Adaptation of species as response to climate change: Predator-prey mathematical model

Most of the species currently threatened with extinction seem to be under the pressure of unsuitable environmental conditions; e.g., climate change, scarce food resource, habitat fragmentation. One should expect species to have forms of resilience against such extinction. The point here is to examin...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 5; no. 4; pp. 3875 - 3898
Main Author Sekerci, Yadigar
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2020
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2020251

Cover

Loading…
Abstract Most of the species currently threatened with extinction seem to be under the pressure of unsuitable environmental conditions; e.g., climate change, scarce food resource, habitat fragmentation. One should expect species to have forms of resilience against such extinction. The point here is to examine the effect of spatial gradients on species survival against increasing temperature arising from climate change. Therefore, we start with the question of whether, when faced with extinction stemming from climate change, a spatial gradient and a beachhead have the power to prevent extinction. This problem is addressed theoretically using a coupled reaction diffusion equation for a predator-prey system in which the prey experiences an Allee effect. It is demonstrated that there exists a relationship between the slope of the gradient and the beachhead at which the predator-prey system can stably survive. The tendency of the system can be defined by a function where the system includes the threshold point for extinction, that separates the areas of extinction and survival. The findings reveal that spatial gradient can be used as a precaution, when the species faces to extinction, for species to create new habitat and sustain its persistence. Therefore, in this paper, it is shown that, in theory, the recovery of species from unsuitable environmental conditions can be achieved. This can be possible by taking into account the spatial gradient to slow down the forthcoming ecological extinction, and thus extend the system a while as an adaptation mechanism.
AbstractList Most of the species currently threatened with extinction seem to be under the pressure of unsuitable environmental conditions; e.g., climate change, scarce food resource, habitat fragmentation. One should expect species to have forms of resilience against such extinction. The point here is to examine the effect of spatial gradients on species survival against increasing temperature arising from climate change. Therefore, we start with the question of whether, when faced with extinction stemming from climate change, a spatial gradient and a beachhead have the power to prevent extinction. This problem is addressed theoretically using a coupled reaction diffusion equation for a predator-prey system in which the prey experiences an Allee effect. It is demonstrated that there exists a relationship between the slope of the gradient and the beachhead at which the predator-prey system can stably survive. The tendency of the system can be defined by a function where the system includes the threshold point for extinction, that separates the areas of extinction and survival. The findings reveal that spatial gradient can be used as a precaution, when the species faces to extinction, for species to create new habitat and sustain its persistence. Therefore, in this paper, it is shown that, in theory, the recovery of species from unsuitable environmental conditions can be achieved. This can be possible by taking into account the spatial gradient to slow down the forthcoming ecological extinction, and thus extend the system a while as an adaptation mechanism.
Author Sekerci, Yadigar
Author_xml – sequence: 1
  givenname: Yadigar
  surname: Sekerci
  fullname: Sekerci, Yadigar
BookMark eNptkMtqwzAQRUVJoWmaXT9AH1CnejmWuwuhj0CgXTRrMbJHiYNjGcmb_H2VJpRSimB0GUbnju4tGXW-Q0LuOZvJUqrHAwy7mWDp5PyKjIUqZDYvtR790jdkGuOeMSa4UKJQY7JZ1NAPMDS-o97R2GPVYKQQacDY-y4iHTyt2ibhkVY76Lb4RD8C1jD4kPUBj_TkjKk0FbT04Gts78i1gzbi9HJPyObl-XP5lq3fX1fLxTqrZKGHTNauVLmFWqHDwuUIeelQK5fkHKSVrswZCA3COVTcFiUC03OuhOBW57mckNWZW3vYmz6kLcPReGjMd8OHrYGQ9mrRKMtrjYJpWdhkUJRW2kRRTqPVOnlNyMOZVQUfY0D3w-PMnBI2p3-aS8JpXPwZr5pzjkOApv3_0Rel_oLu
CitedBy_id crossref_primary_10_1140_epjp_s13360_020_00800_2
crossref_primary_10_1140_epjp_s13360_024_05880_y
crossref_primary_10_1016_j_ecolmodel_2020_109244
Cites_doi 10.1098/rspa.2004.1404
10.1016/j.tpb.2006.12.006
10.1016/j.ecocom.2018.10.004
10.1038/s41586-019-1230-3
10.1007/s00285-010-0332-1
10.1038/nature06111
10.1126/science.1101867
10.1046/j.1461-0248.2001.00193.x
10.1016/j.jtbi.2005.05.021
10.1890/04-0823
10.1006/bulm.2001.0239
10.1111/j.1365-2656.2012.02038.x
10.1098/rspb.1993.0001
10.1016/j.nonrwa.2018.05.018
10.1006/tpbi.1993.1007
10.2307/2479933
10.1016/S0025-5564(01)00048-7
10.1006/tpbi.2000.1509
10.1016/j.tree.2004.11.012
10.1016/j.ecocom.2014.05.003
10.1038/nature01274
10.1086/303320
10.2307/2420377
10.2307/1943577
10.1016/j.mbs.2007.02.006
10.1007/s12080-009-0060-6
10.1016/j.jtbi.2017.04.018
10.1007/s40745-016-0096-6
10.1046/j.1461-0248.2002.00324.x
10.1186/1687-1847-2013-1
10.1016/j.ecocom.2014.10.006
10.1007/s11538-015-0126-0
10.1016/j.ecocom.2014.05.001
10.2307/2479596
10.1016/j.bulm.2004.09.003
10.1016/j.ecocom.2014.05.007
10.1007/s11538-015-0108-2
ContentType Journal Article
CorporateAuthor Department of Mathematics, Arts and Science Faculty, Amasya University, 05189 Amasya, Turkey
CorporateAuthor_xml – name: Department of Mathematics, Arts and Science Faculty, Amasya University, 05189 Amasya, Turkey
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020251
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3898
ExternalDocumentID oai_doaj_org_article_4b1d8e20837b4ff79b3b21b4f8eb883b
10_3934_math_2020251
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-3df945bad4efe7f5ea59fe84ff5e6a3b3f950a28a2ffe41b79ea08614221b8553
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:30:21 EDT 2025
Tue Jul 01 03:56:45 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-3df945bad4efe7f5ea59fe84ff5e6a3b3f950a28a2ffe41b79ea08614221b8553
OpenAccessLink https://doaj.org/article/4b1d8e20837b4ff79b3b21b4f8eb883b
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_4b1d8e20837b4ff79b3b21b4f8eb883b
crossref_primary_10_3934_math_2020251
crossref_citationtrail_10_3934_math_2020251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References 44
M. R. Owen, M. A. Lewis (48)
M. Siccha, M. Kucera (23)
B. Chakraborty, N. Bairagi (53)
H. A. Gleason (18)
J. Z. Farkas, A. Y. Morozov, E. G. Arashkevich (21)
M. A. Lewis, P. Kareiva (45)
C. Cosner (9)
Y. Sekerci, S. Petrovskii (33)
P. Kyriazopoulos, J. Nathan, E. Meron (12)
51
M. Doebeli, U. Dieckmann (15)
10
V. Dakos, E. H. van Nes, R. Donangelo (54)
M. Pascual, F. Guichard (57)
55
13
H. A. Gleason (17)
L. Jonkers, H. Hillebrand, M. Kucera (22)
1
4
6
S. Petrovskii, A. Morozov, E. Venturino (3)
S. V. Petrovskii, H. Malchow (46)
S. Petrovskii, H. Malchow, B. L. Li (49)
24
25
27
28
O. Bonnefon, J. Coville, J. Garnier (11)
J. Wang, J. Shi, J. Wei (37)
S. Petrovskii, Y. Sekerci, E. Venturino (31)
M. H. Wang, M. Kot (42)
H. A. Gleason (16)
W. F. Fagan, J. G. Bishop (47)
M. Pascual (19)
J. Wang, J. Shi, J. Wei (36)
H. Berestycki, L. Desvillettes, O. Diekmann (8)
30
32
J. A. Sherratt (41)
35
E. Post (20)
M. Rietkerk, S. C. Dekker, P. C. de Ruiter (58)
J. Martin, B. van Moorter, E. Revilla (52)
S. Petrovskii, A. Morozov, B. L. Li (7)
A. S. Ackleh, L. J. Allen, J. Carter (34)
A. Morozov, S. Petrovskii, B. L. Li (2)
R. Han, B. Dai (5)
R. H. Whittaker (14)
G. A. Van Voorn, L. Hemerik, M. P. Boer (38)
43
S. Kéfi, M. Rietkerk, C. L. Alados (56)
References_xml – ident: 49
  article-title: i>An exact solution of a diffusive predator-prey system</i
  publication-title: Proc. R. Soc. A.
  doi: 10.1098/rspa.2004.1404
– ident: 34
  article-title: i>Establishing a beachhead: a stochastic population model with an Allee effect applied to species invasion</i
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/j.tpb.2006.12.006
– ident: 53
  article-title: i>Complexity in a prey-predator model with prey refuge and diffusion</i
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2018.10.004
– ident: 22
  article-title: i>Global change drives modern plankton communities away from the pre-industrial state</i
  publication-title: Nature
  doi: 10.1038/s41586-019-1230-3
– ident: 25
  article-title: i>Hypothesis for origin of planktonic patchiness</i
– ident: 27
  article-title: i>Spatial dynamics of predator-prey system with hunting cooperation in predators and type I functional response</i
– ident: 36
  article-title: i>Predator-prey system with strong Allee effect in prey</i
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-010-0332-1
– ident: 56
  article-title: t al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems</i
  publication-title: Nature
  doi: 10.1038/nature06111
– ident: 58
  article-title: t al. Self-organized patchiness and catastrophic shifts in ecosystems</i
  publication-title: Science
  doi: 10.1126/science.1101867
– ident: 6
  article-title: t al. Pattern dynamics in a diffusive predator-prey model with hunting cooperations</i
– ident: 41
  article-title: i>Periodic travelling waves in cyclic predator-prey systems</i
  publication-title: Ecol. Lett.
  doi: 10.1046/j.1461-0248.2001.00193.x
– ident: 13
  article-title: J. T. Curtis, The Vegetation of
– ident: 2
  article-title: i>Spatiotemporal complexity of patchy invasion in a predatorprey system with the Allee effect</i
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.05.021
– ident: 20
  article-title: i>Large-scale spatial gradients in herbivore population dynamics</i
  publication-title: Ecology
  doi: 10.1890/04-0823
– ident: 48
  article-title: i>How predation can slow, stop or reverse a prey invasion</i
  publication-title: B. Math. Biol.
  doi: 10.1006/bulm.2001.0239
– ident: 52
  article-title: t al. Reciprocal modulation of internal and external factors determines individual movements</i
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2012.02038.x
– ident: 19
  article-title: i>Diffusion-induced chaos in a spatial predator-prey system</i
  publication-title: Proc. R. Soc. Lond. B.
  doi: 10.1098/rspb.1993.0001
– ident: 5
  article-title: i>Spatiotemporal pattern formation and selection induced by nonlinear crossdiffusion in a toxic-phytoplankton-zooplankton model with Allee effect</i
  publication-title: Nonlinear Anal.: Real World Appl.
  doi: 10.1016/j.nonrwa.2018.05.018
– ident: 55
  article-title: t al. Transient phenomena in ecology</i
– ident: 51
  article-title: i>Critical domain problem for the reaction-telegraph equation model of population dynamics</i
– ident: 45
  article-title: i>Allee dynamics and the spread of invading organisms</i
  publication-title: Theor. Popul. Biol.
  doi: 10.1006/tpbi.1993.1007
– ident: 4
  article-title: i>Pattern formation of a diffusive predator-prey model with strong Allee effect and nonconstant death rate</i
– ident: 35
  article-title: i>Pattern formation in a model oxygen-plankton system</i
– ident: 17
  article-title: i>The individualist concept of the plant association</i
  publication-title: Bull. Torrey Bot. Club
  doi: 10.2307/2479933
– ident: 42
  article-title: i>Speeds of invasion in a model with strong or weak Allee effects</i
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(01)00048-7
– ident: 46
  article-title: i>Wave of chaos: New mechanism of pattern formation in spatiotemporal population dynamics</i
  publication-title: Theor. Popul. Biol.
  doi: 10.1006/tpbi.2000.1509
– ident: 43
  article-title: i>Global dynamics of two phytoplankton-zooplankton models with toxic substances effect</i
– ident: 57
  article-title: i>Critically and disturbance in spatial ecological system</i
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2004.11.012
– ident: 11
  article-title: t al. The spatio-temporal dynamics of neutral genetic diversity</i
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2014.05.003
– ident: 15
  article-title: i>Speciation along environmental gradients</i
  publication-title: Nature
  doi: 10.1038/nature01274
– ident: 10
  article-title: i>Climate change effects on fractional order prey-predator model</i
– ident: 47
  article-title: i>Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens</i
  publication-title: Am. Nat.
  doi: 10.1086/303320
– ident: 18
  article-title: i>The individualistic concept of the plant association</i
  publication-title: Am. Midl. Nat.
  doi: 10.2307/2420377
– ident: 14
  article-title: i>Vegetation of the great smoky mountains</i
  publication-title: Ecol. Monogr.
  doi: 10.2307/1943577
– ident: 38
  article-title: t al., Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect</i
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2007.02.006
– ident: 54
  article-title: t al. Spatial correlation as leading indicator of catastrophic shifts</i
  publication-title: Theor. Ecol.
  doi: 10.1007/s12080-009-0060-6
– ident: 31
  article-title: i>Regime shifts and ecological catastrophes in a model of plankton-oxygen dynamics under the climate change</i
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2017.04.018
– ident: 28
  article-title: i>The chemical basis of morphogenesis</i
– ident: 30
  article-title: A. Morozov, K. Abbott, K. Cuddington, et al. Long transients in
– ident: 23
  article-title: i>ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples</i
  publication-title: Sci. Data
  doi: 10.1007/s40745-016-0096-6
– ident: 1
  article-title: W. C. Allee, Animal
– ident: 44
  article-title: i>A prey-predator model with Holling II functional response and the carrying capacity of predator depending on its prey</i
– ident: 3
  article-title: i>Allee effect makes possible patchy invasion in a predatorprey system</i
  publication-title: Ecol. Lett.
  doi: 10.1046/j.1461-0248.2002.00324.x
– ident: 37
  article-title: i>Nonexistence of periodic orbits for predator-prey system with strong Allee effect in prey populations</i
  publication-title: Electron. J. Differ. Eq.
  doi: 10.1186/1687-1847-2013-1
– ident: 8
  article-title: i>Can climate change lead to gap formation?</i
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2014.10.006
– ident: 33
  article-title: i>Mathematical modelling of plankton-oxygen dynamics under the climate change</i
  publication-title: B. Math. Biol.
  doi: 10.1007/s11538-015-0126-0
– ident: 12
  article-title: i>Species coexistence by front pinning</i
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2014.05.001
– ident: 24
  article-title: t al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being</i
– ident: 16
  article-title: i>The structure and development of the plant association</i
  publication-title: Bull. Torrey Bot. Club
  doi: 10.2307/2479596
– ident: 7
  article-title: i>Regimes of biological invasion in a predator-prey system with the Allee effect</i
  publication-title: B. Math. Biol.
  doi: 10.1016/j.bulm.2004.09.003
– ident: 32
  article-title: i>Global warming can lead to depletion of oxygen by disrupting phytoplankton photosynthesis: a mathematical modelling approach</i
– ident: 9
  article-title: i>Challenges in modelling biological invasions and population distributions in a changing climate</i
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2014.05.007
– ident: 21
  article-title: t al. Revisiting the stability of spatially heterogeneous predator-prey systems under eutrophication</i
  publication-title: B. Math. Biol.
  doi: 10.1007/s11538-015-0108-2
SSID ssj0002124274
Score 2.1292467
Snippet Most of the species currently threatened with extinction seem to be under the pressure of unsuitable environmental conditions; e.g., climate change, scarce...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3875
SubjectTerms allee effect
climate change
extinction
persistence
predator-prey system
spatial gradient
Title Adaptation of species as response to climate change: Predator-prey mathematical model
URI https://doaj.org/article/4b1d8e20837b4ff79b3b21b4f8eb883b
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOehJlnbz2sRbFUsRKh4s9LYkzQSE2pZ2_f9ONutSD-LF27LMZodvdjPzJZMZQm5AoBMuvM0cMJUJ0B5_KeczGwqpgvSK-3g4efyiRhPxPJXTrVZfMScslQdOwPWEy70GhpFC4UQIhXHcsRwvNTituYuzL_q8LTIV52CckAXyrZTpzg0XPYz_4t4DizH1Dx-0Vaq_9inDA7LfBIN0kJQ4JDuwOCJ747aS6uaYTAbertJ2OV0GGg9GIreldkPXKbsVaLWks_k7PgA0HeO9p69r8JFNZyu0FP1oB8SX1a1vTshk-PT2OMqaVgjZjBe6yrgPRkhnvYAARZBgpQmgERAJynLHg5F9y7RlISD8rjBgkazEBZ7caSn5Kekslgs4IxQ88ywXLpjgRfDKKGQUKiBt6wM4Y7rk7hucctbUCY_tKuYl8oUIZRm1Lhsou-S2lV6l-hi_yD1EnFuZWNW6voG2Lhtbl3_Z-vw_Brkgu1GntIxySTrV-hOuMLCo3HX9DX0BioPO4A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+species+as+response+to+climate+change%3A+Predator-prey+mathematical+model&rft.jtitle=AIMS+mathematics&rft.au=Yadigar+Sekerci&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=4&rft.spage=3875&rft.epage=3898&rft_id=info:doi/10.3934%2Fmath.2020251&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4b1d8e20837b4ff79b3b21b4f8eb883b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon