Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review
Saved in:
Published in | Smart materials and structures Vol. 30; no. 8; pp. 85025 - 85059 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Author | Lan, Chunbo Tang, Lihua Hu, Guobiao Liang, Junrui Das, Raj |
---|---|
Author_xml | – sequence: 1 givenname: Guobiao orcidid: 0000-0002-1288-7564 surname: Hu fullname: Hu, Guobiao organization: University of Auckland Department of Mechanical Engineering, 20 Symonds Street, Auckland 1010, New Zealand – sequence: 2 givenname: Lihua orcidid: 0000-0001-9031-4190 surname: Tang fullname: Tang, Lihua organization: University of Auckland Department of Mechanical Engineering, 20 Symonds Street, Auckland 1010, New Zealand – sequence: 3 givenname: Junrui orcidid: 0000-0003-2685-5587 surname: Liang fullname: Liang, Junrui organization: School of Information Science and Technology, ShanghaiTech University , 393 Middle Huaxia Road, Shanghai 201210, People’s Republic of China – sequence: 4 givenname: Chunbo orcidid: 0000-0001-5959-0488 surname: Lan fullname: Lan, Chunbo organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics , Nanjing, People’s Republic of China – sequence: 5 givenname: Raj orcidid: 0000-0001-9977-6201 surname: Das fullname: Das, Raj organization: School of Engineering, RMIT University , GPO Box 2476, Melbourne, VIC 3001, Australia |
BookMark | eNp9kM1LAzEQxYNUsK3ePe7Ni2uTzeZjvZXiFxS8VPAWYnbSpnQ3SxIr_e_dpeJBpKcHb95vhnkTNGp9CwhdE3xHsJQzQjnJOWfvM22w-TBnaPxrjdAYV7zMiSj4BZrEuMWYEEnJGK3mxn_G5EwOOz1o1kDSjU4QnN7FTLd11m18f6wfmXCIaXCtDxm0ENaHbKPDHnqwXd9nOguwd_B1ic5tH4OrH52it8eH1eI5X74-vSzmy9xQIVNOBQZCK16LSjACUhesLAUT1JbM6pJVsuQSKqEFGMEpVMwWtbWWloLXpJR0ivhxrwk-xgBWGZd0cr5NQbudIlgN3aihCDUUoY7d9CD-A3bBNTocTiG3R8T5Tm39Z2j7z07Fb_6JxyYqipVUWDJcMNXVln4DDT2GvQ |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1063_5_0078740 crossref_primary_10_1016_j_enconman_2024_118374 crossref_primary_10_1016_j_apacoust_2025_110603 crossref_primary_10_1098_rspa_2024_0033 crossref_primary_10_1007_s10409_022_21535_x crossref_primary_10_1016_j_ymssp_2021_108724 crossref_primary_10_1016_j_ijmecsci_2021_106838 crossref_primary_10_1063_5_0063488 crossref_primary_10_1063_5_0127518 crossref_primary_10_1088_1361_6463_acb21a crossref_primary_10_1002_adfm_202413285 crossref_primary_10_1016_j_apm_2025_116109 crossref_primary_10_1016_j_ijsolstr_2023_112306 crossref_primary_10_1088_1361_665X_ad254a crossref_primary_10_1007_s00339_023_06386_7 crossref_primary_10_1016_j_mtener_2023_101387 crossref_primary_10_3390_sym14030631 crossref_primary_10_1007_s42417_023_01034_z crossref_primary_10_1007_s42417_024_01439_4 crossref_primary_10_1016_j_cnsns_2023_107350 crossref_primary_10_1002_aenm_202300557 crossref_primary_10_1016_j_compositesb_2025_112250 crossref_primary_10_1016_j_nanoen_2024_109722 crossref_primary_10_1007_s10409_021_09071_x crossref_primary_10_1016_j_apm_2024_06_031 crossref_primary_10_1016_j_ijmecsci_2024_109485 crossref_primary_10_1016_j_ymssp_2024_111133 crossref_primary_10_1088_1361_665X_adb81c crossref_primary_10_3390_nanoenergyadv3030010 crossref_primary_10_1007_s10483_024_3154_6 crossref_primary_10_1177_1045389X211072517 crossref_primary_10_1016_j_eml_2024_102165 crossref_primary_10_1016_j_tws_2024_111615 crossref_primary_10_1063_5_0158079 crossref_primary_10_1109_TUFFC_2024_3420158 crossref_primary_10_1142_S175882512250079X crossref_primary_10_1002_adts_202200700 crossref_primary_10_1177_1045389X211048225 crossref_primary_10_1016_j_ijmecsci_2022_107435 crossref_primary_10_1088_1361_665X_ad649c crossref_primary_10_3390_mi13060862 crossref_primary_10_1016_j_ijmecsci_2022_107877 crossref_primary_10_1016_j_pmatsci_2025_101434 crossref_primary_10_3390_en15197066 crossref_primary_10_1016_j_rineng_2023_101272 crossref_primary_10_1016_j_ijmecsci_2023_108146 crossref_primary_10_1016_j_matdes_2023_112594 crossref_primary_10_1007_s11071_022_07266_0 crossref_primary_10_1016_j_nanoen_2022_107773 crossref_primary_10_1002_adem_202201117 crossref_primary_10_1016_j_enconman_2022_116056 crossref_primary_10_1088_1361_665X_ac4ea6 crossref_primary_10_1098_rsta_2023_0351 crossref_primary_10_1016_j_eml_2023_102098 crossref_primary_10_1186_s40580_022_00321_x crossref_primary_10_1088_1361_665X_ad026c crossref_primary_10_1038_s41586_024_07163_z crossref_primary_10_1016_j_ijmecsci_2022_107907 crossref_primary_10_1088_1367_2630_acd0ce crossref_primary_10_1016_j_tws_2022_109481 crossref_primary_10_1515_nanoph_2022_0671 crossref_primary_10_1177_1045389X221142091 crossref_primary_10_1109_JLT_2024_3391924 crossref_primary_10_1088_1361_665X_ac4d65 crossref_primary_10_1088_1361_665X_ad97ff crossref_primary_10_1038_s41598_024_52851_5 crossref_primary_10_1088_1361_665X_ad0393 crossref_primary_10_1063_5_0101076 crossref_primary_10_1016_j_ijmecsci_2023_108474 crossref_primary_10_1007_s00339_022_06032_8 crossref_primary_10_3390_ma18020377 crossref_primary_10_1063_5_0072053 crossref_primary_10_1016_j_ijmecsci_2024_109107 crossref_primary_10_1016_j_rinp_2024_107870 crossref_primary_10_3390_s22218426 crossref_primary_10_1016_j_mtphys_2022_100616 crossref_primary_10_1016_j_iintel_2022_100001 crossref_primary_10_1088_1361_6463_ad7b4c crossref_primary_10_1115_1_4065751 crossref_primary_10_1587_nolta_14_475 crossref_primary_10_1007_s00170_022_10486_8 crossref_primary_10_1016_j_engstruct_2023_115602 crossref_primary_10_1038_s41598_023_36216_y crossref_primary_10_1016_j_egyr_2024_11_006 crossref_primary_10_1016_j_tws_2024_112572 crossref_primary_10_1088_1361_6463_ace4d8 crossref_primary_10_1038_s42005_022_00869_4 crossref_primary_10_3390_nano12061019 crossref_primary_10_1142_S0217979224502448 crossref_primary_10_1016_j_ijmecsci_2023_108442 crossref_primary_10_3390_ma16031282 crossref_primary_10_3233_JAE_210076 |
Cites_doi | 10.1063/1.4998446 10.1140/epjb/e2018-90297-y 10.1121/1.4744977 10.1177/1045389X12457254 10.1063/1.4939546 10.1038/s41467-017-00671-9 10.1016/j.apenergy.2019.113717 10.1063/1.4960792 10.1063/1.5063949 10.1063/1.5019623 10.1177/1045389X10390249 10.1063/1.3597651 10.1177/1045389X15571384 10.1088/1361-665X/aa7401 10.1103/PhysRevB.49.2313 10.1109/TUFFC.2012.2269 10.1016/j.ymssp.2014.12.008 10.1063/1.4971761 10.1177/1045389X19880023 10.1016/j.ijmecsci.2020.105670 10.1007/s00707-018-2249-5 10.1117/12.2514248 10.1016/j.apenergy.2020.114902 10.1115/1.4000784 10.1063/1.5074184 10.1177/1461348418794832 10.1016/j.ymssp.2019.07.017 10.1016/j.addma.2019.100780 10.1177/1687814017748077 10.1088/1367-2630/10/4/043020 10.1088/1361-665X/aa5a5a 10.1088/0964-1726/25/4/045013 10.1121/1.4901706 10.1016/S0022-460X(03)00210-4 10.1109/TMAG.2006.879447 10.1038/nmat1644 10.1016/j.physleta.2009.01.051 10.1177/1045389X19891575 10.1007/s10832-007-9043-4 10.1088/1674-1056/20/1/014301 10.1088/1361-665X/aa724e 10.1177/1045389X08096888 10.1063/1.5003299 10.1177/1045389X08098194 10.1016/j.ijengsci.2008.12.007 10.1088/1361-665X/ab8fcc 10.1088/0957-0233/20/1/012002 10.1063/1.368710 10.3390/cryst9080391 10.1016/j.physb.2013.12.040 10.1088/1361-665X/aade3e 10.1063/1.3120279 10.1088/1361-665X/aaca56 10.1109/TIE.2011.2167116 10.1016/j.physb.2012.10.029 10.1109/PHM.2017.8079153 10.1063/1.5111566 10.1007/s10948-018-4922-2 10.1063/1.5011999 10.1103/PhysRevLett.122.095501 10.1088/1361-665X/aabf4a 10.1063/1.118108 10.1063/1.4991684 10.3390/mi10010048 