Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world - A case of Bangladesh
Waste management is one of the greatest global challenges, for which one reason is the composition of waste, which varies not only from one region to another but also over time. Recent studies considered waste treatment options for the developed world, where management schemes include waste to hydro...
Saved in:
Published in | International journal of hydrogen energy Vol. 45; no. 32; pp. 15951 - 15962 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
11.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Waste management is one of the greatest global challenges, for which one reason is the composition of waste, which varies not only from one region to another but also over time. Recent studies considered waste treatment options for the developed world, where management schemes include waste to hydrogen generation. Although there is great potential for producing hydrogen from waste (e.g. biogas) in the developing world, this has received less attention. This study explores hydrogen production potential from waste in the developing world, particularly focusing on Bangladesh. Results show that anaerobic digestion is the most suitable waste management technology for the developing world predominantly due to waste's composition. The waste composition is dominated by organic food wastes (varying between 50% and 87%), of which the moisture content is more than 50%, thus being unsuitable for self-combustion. National energy policy making should consider this potential source of energy/hydrogen towards a sustainable future.
•Explores hydrogen production potential in the developing economies.•In developing countries, the organic food wastes vary between 50% and 87% in the waste composition.•The calorific value of organic waste is very low as it contains 57%–67% moisture.•Anaerobic digestion is a suitable technology to produce biogas from the organic waste.•There is a great potential to produce green hydrogen from biogas in the developing world. |
---|---|
AbstractList | Waste management is one of the greatest global challenges, for which one reason is the composition of waste, which varies not only from one region to another but also over time. Recent studies considered waste treatment options for the developed world, where management schemes include waste to hydrogen generation. Although there is great potential for producing hydrogen from waste (e.g. biogas) in the developing world, this has received less attention. This study explores hydrogen production potential from waste in the developing world, particularly focusing on Bangladesh. Results show that anaerobic digestion is the most suitable waste management technology for the developing world predominantly due to waste's composition. The waste composition is dominated by organic food wastes (varying between 50% and 87%), of which the moisture content is more than 50%, thus being unsuitable for self-combustion. National energy policy making should consider this potential source of energy/hydrogen towards a sustainable future.
•Explores hydrogen production potential in the developing economies.•In developing countries, the organic food wastes vary between 50% and 87% in the waste composition.•The calorific value of organic waste is very low as it contains 57%–67% moisture.•Anaerobic digestion is a suitable technology to produce biogas from the organic waste.•There is a great potential to produce green hydrogen from biogas in the developing world. |
Author | Khan, Imran |
Author_xml | – sequence: 1 givenname: Imran orcidid: 0000-0002-0716-4644 surname: Khan fullname: Khan, Imran email: ikr_ece@yahoo.com, i.khan@just.edu.bd organization: Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh |
BookMark | eNqFkE1r3DAQhkVJoJu0f6HoD9gdWV7LCjnkg3wUAr005ChkzdirxZEWSUnZfx8vSS-95DIvDDwvM88JOwoxEGM_BNQCRPdzW_vtZo8UqG6ggRraGmT_ha1Er3Ql214dsRXIDioptP7KTnLeAggFrV6x_ZPNhXiJfPBxspmXTYov04bbYCnFwTuOfqJcfAxn_H6PKU4U-C5FfHGHJd_FQqF4O3MfFpo40ivNcefDxP_GNCOv-CV3NhOPI7-yYZotUt58Y8ejnTN9_8hT9nh78-f6vnr4fffr-vKhclL1pZK6wbWSCtck7CDF2LVuGWJwKLVTbSv6NZLWolHQNRo1qHGNTiMMqB04ecrO33tdijknGo3zxR5OL8n62QgwB41ma_5pNAeNBlqzaFzw7j98l_yzTfvPwYt3kJbnXj0lk52n4Ah9IlcMRv9ZxRsrLJWE |
CitedBy_id | crossref_primary_10_1016_j_renene_2022_05_135 crossref_primary_10_3390_pr11072005 crossref_primary_10_1016_j_jece_2023_110752 crossref_primary_10_1016_j_solener_2024_112311 crossref_primary_10_1007_s12155_022_10501_6 crossref_primary_10_1016_j_ijhydene_2023_11_027 crossref_primary_10_1016_j_fuel_2022_124476 crossref_primary_10_3390_atmos15040507 crossref_primary_10_1016_j_ijhydene_2021_07_118 crossref_primary_10_1016_j_biortech_2022_127390 crossref_primary_10_1016_j_ijhydene_2020_10_023 crossref_primary_10_3390_pr11030655 crossref_primary_10_1016_j_chemosphere_2021_130954 crossref_primary_10_1016_j_ijhydene_2023_05_223 crossref_primary_10_3390_su14073740 crossref_primary_10_1016_j_ref_2024_100591 crossref_primary_10_2478_rtuect_2022_0068 crossref_primary_10_1016_j_renene_2024_121017 crossref_primary_10_1016_j_scitotenv_2023_164344 crossref_primary_10_1016_j_ijhydene_2021_05_214 crossref_primary_10_1016_j_susmat_2023_e00567 crossref_primary_10_1016_j_biteb_2025_102087 crossref_primary_10_1002_er_7029 crossref_primary_10_1016_j_egyr_2021_09_070 crossref_primary_10_1016_j_heliyon_2023_e14373 crossref_primary_10_3390_foods11193137 crossref_primary_10_1016_j_energy_2024_130477 crossref_primary_10_1016_j_envres_2024_119028 crossref_primary_10_1016_j_fuel_2021_122625 crossref_primary_10_1016_j_jenvman_2024_123258 crossref_primary_10_3390_smartcities7020030 crossref_primary_10_1007_s13762_020_03117_w crossref_primary_10_1016_j_biteb_2021_100830 crossref_primary_10_1016_j_jclepro_2024_143256 crossref_primary_10_1016_j_envpol_2024_123387 crossref_primary_10_1007_s13399_021_01604_9 crossref_primary_10_1051_e3sconf_202459601032 crossref_primary_10_17159_2413_3051_2022_v33i4a13116 crossref_primary_10_1016_j_heliyon_2024_e31670 crossref_primary_10_1016_j_ijhydene_2021_08_070 crossref_primary_10_1016_j_renene_2023_119750 crossref_primary_10_1155_2022_8792732 crossref_primary_10_3390_su141912035 crossref_primary_10_1016_j_biteb_2023_101610 crossref_primary_10_1016_j_ecmx_2023_100491 crossref_primary_10_1016_j_ijhydene_2023_03_052 crossref_primary_10_1016_j_ijhydene_2025_02_455 crossref_primary_10_1016_j_fuel_2023_128963 crossref_primary_10_3390_j4030022 crossref_primary_10_1016_j_ijhydene_2022_07_051 crossref_primary_10_1016_j_ijhydene_2022_09_113 crossref_primary_10_1016_j_jclepro_2022_132161 crossref_primary_10_1063_5_0050551 |
Cites_doi | 10.1016/j.biortech.2019.02.016 10.1016/j.ijhydene.2010.05.106 10.1016/j.ijhydene.2018.01.079 10.1016/j.wasman.2018.02.005 10.1016/j.wasman.2017.08.046 10.1016/j.ijhydene.2012.09.107 10.1016/j.ijhydene.2017.10.013 10.1016/j.jclepro.2019.118639 10.1016/j.wasman.2013.09.023 10.1016/j.ijhydene.2011.07.098 10.1016/j.energy.2016.07.130 10.1016/S1003-9953(09)60102-X 10.1016/j.ijhydene.2019.05.075 10.1016/j.wasman.2018.02.039 10.1016/j.biortech.2006.11.048 10.1016/j.wasman.2015.07.049 10.1016/j.scitotenv.2018.01.151 10.1016/j.wasman.2019.12.015 10.1016/j.ijhydene.2015.09.156 10.1155/2013/690627 10.1016/j.wasman.2016.10.028 10.1016/j.renene.2019.03.012 10.1016/j.rser.2019.109576 10.1016/j.ijhydene.2008.09.050 10.1016/j.ijhydene.2018.10.044 10.1016/j.apcatb.2013.10.043 10.1016/j.ijhydene.2007.10.055 10.1016/S0360-3199(00)00125-7 10.1016/j.indcrop.2019.111507 10.1016/j.jclepro.2018.06.162 10.1016/j.ijhydene.2010.09.086 10.1016/j.rser.2015.06.040 10.1016/j.ijhydene.2013.01.083 10.1016/j.jenvman.2018.07.005 10.1016/j.cattod.2008.08.039 10.1016/j.erss.2019.04.019 10.1016/j.atmosenv.2018.12.005 10.3390/pr6030019 10.1016/j.ijhydene.2018.12.199 10.1016/j.rser.2013.07.060 10.1016/j.jclepro.2019.02.161 10.1016/j.ijhydene.2008.11.031 10.1016/j.ijhydene.2016.03.006 10.1016/j.biortech.2019.03.090 10.1016/j.biortech.2015.04.120 10.1016/0360-3199(92)90152-M 10.1016/j.ijhydene.2010.04.063 10.1016/j.renene.2019.12.132 10.1016/j.energy.2019.02.026 10.1016/j.ijhydene.2013.02.057 10.1016/j.ijhydene.2014.09.162 10.1016/j.ijhydene.2018.11.150 10.1016/j.wasman.2019.05.038 10.1016/j.fuel.2004.12.011 10.1016/j.ijhydene.2010.08.093 10.2174/1876400201104010001 10.1016/j.rser.2017.02.031 10.1016/j.ijhydene.2018.02.072 10.1016/j.enconman.2019.02.033 10.1016/j.energy.2019.05.125 10.1016/j.ijhydene.2018.04.151 |
ContentType | Journal Article |
Copyright | 2020 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2020 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2020.04.038 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 15962 |
ExternalDocumentID | 10_1016_j_ijhydene_2020_04_038 S0360319920313501 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c378t-392d5737d5e1ab31f64c1f61bcd39c744185de991270629d907f5dc9d0bd9c0c3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 02:01:37 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | Waste management Biogas Renewable energy Sustainable development Waste to energy Waste to hydrogen |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-392d5737d5e1ab31f64c1f61bcd39c744185de991270629d907f5dc9d0bd9c0c3 |
ORCID | 0000-0002-0716-4644 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2020_04_038 crossref_primary_10_1016_j_ijhydene_2020_04_038 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_04_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-11 |
PublicationDateYYYYMMDD | 2020-06-11 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Marcoberardino, Vitali, Spinelli, Binotti, Manzolini (bib12) 2018; 6 Botheju, Bakke (bib63) 2011; 4 Dong, Tang, Nzihou, Chi, Weiss-Hortala, Ni (bib68) 2018; 626 Swaraz, Satter, Rahman, Asad, Khan, Amin (bib78) 2019; 139 Wang, Wang, Chen, Yang, Li, Li (bib25) 2019; 279 Sharma, Melkania (bib51) 2018; 75 (bib56) 2018 Saur, Milbrandt (bib13) 2014 Avraam, Halkides, Liguras, Bereketidou, Goula (bib41) 2010; 35 Khan (bib4) 2019; 200 Rudra, Tesfagaber (bib24) 2019; 180 Nahar, Mote, Dupont (bib33) 2017; 76 Klinkner (bib64) 2014; 9 Veziroǧlu, Barbir (bib76) 1992; 17 Lau, Tsolakis, Wyszynski (bib44) 2011; 36 Nielsen, Amandusson, Bjorklund, Dannetun, Ejlertsson, Ekedahl (bib14) 2001; 26 Manson-Whitton (bib21) 2017 Singh, Jain, PS, Tiwari, Nouni, Pandey (bib79) 2015; 51 Galvagno, Chiodo, Urbani, Freni (bib42) 2013; 38 Silva, Mahler, Oliveira, Bassin (bib73) 2018; 76 Khan (bib3) 2020; 243 Karlsson, Vallin, Ejlertsson (bib19) 2008; 33 Bala, Gautam, Mondal (bib49) 2019; 44 Komilis, Kissas, Symeonidis (bib70) 2014; 34 Han, Ye, Zhu, Zhao, Li (bib37) 2015; 191 Braga, Silveira, Da Silva, Tuna, Machin, Pedroso (bib38) 2013; 28 Pino, Vita, Laganà, Recupero (bib46) 2014; 148–149 Lee, Chung (bib62) 2010; 35 Ayas, Esen (bib15) 2016; 41 Khan (bib5) 2020; 119 Effendi, Hellgardt, Zhang, Yoshida (bib43) 2005; 84 Khan, Kabir (bib66) 2020; 150 Jarunglumlert, Prommuak, Putmai, Pavasant (bib61) 2018; 43 Kim, Moon (bib80) 2008; 33 Araki, Hino, Mori, Hikazudani (bib39) 2010; 19 Luo, Wang, Guo, Liu, Sun (bib29) 2019; 44 Hajjaji, Martinez, Trably, Steyer, Helias (bib35) 2016; 41 Balaji, Rajan, Ragula (bib52) 2019 Kumar, Samadder (bib71) 2017; 69 Alves, Bley Junior, Niklevicz, Frigo, Frigo, Coimbra-Araújo (bib10) 2013; 38 Holladay, Hu, King, Wang (bib11) 2009; 139 (bib8) 2019 Alibardi, Cossu (bib74) 2016; 47 Khan (bib54) 2019; 55 Chattanathan, Adhikari, McVey, Fasina (bib48) 2014; 39 Hoornweg, Bhada-Tata (bib69) 2012 Ohkubo, Hideshima, Shudo (bib40) 2010; 35 Lachén, Herguido, Peña (bib47) 2019; 44 Hulst (bib58) 2019; 1–11 Wang, Wang, Liu, Xu, Yang, Li (bib26) 2019; 283 Ishaq, Dincer, Naterer (bib28) 2019; 172 (bib55) 2018 Fan, Tin, Perry (bib65) 2018; 223 Saratale, Saratale, Banu, Chang (bib9) 2019 Khan (bib1) 2019; 220 (bib7) 2017 Zhang, Guo, Chen, Zhao, Chang, Junge (bib34) 2018; 1–7 Rafieenia, Girotto, Peng, Cossu, Pivato, Raga (bib50) 2017; 59 Antonopoulou, Gavala, Skiadas, Angelopoulos, Lyberatos (bib17) 2008; 99 Luo, Feng (bib32) 2016; 113 Kalamaras, Efstathiou (bib57) 2013; 2013 Kabir, Khan (bib75) 2020; 37 Abd-Alla, Morsy, El-Enany (bib16) 2011; 36 Dong, Zhenhong, Yongming, Xiaoying, Yu (bib18) 2009; 34 Çokay (bib36) 2018; 43 Karagiannidis (bib53) 2012 Hydrogen (bib59) 2019 Hasan, Dincer (bib30) 2019; 44 Jia, Li, Zhu, Jiang, Wang, Wang (bib22) 2019; 44 Mytelka, Boyle (bib77) 2008 Khan (bib6) 2019; 41 Materazzi, Taylor, Cairns-Terry (bib20) 2019; 94 (bib60) 2006 Yuksel, Ozturk, Dincer (bib31) 2019; 185 Izquierdo, Barrio, Requies, Cambra, Güemez, Arias (bib45) 2013; 38 Huang, Feng, Huang, Ying, Shen, Chen (bib72) 2020; 103 Rafieenia, Pivato, Lavagnolo (bib23) 2019; 139 Khan (bib2) 2018; 196 Ali, Abdul Razaq, Tlaiaa, Khishala (bib67) 2016; 10 Hasan, Dincer (bib27) 2019; 44 Materazzi (10.1016/j.ijhydene.2020.04.038_bib20) 2019; 94 (10.1016/j.ijhydene.2020.04.038_bib56) 2018 Khan (10.1016/j.ijhydene.2020.04.038_bib3) 2020; 243 Swaraz (10.1016/j.ijhydene.2020.04.038_bib78) 2019; 139 Hoornweg (10.1016/j.ijhydene.2020.04.038_bib69) 2012 Rafieenia (10.1016/j.ijhydene.2020.04.038_bib23) 2019; 139 Çokay (10.1016/j.ijhydene.2020.04.038_bib36) 2018; 43 Lee (10.1016/j.ijhydene.2020.04.038_bib62) 2010; 35 Jia (10.1016/j.ijhydene.2020.04.038_bib22) 2019; 44 Araki (10.1016/j.ijhydene.2020.04.038_bib39) 2010; 19 Zhang (10.1016/j.ijhydene.2020.04.038_bib34) 2018; 1–7 Antonopoulou (10.1016/j.ijhydene.2020.04.038_bib17) 2008; 99 Luo (10.1016/j.ijhydene.2020.04.038_bib29) 2019; 44 Jarunglumlert (10.1016/j.ijhydene.2020.04.038_bib61) 2018; 43 Khan (10.1016/j.ijhydene.2020.04.038_bib54) 2019; 55 Nielsen (10.1016/j.ijhydene.2020.04.038_bib14) 2001; 26 Alibardi (10.1016/j.ijhydene.2020.04.038_bib74) 2016; 47 Hasan (10.1016/j.ijhydene.2020.04.038_bib27) 2019; 44 Botheju (10.1016/j.ijhydene.2020.04.038_bib63) 2011; 4 Singh (10.1016/j.ijhydene.2020.04.038_bib79) 2015; 51 Marcoberardino (10.1016/j.ijhydene.2020.04.038_bib12) 2018; 6 Dong (10.1016/j.ijhydene.2020.04.038_bib18) 2009; 34 Kumar (10.1016/j.ijhydene.2020.04.038_bib71) 2017; 69 Alves (10.1016/j.ijhydene.2020.04.038_bib10) 2013; 38 Izquierdo (10.1016/j.ijhydene.2020.04.038_bib45) 2013; 38 Saur (10.1016/j.ijhydene.2020.04.038_bib13) 2014 Dong (10.1016/j.ijhydene.2020.04.038_bib68) 2018; 626 Saratale (10.1016/j.ijhydene.2020.04.038_bib9) 2019 Lau (10.1016/j.ijhydene.2020.04.038_bib44) 2011; 36 Khan (10.1016/j.ijhydene.2020.04.038_bib4) 2019; 200 (10.1016/j.ijhydene.2020.04.038_bib55) 2018 Kim (10.1016/j.ijhydene.2020.04.038_bib80) 2008; 33 Hydrogen (10.1016/j.ijhydene.2020.04.038_bib59) 2019 Balaji (10.1016/j.ijhydene.2020.04.038_bib52) 2019 Khan (10.1016/j.ijhydene.2020.04.038_bib6) 2019; 41 Karlsson (10.1016/j.ijhydene.2020.04.038_bib19) 2008; 33 (10.1016/j.ijhydene.2020.04.038_bib8) 2019 Rafieenia (10.1016/j.ijhydene.2020.04.038_bib50) 2017; 59 Huang (10.1016/j.ijhydene.2020.04.038_bib72) 2020; 103 Ali (10.1016/j.ijhydene.2020.04.038_bib67) 2016; 10 Khan (10.1016/j.ijhydene.2020.04.038_bib1) 2019; 220 Abd-Alla (10.1016/j.ijhydene.2020.04.038_bib16) 2011; 36 Holladay (10.1016/j.ijhydene.2020.04.038_bib11) 2009; 139 Wang (10.1016/j.ijhydene.2020.04.038_bib25) 2019; 279 Braga (10.1016/j.ijhydene.2020.04.038_bib38) 2013; 28 Kalamaras (10.1016/j.ijhydene.2020.04.038_bib57) 2013; 2013 (10.1016/j.ijhydene.2020.04.038_bib60) 2006 Ishaq (10.1016/j.ijhydene.2020.04.038_bib28) 2019; 172 Klinkner (10.1016/j.ijhydene.2020.04.038_bib64) 2014; 9 Manson-Whitton (10.1016/j.ijhydene.2020.04.038_bib21) 2017 Ayas (10.1016/j.ijhydene.2020.04.038_bib15) 2016; 41 Luo (10.1016/j.ijhydene.2020.04.038_bib32) 2016; 113 Kabir (10.1016/j.ijhydene.2020.04.038_bib75) 2020; 37 Galvagno (10.1016/j.ijhydene.2020.04.038_bib42) 2013; 38 Avraam (10.1016/j.ijhydene.2020.04.038_bib41) 2010; 35 Khan (10.1016/j.ijhydene.2020.04.038_bib2) 2018; 196 Effendi (10.1016/j.ijhydene.2020.04.038_bib43) 2005; 84 Karagiannidis (10.1016/j.ijhydene.2020.04.038_bib53) 2012 Khan (10.1016/j.ijhydene.2020.04.038_bib5) 2020; 119 Komilis (10.1016/j.ijhydene.2020.04.038_bib70) 2014; 34 Hulst (10.1016/j.ijhydene.2020.04.038_bib58) 2019; 1–11 (10.1016/j.ijhydene.2020.04.038_bib7) 2017 Yuksel (10.1016/j.ijhydene.2020.04.038_bib31) 2019; 185 Hasan (10.1016/j.ijhydene.2020.04.038_bib30) 2019; 44 Pino (10.1016/j.ijhydene.2020.04.038_bib46) 2014; 148–149 Nahar (10.1016/j.ijhydene.2020.04.038_bib33) 2017; 76 Ohkubo (10.1016/j.ijhydene.2020.04.038_bib40) 2010; 35 Han (10.1016/j.ijhydene.2020.04.038_bib37) 2015; 191 Fan (10.1016/j.ijhydene.2020.04.038_bib65) 2018; 223 Silva (10.1016/j.ijhydene.2020.04.038_bib73) 2018; 76 Lachén (10.1016/j.ijhydene.2020.04.038_bib47) 2019; 44 Chattanathan (10.1016/j.ijhydene.2020.04.038_bib48) 2014; 39 Mytelka (10.1016/j.ijhydene.2020.04.038_bib77) 2008 Hajjaji (10.1016/j.ijhydene.2020.04.038_bib35) 2016; 41 Sharma (10.1016/j.ijhydene.2020.04.038_bib51) 2018; 75 Wang (10.1016/j.ijhydene.2020.04.038_bib26) 2019; 283 Veziroǧlu (10.1016/j.ijhydene.2020.04.038_bib76) 1992; 17 Rudra (10.1016/j.ijhydene.2020.04.038_bib24) 2019; 180 Khan (10.1016/j.ijhydene.2020.04.038_bib66) 2020; 150 Bala (10.1016/j.ijhydene.2020.04.038_bib49) 2019; 44 |
References_xml | – volume: 36 start-page: 13518 year: 2011 end-page: 13527 ident: bib16 article-title: Hydrogen production from rotten dates by sequential three stages fermentation publication-title: Int J Hydrogen Energy – volume: 626 start-page: 744 year: 2018 end-page: 753 ident: bib68 article-title: Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants publication-title: Sci Total Environ – volume: 1–7 year: 2018 ident: bib34 article-title: Streamlined hydrogen production from biomass publication-title: Nat Catal – volume: 44 start-page: 18818 year: 2019 end-page: 18826 ident: bib30 article-title: Comparative assessment of various gasification fuels with waste tires for hydrogen production publication-title: Int J Hydrogen Energy – volume: 243 start-page: 1 year: 2020 end-page: 13 ident: bib3 article-title: Sustainability challenges for the south Asia growth quadrangle: a regional electricity generation sustainability assessment publication-title: J Clean Prod – volume: 220 start-page: 707 year: 2019 end-page: 720 ident: bib1 article-title: Power generation expansion plan and sustainability in a developing country: a multi-criteria decision analysis publication-title: J Clean Prod – volume: 55 start-page: 82 year: 2019 end-page: 92 ident: bib54 article-title: Drivers, enablers, and barriers to prosumerism in Bangladesh: a sustainable solution to energy poverty? publication-title: Energy Res Soc Sci – volume: 33 start-page: 953 year: 2008 end-page: 962 ident: bib19 article-title: Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure publication-title: Int J Hydrogen Energy – volume: 34 start-page: 812 year: 2009 end-page: 820 ident: bib18 article-title: Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation publication-title: Int J Hydrogen Energy – volume: 44 start-page: 164 year: 2019 end-page: 173 ident: bib49 article-title: Improved biogas yield from organic fraction of municipal solid waste as preliminary step for fuel cell technology and hydrogen generation publication-title: Int J Hydrogen Energy – volume: 150 start-page: 320 year: 2020 end-page: 333 ident: bib66 article-title: Waste-to-energy generation technologies and the developing economies: a multi-criteria analysis for sustainability assessment publication-title: Renew Energy – volume: 43 start-page: 10555 year: 2018 end-page: 10561 ident: bib36 article-title: Hydrogen gas production from food wastes by electrohydrolysis using a statical design approach publication-title: Int J Hydrogen Energy – volume: 34 start-page: 249 year: 2014 end-page: 255 ident: bib70 article-title: Effect of organic matter and moisture on the calorific value of solid wastes: an update of the Tanner diagram publication-title: Waste Manag – start-page: 247 year: 2019 end-page: 277 ident: bib9 article-title: Biohydrogen production from renewable biomass resources. Biohydrogen – volume: 19 start-page: 477 year: 2010 end-page: 481 ident: bib39 article-title: Autothermal reforming of biogas over a monolithic catalyst publication-title: J Nat Gas Chem – volume: 9 start-page: 68 year: 2014 end-page: 96 ident: bib64 article-title: Anaerobic digestion as a renewable energy source and waste management technology: what must be done for this technology to realize success in the United States? publication-title: UMass Law Rev – year: 2019 ident: bib8 article-title: The Future of Hydrogen: seizing today's opportunities – volume: 10 start-page: 613 year: 2016 end-page: 624 ident: bib67 article-title: Methane biogas production from mixing of algae and municipal solid waste by anaerobic digestion publication-title: Int J Environ Res – volume: 76 start-page: 339 year: 2018 end-page: 349 ident: bib73 article-title: Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol publication-title: Waste Manag – volume: 94 start-page: 95 year: 2019 end-page: 106 ident: bib20 article-title: Production of biohydrogen from gasification of waste fuels: pilot plant results and deployment prospects publication-title: Waste Manag – volume: 39 year: 2014 ident: bib48 article-title: Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion publication-title: Int J Hydrogen Energy – volume: 69 start-page: 407 year: 2017 end-page: 422 ident: bib71 article-title: A review on technological options of waste to energy for effective management of municipal solid waste publication-title: Waste Manag – volume: 35 start-page: 13021 year: 2010 end-page: 13027 ident: bib40 article-title: Estimation of hydrogen output from a full-scale plant for production of hydrogen from biogas publication-title: Int J Hydrogen Energy – volume: 43 start-page: 634 year: 2018 end-page: 648 ident: bib61 article-title: Scaling-up bio-hydrogen production from food waste: feasibilities and challenges publication-title: Int J Hydrogen Energy – volume: 180 start-page: 881 year: 2019 end-page: 892 ident: bib24 article-title: Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production publication-title: Energy – volume: 119 start-page: 1 year: 2020 end-page: 11 ident: bib5 article-title: Impacts of energy decentralization viewed through the lens of the energy cultures framework: solar home systems in the developing economies publication-title: Renew Sustain Energy Rev – year: 2017 ident: bib21 article-title: Biohydrogen: production of hydrogen by gasification of waste. Stonehouse, UK – volume: 28 start-page: 166 year: 2013 end-page: 173 ident: bib38 article-title: Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis publication-title: Renew Sustain Energy Rev – volume: 200 start-page: 131 year: 2019 end-page: 141 ident: bib4 article-title: Greenhouse gas emission accounting approaches in electricity generation systems: a review publication-title: Atmos Environ – volume: 6 start-page: 1 year: 2018 end-page: 23 ident: bib12 article-title: Green hydrogen production from raw biogas: a techno-economic investigation of conventional processes using pressure swing adsorption unit publication-title: Processes – volume: 38 start-page: 3913 year: 2013 end-page: 3920 ident: bib42 article-title: Biogas as hydrogen source for fuel cell applications publication-title: Int J Hydrogen Energy – year: 2014 ident: bib13 article-title: Renewable hydrogen potential from biogas in the United States – volume: 44 start-page: 19730 year: 2019 end-page: 19741 ident: bib27 article-title: Assessment of an Integrated Gasification Combined Cycle using waste tires for hydrogen and fresh water production publication-title: Int J Hydrogen Energy – volume: 17 start-page: 527 year: 1992 end-page: 538 ident: bib76 article-title: Initiation of hydrogen energy system in developing countries publication-title: Int J Hydrogen Energy – volume: 59 start-page: 194 year: 2017 end-page: 199 ident: bib50 article-title: Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions publication-title: Waste Manag – volume: 26 start-page: 547 year: 2001 end-page: 550 ident: bib14 article-title: Hydrogen production from organic waste publication-title: Int J Hydrogen Energy – volume: 84 start-page: 869 year: 2005 end-page: 874 ident: bib43 article-title: Optimising H2 production from model biogas via combined steam reforming and CO shift reactions publication-title: Fuel – volume: 279 start-page: 307 year: 2019 end-page: 316 ident: bib25 article-title: Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge publication-title: Bioresour Technol – volume: 148–149 start-page: 91 year: 2014 end-page: 105 ident: bib46 article-title: Hydrogen from biogas: catalytic tri-reforming process with Ni/La-Ce-O mixed oxides publication-title: Appl Catal B Environ – volume: 47 start-page: 69 year: 2016 end-page: 77 ident: bib74 article-title: Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products publication-title: Waste Manag – year: 2012 ident: bib53 article-title: Waste to energy: opportunities and challenges for developing and transition economies – year: 2018 ident: bib55 article-title: Feasibility study on waste to energy conversion in six municipalities in Bangladesh – volume: 35 start-page: 11746 year: 2010 end-page: 11755 ident: bib62 article-title: Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation publication-title: Int J Hydrogen Energy – year: 2008 ident: bib77 article-title: Making choices about hydrogen: transport issues for developing countries – year: 2018 ident: bib56 article-title: What a waste global database – year: 2012 ident: bib69 article-title: What a Waste : a global review of solid waste management. Washington, DC – volume: 223 start-page: 888 year: 2018 end-page: 897 ident: bib65 article-title: Anaerobic digestion of municipal solid waste : energy and carbon emission footprint publication-title: J Environ Manag – year: 2019 ident: bib59 article-title: A renewable energy perspective – volume: 139 start-page: 1077 year: 2019 end-page: 1085 ident: bib23 article-title: Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil publication-title: Renew Energy – volume: 283 start-page: 316 year: 2019 end-page: 325 ident: bib26 article-title: Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge publication-title: Bioresour Technol – start-page: 1 year: 2019 end-page: 15 ident: bib52 article-title: Modeling & optimization of renewable hydrogen production from biomass via anaerobic digestion & dry reformation publication-title: Int J Hydrogen Energy – volume: 35 start-page: 9818 year: 2010 end-page: 9827 ident: bib41 article-title: An experimental and theoretical approach for the biogas steam reforming reaction publication-title: Int J Hydrogen Energy – volume: 36 start-page: 397 year: 2011 end-page: 404 ident: bib44 article-title: Biogas upgrade to syn-gas (H2-CO) via dry and oxidative reforming publication-title: Int J Hydrogen Energy – volume: 196 start-page: 1587 year: 2018 end-page: 1599 ident: bib2 article-title: Importance of GHG emissions assessment in the electricity grid expansion towards a low-carbon future: a time-varying carbon intensity approach publication-title: J Clean Prod – volume: 41 start-page: 6064 year: 2016 end-page: 6075 ident: bib35 article-title: Life cycle assessment of hydrogen production from biogas reforming publication-title: Int J Hydrogen Energy – volume: 2013 start-page: 1 year: 2013 end-page: 11 ident: bib57 article-title: Hydrogen production technologies: current state and future developments publication-title: Conf Pap Energy – volume: 139 start-page: 244 year: 2009 end-page: 260 ident: bib11 article-title: An overview of hydrogen production technologies publication-title: Catal Today – volume: 38 start-page: 7623 year: 2013 end-page: 7631 ident: bib45 article-title: Tri-reforming: a new biogas process for synthesis gas and hydrogen production publication-title: Int J Hydrogen Energy – volume: 139 start-page: 1 year: 2019 end-page: 9 ident: bib78 article-title: Bioethanol production potential in Bangladesh from wild date palm (Phoenix sylvestris Roxb.): an experimental proof publication-title: Ind Crop Prod – volume: 33 start-page: 7326 year: 2008 end-page: 7337 ident: bib80 article-title: The role of hydrogen in the road transportation sector for a sustainable energy system: a case study of Korea publication-title: Int J Hydrogen Energy – volume: 76 start-page: 1032 year: 2017 end-page: 1052 ident: bib33 article-title: Hydrogen production from reforming of biogas: review of technological advances and an Indian perspective publication-title: Renew Sustain Energy Rev – volume: 191 start-page: 24 year: 2015 end-page: 29 ident: bib37 article-title: Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production publication-title: Bioresour Technol – volume: 185 start-page: 718 year: 2019 end-page: 729 ident: bib31 article-title: Energy and exergy analyses of an integrated system using waste material gasification for hydrogen production and liquefaction publication-title: Energy Convers Manag – volume: 44 start-page: 19244 year: 2019 end-page: 19254 ident: bib47 article-title: Production and purification of hydrogen by biogas combined reforming and steam-iron process publication-title: Int J Hydrogen Energy – volume: 51 start-page: 623 year: 2015 end-page: 633 ident: bib79 article-title: Hydrogen: a sustainable fuel for future of the transport sector publication-title: Renew Sustain Energy Rev – volume: 38 start-page: 5215 year: 2013 end-page: 5225 ident: bib10 article-title: Overview of hydrogen production technologies from biogas and the applications in fuel cells publication-title: Int J Hydrogen Energy – volume: 113 start-page: 845 year: 2016 end-page: 851 ident: bib32 article-title: The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag publication-title: Energy – volume: 37 start-page: 1 year: 2020 end-page: 13 ident: bib75 article-title: Environmental impact assessment of waste to energy projects in developing countries: general guidelines in the context of Bangladesh publication-title: Sustain Energy Technol Assessments – volume: 41 start-page: 309 year: 2019 end-page: 323 ident: bib6 article-title: Temporal carbon intensity analysis: renewable versus fossil fuel dominated electricity systems publication-title: Energy Sources, Part A Recover Util Environ Eff – volume: 75 start-page: 289 year: 2018 end-page: 296 ident: bib51 article-title: Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli publication-title: Waste Manag – volume: 99 start-page: 110 year: 2008 end-page: 119 ident: bib17 article-title: Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass publication-title: Bioresour Technol – volume: 4 start-page: 1 year: 2011 end-page: 19 ident: bib63 article-title: Oxygen effects in anaerobic digestion – a review publication-title: Open Waste Manag J – volume: 44 start-page: 17334 year: 2019 end-page: 17345 ident: bib22 article-title: Enhancement split-phase hydrogen production from food waste during dark fermentation: protein substances degradation and transformation during hydrothermal pre-treatments publication-title: Int J Hydrogen Energy – volume: 41 start-page: 8067 year: 2016 end-page: 8072 ident: bib15 article-title: Hydrogen production from tea waste publication-title: Int J Hydrogen Energy – volume: 1–11 year: 2019 ident: bib58 article-title: The Clean Hydrogen revolution: how, by whom, when? publication-title: Energy Post – year: 2017 ident: bib7 article-title: Hydrogen: a clean, flexible energy carrier publication-title: Energy Effic Renew Energy – volume: 44 start-page: 5171 year: 2019 end-page: 5175 ident: bib29 article-title: The production of hydrogen-rich gas by wet sludge gasification using waste heat of blast-furnace slag: mass and energy balance analysis publication-title: Int J Hydrogen Energy – volume: 172 start-page: 1243 year: 2019 end-page: 1253 ident: bib28 article-title: Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production publication-title: Energy – year: 2006 ident: bib60 article-title: The hydrogen economy: a non-technical review – volume: 103 start-page: 61 year: 2020 end-page: 66 ident: bib72 article-title: Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure publication-title: Waste Manag – volume: 279 start-page: 307 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib25 article-title: Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge publication-title: Bioresour Technol doi: 10.1016/j.biortech.2019.02.016 – volume: 35 start-page: 9818 year: 2010 ident: 10.1016/j.ijhydene.2020.04.038_bib41 article-title: An experimental and theoretical approach for the biogas steam reforming reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.106 – start-page: 1 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib52 article-title: Modeling & optimization of renewable hydrogen production from biomass via anaerobic digestion & dry reformation publication-title: Int J Hydrogen Energy – volume: 10 start-page: 613 year: 2016 ident: 10.1016/j.ijhydene.2020.04.038_bib67 article-title: Methane biogas production from mixing of algae and municipal solid waste by anaerobic digestion publication-title: Int J Environ Res – volume: 37 start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2020.04.038_bib75 article-title: Environmental impact assessment of waste to energy projects in developing countries: general guidelines in the context of Bangladesh publication-title: Sustain Energy Technol Assessments – volume: 43 start-page: 10555 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib36 article-title: Hydrogen gas production from food wastes by electrohydrolysis using a statical design approach publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.079 – volume: 75 start-page: 289 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib51 article-title: Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli publication-title: Waste Manag doi: 10.1016/j.wasman.2018.02.005 – year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib55 – volume: 41 start-page: 309 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib6 article-title: Temporal carbon intensity analysis: renewable versus fossil fuel dominated electricity systems publication-title: Energy Sources, Part A Recover Util Environ Eff – year: 2017 ident: 10.1016/j.ijhydene.2020.04.038_bib21 – year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib8 – volume: 69 start-page: 407 year: 2017 ident: 10.1016/j.ijhydene.2020.04.038_bib71 article-title: A review on technological options of waste to energy for effective management of municipal solid waste publication-title: Waste Manag doi: 10.1016/j.wasman.2017.08.046 – volume: 38 start-page: 7623 year: 2013 ident: 10.1016/j.ijhydene.2020.04.038_bib45 article-title: Tri-reforming: a new biogas process for synthesis gas and hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.09.107 – volume: 43 start-page: 634 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib61 article-title: Scaling-up bio-hydrogen production from food waste: feasibilities and challenges publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.013 – volume: 243 start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2020.04.038_bib3 article-title: Sustainability challenges for the south Asia growth quadrangle: a regional electricity generation sustainability assessment publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118639 – volume: 34 start-page: 249 year: 2014 ident: 10.1016/j.ijhydene.2020.04.038_bib70 article-title: Effect of organic matter and moisture on the calorific value of solid wastes: an update of the Tanner diagram publication-title: Waste Manag doi: 10.1016/j.wasman.2013.09.023 – volume: 36 start-page: 13518 year: 2011 ident: 10.1016/j.ijhydene.2020.04.038_bib16 article-title: Hydrogen production from rotten dates by sequential three stages fermentation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.098 – volume: 113 start-page: 845 year: 2016 ident: 10.1016/j.ijhydene.2020.04.038_bib32 article-title: The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag publication-title: Energy doi: 10.1016/j.energy.2016.07.130 – volume: 19 start-page: 477 year: 2010 ident: 10.1016/j.ijhydene.2020.04.038_bib39 article-title: Autothermal reforming of biogas over a monolithic catalyst publication-title: J Nat Gas Chem doi: 10.1016/S1003-9953(09)60102-X – year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib59 – volume: 44 start-page: 19730 issue: 36 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib27 article-title: Assessment of an Integrated Gasification Combined Cycle using waste tires for hydrogen and fresh water production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.075 – volume: 76 start-page: 339 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib73 article-title: Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol publication-title: Waste Manag doi: 10.1016/j.wasman.2018.02.039 – volume: 99 start-page: 110 year: 2008 ident: 10.1016/j.ijhydene.2020.04.038_bib17 article-title: Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass publication-title: Bioresour Technol doi: 10.1016/j.biortech.2006.11.048 – volume: 47 start-page: 69 year: 2016 ident: 10.1016/j.ijhydene.2020.04.038_bib74 article-title: Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products publication-title: Waste Manag doi: 10.1016/j.wasman.2015.07.049 – volume: 626 start-page: 744 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib68 article-title: Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.151 – volume: 103 start-page: 61 year: 2020 ident: 10.1016/j.ijhydene.2020.04.038_bib72 article-title: Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure publication-title: Waste Manag doi: 10.1016/j.wasman.2019.12.015 – volume: 41 start-page: 8067 year: 2016 ident: 10.1016/j.ijhydene.2020.04.038_bib15 article-title: Hydrogen production from tea waste publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.156 – volume: 1–7 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib34 article-title: Streamlined hydrogen production from biomass publication-title: Nat Catal – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.ijhydene.2020.04.038_bib57 article-title: Hydrogen production technologies: current state and future developments publication-title: Conf Pap Energy doi: 10.1155/2013/690627 – volume: 59 start-page: 194 year: 2017 ident: 10.1016/j.ijhydene.2020.04.038_bib50 article-title: Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions publication-title: Waste Manag doi: 10.1016/j.wasman.2016.10.028 – volume: 139 start-page: 1077 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib23 article-title: Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil publication-title: Renew Energy doi: 10.1016/j.renene.2019.03.012 – volume: 119 start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2020.04.038_bib5 article-title: Impacts of energy decentralization viewed through the lens of the energy cultures framework: solar home systems in the developing economies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109576 – volume: 33 start-page: 7326 year: 2008 ident: 10.1016/j.ijhydene.2020.04.038_bib80 article-title: The role of hydrogen in the road transportation sector for a sustainable energy system: a case study of Korea publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.09.050 – volume: 44 start-page: 5171 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib29 article-title: The production of hydrogen-rich gas by wet sludge gasification using waste heat of blast-furnace slag: mass and energy balance analysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.044 – volume: 148–149 start-page: 91 year: 2014 ident: 10.1016/j.ijhydene.2020.04.038_bib46 article-title: Hydrogen from biogas: catalytic tri-reforming process with Ni/La-Ce-O mixed oxides publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2013.10.043 – volume: 33 start-page: 953 year: 2008 ident: 10.1016/j.ijhydene.2020.04.038_bib19 article-title: Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2007.10.055 – volume: 26 start-page: 547 year: 2001 ident: 10.1016/j.ijhydene.2020.04.038_bib14 article-title: Hydrogen production from organic waste publication-title: Int J Hydrogen Energy doi: 10.1016/S0360-3199(00)00125-7 – volume: 139 start-page: 1 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib78 article-title: Bioethanol production potential in Bangladesh from wild date palm (Phoenix sylvestris Roxb.): an experimental proof publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2019.111507 – year: 2014 ident: 10.1016/j.ijhydene.2020.04.038_bib13 – volume: 196 start-page: 1587 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib2 article-title: Importance of GHG emissions assessment in the electricity grid expansion towards a low-carbon future: a time-varying carbon intensity approach publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.06.162 – volume: 36 start-page: 397 year: 2011 ident: 10.1016/j.ijhydene.2020.04.038_bib44 article-title: Biogas upgrade to syn-gas (H2-CO) via dry and oxidative reforming publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.09.086 – year: 2012 ident: 10.1016/j.ijhydene.2020.04.038_bib53 – volume: 51 start-page: 623 year: 2015 ident: 10.1016/j.ijhydene.2020.04.038_bib79 article-title: Hydrogen: a sustainable fuel for future of the transport sector publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.06.040 – volume: 38 start-page: 3913 year: 2013 ident: 10.1016/j.ijhydene.2020.04.038_bib42 article-title: Biogas as hydrogen source for fuel cell applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.083 – volume: 223 start-page: 888 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib65 article-title: Anaerobic digestion of municipal solid waste : energy and carbon emission footprint publication-title: J Environ Manag doi: 10.1016/j.jenvman.2018.07.005 – volume: 139 start-page: 244 year: 2009 ident: 10.1016/j.ijhydene.2020.04.038_bib11 article-title: An overview of hydrogen production technologies publication-title: Catal Today doi: 10.1016/j.cattod.2008.08.039 – year: 2017 ident: 10.1016/j.ijhydene.2020.04.038_bib7 article-title: Hydrogen: a clean, flexible energy carrier publication-title: Energy Effic Renew Energy – volume: 55 start-page: 82 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib54 article-title: Drivers, enablers, and barriers to prosumerism in Bangladesh: a sustainable solution to energy poverty? publication-title: Energy Res Soc Sci doi: 10.1016/j.erss.2019.04.019 – volume: 200 start-page: 131 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib4 article-title: Greenhouse gas emission accounting approaches in electricity generation systems: a review publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2018.12.005 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib12 article-title: Green hydrogen production from raw biogas: a techno-economic investigation of conventional processes using pressure swing adsorption unit publication-title: Processes doi: 10.3390/pr6030019 – volume: 44 start-page: 17334 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib22 article-title: Enhancement split-phase hydrogen production from food waste during dark fermentation: protein substances degradation and transformation during hydrothermal pre-treatments publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.12.199 – volume: 28 start-page: 166 year: 2013 ident: 10.1016/j.ijhydene.2020.04.038_bib38 article-title: Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.07.060 – volume: 220 start-page: 707 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib1 article-title: Power generation expansion plan and sustainability in a developing country: a multi-criteria decision analysis publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.02.161 – volume: 34 start-page: 812 year: 2009 ident: 10.1016/j.ijhydene.2020.04.038_bib18 article-title: Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.031 – volume: 41 start-page: 6064 year: 2016 ident: 10.1016/j.ijhydene.2020.04.038_bib35 article-title: Life cycle assessment of hydrogen production from biogas reforming publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.006 – volume: 1–11 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib58 article-title: The Clean Hydrogen revolution: how, by whom, when? publication-title: Energy Post – volume: 283 start-page: 316 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib26 article-title: Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge publication-title: Bioresour Technol doi: 10.1016/j.biortech.2019.03.090 – volume: 191 start-page: 24 year: 2015 ident: 10.1016/j.ijhydene.2020.04.038_bib37 article-title: Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.04.120 – volume: 17 start-page: 527 year: 1992 ident: 10.1016/j.ijhydene.2020.04.038_bib76 article-title: Initiation of hydrogen energy system in developing countries publication-title: Int J Hydrogen Energy doi: 10.1016/0360-3199(92)90152-M – volume: 35 start-page: 13021 year: 2010 ident: 10.1016/j.ijhydene.2020.04.038_bib40 article-title: Estimation of hydrogen output from a full-scale plant for production of hydrogen from biogas publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.063 – year: 2018 ident: 10.1016/j.ijhydene.2020.04.038_bib56 – year: 2008 ident: 10.1016/j.ijhydene.2020.04.038_bib77 – volume: 150 start-page: 320 year: 2020 ident: 10.1016/j.ijhydene.2020.04.038_bib66 article-title: Waste-to-energy generation technologies and the developing economies: a multi-criteria analysis for sustainability assessment publication-title: Renew Energy doi: 10.1016/j.renene.2019.12.132 – volume: 172 start-page: 1243 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib28 article-title: Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production publication-title: Energy doi: 10.1016/j.energy.2019.02.026 – volume: 38 start-page: 5215 year: 2013 ident: 10.1016/j.ijhydene.2020.04.038_bib10 article-title: Overview of hydrogen production technologies from biogas and the applications in fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.02.057 – volume: 39 year: 2014 ident: 10.1016/j.ijhydene.2020.04.038_bib48 article-title: Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.09.162 – volume: 44 start-page: 18818 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib30 article-title: Comparative assessment of various gasification fuels with waste tires for hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.11.150 – year: 2006 ident: 10.1016/j.ijhydene.2020.04.038_bib60 – volume: 94 start-page: 95 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib20 article-title: Production of biohydrogen from gasification of waste fuels: pilot plant results and deployment prospects publication-title: Waste Manag doi: 10.1016/j.wasman.2019.05.038 – year: 2012 ident: 10.1016/j.ijhydene.2020.04.038_bib69 – volume: 84 start-page: 869 year: 2005 ident: 10.1016/j.ijhydene.2020.04.038_bib43 article-title: Optimising H2 production from model biogas via combined steam reforming and CO shift reactions publication-title: Fuel doi: 10.1016/j.fuel.2004.12.011 – volume: 35 start-page: 11746 year: 2010 ident: 10.1016/j.ijhydene.2020.04.038_bib62 article-title: Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.093 – volume: 4 start-page: 1 year: 2011 ident: 10.1016/j.ijhydene.2020.04.038_bib63 article-title: Oxygen effects in anaerobic digestion – a review publication-title: Open Waste Manag J doi: 10.2174/1876400201104010001 – start-page: 247 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib9 – volume: 76 start-page: 1032 year: 2017 ident: 10.1016/j.ijhydene.2020.04.038_bib33 article-title: Hydrogen production from reforming of biogas: review of technological advances and an Indian perspective publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.02.031 – volume: 9 start-page: 68 year: 2014 ident: 10.1016/j.ijhydene.2020.04.038_bib64 article-title: Anaerobic digestion as a renewable energy source and waste management technology: what must be done for this technology to realize success in the United States? publication-title: UMass Law Rev – volume: 44 start-page: 164 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib49 article-title: Improved biogas yield from organic fraction of municipal solid waste as preliminary step for fuel cell technology and hydrogen generation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.072 – volume: 185 start-page: 718 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib31 article-title: Energy and exergy analyses of an integrated system using waste material gasification for hydrogen production and liquefaction publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.02.033 – volume: 180 start-page: 881 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib24 article-title: Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production publication-title: Energy doi: 10.1016/j.energy.2019.05.125 – volume: 44 start-page: 19244 year: 2019 ident: 10.1016/j.ijhydene.2020.04.038_bib47 article-title: Production and purification of hydrogen by biogas combined reforming and steam-iron process publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.151 |
SSID | ssj0017049 |
Score | 2.5284986 |
Snippet | Waste management is one of the greatest global challenges, for which one reason is the composition of waste, which varies not only from one region to another... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 15951 |
SubjectTerms | Biogas Renewable energy Sustainable development Waste management Waste to energy Waste to hydrogen |
Title | Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world - A case of Bangladesh |
URI | https://dx.doi.org/10.1016/j.ijhydene.2020.04.038 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn1gfZQ5eY7PJJmm81WKJir2o6C1kH7EpkpQ2HnrxtzuTh1YQPHgJZNkhYXZ2Zpad7xvGzv0-RkUnVFaQSmUJn_wgJhK44x2ZuL5I-5oAzvdjP3oSty_eyxobtlgYKqtsfH_t0ytv3Yz0Gm32ZlnWe0DfSxCc0CH6Qa_CcAkRkJVffHyVefCgSYFxskWzV1DC04tsOlni9ia6TMeuKE8Jp_JbgFoJOqMdtt1kizCof2iXrZl8j22tcAjus-VzggsFZQEyK16TBTSddyDJE0MkSwp0dYmEC3AJ0VLPC7QZmNVMrzgIs6KkkiH8TpajtIFvIBVUhKpgwQAUhjsoUrhKqO2HNovJAXsaXT8OI6vpp2ApN-iXFqZC2gvcQHuGJ9LlqS8UPrhU2g1VIIjHRhtMGJ3A9p1Q47k59bQKtS11qGzlHrL1vMjNEQPPuL5yXKlsYYTSdsIlnh2JWp5Lw3naYV6rxFg1ZOPU8-ItbqvKpnGr_JiUH9siRuV3WO9LblbTbfwpEbZrFP8wnBhjwh-yx_-QPWGb9EZVY5yfsvVy_m7OMD8pZbcywC7bGNzcReNPVs7mlQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYAB8RRvbmANjfNs2AoCBWi7AKKbFT8CqVBSQRj677lrHSgSUgeWDI5Pie7su7N833eMnUUdjIpeopw4l8oJIvKDmEjgjvdk5kdB3tEEcO4PovQpuBuGwyV21WBhqKzS-v6ZT596azvSttpsj4ui_YC-lyA4iUf0gyFhuJaJnSpsseXu7X06-L5MiG0WjPMdEpgDCo_Oi9HrBHc4MWZ67pT1lKAqf8Woubhzs8HWbcII3dk_bbIlU26xtTkawW02ec7QVlBXIIvqJfsA23wHsjIzxLOkQE_vkdAGF5BO9HuFywbGM7JXHIRxVVPVEH6nKFHawA-WCqacquBAFxRGPKhyuMyo84c2H6877Onm-vEqdWxLBUf5cad2MBvSYezHOjQ8kz7Po0Dhg0ul_UTFAVHZaIM5oxe7kZdoPDrnoVaJdqVOlKv8XdYqq9LsMQiNHynPl8oNTKC0m3GJx0dil-fScJ7vs7BRolCWb5zaXryJprBsJBrlC1K-cAOByt9n7W-58YxxY6FE0thI_Fo7AsPCAtmDf8iespX0sd8TvdvB_SFbpTdURMb5EWvV75_mGNOVWp7Y5fgFPoHpRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste+to+biogas+through+anaerobic+digestion%3A+Hydrogen+production+potential+in+the+developing+world+-+A+case+of+Bangladesh&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Khan%2C+Imran&rft.date=2020-06-11&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=45&rft.issue=32&rft.spage=15951&rft.epage=15962&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.04.038&rft.externalDocID=S0360319920313501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |