primary_10_1248_yakushi_131_1733
crossref_primary_10_3390_vaccines12030281
crossref_primary_10_1371_journal_pone_0025797
crossref_primary_10_1371_journal_pone_0115476
crossref_primary_10_1016_j_vaccine_2022_05_045
crossref_primary_10_1038_srep37229
crossref_primary_10_3390_v6103809
crossref_primary_10_3389_fimmu_2023_1154496
crossref_primary_10_1016_j_immuni_2010_10_002
crossref_primary_10_1016_j_vaccine_2021_08_021
crossref_primary_10_3390_vaccines9020075
crossref_primary_10_1016_j_biologicals_2013_08_006
crossref_primary_10_1093_ofid_ofu102
crossref_primary_10_1016_j_actatropica_2022_106796
crossref_primary_10_1371_journal_pone_0095496
crossref_primary_10_1371_journal_pcbi_1007294
crossref_primary_10_1016_j_vaccine_2018_08_072
crossref_primary_10_1126_scitranslmed_adg7404
crossref_primary_10_1371_journal_pone_0114159
crossref_primary_10_1111_j_1751_7915_2011_00276_x
crossref_primary_10_1073_pnas_1414070111
crossref_primary_10_3390_vaccines7020042
crossref_primary_10_1586_erv_12_140
crossref_primary_10_1016_j_vaccine_2012_08_073
crossref_primary_10_1038_nm1210_1389
crossref_primary_10_3389_fimmu_2021_662218
crossref_primary_10_1111_j_1600_065X_2010_00974_x
crossref_primary_10_1111_cei_12292
crossref_primary_10_1016_j_coi_2013_07_005
crossref_primary_10_12688_f1000research_7388_1
crossref_primary_10_1016_j_vaccine_2015_04_086
crossref_primary_10_3390_v13071392
crossref_primary_10_1016_j_vaccine_2011_06_090
crossref_primary_10_1089_vim_2024_0032
crossref_primary_10_1371_journal_pone_0172008
crossref_primary_10_1016_j_vaccine_2018_02_115
crossref_primary_10_1039_D1NR08064D
crossref_primary_10_3390_vaccines9121468
crossref_primary_10_1021_ie504071f
crossref_primary_10_1126_scitranslmed_abc3539
crossref_primary_10_1016_j_ijpharm_2022_121667
crossref_primary_10_1089_nat_2011_0284
crossref_primary_10_1038_s41591_020_0753_3
crossref_primary_10_1128_CVI_00129_14
crossref_primary_10_3389_fimmu_2018_00460
crossref_primary_10_4049_jimmunol_1402604
crossref_primary_10_1016_j_jconrel_2024_12_044
crossref_primary_10_1128_JVI_07085_11
crossref_primary_10_4062_biomolther_2024_047
crossref_primary_10_1016_j_jconrel_2016_01_019
crossref_primary_10_1016_j_ijid_2019_05_009
crossref_primary_10_1128_CVI_00735_12
crossref_primary_10_1371_journal_pone_0034581
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1126/scitranslmed.3000624
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1946-6242
ExternalDocumentID 20371470
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: N01-AI-25462
– fundername: NCRR NIH HHS
  grantid: RR00095
GroupedDBID ---
0R~
4.4
53G
7~K
ABJNI
ACGFS
AENEX
AFQFN
AJGZS
ALMA_UNASSIGNED_HOLDINGS
BKF
C45
CGR
CUY
CVF
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
OFXIZ
OVD
OVIDX
P2P
RHI
TEORI
ID FETCH-LOGICAL-c378t-437db2a703b307eba856577cd9bd17527bb35277d0ed63df6777abad96116862
IngestDate Mon Jul 21 06:01:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-437db2a703b307eba856577cd9bd17527bb35277d0ed63df6777abad96116862
PMID 20371470
ParticipantIDs pubmed_primary_20371470
PublicationCentury 2000
PublicationDate 2010-01-20
PublicationDateYYYYMMDD 2010-01-20
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science translational medicine
PublicationTitleAlternate Sci Transl Med
PublicationYear 2010
SSID ssj0068356
Score 2.4222362
Snippet Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses,...
SourceID pubmed
SourceType Index Database
StartPage 15ra5
SubjectTerms Adjuvants, Immunologic - administration & dosage
Adjuvants, Immunologic - pharmacology
Adsorption - drug effects
Animals
Antibodies, Monoclonal - immunology
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
Antibody Formation - drug effects
Birds - immunology
Birds - virology
Disease Outbreaks - prevention & control
Epitopes - chemistry
Epitopes - immunology
Humans
Hydrogen-Ion Concentration - drug effects
Influenza A Virus, H5N1 Subtype - drug effects
Influenza A Virus, H5N1 Subtype - immunology
Influenza in Birds - epidemiology
Influenza in Birds - immunology
Influenza in Birds - prevention & control
Influenza in Birds - virology
Influenza Vaccines - immunology
Influenza, Human - epidemiology
Influenza, Human - immunology
Influenza, Human - prevention & control
Influenza, Human - virology
Kinetics
Models, Molecular
Peptide Library
Polysorbates - pharmacology
Protein Folding - drug effects
Protein Structure, Tertiary
Squalene - immunology
Squalene - pharmacology
Vaccination
Title Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus
URI https://www.ncbi.nlm.nih.gov/pubmed/20371470
Volume 2
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lICEuiPcbzYFb5KqO9xEfUUUUgdJTgN6qXe9aBJW4Mk4REX-Mf8fMPmIrFARcrMTjWFnP55nZeTL2UiEBta7IcqFdxnntsrIWReaKMudKurLyoxMWJ3L-jr85Faej0Y9B1tKmM4fV9sq6kv_hKp5DvlKV7D9wdndTPIGfkb94RA7j8a94_F5XFBePFWqLmSjH2n7aoHHcUev-lByJX1emsd8oQODarkEp501OnwQ-jp0aKIOIIsk-tYN-6rPm9SUJgLk4ySlti8aZbPX4ctVGd0G0apOA6EjxnSf34n7Y_u3HDdJ1yAVq_Qi7PrkAX7iv2jtXP-j1qncTHOsvvmeonxA-np037Y60wAtxb-5w8dsQCIiNcqMTw-fCZZMQj3FB8JZcZlSrMpTMkyEAxUDM5qLV4moFkEZWhhXjSg8LUsmhUHuAiYvPHhQT37IwzC75M3WvLXciHbAD3KDQxFVyEwUTQKJZK2OdZqzQ-uXvUBfqeIu9HY23bJa32a24JYFXAV932Mit77Ibi8i9e-x7ghkQzIBgBglmEGAGCDNIMIMeZtA1EGAGPczAwwyaGhLMwMMMCGawgxl4mN1ny9nr5fE8i0M7sqpQ0y7jhbJmolGRGFQfzugpBdZVZUtj0VSdKGPQ5lfKHjkrC1tLpZQ22pYyz6la6QG7tm7W7hEDXuelc7ifsFZwd6RLLrSsZD41xqIQ4Y_Zw_DYzi5CY5az9ECf_JbylN3s4feMXa9RErjnaFZ25oVn4U_0Sn_S
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vaccines+with+MF59+adjuvant+expand+the+antibody+repertoire+to+target+protective+sites+of+pandemic+avian+H5N1+influenza+virus&rft.jtitle=Science+translational+medicine&rft.au=Khurana%2C+Surender&rft.au=Chearwae%2C+Wanida&rft.au=Castellino%2C+Flora&rft.au=Manischewitz%2C+Jody&rft.date=2010-01-20&rft.eissn=1946-6242&rft.volume=2&rft.issue=15&rft.spage=15ra5&rft_id=info:doi/10.1126%2Fscitranslmed.3000624&rft_id=info%3Apmid%2F20371470&rft_id=info%3Apmid%2F20371470&rft.externalDocID=20371470