10.1016/j.apacoust.2018.04.029 10.1080/09500340.2016.1208298 10.1016/j.jmps.2008.11.002 10.1063/1.4719098 10.1177/1045389X12449920 10.1117/12.2530296 10.1063/1.4901915 10.1007/s11633-008-0334-2 10.1115/1.4046222 10.1016/0022-460X(91)90762-9 10.1016/j.apenergy.2017.12.053 10.1109/TMECH.2011.2160275 10.1016/j.ijmecsci.2017.07.051 10.1088/1361-6463/aab97e 10.1007/s11433-006-2021-z 10.1126/science.289.5485.1734 10.1115/SMASIS2016-9264 10.1109/ICSENS.2016.7808822 10.7567/APEX.8.057101 10.1088/2631-6331/ab0c7e 10.1063/1.4936607 10.1016/j.sna.2017.06.029 10.1364/OL.30.003356 10.1088/1361-665X/aa7bfb 10.1117/12.2514426 10.1177/1045389X14541494 10.1038/s41598-019-47649-9 10.1115/1.4034770 10.1088/0964-1726/22/8/085011 10.1103/PhysRevE.71.036607 10.1016/S0140-3664(02)00248-7 10.1088/0964-1726/24/5/055006 10.1063/1.3481689 10.7567/APEX.6.127101 10.1088/0960-1317/18/11/115021 10.1177/1045389X20930080 10.1007/s10832-006-6287-3 10.1115/1.4002783 10.1016/S1369-7021(09)70315-3 10.1063/1.4949557 10.1088/0960-1317/24/12/125011 10.1016/j.ymssp.2020.106824 10.1109/TUFFC.2005.1428041 10.1016/j.jsv.2014.12.030 10.1088/1361-665X/aa73e9 10.1109/TPEL.2016.2636903 10.7567/1882-0786/ab5ff8 10.1088/1361-6463/aa779d 10.1016/j.nanoen.2018.12.026 10.1063/1.5041731 10.1115/1.4028378 10.1007/s10409-008-0191-9 10.1115/SMASIS2017-3951 10.1109/JMEMS.2018.2792686 10.1177/1045389X20910261 10.1117/12.2296422 10.1088/1367-2630/10/6/063015 10.1063/1.5008674 10.1117/12.914791 10.1016/j.proeng.2016.12.216 10.1063/1.4871804 10.1109/FCS.2017.8088994 10.1063/1.4921856 10.1063/1.5008724 10.1016/j.jsv.2013.08.023 10.1088/0964-1726/22/2/023001 10.1109/TPEL.2011.2161675 10.1063/1.3176019 10.1063/1.5008576 10.1121/1.3531815 10.1109/TRANSDUCERS.2011.5969851 10.1016/j.jsv.2014.01.009 10.1061/(ASCE)AS.1943-5525.0000920 10.1177/1045389X16657422 10.1016/j.ssc.2004.03.052 10.1115/IMECE2013-62527 10.1115/SMASIS2017-3957 10.1016/j.sna.2012.04.033 10.1088/1361-665X/ab38fb 10.1063/1.4954987 10.1177/1045389X05056859 10.1016/S0375-9601(01)00800-3 10.1103/PhysRevB.76.140302 10.1016/0022-460X(92)90059-7 10.1103/PhysRevB.87.174303 10.1155/2019/1397123 10.1115/SMASIS2012-8166 10.1115/SMASIS2018-7961 10.1109/TCSI.2008.2011578 10.1109/TPEL.2015.2422717 10.1126/science.1157566 10.1117/12.2296638 10.1088/0964-1726/22/6/065004 10.1016/j.apenergy.2019.113412 10.1098/rspa.2006.1795 10.1088/0964-1726/24/11/115019 10.1063/1.4927331 10.1088/0964-1726/16/6/028 10.1115/1.4026911 10.1063/1.3595278 10.1142/S0217984914502595 10.1016/j.surfrep.2010.08.002 10.1155/2020/4063025 10.1063/5.0003688 10.1117/12.613046 10.7567/1882-0786/ab5836 10.1088/0964-1726/19/4/045016 10.1063/1.5038884 10.1016/S0022-460X(02)01213-0 10.1121/1.4892870 10.1088/0957-0233/17/12/R01 10.1088/1367-2630/aa56a2 10.3390/cryst9050261 10.1177/1045389X12460335 10.1063/1.5098439 10.1140/epjst/e2015-02594-4 10.1016/j.jsv.2009.11.034 10.1103/PhysRevE.73.065601 10.1063/1.4788810 10.1177/1045389X16645863 10.1115/1.4023961 10.1088/1361-665X/aab339 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd |
Copyright_xml | – notice: 2021 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/ac0cbc |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_ac0cbc smsac0cbc |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c378t-370e1396d79751e8a25447573f45fa4598468e97a7ec763e95f2dfff3476d1483 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:38:46 EDT 2025 Thu Apr 24 22:57:34 EDT 2025 Wed Aug 21 03:35:00 EDT 2024 Wed Jun 07 11:19:05 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-370e1396d79751e8a25447573f45fa4598468e97a7ec763e95f2dfff3476d1483 |
Notes | SMS-111297.R1 |
ORCID | 0000-0001-9977-6201 0000-0003-2685-5587 0000-0001-5959-0488 0000-0002-1288-7564 0000-0001-9031-4190 |
PageCount | 35 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_665X_ac0cbc crossref_primary_10_1088_1361_665X_ac0cbc iop_journals_10_1088_1361_665X_ac0cbc |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Ahmed (smsac0cbcbib112) 2014; 4 Kim (smsac0cbcbib195) 2019; 1 Hu (smsac0cbcbib122) 2018; 31 Lv (smsac0cbcbib168) 2013; 102 Assouar (smsac0cbcbib203) 2015 Tan (smsac0cbcbib33) 2019; 254 Darabi (smsac0cbcbib183) 2017; 26 Aly (smsac0cbcbib171) 2018; 91 Zhang (smsac0cbcbib91) 2013; 113 Dwivedi (smsac0cbcbib130) 2020; 31 Lesieutre (smsac0cbcbib35) 2004; 269 Banerjee (smsac0cbcbib106) 2011 (smsac0cbcbib49) 1996; 43 Chen (smsac0cbcbib142) 2014; 136 Kushwaha (smsac0cbcbib20) 1994; 49 Yi (smsac0cbcbib191) 2017; 26 Aly (smsac0cbcbib17) 2019; 32 Qi (smsac0cbcbib28) 2016; 108 Wang (smsac0cbcbib97) 2009; 25 Yuan (smsac0cbcbib140) 2018; 37 Guo (smsac0cbcbib146) 2018; 10 Priya (smsac0cbcbib3) 2009; vol 21 Tol (smsac0cbcbib182) 2017; 122 Nouh (smsac0cbcbib103) 2014; 9064 Tol (smsac0cbcbib185) 2016; 109 Liao (smsac0cbcbib81) 2018; 27 Chen (smsac0cbcbib118) 2013; 410 Fang (smsac0cbcbib108) 2006; 5 Zhang (smsac0cbcbib48) 2018; 212 Hu (smsac0cbcbib119) 2017 Olsson (smsac0cbcbib86) 2008; 20 Ahmed (smsac0cbcbib114) 2017; 28 Wang (smsac0cbcbib42) 2020; 72 Tao (smsac0cbcbib43) 2018; 27 Zhu (smsac0cbcbib90) 2014; 333 Sugino (smsac0cbcbib125) 2018; 51 Nouh (smsac0cbcbib104) 2015; 341 Chen (smsac0cbcbib141) 2014; 136 Wu (smsac0cbcbib163) 2009; 95 Khajehtourian (smsac0cbcbib159) 2013 Guyomar (smsac0cbcbib59) 2009; 20 Fang (smsac0cbcbib157) 2016; 6 Shu (smsac0cbcbib75) 2007; 16 Liu (smsac0cbcbib30) 2018; 113 Hu (smsac0cbcbib153) 2018; 149 Fan (smsac0cbcbib149) 2019; 13 Miller (smsac0cbcbib72) 2013; 332 Wang (smsac0cbcbib29) 2010; 19 Xiong (smsac0cbcbib68) 2016; 108 Qi (smsac0cbcbib184) 2017; 111 Zhou (smsac0cbcbib44) 2018; 8 Yang (smsac0cbcbib165) 2014; 104 Gonella (smsac0cbcbib109) 2009; 57 Soliman (smsac0cbcbib10) 2008; 18 Liang (smsac0cbcbib77) 2011; 59 Wu (smsac0cbcbib155) 2017; 264 Wu (smsac0cbcbib161) 2001; 292 Anigbogu (smsac0cbcbib136) 2020; 2020 Daniel (smsac0cbcbib92) 2008; 10 Espinosa (smsac0cbcbib88) 2007; 76 Chen (smsac0cbcbib124) 2019; 30 Li (smsac0cbcbib194) 2015; 117 Xu (smsac0cbcbib67) 2015; 107 Hu (smsac0cbcbib143) 2019; 132 Yang (smsac0cbcbib164) 2013; 6 Lefeuvre (smsac0cbcbib61) 2005; 16 Tol (smsac0cbcbib193) 2017; 111 Lv (smsac0cbcbib134) 2019; 9 Jo (smsac0cbcbib174) 2020; 179 Ma (smsac0cbcbib204) 2020; 29 Roundy (smsac0cbcbib55) 2003; 26 Bigoni (smsac0cbcbib93) 2013; 87 Li (smsac0cbcbib131) 2017; 111 Wu (smsac0cbcbib162) 2009; 373 Hyun (smsac0cbcbib189) 2019; 115 Tol (smsac0cbcbib188) 2019; 29 Harne (smsac0cbcbib9) 2013; 22 Choi (smsac0cbcbib13) 2006; 17 Hu (smsac0cbcbib41) 2019; 31 Gammaitoni (smsac0cbcbib65) 2009; 94 Jo (smsac0cbcbib71) 2011 Yao (smsac0cbcbib26) 2008; 10 Lan (smsac0cbcbib82) 2020; 31 Hagood (smsac0cbcbib37) 1991; 146 Lumentut (smsac0cbcbib199) 2018; 229 Liao (smsac0cbcbib80) 2018; 27 Pal (smsac0cbcbib150) 2017; 19 Sánchez-Dehesa (smsac0cbcbib87) 2011; 129 Guyomar (smsac0cbcbib60) 2005; 52 Tol (smsac0cbcbib181) 2016 Liu (smsac0cbcbib89) 2000; 289 Ahmed (smsac0cbcbib113) 2015 Fang (smsac0cbcbib45) 2019; 114 Hu (smsac0cbcbib176) 2017 Shen (smsac0cbcbib94) 2015; 29 Kushwaha (smsac0cbcbib95) 1996; 69 Liang (smsac0cbcbib76) 2012; 17 Sun (smsac0cbcbib148) 2017; 26 Chen (smsac0cbcbib137) 2020; 143 Lu (smsac0cbcbib21) 2009; 12 Hu (smsac0cbcbib121) 2018; 123 Banerjee (smsac0cbcbib107) 2017; 122 Zareei (smsac0cbcbib190) 2018; 112 Zhang (smsac0cbcbib111) 2013 Yang (smsac0cbcbib166) 2015; 8 Richards (smsac0cbcbib85) 2003; 264 Carrara (smsac0cbcbib180) 2012; 100 Huang (smsac0cbcbib24) 2012; 132 Huang (smsac0cbcbib27) 2009; 47 Mir (smsac0cbcbib129) 2019 Zhu (smsac0cbcbib40) 2016; 108 Ziniu (smsac0cbcbib132) 2017 Fang (smsac0cbcbib158) 2017; 8 Mateu (smsac0cbcbib2) 2005 Gu (smsac0cbcbib70) 2010; 97 Liu (smsac0cbcbib5) 2018; 5 Lu (smsac0cbcbib79) 2015; 30 Tan (smsac0cbcbib54) 2010 Carrara (smsac0cbcbib167) 2013; 22 Tol (smsac0cbcbib187) 2017 Kim (smsac0cbcbib63) 2011; 98 Liu (smsac0cbcbib156) 2019; 251 Saadatzi (smsac0cbcbib117) 2018 Wang (smsac0cbcbib4) 2020; 267 Berdy (smsac0cbcbib12) 2012; 59 Li (smsac0cbcbib196) 2015; 24 Chen (smsac0cbcbib31) 2014; 438 Kushwaha (smsac0cbcbib99) 1998; 84 Elvin (smsac0cbcbib11) 2013 Mir (smsac0cbcbib116) 2018 Liu (smsac0cbcbib25) 2011; 98 Wang (smsac0cbcbib144) 2019; 28 Hwang (smsac0cbcbib160) 2019 Wu (smsac0cbcbib64) 2013; 24 Ahmed (smsac0cbcbib32) 2017; 26 Emerson (smsac0cbcbib127) 2018 Lien (smsac0cbcbib200) 2012 Arroyo (smsac0cbcbib47) 2012; 183 Carrara (smsac0cbcbib169) 2012 Pennec (smsac0cbcbib100) 2010; 65 Chen (smsac0cbcbib39) 2014; 136 Ibrahim (smsac0cbcbib14) 2014; 52 Eltamaly (smsac0cbcbib78) 2016; 32 Apigo (smsac0cbcbib151) 2019; 122 Xiao (smsac0cbcbib58) 2015; 58–59 Gilbert (smsac0cbcbib1) 2008; 5 Milton (smsac0cbcbib105) 2007; 463 Kim (smsac0cbcbib6) 2015; 24 Deng (smsac0cbcbib178) 2019; 13 Djafari-Rouhani (smsac0cbcbib98) Mir (smsac0cbcbib202) 2018; 139 Aly (smsac0cbcbib170) 2018; 123 Dwivedi (smsac0cbcbib128) 2019 Szarka (smsac0cbcbib83) 2011; 27 Wu (smsac0cbcbib62) 2014; 25 Deng (smsac0cbcbib179) 2019; 9 Mikoshiba (smsac0cbcbib110) 2013; 24 Aly (smsac0cbcbib18) 2017; 64 Priya (smsac0cbcbib50) 2007; 19 Cao (smsac0cbcbib69) 2015; 224 Zhang (smsac0cbcbib145) 2018; 27 Oudich (smsac0cbcbib173) 2017; 50 Benchabane (smsac0cbcbib101) 2006; 73 Li (smsac0cbcbib198) 2017; 28 Torres (smsac0cbcbib53) 2008; 56 Mann (smsac0cbcbib66) 2010; 329 Huang (smsac0cbcbib126) 2010; 132 Jo (smsac0cbcbib172) 2020; 127 Hobeck (smsac0cbcbib135) 2017 Rizzo (smsac0cbcbib197) 2017; 26 Hou (smsac0cbcbib102) 2004; 130 Shalaev (smsac0cbcbib22) 2005; 30 Yuan (smsac0cbcbib152) 2019; 10 Chen (smsac0cbcbib133) 2019; 2019 Park (smsac0cbcbib175) 2019; 57 Chen (smsac0cbcbib38) 2011; 20 Wang (smsac0cbcbib57) 2013; 22 Sigalas (smsac0cbcbib84) 1992; 158 Tang (smsac0cbcbib56) 2012; 23 Tol (smsac0cbcbib186) 2016 Moheimani (smsac0cbcbib36) 2006 Yao (smsac0cbcbib23) 2008; 321 Geng (smsac0cbcbib177) 2019; 125 Karami (smsac0cbcbib15) 2011; 133 Tang (smsac0cbcbib154) 2010; 21 Gong (smsac0cbcbib7) 2015; 107 Hu (smsac0cbcbib201) 2018 Zhao (smsac0cbcbib74) 2016; 27 Hussein (smsac0cbcbib19) 2014; 66 Hu (smsac0cbcbib46) 2017; 173 Saha (smsac0cbcbib52) 2006; 42 Hu (smsac0cbcbib123) 2006; 49 Lueke (smsac0cbcbib16) 2014; 24 Tol (smsac0cbcbib192) 2017 Jin (smsac0cbcbib147) 2019; 9 Liu (smsac0cbcbib73) 2018; 27 Beeby (smsac0cbcbib51) 2006; 17 Sugino (smsac0cbcbib120) 2017 Boisseau (smsac0cbcbib8) 2013; 80 Hu (smsac0cbcbib115) 2017; 139 Chen (smsac0cbcbib138) 2019; 28 Li (smsac0cbcbib139) 2016; 25 Liang (smsac0cbcbib34) 2009; 20 Laude (smsac0cbcbib96) 2005; 71 |
References_xml | – volume: 122 year: 2017 ident: smsac0cbcbib107 article-title: Frequency graded 1D metamaterials: a study on the attenuation bands publication-title: J. Appl. Phys. doi: 10.1063/1.4998446 – volume: 91 start-page: 251 year: 2018 ident: smsac0cbcbib171 article-title: Thermal properties of one-dimensional piezoelectric phononic crystal publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2018-90297-y – volume: 132 start-page: 2887 year: 2012 ident: smsac0cbcbib24 article-title: Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4744977 – volume: 24 start-page: 357 year: 2013 ident: smsac0cbcbib64 article-title: A novel two-degrees-of-freedom piezoelectric energy harvester publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12457254 – volume: 108 year: 2016 ident: smsac0cbcbib40 article-title: Experimental study of an adaptive elastic metamaterial controlled by electric circuits publication-title: Appl. Phys. Lett. doi: 10.1063/1.4939546 – volume: 8 start-page: 1288 year: 2017 ident: smsac0cbcbib158 article-title: Ultra-low and ultra-broad-band nonlinear acoustic metamaterials publication-title: Nat. Commun. doi: 10.1038/s41467-017-00671-9 – volume: 254 year: 2019 ident: smsac0cbcbib33 article-title: Renewable energy harvesting and absorbing via multi-scale metamaterial systems for internet of things publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113717 – volume: 109 year: 2016 ident: smsac0cbcbib185 article-title: Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.4960792 – volume: 125 year: 2019 ident: smsac0cbcbib177 article-title: Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects publication-title: J. Appl. Phys. doi: 10.1063/1.5063949 – volume: 123 year: 2018 ident: smsac0cbcbib170 article-title: The significance of temperature dependence on the piezoelectric energy harvesting by using a phononic crystal publication-title: J. Appl. Phys. doi: 10.1063/1.5019623 – volume: 21 start-page: 1867 year: 2010 ident: smsac0cbcbib154 article-title: Toward broadband vibration-based energy harvesting publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X10390249 – volume: 98 year: 2011 ident: smsac0cbcbib25 article-title: An elastic metamaterial with simultaneously negative mass density and bulk modulus publication-title: Appl. Phys. Lett. doi: 10.1063/1.3597651 – volume: 27 start-page: 453 year: 2016 ident: smsac0cbcbib74 article-title: Synchronized charge extraction in galloping piezoelectric energy harvesting publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X15571384 – volume: 26 year: 2017 ident: smsac0cbcbib197 article-title: Analysis of the geometric parameters of a solitary waves-based harvester to enhance its power output publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa7401 – volume: 49 start-page: 2313 year: 1994 ident: smsac0cbcbib20 article-title: Theory of acoustic band structure of periodic elastic composites publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.2313 – volume: 59 start-page: 846 year: 2012 ident: smsac0cbcbib12 article-title: Low-frequency meandering piezoelectric vibration energy harvester publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2269 – volume: 58–59 start-page: 355 year: 2015 ident: smsac0cbcbib58 article-title: A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.12.008 – year: 2017 ident: smsac0cbcbib119 article-title: Metamaterial-inspired piezoelectric system with dual functionalities: energy harvesting and vibration suppression – volume: 6 year: 2016 ident: smsac0cbcbib157 article-title: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method publication-title: AIP Adv. doi: 10.1063/1.4971761 – volume: 30 start-page: 2973 year: 2019 ident: smsac0cbcbib124 article-title: A metamaterial structure capable of wave attenuation and concurrent energy harvesting publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X19880023 – volume: 179 year: 2020 ident: smsac0cbcbib174 article-title: Designing a phononic crystal with a defect for energy localization and harvesting: supercell size and defect location publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105670 – volume: 9064 year: 2014 ident: smsac0cbcbib103 article-title: Metamaterial structures with periodic local resonances publication-title: Proc. SPIE – volume: 229 start-page: 4575 year: 2018 ident: smsac0cbcbib199 article-title: A unified electromechanical finite element dynamic analysis of multiple segmented smart plate energy harvesters: circuit connection patterns publication-title: Acta Mech. doi: 10.1007/s00707-018-2249-5 – year: 2019 ident: smsac0cbcbib128 article-title: Study of piezo embedded negative mass metamaterial using generalized Bloch theorem for energy harvesting system doi: 10.1117/12.2514248 – volume: 267 year: 2020 ident: smsac0cbcbib4 article-title: The state-of-the-art review on energy harvesting from flow-induced vibrations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114902 – start-page: 1 year: 2010 ident: smsac0cbcbib54 – volume: 132 year: 2010 ident: smsac0cbcbib126 article-title: Band gaps in a multiresonator acoustic metamaterial publication-title: J. Vib. Acoust.-Trans. ASME doi: 10.1115/1.4000784 – volume: 5 year: 2018 ident: smsac0cbcbib5 article-title: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications publication-title: Appl. Phys. Rev. doi: 10.1063/1.5074184 – volume: 37 start-page: 1015 year: 2018 ident: smsac0cbcbib140 article-title: Acoustic metastructure for effective low-frequency acoustic energy harvesting publication-title: J. Low Frequency Noise, Vib. Active Control doi: 10.1177/1461348418794832 – volume: 132 start-page: 595 year: 2019 ident: smsac0cbcbib143 article-title: On the modelling of membrane-coupled Helmholtz resonator and its application in acoustic metamaterial system publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.07.017 – volume: 29 year: 2019 ident: smsac0cbcbib188 article-title: 3D-printed phononic crystal lens for elastic wave focusing and energy harvesting publication-title: Addit. Manuf. doi: 10.1016/j.addma.2019.100780 – volume: 10 year: 2018 ident: smsac0cbcbib146 article-title: Investigation on acoustic energy harvesting based on quarter-wavelength resonator phononic crystals publication-title: Adv. Mech. Eng. doi: 10.1177/1687814017748077 – volume: 10 year: 2008 ident: smsac0cbcbib26 article-title: Experimental study on negative effective mass in a 1D mass-spring system publication-title: New J. Phys. doi: 10.1088/1367-2630/10/4/043020 – volume: 26 year: 2017 ident: smsac0cbcbib191 article-title: Smart metacomposite-based systems for transient elastic wave energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa5a5a – volume: 25 year: 2016 ident: smsac0cbcbib139 article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/4/045013 – volume: 136 start-page: 2926 year: 2014 ident: smsac0cbcbib142 article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4901706 – volume: 269 start-page: 991 year: 2004 ident: smsac0cbcbib35 article-title: Damping as a result of piezoelectric energy harvesting publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(03)00210-4 – volume: 42 start-page: 3509 year: 2006 ident: smsac0cbcbib52 article-title: Optimization of an electromagnetic energy harvesting device publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2006.879447 – year: 2011 ident: smsac0cbcbib106 – volume: 5 start-page: 452 year: 2006 ident: smsac0cbcbib108 article-title: Ultrasonic metamaterials with negative modulus publication-title: Nat. Mater. doi: 10.1038/nmat1644 – volume: 373 start-page: 1189 year: 2009 ident: smsac0cbcbib162 article-title: Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2009.01.051 – volume: 31 start-page: 389 year: 2019 ident: smsac0cbcbib41 article-title: Tunable metamaterial beam using negative capacitor for local resonators coupling publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X19891575 – volume: 19 start-page: 167 year: 2007 ident: smsac0cbcbib50 article-title: Advances in energy harvesting using low profile piezoelectric transducers publication-title: J. Electroceramics doi: 10.1007/s10832-007-9043-4 – volume: 20 year: 2011 ident: smsac0cbcbib38 article-title: Band gap control of phononic beam with negative capacitance piezoelectric shunt publication-title: Chin. Phys. B doi: 10.1088/1674-1056/20/1/014301 – volume: 26 year: 2017 ident: smsac0cbcbib148 article-title: Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa724e – volume: 20 start-page: 609 year: 2009 ident: smsac0cbcbib59 article-title: Energy harvesting from ambient vibrations and heat publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X08096888 – volume: 111 year: 2017 ident: smsac0cbcbib184 article-title: Acoustic energy harvesting based on multilateral metasurfaces publication-title: Appl. Phys. Lett. doi: 10.1063/1.5003299 – volume: 20 start-page: 515 year: 2009 ident: smsac0cbcbib34 article-title: Piezoelectric energy harvesting and dissipation on structural damping publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X08098194 – volume: 47 start-page: 610 year: 2009 ident: smsac0cbcbib27 article-title: On the negative effective mass density in acoustic metamaterials publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2008.12.007 – volume: 29 year: 2020 ident: smsac0cbcbib204 article-title: Acoustic energy harvesting enhanced by locally resonant metamaterials publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab8fcc – volume: 20 year: 2008 ident: smsac0cbcbib86 article-title: Microfabricated phononic crystal devices and applications publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/1/012002 – volume: 84 start-page: 4677 year: 1998 ident: smsac0cbcbib99 article-title: Giant sonic stop bands in two-dimensional periodic system of fluids publication-title: J. Appl. Phys. doi: 10.1063/1.368710 – volume: 9 start-page: 391 year: 2019 ident: smsac0cbcbib134 article-title: Highly localized and efficient energy harvesting in a phononic crystal beam: defect placement and experimental validation publication-title: Crystals doi: 10.3390/cryst9080391 – volume: 438 start-page: 1 year: 2014 ident: smsac0cbcbib31 article-title: Metamaterials-based enhanced energy harvesting: a review publication-title: Physica B doi: 10.1016/j.physb.2013.12.040 – volume: 27 year: 2018 ident: smsac0cbcbib145 article-title: Simultaneous realization of large sound insulation and efficient energy harvesting with acoustic metamaterial publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aade3e – volume: 94 year: 2009 ident: smsac0cbcbib65 article-title: Nonlinear oscillators for vibration energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.3120279 – volume: 27 year: 2018 ident: smsac0cbcbib81 article-title: Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaca56 – volume: 59 start-page: 1950 year: 2011 ident: smsac0cbcbib77 article-title: Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2167116 – volume: 410 start-page: 5 year: 2013 ident: smsac0cbcbib118 article-title: Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams publication-title: Physica B doi: 10.1016/j.physb.2012.10.029 – year: 2017 ident: smsac0cbcbib132 article-title: Effects of geometric and material parameters on band-gaps of piezoelectric vibration energy harvesting plate with local resonators doi: 10.1109/PHM.2017.8079153 – year: 2015 ident: smsac0cbcbib113 article-title: Energy scavenging from acousto-elastic metamaterial using local resonance phenomenon publication-title: Proc. SPIE – volume: 115 year: 2019 ident: smsac0cbcbib189 article-title: Gradient-index phononic crystals for highly dense flexural energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.5111566 – year: 2018 ident: smsac0cbcbib201 article-title: Internally coupled piezoelectric metamaterial beam with multi-functionalities – volume: 32 start-page: 1897 year: 2019 ident: smsac0cbcbib17 article-title: The optical properties of metamaterial-superconductor photonic band gap with/without defect layer publication-title: J. Supercond. Novel Magnet. doi: 10.1007/s10948-018-4922-2 – volume: 123 year: 2018 ident: smsac0cbcbib121 article-title: Internally coupled metamaterial beam for simultaneous vibration suppression and low frequency energy harvesting publication-title: J. Appl. Phys. doi: 10.1063/1.5011999 – volume: 122 year: 2019 ident: smsac0cbcbib151 article-title: Observation of topological edge modes in a quasiperiodic acoustic waveguide publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.095501 – volume: 27 year: 2018 ident: smsac0cbcbib80 article-title: Optimal power, power limit and damping of vibration based piezoelectric power harvesters publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aabf4a – volume: 69 start-page: 31 year: 1996 ident: smsac0cbcbib95 article-title: Giant acoustic stop bands in two‐dimensional periodic arrays of liquid cylinders publication-title: Appl. Phys. Lett. doi: 10.1063/1.118108 – volume: 111 year: 2017 ident: smsac0cbcbib193 article-title: Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.4991684 – volume: 10 start-page: 48 year: 2019 ident: smsac0cbcbib152 article-title: Recent developments of acoustic energy harvesting: a review publication-title: Micromachines doi: 10.3390/mi10010048 – volume: 139 start-page: 282 year: 2018 ident: smsac0cbcbib202 article-title: Acoustoelastic MetaWall noise barriers for industrial application with simultaneous energy harvesting capability publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2018.04.029 – volume: 64 start-page: 74 year: 2017 ident: smsac0cbcbib18 article-title: Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect publication-title: J. Mod. Opt. doi: 10.1080/09500340.2016.1208298 – volume: 57 start-page: 621 year: 2009 ident: smsac0cbcbib109 article-title: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2008.11.002 – volume: 100 year: 2012 ident: smsac0cbcbib180 article-title: Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror publication-title: Appl. Phys. Lett. doi: 10.1063/1.4719098 – volume: 23 start-page: 1631 year: 2012 ident: smsac0cbcbib56 article-title: A multiple-degree-of-freedom piezoelectric energy harvesting model publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12449920 – year: 2019 ident: smsac0cbcbib129 article-title: Study of split ring metamaterial with simultaneous wave guiding and energy harvesting capability doi: 10.1117/12.2530296 – volume: 4 year: 2014 ident: smsac0cbcbib112 article-title: Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial publication-title: AIP Adv. doi: 10.1063/1.4901915 – volume: 5 start-page: 334 year: 2008 ident: smsac0cbcbib1 article-title: Comparison of energy harvesting systems for wireless sensor networks publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-008-0334-2 – volume: 72 year: 2020 ident: smsac0cbcbib42 article-title: Tunable and active phononic crystals and metamaterials publication-title: Appl. Mech. Rev. doi: 10.1115/1.4046222 – volume: 146 start-page: 243 year: 1991 ident: smsac0cbcbib37 article-title: Damping of structural vibrations with piezoelectric materials and passive electrical networks publication-title: J. Sound Vib. doi: 10.1016/0022-460X(91)90762-9 – volume: 212 start-page: 362 year: 2018 ident: smsac0cbcbib48 article-title: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.053 – year: 2017 ident: smsac0cbcbib135 article-title: Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures – volume: 17 start-page: 1145 year: 2012 ident: smsac0cbcbib76 article-title: Impedance modeling and analysis for piezoelectric energy harvesting systems publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2011.2160275 – volume: 149 start-page: 500 year: 2018 ident: smsac0cbcbib153 article-title: A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.07.051 – volume: 51 year: 2018 ident: smsac0cbcbib125 article-title: Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aab97e – volume: 49 start-page: 649 year: 2006 ident: smsac0cbcbib123 article-title: A low frequency piezoelectric power harvester using a spiral-shaped bimorph publication-title: Sci. China Ser. G doi: 10.1007/s11433-006-2021-z – volume: 289 start-page: 1734 year: 2000 ident: smsac0cbcbib89 article-title: Locally resonant sonic materials publication-title: Science doi: 10.1126/science.289.5485.1734 – year: 2016 ident: smsac0cbcbib186 article-title: Dramatic enhancement of elastic wave energy harvesting using a gradient-index phononic crystal lens doi: 10.1115/SMASIS2016-9264 – year: 2016 ident: smsac0cbcbib181 article-title: Embedded elastic wave mirrors for enhanced energy harvesting doi: 10.1109/ICSENS.2016.7808822 – volume: 8 year: 2015 ident: smsac0cbcbib166 article-title: High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting publication-title: Appl. Phys. Express doi: 10.7567/APEX.8.057101 – volume: 1 year: 2019 ident: smsac0cbcbib195 article-title: Review: wave propagation in granular metamaterials publication-title: Funct. Compos. Struct. doi: 10.1088/2631-6331/ab0c7e – volume: 107 year: 2015 ident: smsac0cbcbib67 article-title: Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance publication-title: Appl. Phys. Lett. doi: 10.1063/1.4936607 – volume: 264 start-page: 1 year: 2017 ident: smsac0cbcbib155 article-title: A 2-degree-of-freedom cubic nonlinear piezoelectric harvester intended for practical low-frequency vibration publication-title: Sens. Actuators A doi: 10.1016/j.sna.2017.06.029 – volume: 30 start-page: 3356 year: 2005 ident: smsac0cbcbib22 article-title: Negative index of refraction in optical metamaterials publication-title: Opt. Lett. doi: 10.1364/OL.30.003356 – volume: 26 year: 2017 ident: smsac0cbcbib32 article-title: A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa7bfb – year: 2019 ident: smsac0cbcbib160 article-title: Energy harvesting characteristics in metamaterials based on bistable lattices doi: 10.1117/12.2514426 – volume: 25 start-page: 1875 year: 2014 ident: smsac0cbcbib62 article-title: Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14541494 – volume: 9 start-page: 1 year: 2019 ident: smsac0cbcbib147 article-title: Ultrathin planar metasurface-based acoustic energy harvester with deep subwavelength thickness and mechanical rigidity publication-title: Sci. Rep. doi: 10.1038/s41598-019-47649-9 – volume: 139 year: 2017 ident: smsac0cbcbib115 article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting publication-title: J. Vib. Acoust. doi: 10.1115/1.4034770 – volume: 22 year: 2013 ident: smsac0cbcbib57 article-title: Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/8/085011 – volume: 71 year: 2005 ident: smsac0cbcbib96 article-title: Full band gap for surface acoustic waves in a piezoelectric phononic crystal publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.036607 – volume: 26 start-page: 1131 year: 2003 ident: smsac0cbcbib55 article-title: A study of low level vibrations as a power source for wireless sensor nodes publication-title: Comput. Commun. doi: 10.1016/S0140-3664(02)00248-7 – volume: 24 year: 2015 ident: smsac0cbcbib6 article-title: Efficiency of piezoelectric mechanical vibration energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/5/055006 – volume: 97 year: 2010 ident: smsac0cbcbib70 article-title: Passive self-tuning energy harvester for extracting energy from rotational motion publication-title: Appl. Phys. Lett. doi: 10.1063/1.3481689 – year: 2013 ident: smsac0cbcbib11 – volume: 6 year: 2013 ident: smsac0cbcbib164 article-title: Enhanced acoustic energy harvesting using coupled resonance structure of sonic crystal and Helmholtz resonator publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.127101 – volume: 18 year: 2008 ident: smsac0cbcbib10 article-title: A wideband vibration-based energy harvester publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/11/115021 – year: 2006 ident: smsac0cbcbib36 – volume: 31 start-page: 1697 year: 2020 ident: smsac0cbcbib82 article-title: Equivalent impedance and power analysis of monostable piezoelectric energy harvesters publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X20930080 – volume: 17 start-page: 543 year: 2006 ident: smsac0cbcbib13 article-title: Energy harvesting MEMS device based on thin film piezoelectric cantilevers publication-title: J. Electroceramics doi: 10.1007/s10832-006-6287-3 – volume: 133 year: 2011 ident: smsac0cbcbib15 article-title: Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting publication-title: J. Vib. Acoust.-Trans. ASME doi: 10.1115/1.4002783 – volume: 12 start-page: 34 year: 2009 ident: smsac0cbcbib21 article-title: Phononic crystals and acoustic metamaterials publication-title: Mater. Today doi: 10.1016/S1369-7021(09)70315-3 – volume: 108 year: 2016 ident: smsac0cbcbib68 article-title: Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.4949557 – volume: 24 year: 2014 ident: smsac0cbcbib16 article-title: Investigation of folded spring structures for vibration-based piezoelectric energy harvesting publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/24/12/125011 – volume: 143 year: 2020 ident: smsac0cbcbib137 article-title: Elastic-electro-mechanical modeling and analysis of piezoelectric metamaterial plate with a self-powered synchronized charge extraction circuit for vibration energy harvesting publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106824 – volume: 52 start-page: 584 year: 2005 ident: smsac0cbcbib60 article-title: Toward energy harvesting using active materials and conversion improvement by nonlinear processing publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2005.1428041 – volume: 28 year: 2019 ident: smsac0cbcbib144 article-title: A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials publication-title: Smart Mater. Struct. – volume: 341 start-page: 53 year: 2015 ident: smsac0cbcbib104 article-title: Wave propagation in metamaterial plates with periodic local resonances publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.12.030 – volume: 113 year: 2013 ident: smsac0cbcbib91 article-title: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators publication-title: J. Appl. Phys. – volume: 26 year: 2017 ident: smsac0cbcbib183 article-title: Analysis and experimental verification of multiple scattering of acoustoelastic waves in thin plates for enhanced energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa73e9 – volume: 32 start-page: 7663 year: 2016 ident: smsac0cbcbib78 article-title: A novel self-power SSHI circuit for piezoelectric energy harvester publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2016.2636903 – start-page: 180 year: 2013 ident: smsac0cbcbib159 article-title: Nonlinear locally resonant metamaterials: modeling and dispersion characteristics publication-title: Proc. Phononics – volume: 13 year: 2019 ident: smsac0cbcbib149 article-title: Acoustic energy harvesting based on the topological interface mode of 1D phononic crystal tube publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab5ff8 – volume: 50 year: 2017 ident: smsac0cbcbib173 article-title: Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa779d – volume: 57 start-page: 327 year: 2019 ident: smsac0cbcbib175 article-title: Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.026 – volume: 113 year: 2018 ident: smsac0cbcbib30 article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators publication-title: Appl. Phys. Lett. doi: 10.1063/1.5041731 – volume: 136 year: 2014 ident: smsac0cbcbib39 article-title: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting publication-title: J. Vib. Acoust. doi: 10.1115/1.4028378 – volume: 25 start-page: 65 year: 2009 ident: smsac0cbcbib97 article-title: Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice publication-title: Acta Mech. Sin. doi: 10.1007/s10409-008-0191-9 – year: 2017 ident: smsac0cbcbib120 article-title: Multifunctional energy harvesting locally resonant metastructures doi: 10.1115/SMASIS2017-3951 – volume: 27 start-page: 276 year: 2018 ident: smsac0cbcbib43 article-title: Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2792686 – volume: 31 start-page: 1076 year: 2020 ident: smsac0cbcbib130 article-title: Simultaneous energy harvesting and vibration attenuation in piezo-embedded negative stiffness metamaterial publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X20910261 – year: 2018 ident: smsac0cbcbib116 article-title: The possibility of harvesting electrical energy from industrial noise barriers using meta-wall bricks doi: 10.1117/12.2296422 – volume: 10 year: 2008 ident: smsac0cbcbib92 article-title: Acoustic cloaking in two dimensions: a feasible approach publication-title: New J. Phys. doi: 10.1088/1367-2630/10/6/063015 – volume: 111 year: 2017 ident: smsac0cbcbib131 article-title: Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.5008674 – year: 2012 ident: smsac0cbcbib200 article-title: Multiple piezoelectric energy harvesters connected to different interface circuits doi: 10.1117/12.914791 – volume: 173 start-page: 1463 year: 2017 ident: smsac0cbcbib46 article-title: An impact-engaged two-degrees-of-freedom piezoelectric energy harvester for wideband operation publication-title: Proc. Eng. doi: 10.1016/j.proeng.2016.12.216 – ident: smsac0cbcbib98 article-title: Phononic crystals: fundamental and applications – volume: 104 year: 2014 ident: smsac0cbcbib165 article-title: Enhanced acoustic wave localization effect using coupled sonic crystal resonators publication-title: Appl. Phys. Lett. doi: 10.1063/1.4871804 – year: 2017 ident: smsac0cbcbib176 article-title: Piezoelectric harvester scavenges energy from cavity of phononic crystal doi: 10.1109/FCS.2017.8088994 – volume: 117 year: 2015 ident: smsac0cbcbib194 article-title: Energy harvesting using arrays of granular chains and solid rods publication-title: J. Appl. Phys. doi: 10.1063/1.4921856 – volume: 122 year: 2017 ident: smsac0cbcbib182 article-title: Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting publication-title: J. Appl. Phys. doi: 10.1063/1.5008724 – volume: 332 start-page: 7142 year: 2013 ident: smsac0cbcbib72 article-title: Experimental passive self-tuning behavior of a beam resonator with sliding proof mass publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.08.023 – volume: 22 year: 2013 ident: smsac0cbcbib9 article-title: A review of the recent research on vibration energy harvesting via bistable systems publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/2/023001 – volume: 27 start-page: 803 year: 2011 ident: smsac0cbcbib83 article-title: Review of power conditioning for kinetic energy harvesting systems publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2011.2161675 – volume: 95 year: 2009 ident: smsac0cbcbib163 article-title: Acoustic energy harvesting using resonant cavity of a sonic crystal publication-title: Appl. Phys. Lett. doi: 10.1063/1.3176019 – volume: 112 year: 2018 ident: smsac0cbcbib190 article-title: Continuous profile flexural GRIN lens: focusing and harvesting flexural waves publication-title: Appl. Phys. Lett. doi: 10.1063/1.5008576 – volume: 129 start-page: 1173 year: 2011 ident: smsac0cbcbib87 article-title: Noise control by sonic crystal barriers made of recycled materials publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3531815 – year: 2011 ident: smsac0cbcbib71 article-title: Passive-self-tunable vibrational energy harvester doi: 10.1109/TRANSDUCERS.2011.5969851 – volume: 333 start-page: 2759 year: 2014 ident: smsac0cbcbib90 article-title: A chiral elastic metamaterial beam for broadband vibration suppression publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.01.009 – volume: 31 year: 2018 ident: smsac0cbcbib122 article-title: General framework for modeling multifunctional metamaterial beam based on a derived one-dimensional piezoelectric composite finite element publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0000920 – volume: 28 start-page: 772 year: 2017 ident: smsac0cbcbib198 article-title: Experimental parametric analysis of an energy harvester based on highly nonlinear solitary waves publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X16657422 – volume: 130 start-page: 745 year: 2004 ident: smsac0cbcbib102 article-title: Phononic crystals containing piezoelectric material publication-title: Solid State Commun. doi: 10.1016/j.ssc.2004.03.052 – year: 2013 ident: smsac0cbcbib111 article-title: Low-frequency broadband energy harvesting based on locally resonant phononic crystals doi: 10.1115/IMECE2013-62527 – year: 2017 ident: smsac0cbcbib192 article-title: Low-frequency elastic wave focusing and harvesting via locally resonant metamaterials doi: 10.1115/SMASIS2017-3957 – volume: 183 start-page: 148 year: 2012 ident: smsac0cbcbib47 article-title: Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments publication-title: Sens. Actuators A doi: 10.1016/j.sna.2012.04.033 – volume: 28 year: 2019 ident: smsac0cbcbib138 article-title: Revisit of synchronized electric charge extraction (SECE) in piezoelectric energy harvesting by using impedance modeling publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab38fb – volume: 108 year: 2016 ident: smsac0cbcbib28 article-title: Acoustic energy harvesting based on a planar acoustic metamaterial publication-title: Appl. Phys. Lett. doi: 10.1063/1.4954987 – volume: 16 start-page: 865 year: 2005 ident: smsac0cbcbib61 article-title: Piezoelectric energy harvesting device optimization by synchronous electric charge extraction publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X05056859 – volume: 292 start-page: 198 year: 2001 ident: smsac0cbcbib161 article-title: Point defect states in two-dimensional phononic crystals publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00800-3 – volume: 76 year: 2007 ident: smsac0cbcbib88 article-title: Subdiffractive propagation of ultrasound in sonic crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.140302 – volume: 158 start-page: 377 year: 1992 ident: smsac0cbcbib84 article-title: Elastic and acoustic wave band structure publication-title: J. Sound Vib. doi: 10.1016/0022-460X(92)90059-7 – volume: 87 year: 2013 ident: smsac0cbcbib93 article-title: Elastic metamaterials with inertial locally resonant structures: application to lensing and localization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.174303 – volume: 2019 start-page: 1 year: 2019 ident: smsac0cbcbib133 article-title: Vibration bandgaps of piezoelectric metamaterial plate with local resonators for vibration energy harvesting publication-title: Shock Vib. doi: 10.1155/2019/1397123 – year: 2012 ident: smsac0cbcbib169 article-title: Metamaterial concepts for structure-borne wave energy harvesting: focusing, funneling, and localization doi: 10.1115/SMASIS2012-8166 – year: 2018 ident: smsac0cbcbib127 article-title: Dynamic characterization and control of a metamaterials-inspired smart composite doi: 10.1115/SMASIS2018-7961 – volume: 56 start-page: 1938 year: 2008 ident: smsac0cbcbib53 article-title: Electrostatic energy-harvesting and battery-charging CMOS system prototype publication-title: IEEE Trans. Circ. Syst. I doi: 10.1109/TCSI.2008.2011578 – volume: 30 start-page: 5364 year: 2015 ident: smsac0cbcbib79 article-title: A highly efficient P-SSHI rectifier for piezoelectric energy harvesting publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2015.2422717 – volume: 43 start-page: A1–A54 year: 1996 ident: smsac0cbcbib49 article-title: IEEE standard on piezoelectricity publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 321 start-page: 930 year: 2008 ident: smsac0cbcbib23 article-title: Optical negative refraction in bulk metamaterials of nanowires publication-title: Science doi: 10.1126/science.1157566 – year: 2018 ident: smsac0cbcbib117 article-title: Modeling of a 3D acoustoelastic metamaterial energy harvester doi: 10.1117/12.2296638 – volume: 22 year: 2013 ident: smsac0cbcbib167 article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/6/065004 – volume: 251 year: 2019 ident: smsac0cbcbib156 article-title: Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113412 – volume: 463 start-page: 855 year: 2007 ident: smsac0cbcbib105 article-title: On modifications of Newton’s second law and linear continuum elastodynamics publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2006.1795 – volume: 24 year: 2015 ident: smsac0cbcbib196 article-title: A parametric study on the optimization of a metamaterial-based energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/11/115019 – volume: 107 year: 2015 ident: smsac0cbcbib7 article-title: Harvesting vibration energy using two modal vibrations of a folded piezoelectric device publication-title: Appl. Phys. Lett. doi: 10.1063/1.4927331 – year: 2015 ident: smsac0cbcbib203 article-title: Sound insulation and energy harvesting based on acoustic metamaterial plate – volume: 16 start-page: 2253 year: 2007 ident: smsac0cbcbib75 article-title: An improved analysis of the SSHI interface in piezoelectric energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/6/028 – volume: 66 year: 2014 ident: smsac0cbcbib19 article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook publication-title: Appl. Mech. Rev. doi: 10.1115/1.4026911 – volume: 98 year: 2011 ident: smsac0cbcbib63 article-title: Broadband energy-harvesting using a two degree-of-freedom vibrating body publication-title: Appl. Phys. Lett. doi: 10.1063/1.3595278 – volume: 29 year: 2015 ident: smsac0cbcbib94 article-title: Low-frequency vibration energy harvesting using a locally resonant phononic crystal plate with spiral beams publication-title: Modern Phys. Lett. B doi: 10.1142/S0217984914502595 – volume: 65 start-page: 229 year: 2010 ident: smsac0cbcbib100 article-title: Two-dimensional phononic crystals: examples and applications publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2010.08.002 – volume: 2020 start-page: 1 year: 2020 ident: smsac0cbcbib136 article-title: A metamaterial-inspired structure for simultaneous vibration attenuation and energy harvesting publication-title: Shock Vib. doi: 10.1155/2020/4063025 – volume: 127 year: 2020 ident: smsac0cbcbib172 article-title: Elastic wave localization and harvesting using double defect modes of a phononic crystal publication-title: J. Appl. Phys. doi: 10.1063/5.0003688 – year: 2005 ident: smsac0cbcbib2 article-title: Review of energy harvesting techniques and applications for microelectronics (Keynote Address) publication-title: Proc. SPIE doi: 10.1117/12.613046 – volume: 13 year: 2019 ident: smsac0cbcbib178 article-title: Tunability of band gaps and energy harvesting based on the point defect in a magneto-elastic acoustic metamaterial plate publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab5836 – volume: 52 start-page: 584 year: 2014 ident: smsac0cbcbib14 article-title: Modeling, fabrication, and experimental validation of hybrid piezo-magnetostrictive and piezomagnetic energy harvesting units publication-title: J. Intell. Mater. Syst. Struct. – volume: 19 year: 2010 ident: smsac0cbcbib29 article-title: Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/4/045016 – volume: 8 year: 2018 ident: smsac0cbcbib44 article-title: Dual serial vortex-induced energy harvesting system for enhanced energy harvesting publication-title: AIP Adv. doi: 10.1063/1.5038884 – volume: 264 start-page: 317 year: 2003 ident: smsac0cbcbib85 article-title: Passive reduction of gear mesh vibration using a periodic drive shaft publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(02)01213-0 – volume: 136 start-page: 969 year: 2014 ident: smsac0cbcbib141 article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4892870 – volume: 17 start-page: R175 year: 2006 ident: smsac0cbcbib51 article-title: Energy harvesting vibration sources for microsystems applications publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/12/R01 – volume: 19 year: 2017 ident: smsac0cbcbib150 article-title: Edge waves in plates with resonators: an elastic analogue of the quantum valley hall effect publication-title: New J. Phys. doi: 10.1088/1367-2630/aa56a2 – volume: 9 start-page: 261 year: 2019 ident: smsac0cbcbib179 article-title: A magnetic-dependent vibration energy harvester based on the tunable point defect in 2D magneto-elastic phononic crystals publication-title: Crystals doi: 10.3390/cryst9050261 – volume: 24 start-page: 168 year: 2013 ident: smsac0cbcbib110 article-title: Energy harvesting using an array of multifunctional resonators publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12460335 – volume: 114 year: 2019 ident: smsac0cbcbib45 article-title: A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers publication-title: Appl. Phys. Lett. doi: 10.1063/1.5098439 – volume: 224 start-page: 2867 year: 2015 ident: smsac0cbcbib69 article-title: Internal resonance for nonlinear vibration energy harvesting publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2015-02594-4 – volume: vol 21 year: 2009 ident: smsac0cbcbib3 – volume: 329 start-page: 1215 year: 2010 ident: smsac0cbcbib66 article-title: Investigations of a nonlinear energy harvester with a bistable potential well publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.11.034 – volume: 73 year: 2006 ident: smsac0cbcbib101 article-title: Evidence for complete surface wave band gap in a piezoelectric phononic crystal publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.73.065601 – year: 2017 ident: smsac0cbcbib187 article-title: 3D-printed lens for structure-borne wave focusing and energy harvesting – volume: 102 year: 2013 ident: smsac0cbcbib168 article-title: Vibration energy harvesting using a phononic crystal with point defect states publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788810 – volume: 28 start-page: 381 year: 2017 ident: smsac0cbcbib114 article-title: A sub-wavelength scale acoustoelastic sonic crystal for harvesting energies at very low frequencies (<∼1 kHz) using controlled geometric configurations publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X16645863 – volume: 80 year: 2013 ident: smsac0cbcbib8 article-title: Nonlinear H-shaped springs to improve efficiency of vibration energy harvesters publication-title: J. Appl. Mech.-Trans. ASME doi: 10.1115/1.4023961 – volume: 27 year: 2018 ident: smsac0cbcbib73 article-title: Compact self-powered synchronous energy extraction circuit design with enhanced performance publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aab339 |
SSID | ssj0011831 |
Score | 2.608869 |
SecondaryResourceType | review_article |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 85025 |
SubjectTerms | energy harvesting metamaterials phononic crystals |
Title | Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/ac0cbc |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8qoEnjwKAMwT6QD-ywQ9omtmOHnSpEVSFtcChSD5Msxx8gAaVqwwH--j07adVOE0I7JUpeHOv5-fln-b3fAzhJbebQ9ZrEIzxImLA4pWSWJlwYoS3FVzHD--evfHjNLsZ83IIfy1yYx2nj-jt4WxMF1ypsAuJkN6V5muQ5H3e16ZnSbMAWlbhwhuy9y6vlEQLaaiyXV-QswVV6cUb5rxbW1qQN_O_KEjP4AL8XnasjS-46T1XZMS9_8Tb-Z-93YaeBnqRfi-5By03asL1CSNiGdzEg1Mz3YdQ3j7HQV-IQX-OVPLhKI7ytLZboiSUhrD0w6xIze0aQiU8RARMXswnJrZ5FBo_JzSnRpM6Q-QjXg_PR2TBpKjAkhgpZoffpOYSIuRWF4KmTOhCaCS6oZ9xrxgtEL9IVQgtn0FG5gvvMeu8pE7nFjRY9gE3siDsEok1BvZZouAx3MFqUgUinZBkzNksdNUfQXYyBMg09eaiSca_iMbmUKmhOBc2pWnNH8H35xbSm5nhF9hsOiGrm5_wVObImN3-YK9pTUgVmv4yrqfWf3tjUZ3ifhfiXGCz4BTar2ZP7igCmKo-jof4BPJbrIQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BVaty6INSAX35UA49ZHfjR-xU6gGVrqC0lANIe3MdP1qpZVltghD9U_0r_CTGTnYFVYV64dBTosSJbI_H84088w3A69xRj1uvzQLCg4xLhyqlaJ4JaaVxDF-lDO_P-8XOEf84EqMF-D3PhTmZdFt_D29bouB2CruAONXPWZFnRSFGfWMHtrL9iQtdVOWePz9Dn61-t7uNAt6kdPjh8P1O1pUVyCyTqkGVGnjEPYWTpRS5VyaydEkhWeAiGC5KNMnKl9JIb1H7fCkCdSEExmXh0Htg-N9FuCMY2uqYMfjlYH5sgfqRSvSVBc8QGczORf_W62t2cBHHesWsDR_CxWxC2miWH73TpurZX39wRf5HM_YIHnQQm2y13XsMC368AstXiBdX4G4KfLX1EzjcsiepoFnm0Y_AKzn2jUEY32omMWNHYvh-ZBAmdnqOYBqfItInPmVNku9mmphKxt_eEkPaTKBVOLqVAT6FJeyIXwNibMmCUaigHD01I6tIGFRxyq2juWd2HfozuWvb0bDHaiA_dQoHUEpHaekoLd1Kax3ezL-YtBQkN7TdxEWgu32ovqEdudauPq41G2ilI4MhFRoXyMY__uoV3DvYHupPu_t7z-A-jSE_KT7yOSw101P_AjFbU71MekLg620vs0uPLUfh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic-elastic+metamaterials+and+phononic+crystals+for+energy+harvesting%3A+a+review&rft.jtitle=Smart+materials+and+structures&rft.au=Hu%2C+Guobiao&rft.au=Tang%2C+Lihua&rft.au=Liang%2C+Junrui&rft.au=Lan%2C+Chunbo&rft.date=2021-08-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=30&rft.issue=8&rft.spage=85025&rft_id=info:doi/10.1088%2F1361-665X%2Fac0cbc&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ac0cbc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |