Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus
Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses, adjuvants (immune potentiators or enhancers) are needed to improve immune responses, to conserve scarce vaccine, and for cross-protection aga...
Saved in:
Published in | Science translational medicine Vol. 2; no. 15; p. 15ra5 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
20.01.2010
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses, adjuvants (immune potentiators or enhancers) are needed to improve immune responses, to conserve scarce vaccine, and for cross-protection against strains that have drifted evolutionarily from the original. Aluminum-based adjuvants do not improve vaccine immunogenicity for influenza subunit vaccines, whereas oil-in-water adjuvants are effective, especially with H5N1-inactivated vaccines. We used whole-genome-fragment phage display libraries followed by surface plasmon resonance (SPR) technologies to elucidate the effect of different adjuvants on the antibody repertoire against H5N1 vaccine in humans. The oil-in-water adjuvant MF59 induced epitope spreading from HA2 to HA1 in hemagglutinin (HA) and neuraminidase relative to unadjuvanted or aluminum-adjuvanted vaccines. Moreover, we observed an increase by a factor of 20 in the frequency of HA1-to-HA2-specific phage clones in sera after MF59-adjuvanted vaccine administration and a factor of 2 to 3 increase in the avidity of antibodies binding to properly folded HA1(28-319), as measured by SPR. The adjuvant-dependent increase in binding to conformational HA1 epitopes correlated with broadening of cross-clade neutralization and predicted improved in vivo protection. Thus, MF59 adjuvant improves the immune response to a H5N1 vaccine by inducing qualitative and quantitative expansion of the antibody repertoires with protective potential. |
---|---|
AbstractList | Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses, adjuvants (immune potentiators or enhancers) are needed to improve immune responses, to conserve scarce vaccine, and for cross-protection against strains that have drifted evolutionarily from the original. Aluminum-based adjuvants do not improve vaccine immunogenicity for influenza subunit vaccines, whereas oil-in-water adjuvants are effective, especially with H5N1-inactivated vaccines. We used whole-genome-fragment phage display libraries followed by surface plasmon resonance (SPR) technologies to elucidate the effect of different adjuvants on the antibody repertoire against H5N1 vaccine in humans. The oil-in-water adjuvant MF59 induced epitope spreading from HA2 to HA1 in hemagglutinin (HA) and neuraminidase relative to unadjuvanted or aluminum-adjuvanted vaccines. Moreover, we observed an increase by a factor of 20 in the frequency of HA1-to-HA2-specific phage clones in sera after MF59-adjuvanted vaccine administration and a factor of 2 to 3 increase in the avidity of antibodies binding to properly folded HA1(28-319), as measured by SPR. The adjuvant-dependent increase in binding to conformational HA1 epitopes correlated with broadening of cross-clade neutralization and predicted improved in vivo protection. Thus, MF59 adjuvant improves the immune response to a H5N1 vaccine by inducing qualitative and quantitative expansion of the antibody repertoires with protective potential. |
Author | Khurana, Surender King, Lisa R Honorkiewicz, Agnieszka Rock, Michael T Del Giudice, Giuseppe Golding, Hana Manischewitz, Jody Castellino, Flora Edwards, Kathryn M Rappuoli, Rino Chearwae, Wanida |
Author_xml | – sequence: 1 givenname: Surender surname: Khurana fullname: Khurana, Surender organization: Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA – sequence: 2 givenname: Wanida surname: Chearwae fullname: Chearwae, Wanida – sequence: 3 givenname: Flora surname: Castellino fullname: Castellino, Flora – sequence: 4 givenname: Jody surname: Manischewitz fullname: Manischewitz, Jody – sequence: 5 givenname: Lisa R surname: King fullname: King, Lisa R – sequence: 6 givenname: Agnieszka surname: Honorkiewicz fullname: Honorkiewicz, Agnieszka – sequence: 7 givenname: Michael T surname: Rock fullname: Rock, Michael T – sequence: 8 givenname: Kathryn M surname: Edwards fullname: Edwards, Kathryn M – sequence: 9 givenname: Giuseppe surname: Del Giudice fullname: Del Giudice, Giuseppe – sequence: 10 givenname: Rino surname: Rappuoli fullname: Rappuoli, Rino – sequence: 11 givenname: Hana surname: Golding fullname: Golding, Hana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20371470$$D View this record in MEDLINE/PubMed |
BookMark | eNo1UN1KwzAYDaI4N30Dke8FOvPTJu2lDOeEqTfD25E0X13GlpYknU58eCvqzfmDcy7OmJz61iMh14xOGePyNtYuBe3jbo92Kiilkucn5IJVucwGyUdkHON2iEtRyHMy4lQolit6Qb5edV07jxHeXdrA07yoQNttf9A-AX502ltIG4TBOtPaIwTsMKTWBYTUQtLhDRN0oU1YJ3dAiC4NY20DP1Xcuxr0wWkPi-KZgfPNrkf_qeHgQh8vyVmjdxGv_nhCVvP71WyRLV8eHmd3y6wWqkxZLpQ1XCsqjKAKjS4LWShV28pYpgqujBEDKkvRSmEbqZTSRttKMiZLySfk5ne2681w0LoLbq_Dcf3_Av8G0Bpjfw |
CitedBy_id | crossref_primary_10_1016_j_chom_2015_02_015 crossref_primary_10_1146_annurev_immunol_032712_095916 crossref_primary_10_2165_11586770_000000000_00000 crossref_primary_10_1159_000366162 crossref_primary_10_3390_vaccines12050531 crossref_primary_10_1016_S2213_2600_18_30108_5 crossref_primary_10_1038_s41467_024_51021_5 crossref_primary_10_1016_j_vaccine_2020_10_036 crossref_primary_10_1016_j_chom_2015_02_012 crossref_primary_10_1080_21645515_2023_2193119 crossref_primary_10_1016_j_intimp_2023_109887 crossref_primary_10_1016_j_celrep_2019_07_047 crossref_primary_10_1111_j_1750_2659_2011_00242_x crossref_primary_10_1093_infdis_jiv210 crossref_primary_10_3389_fimmu_2020_576748 crossref_primary_10_4049_jimmunol_1402389 crossref_primary_10_1002_rmv_1729 crossref_primary_10_1016_j_trivac_2014_07_001 crossref_primary_10_1038_srep46426 crossref_primary_10_1038_s41598_018_36426_9 crossref_primary_10_1128_CVI_00553_16 crossref_primary_10_1097_QAD_0b013e328341afa8 crossref_primary_10_1038_s41541_018_0076_2 crossref_primary_10_1016_j_yrtph_2019_104436 crossref_primary_10_1016_j_coi_2018_04_019 crossref_primary_10_1038_srep24897 crossref_primary_10_2217_fvl_2016_0045 crossref_primary_10_1016_j_immuni_2021_11_009 crossref_primary_10_1007_s10989_020_10144_1 crossref_primary_10_1038_s41541_021_00418_0 crossref_primary_10_1016_j_coi_2014_01_009 crossref_primary_10_1016_j_molmed_2016_09_002 crossref_primary_10_4049_jimmunol_2100210 crossref_primary_10_1021_pr400329k crossref_primary_10_4161_hv_26495 crossref_primary_10_1074_jbc_M111_270553 crossref_primary_10_1016_j_vaccine_2011_05_012 crossref_primary_10_1093_infdis_jir791 crossref_primary_10_1128_JVI_03309_13 crossref_primary_10_1038_ncomms9855 crossref_primary_10_1038_s41541_019_0132_6 crossref_primary_10_1038_s41591_024_03189_y crossref_primary_10_1586_14760584_2013_811193 crossref_primary_10_1016_j_chom_2020_01_001 crossref_primary_10_1586_erv_11_131 crossref_primary_10_3389_fimmu_2019_00646 crossref_primary_10_1016_j_vaccine_2010_04_030 crossref_primary_10_1586_erv_10_52 crossref_primary_10_1586_erv_11_23 crossref_primary_10_1128_CVI_00626_12 crossref_primary_10_1016_j_vaccine_2015_06_047 crossref_primary_10_1517_14712598_2013_748030 crossref_primary_10_1016_j_isci_2020_100920 crossref_primary_10_1038_s41598_018_22874_w crossref_primary_10_1371_journal_pone_0011548 crossref_primary_10_1038_s41541_022_00523_8 crossref_primary_10_18527_2500_2236_2014_1_1_1_11 crossref_primary_10_2119_molmed_2012_00147 crossref_primary_10_1371_journal_pone_0233632 crossref_primary_10_1093_infdis_jit178 crossref_primary_10_1126_scitranslmed_3008409 crossref_primary_10_1126_scitranslmed_3008761 crossref_primary_10_1016_j_smim_2018_05_001 crossref_primary_10_1016_j_smim_2013_05_004 crossref_primary_10_3389_fimmu_2018_00171 crossref_primary_10_1371_journal_pone_0190947 crossref_primary_10_1097_INF_0000000000000462 crossref_primary_10_1093_infdis_jiu284 crossref_primary_10_3390_vaccines11101528 crossref_primary_10_3389_fimmu_2018_00600 crossref_primary_10_1016_j_vaccine_2020_09_058 crossref_primary_10_1038_srep42428 crossref_primary_10_1186_s40064_016_2948_0 crossref_primary_10_1016_j_vaccine_2012_10_048 crossref_primary_10_1586_erv_11_192 crossref_primary_10_1038_nm_2963 crossref_primary_10_1016_j_clim_2017_06_001 crossref_primary_10_3389_fimmu_2023_1043109 crossref_primary_10_1016_j_molimm_2021_05_003 crossref_primary_10_1016_j_vaccine_2014_07_013 crossref_primary_10_1016_j_vaccine_2018_06_054 crossref_primary_10_1016_j_smim_2020_101426 crossref_primary_10_3390_vaccines10101683 crossref_primary_10_1371_journal_pone_0103550 crossref_primary_10_3389_fcimb_2020_545371 crossref_primary_10_1128_microbiolspec_AID_0021_2014 crossref_primary_10_1016_j_coi_2022_102229 crossref_primary_10_1016_j_vaccine_2014_08_068 crossref_primary_10_1016_j_micinf_2011_01_007 crossref_primary_10_1002_eji_201242563 crossref_primary_10_1126_scitranslmed_3006366 crossref_primary_10_1186_s12985_017_0918_y crossref_primary_10_1038_srep19570 crossref_primary_10_1038_s41467_019_11296_5 crossref_primary_10_1128_JVI_05406_11 crossref_primary_10_1016_j_yrtph_2016_08_003 crossref_primary_10_1038_s41467_021_21463_2 crossref_primary_10_1016_j_vaccine_2018_05_029 crossref_primary_10_1016_j_biologicals_2010_06_002 crossref_primary_10_1038_nm_4201 crossref_primary_10_1080_21645515_2016_1168954 crossref_primary_10_1038_srep29368 crossref_primary_10_1016_j_vaccine_2017_04_029 crossref_primary_10_1016_j_vaccine_2023_02_034 crossref_primary_10_1186_s12865_015_0090_3 crossref_primary_10_1038_nrmicro_2017_118 crossref_primary_10_1038_s41541_021_00354_z crossref_primary_10_1002_wnan_1824 crossref_primary_10_1128_CVI_00373_12 crossref_primary_10_1128_JVI_01596_12 crossref_primary_10_3390_pathogens12070863 crossref_primary_10_3109_08830185_2015_1082177 crossref_primary_10_1080_14760584_2020_1857736 crossref_primary_10_1126_science_1192517 crossref_primary_10_4161_hv_23239 crossref_primary_10_1016_j_coph_2018_03_014 crossref_primary_10_1002_biot_201300116 crossref_primary_10_1016_S0140_6736_11_60407_8 crossref_primary_10_1038_s41586_021_04356_8 crossref_primary_10_1016_j_ijid_2019_04_023 crossref_primary_10_3109_1040841X_2013_826177 crossref_primary_10_4161_hv_28371 crossref_primary_10_1016_j_celrep_2017_12_014 crossref_primary_10_1038_s41541_020_00238_8 crossref_primary_10_1097_INF_0000000000002727 crossref_primary_10_1128_JVI_01939_10 crossref_primary_10_3390_vaccines10040497 crossref_primary_10_1016_j_vaccine_2012_02_027 crossref_primary_10_1126_scitranslmed_3002336 crossref_primary_10_3389_fimmu_2021_692151 crossref_primary_10_1016_j_coi_2012_03_008 crossref_primary_10_1016_j_vaccine_2011_09_061 crossref_primary_10_3389_fimmu_2017_00943 crossref_primary_10_1016_j_jviromet_2014_09_006 crossref_primary_10_1073_pnas_1109797109 crossref_primary_10_1007_s11357_021_00323_3 crossref_primary_10_3390_vaccines2020252 crossref_primary_10_1038_s41541_022_00524_7 crossref_primary_10_1016_j_vaccine_2012_10_117 crossref_primary_10_1016_j_vaccine_2014_02_049 crossref_primary_10_3390_pharmaceutics11090437 crossref_primary_10_1016_j_virusres_2013_05_006 crossref_primary_10_1093_infdis_jiaa728 crossref_primary_10_18527_2500_2236_2014_1_1_12_26 crossref_primary_10_1021_acsnano_4c00278 crossref_primary_10_1016_j_vaccine_2020_01_066 crossref_primary_10_1126_sciadv_abf2467 crossref_primary_10_1111_ijcp_13249 crossref_primary_10_1586_14760584_2014_938641 crossref_primary_10_1016_j_vaccine_2012_02_003 crossref_primary_10_1016_j_immuni_2025_02_025 crossref_primary_10_1248_yakushi_131_1733 crossref_primary_10_3390_vaccines12030281 crossref_primary_10_1371_journal_pone_0025797 crossref_primary_10_1371_journal_pone_0115476 crossref_primary_10_1016_j_vaccine_2022_05_045 crossref_primary_10_1038_srep37229 crossref_primary_10_3390_v6103809 crossref_primary_10_3389_fimmu_2023_1154496 crossref_primary_10_1016_j_immuni_2010_10_002 crossref_primary_10_1016_j_vaccine_2021_08_021 crossref_primary_10_3390_vaccines9020075 crossref_primary_10_1016_j_biologicals_2013_08_006 crossref_primary_10_1093_ofid_ofu102 crossref_primary_10_1016_j_actatropica_2022_106796 crossref_primary_10_1371_journal_pone_0095496 crossref_primary_10_1371_journal_pcbi_1007294 crossref_primary_10_1016_j_vaccine_2018_08_072 crossref_primary_10_1126_scitranslmed_adg7404 crossref_primary_10_1371_journal_pone_0114159 crossref_primary_10_1111_j_1751_7915_2011_00276_x crossref_primary_10_1073_pnas_1414070111 crossref_primary_10_3390_vaccines7020042 crossref_primary_10_1586_erv_12_140 crossref_primary_10_1016_j_vaccine_2012_08_073 crossref_primary_10_1038_nm1210_1389 crossref_primary_10_3389_fimmu_2021_662218 crossref_primary_10_1111_j_1600_065X_2010_00974_x crossref_primary_10_1111_cei_12292 crossref_primary_10_1016_j_coi_2013_07_005 crossref_primary_10_12688_f1000research_7388_1 crossref_primary_10_1016_j_vaccine_2015_04_086 crossref_primary_10_3390_v13071392 crossref_primary_10_1016_j_vaccine_2011_06_090 crossref_primary_10_1089_vim_2024_0032 crossref_primary_10_1371_journal_pone_0172008 crossref_primary_10_1016_j_vaccine_2018_02_115 crossref_primary_10_1039_D1NR08064D crossref_primary_10_3390_vaccines9121468 crossref_primary_10_1021_ie504071f crossref_primary_10_1126_scitranslmed_abc3539 crossref_primary_10_1016_j_ijpharm_2022_121667 crossref_primary_10_1089_nat_2011_0284 crossref_primary_10_1038_s41591_020_0753_3 crossref_primary_10_1128_CVI_00129_14 crossref_primary_10_3389_fimmu_2018_00460 crossref_primary_10_4049_jimmunol_1402604 crossref_primary_10_1016_j_jconrel_2024_12_044 crossref_primary_10_1128_JVI_07085_11 crossref_primary_10_4062_biomolther_2024_047 crossref_primary_10_1016_j_jconrel_2016_01_019 crossref_primary_10_1016_j_ijid_2019_05_009 crossref_primary_10_1128_CVI_00735_12 crossref_primary_10_1371_journal_pone_0034581 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1126/scitranslmed.3000624 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1946-6242 |
ExternalDocumentID | 20371470 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: N01-AI-25462 – fundername: NCRR NIH HHS grantid: RR00095 |
GroupedDBID | --- 0R~ 4.4 53G 7~K ABJNI ACGFS AENEX AFQFN AJGZS ALMA_UNASSIGNED_HOLDINGS BKF C45 CGR CUY CVF DU5 EBS ECM EIF EJD EMOBN F5P HZ~ NPM O9- OFXIZ OVD OVIDX P2P RHI TEORI |
ID | FETCH-LOGICAL-c378t-437db2a703b307eba856577cd9bd17527bb35277d0ed63df6777abad96116862 |
IngestDate | Mon Jul 21 06:01:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-437db2a703b307eba856577cd9bd17527bb35277d0ed63df6777abad96116862 |
PMID | 20371470 |
ParticipantIDs | pubmed_primary_20371470 |
PublicationCentury | 2000 |
PublicationDate | 2010-01-20 |
PublicationDateYYYYMMDD | 2010-01-20 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science translational medicine |
PublicationTitleAlternate | Sci Transl Med |
PublicationYear | 2010 |
SSID | ssj0068356 |
Score | 2.4222362 |
Snippet | Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses,... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 15ra5 |
SubjectTerms | Adjuvants, Immunologic - administration & dosage Adjuvants, Immunologic - pharmacology Adsorption - drug effects Animals Antibodies, Monoclonal - immunology Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Antibody Formation - drug effects Birds - immunology Birds - virology Disease Outbreaks - prevention & control Epitopes - chemistry Epitopes - immunology Humans Hydrogen-Ion Concentration - drug effects Influenza A Virus, H5N1 Subtype - drug effects Influenza A Virus, H5N1 Subtype - immunology Influenza in Birds - epidemiology Influenza in Birds - immunology Influenza in Birds - prevention & control Influenza in Birds - virology Influenza Vaccines - immunology Influenza, Human - epidemiology Influenza, Human - immunology Influenza, Human - prevention & control Influenza, Human - virology Kinetics Models, Molecular Peptide Library Polysorbates - pharmacology Protein Folding - drug effects Protein Structure, Tertiary Squalene - immunology Squalene - pharmacology Vaccination |
Title | Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20371470 |
Volume | 2 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lICEuiPcbzYFb5KqO9xEfUUUUgdJTgN6qXe9aBJW4Mk4REX-Mf8fMPmIrFARcrMTjWFnP55nZeTL2UiEBta7IcqFdxnntsrIWReaKMudKurLyoxMWJ3L-jr85Faej0Y9B1tKmM4fV9sq6kv_hKp5DvlKV7D9wdndTPIGfkb94RA7j8a94_F5XFBePFWqLmSjH2n7aoHHcUev-lByJX1emsd8oQODarkEp501OnwQ-jp0aKIOIIsk-tYN-6rPm9SUJgLk4ySlti8aZbPX4ctVGd0G0apOA6EjxnSf34n7Y_u3HDdJ1yAVq_Qi7PrkAX7iv2jtXP-j1qncTHOsvvmeonxA-np037Y60wAtxb-5w8dsQCIiNcqMTw-fCZZMQj3FB8JZcZlSrMpTMkyEAxUDM5qLV4moFkEZWhhXjSg8LUsmhUHuAiYvPHhQT37IwzC75M3WvLXciHbAD3KDQxFVyEwUTQKJZK2OdZqzQ-uXvUBfqeIu9HY23bJa32a24JYFXAV932Mit77Ibi8i9e-x7ghkQzIBgBglmEGAGCDNIMIMeZtA1EGAGPczAwwyaGhLMwMMMCGawgxl4mN1ny9nr5fE8i0M7sqpQ0y7jhbJmolGRGFQfzugpBdZVZUtj0VSdKGPQ5lfKHjkrC1tLpZQ22pYyz6la6QG7tm7W7hEDXuelc7ifsFZwd6RLLrSsZD41xqIQ4Y_Zw_DYzi5CY5az9ECf_JbylN3s4feMXa9RErjnaFZ25oVn4U_0Sn_S |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vaccines+with+MF59+adjuvant+expand+the+antibody+repertoire+to+target+protective+sites+of+pandemic+avian+H5N1+influenza+virus&rft.jtitle=Science+translational+medicine&rft.au=Khurana%2C+Surender&rft.au=Chearwae%2C+Wanida&rft.au=Castellino%2C+Flora&rft.au=Manischewitz%2C+Jody&rft.date=2010-01-20&rft.eissn=1946-6242&rft.volume=2&rft.issue=15&rft.spage=15ra5&rft_id=info:doi/10.1126%2Fscitranslmed.3000624&rft_id=info%3Apmid%2F20371470&rft_id=info%3Apmid%2F20371470&rft.externalDocID=20371470 |