Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 30; no. 8; pp. 85025 - 85059
Main Authors Hu, Guobiao, Tang, Lihua, Liang, Junrui, Lan, Chunbo, Das, Raj
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Author Lan, Chunbo
Tang, Lihua
Hu, Guobiao
Liang, Junrui
Das, Raj
Author_xml – sequence: 1
  givenname: Guobiao
  orcidid: 0000-0002-1288-7564
  surname: Hu
  fullname: Hu, Guobiao
  organization: University of Auckland Department of Mechanical Engineering, 20 Symonds Street, Auckland 1010, New Zealand
– sequence: 2
  givenname: Lihua
  orcidid: 0000-0001-9031-4190
  surname: Tang
  fullname: Tang, Lihua
  organization: University of Auckland Department of Mechanical Engineering, 20 Symonds Street, Auckland 1010, New Zealand
– sequence: 3
  givenname: Junrui
  orcidid: 0000-0003-2685-5587
  surname: Liang
  fullname: Liang, Junrui
  organization: School of Information Science and Technology, ShanghaiTech University , 393 Middle Huaxia Road, Shanghai 201210, People’s Republic of China
– sequence: 4
  givenname: Chunbo
  orcidid: 0000-0001-5959-0488
  surname: Lan
  fullname: Lan, Chunbo
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics , Nanjing, People’s Republic of China
– sequence: 5
  givenname: Raj
  orcidid: 0000-0001-9977-6201
  surname: Das
  fullname: Das, Raj
  organization: School of Engineering, RMIT University , GPO Box 2476, Melbourne, VIC 3001, Australia
BookMark eNp9kM1LAzEQxYNUsK3ePe7Ni2uTzeZjvZXiFxS8VPAWYnbSpnQ3SxIr_e_dpeJBpKcHb95vhnkTNGp9CwhdE3xHsJQzQjnJOWfvM22w-TBnaPxrjdAYV7zMiSj4BZrEuMWYEEnJGK3mxn_G5EwOOz1o1kDSjU4QnN7FTLd11m18f6wfmXCIaXCtDxm0ENaHbKPDHnqwXd9nOguwd_B1ic5tH4OrH52it8eH1eI5X74-vSzmy9xQIVNOBQZCK16LSjACUhesLAUT1JbM6pJVsuQSKqEFGMEpVMwWtbWWloLXpJR0ivhxrwk-xgBWGZd0cr5NQbudIlgN3aihCDUUoY7d9CD-A3bBNTocTiG3R8T5Tm39Z2j7z07Fb_6JxyYqipVUWDJcMNXVln4DDT2GvQ
CODEN SMSTER
CitedBy_id crossref_primary_10_1063_5_0078740
crossref_primary_10_1016_j_enconman_2024_118374
crossref_primary_10_1016_j_apacoust_2025_110603
crossref_primary_10_1098_rspa_2024_0033
crossref_primary_10_1007_s10409_022_21535_x
crossref_primary_10_1016_j_ymssp_2021_108724
crossref_primary_10_1016_j_ijmecsci_2021_106838
crossref_primary_10_1063_5_0063488
crossref_primary_10_1063_5_0127518
crossref_primary_10_1088_1361_6463_acb21a
crossref_primary_10_1002_adfm_202413285
crossref_primary_10_1016_j_apm_2025_116109
crossref_primary_10_1016_j_ijsolstr_2023_112306
crossref_primary_10_1088_1361_665X_ad254a
crossref_primary_10_1007_s00339_023_06386_7
crossref_primary_10_1016_j_mtener_2023_101387
crossref_primary_10_3390_sym14030631
crossref_primary_10_1007_s42417_023_01034_z
crossref_primary_10_1007_s42417_024_01439_4
crossref_primary_10_1016_j_cnsns_2023_107350
crossref_primary_10_1002_aenm_202300557
crossref_primary_10_1016_j_compositesb_2025_112250
crossref_primary_10_1016_j_nanoen_2024_109722
crossref_primary_10_1007_s10409_021_09071_x
crossref_primary_10_1016_j_apm_2024_06_031
crossref_primary_10_1016_j_ijmecsci_2024_109485
crossref_primary_10_1016_j_ymssp_2024_111133
crossref_primary_10_1088_1361_665X_adb81c
crossref_primary_10_3390_nanoenergyadv3030010
crossref_primary_10_1007_s10483_024_3154_6
crossref_primary_10_1177_1045389X211072517
crossref_primary_10_1016_j_eml_2024_102165
crossref_primary_10_1016_j_tws_2024_111615
crossref_primary_10_1063_5_0158079
crossref_primary_10_1109_TUFFC_2024_3420158
crossref_primary_10_1142_S175882512250079X
crossref_primary_10_1002_adts_202200700
crossref_primary_10_1177_1045389X211048225
crossref_primary_10_1016_j_ijmecsci_2022_107435
crossref_primary_10_1088_1361_665X_ad649c
crossref_primary_10_3390_mi13060862
crossref_primary_10_1016_j_ijmecsci_2022_107877
crossref_primary_10_1016_j_pmatsci_2025_101434
crossref_primary_10_3390_en15197066
crossref_primary_10_1016_j_rineng_2023_101272
crossref_primary_10_1016_j_ijmecsci_2023_108146
crossref_primary_10_1016_j_matdes_2023_112594
crossref_primary_10_1007_s11071_022_07266_0
crossref_primary_10_1016_j_nanoen_2022_107773
crossref_primary_10_1002_adem_202201117
crossref_primary_10_1016_j_enconman_2022_116056
crossref_primary_10_1088_1361_665X_ac4ea6
crossref_primary_10_1098_rsta_2023_0351
crossref_primary_10_1016_j_eml_2023_102098
crossref_primary_10_1186_s40580_022_00321_x
crossref_primary_10_1088_1361_665X_ad026c
crossref_primary_10_1038_s41586_024_07163_z
crossref_primary_10_1016_j_ijmecsci_2022_107907
crossref_primary_10_1088_1367_2630_acd0ce
crossref_primary_10_1016_j_tws_2022_109481
crossref_primary_10_1515_nanoph_2022_0671
crossref_primary_10_1177_1045389X221142091
crossref_primary_10_1109_JLT_2024_3391924
crossref_primary_10_1088_1361_665X_ac4d65
crossref_primary_10_1088_1361_665X_ad97ff
crossref_primary_10_1038_s41598_024_52851_5
crossref_primary_10_1088_1361_665X_ad0393
crossref_primary_10_1063_5_0101076
crossref_primary_10_1016_j_ijmecsci_2023_108474
crossref_primary_10_1007_s00339_022_06032_8
crossref_primary_10_3390_ma18020377
crossref_primary_10_1063_5_0072053
crossref_primary_10_1016_j_ijmecsci_2024_109107
crossref_primary_10_1016_j_rinp_2024_107870
crossref_primary_10_3390_s22218426
crossref_primary_10_1016_j_mtphys_2022_100616
crossref_primary_10_1016_j_iintel_2022_100001
crossref_primary_10_1088_1361_6463_ad7b4c
crossref_primary_10_1115_1_4065751
crossref_primary_10_1587_nolta_14_475
crossref_primary_10_1007_s00170_022_10486_8
crossref_primary_10_1016_j_engstruct_2023_115602
crossref_primary_10_1038_s41598_023_36216_y
crossref_primary_10_1016_j_egyr_2024_11_006
crossref_primary_10_1016_j_tws_2024_112572
crossref_primary_10_1088_1361_6463_ace4d8
crossref_primary_10_1038_s42005_022_00869_4
crossref_primary_10_3390_nano12061019
crossref_primary_10_1142_S0217979224502448
crossref_primary_10_1016_j_ijmecsci_2023_108442
crossref_primary_10_3390_ma16031282
crossref_primary_10_3233_JAE_210076
Cites_doi 10.1063/1.4998446
10.1140/epjb/e2018-90297-y
10.1121/1.4744977
10.1177/1045389X12457254
10.1063/1.4939546
10.1038/s41467-017-00671-9
10.1016/j.apenergy.2019.113717
10.1063/1.4960792
10.1063/1.5063949
10.1063/1.5019623
10.1177/1045389X10390249
10.1063/1.3597651
10.1177/1045389X15571384
10.1088/1361-665X/aa7401
10.1103/PhysRevB.49.2313
10.1109/TUFFC.2012.2269
10.1016/j.ymssp.2014.12.008
10.1063/1.4971761
10.1177/1045389X19880023
10.1016/j.ijmecsci.2020.105670
10.1007/s00707-018-2249-5
10.1117/12.2514248
10.1016/j.apenergy.2020.114902
10.1115/1.4000784
10.1063/1.5074184
10.1177/1461348418794832
10.1016/j.ymssp.2019.07.017
10.1016/j.addma.2019.100780
10.1177/1687814017748077
10.1088/1367-2630/10/4/043020
10.1088/1361-665X/aa5a5a
10.1088/0964-1726/25/4/045013
10.1121/1.4901706
10.1016/S0022-460X(03)00210-4
10.1109/TMAG.2006.879447
10.1038/nmat1644
10.1016/j.physleta.2009.01.051
10.1177/1045389X19891575
10.1007/s10832-007-9043-4
10.1088/1674-1056/20/1/014301
10.1088/1361-665X/aa724e
10.1177/1045389X08096888
10.1063/1.5003299
10.1177/1045389X08098194
10.1016/j.ijengsci.2008.12.007
10.1088/1361-665X/ab8fcc
10.1088/0957-0233/20/1/012002
10.1063/1.368710
10.3390/cryst9080391
10.1016/j.physb.2013.12.040
10.1088/1361-665X/aade3e
10.1063/1.3120279
10.1088/1361-665X/aaca56
10.1109/TIE.2011.2167116
10.1016/j.physb.2012.10.029
10.1109/PHM.2017.8079153
10.1063/1.5111566
10.1007/s10948-018-4922-2
10.1063/1.5011999
10.1103/PhysRevLett.122.095501
10.1088/1361-665X/aabf4a
10.1063/1.118108
10.1063/1.4991684
10.3390/mi10010048
10.1016/j.apacoust.2018.04.029
10.1080/09500340.2016.1208298
10.1016/j.jmps.2008.11.002
10.1063/1.4719098
10.1177/1045389X12449920
10.1117/12.2530296
10.1063/1.4901915
10.1007/s11633-008-0334-2
10.1115/1.4046222
10.1016/0022-460X(91)90762-9
10.1016/j.apenergy.2017.12.053
10.1109/TMECH.2011.2160275
10.1016/j.ijmecsci.2017.07.051
10.1088/1361-6463/aab97e
10.1007/s11433-006-2021-z
10.1126/science.289.5485.1734
10.1115/SMASIS2016-9264
10.1109/ICSENS.2016.7808822
10.7567/APEX.8.057101
10.1088/2631-6331/ab0c7e
10.1063/1.4936607
10.1016/j.sna.2017.06.029
10.1364/OL.30.003356
10.1088/1361-665X/aa7bfb
10.1117/12.2514426
10.1177/1045389X14541494
10.1038/s41598-019-47649-9
10.1115/1.4034770
10.1088/0964-1726/22/8/085011
10.1103/PhysRevE.71.036607
10.1016/S0140-3664(02)00248-7
10.1088/0964-1726/24/5/055006
10.1063/1.3481689
10.7567/APEX.6.127101
10.1088/0960-1317/18/11/115021
10.1177/1045389X20930080
10.1007/s10832-006-6287-3
10.1115/1.4002783
10.1016/S1369-7021(09)70315-3
10.1063/1.4949557
10.1088/0960-1317/24/12/125011
10.1016/j.ymssp.2020.106824
10.1109/TUFFC.2005.1428041
10.1016/j.jsv.2014.12.030
10.1088/1361-665X/aa73e9
10.1109/TPEL.2016.2636903
10.7567/1882-0786/ab5ff8
10.1088/1361-6463/aa779d
10.1016/j.nanoen.2018.12.026
10.1063/1.5041731
10.1115/1.4028378
10.1007/s10409-008-0191-9
10.1115/SMASIS2017-3951
10.1109/JMEMS.2018.2792686
10.1177/1045389X20910261
10.1117/12.2296422
10.1088/1367-2630/10/6/063015
10.1063/1.5008674
10.1117/12.914791
10.1016/j.proeng.2016.12.216
10.1063/1.4871804
10.1109/FCS.2017.8088994
10.1063/1.4921856
10.1063/1.5008724
10.1016/j.jsv.2013.08.023
10.1088/0964-1726/22/2/023001
10.1109/TPEL.2011.2161675
10.1063/1.3176019
10.1063/1.5008576
10.1121/1.3531815
10.1109/TRANSDUCERS.2011.5969851
10.1016/j.jsv.2014.01.009
10.1061/(ASCE)AS.1943-5525.0000920
10.1177/1045389X16657422
10.1016/j.ssc.2004.03.052
10.1115/IMECE2013-62527
10.1115/SMASIS2017-3957
10.1016/j.sna.2012.04.033
10.1088/1361-665X/ab38fb
10.1063/1.4954987
10.1177/1045389X05056859
10.1016/S0375-9601(01)00800-3
10.1103/PhysRevB.76.140302
10.1016/0022-460X(92)90059-7
10.1103/PhysRevB.87.174303
10.1155/2019/1397123
10.1115/SMASIS2012-8166
10.1115/SMASIS2018-7961
10.1109/TCSI.2008.2011578
10.1109/TPEL.2015.2422717
10.1126/science.1157566
10.1117/12.2296638
10.1088/0964-1726/22/6/065004
10.1016/j.apenergy.2019.113412
10.1098/rspa.2006.1795
10.1088/0964-1726/24/11/115019
10.1063/1.4927331
10.1088/0964-1726/16/6/028
10.1115/1.4026911
10.1063/1.3595278
10.1142/S0217984914502595
10.1016/j.surfrep.2010.08.002
10.1155/2020/4063025
10.1063/5.0003688
10.1117/12.613046
10.7567/1882-0786/ab5836
10.1088/0964-1726/19/4/045016
10.1063/1.5038884
10.1016/S0022-460X(02)01213-0
10.1121/1.4892870
10.1088/0957-0233/17/12/R01
10.1088/1367-2630/aa56a2
10.3390/cryst9050261
10.1177/1045389X12460335
10.1063/1.5098439
10.1140/epjst/e2015-02594-4
10.1016/j.jsv.2009.11.034
10.1103/PhysRevE.73.065601
10.1063/1.4788810
10.1177/1045389X16645863
10.1115/1.4023961
10.1088/1361-665X/aab339
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/ac0cbc
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_ac0cbc
smsac0cbc
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c378t-370e1396d79751e8a25447573f45fa4598468e97a7ec763e95f2dfff3476d1483
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Tue Jul 01 03:38:46 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
Wed Aug 21 03:35:00 EDT 2024
Wed Jun 07 11:19:05 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-370e1396d79751e8a25447573f45fa4598468e97a7ec763e95f2dfff3476d1483
Notes SMS-111297.R1
ORCID 0000-0001-9977-6201
0000-0003-2685-5587
0000-0001-5959-0488
0000-0002-1288-7564
0000-0001-9031-4190
PageCount 35
ParticipantIDs crossref_citationtrail_10_1088_1361_665X_ac0cbc
crossref_primary_10_1088_1361_665X_ac0cbc
iop_journals_10_1088_1361_665X_ac0cbc
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ahmed (smsac0cbcbib112) 2014; 4
Kim (smsac0cbcbib195) 2019; 1
Hu (smsac0cbcbib122) 2018; 31
Lv (smsac0cbcbib168) 2013; 102
Assouar (smsac0cbcbib203) 2015
Tan (smsac0cbcbib33) 2019; 254
Darabi (smsac0cbcbib183) 2017; 26
Aly (smsac0cbcbib171) 2018; 91
Zhang (smsac0cbcbib91) 2013; 113
Dwivedi (smsac0cbcbib130) 2020; 31
Lesieutre (smsac0cbcbib35) 2004; 269
Banerjee (smsac0cbcbib106) 2011
(smsac0cbcbib49) 1996; 43
Chen (smsac0cbcbib142) 2014; 136
Kushwaha (smsac0cbcbib20) 1994; 49
Yi (smsac0cbcbib191) 2017; 26
Aly (smsac0cbcbib17) 2019; 32
Qi (smsac0cbcbib28) 2016; 108
Wang (smsac0cbcbib97) 2009; 25
Yuan (smsac0cbcbib140) 2018; 37
Guo (smsac0cbcbib146) 2018; 10
Priya (smsac0cbcbib3) 2009; vol 21
Tol (smsac0cbcbib182) 2017; 122
Nouh (smsac0cbcbib103) 2014; 9064
Tol (smsac0cbcbib185) 2016; 109
Liao (smsac0cbcbib81) 2018; 27
Chen (smsac0cbcbib118) 2013; 410
Fang (smsac0cbcbib108) 2006; 5
Zhang (smsac0cbcbib48) 2018; 212
Hu (smsac0cbcbib119) 2017
Olsson (smsac0cbcbib86) 2008; 20
Ahmed (smsac0cbcbib114) 2017; 28
Wang (smsac0cbcbib42) 2020; 72
Tao (smsac0cbcbib43) 2018; 27
Zhu (smsac0cbcbib90) 2014; 333
Sugino (smsac0cbcbib125) 2018; 51
Nouh (smsac0cbcbib104) 2015; 341
Chen (smsac0cbcbib141) 2014; 136
Wu (smsac0cbcbib163) 2009; 95
Khajehtourian (smsac0cbcbib159) 2013
Guyomar (smsac0cbcbib59) 2009; 20
Fang (smsac0cbcbib157) 2016; 6
Shu (smsac0cbcbib75) 2007; 16
Liu (smsac0cbcbib30) 2018; 113
Hu (smsac0cbcbib153) 2018; 149
Fan (smsac0cbcbib149) 2019; 13
Miller (smsac0cbcbib72) 2013; 332
Wang (smsac0cbcbib29) 2010; 19
Xiong (smsac0cbcbib68) 2016; 108
Qi (smsac0cbcbib184) 2017; 111
Zhou (smsac0cbcbib44) 2018; 8
Yang (smsac0cbcbib165) 2014; 104
Gonella (smsac0cbcbib109) 2009; 57
Soliman (smsac0cbcbib10) 2008; 18
Liang (smsac0cbcbib77) 2011; 59
Wu (smsac0cbcbib155) 2017; 264
Wu (smsac0cbcbib161) 2001; 292
Anigbogu (smsac0cbcbib136) 2020; 2020
Daniel (smsac0cbcbib92) 2008; 10
Espinosa (smsac0cbcbib88) 2007; 76
Chen (smsac0cbcbib124) 2019; 30
Li (smsac0cbcbib194) 2015; 117
Xu (smsac0cbcbib67) 2015; 107
Hu (smsac0cbcbib143) 2019; 132
Yang (smsac0cbcbib164) 2013; 6
Lefeuvre (smsac0cbcbib61) 2005; 16
Tol (smsac0cbcbib193) 2017; 111
Lv (smsac0cbcbib134) 2019; 9
Jo (smsac0cbcbib174) 2020; 179
Ma (smsac0cbcbib204) 2020; 29
Roundy (smsac0cbcbib55) 2003; 26
Bigoni (smsac0cbcbib93) 2013; 87
Li (smsac0cbcbib131) 2017; 111
Wu (smsac0cbcbib162) 2009; 373
Hyun (smsac0cbcbib189) 2019; 115
Tol (smsac0cbcbib188) 2019; 29
Harne (smsac0cbcbib9) 2013; 22
Choi (smsac0cbcbib13) 2006; 17
Hu (smsac0cbcbib41) 2019; 31
Gammaitoni (smsac0cbcbib65) 2009; 94
Jo (smsac0cbcbib71) 2011
Yao (smsac0cbcbib26) 2008; 10
Lan (smsac0cbcbib82) 2020; 31
Hagood (smsac0cbcbib37) 1991; 146
Lumentut (smsac0cbcbib199) 2018; 229
Liao (smsac0cbcbib80) 2018; 27
Pal (smsac0cbcbib150) 2017; 19
Sánchez-Dehesa (smsac0cbcbib87) 2011; 129
Guyomar (smsac0cbcbib60) 2005; 52
Tol (smsac0cbcbib181) 2016
Liu (smsac0cbcbib89) 2000; 289
Ahmed (smsac0cbcbib113) 2015
Fang (smsac0cbcbib45) 2019; 114
Hu (smsac0cbcbib176) 2017
Shen (smsac0cbcbib94) 2015; 29
Kushwaha (smsac0cbcbib95) 1996; 69
Liang (smsac0cbcbib76) 2012; 17
Sun (smsac0cbcbib148) 2017; 26
Chen (smsac0cbcbib137) 2020; 143
Lu (smsac0cbcbib21) 2009; 12
Hu (smsac0cbcbib121) 2018; 123
Banerjee (smsac0cbcbib107) 2017; 122
Zareei (smsac0cbcbib190) 2018; 112
Zhang (smsac0cbcbib111) 2013
Yang (smsac0cbcbib166) 2015; 8
Richards (smsac0cbcbib85) 2003; 264
Carrara (smsac0cbcbib180) 2012; 100
Huang (smsac0cbcbib24) 2012; 132
Huang (smsac0cbcbib27) 2009; 47
Mir (smsac0cbcbib129) 2019
Zhu (smsac0cbcbib40) 2016; 108
Ziniu (smsac0cbcbib132) 2017
Fang (smsac0cbcbib158) 2017; 8
Mateu (smsac0cbcbib2) 2005
Gu (smsac0cbcbib70) 2010; 97
Liu (smsac0cbcbib5) 2018; 5
Lu (smsac0cbcbib79) 2015; 30
Tan (smsac0cbcbib54) 2010
Carrara (smsac0cbcbib167) 2013; 22
Tol (smsac0cbcbib187) 2017
Kim (smsac0cbcbib63) 2011; 98
Liu (smsac0cbcbib156) 2019; 251
Saadatzi (smsac0cbcbib117) 2018
Wang (smsac0cbcbib4) 2020; 267
Berdy (smsac0cbcbib12) 2012; 59
Li (smsac0cbcbib196) 2015; 24
Chen (smsac0cbcbib31) 2014; 438
Kushwaha (smsac0cbcbib99) 1998; 84
Elvin (smsac0cbcbib11) 2013
Mir (smsac0cbcbib116) 2018
Liu (smsac0cbcbib25) 2011; 98
Wang (smsac0cbcbib144) 2019; 28
Hwang (smsac0cbcbib160) 2019
Wu (smsac0cbcbib64) 2013; 24
Ahmed (smsac0cbcbib32) 2017; 26
Emerson (smsac0cbcbib127) 2018
Lien (smsac0cbcbib200) 2012
Arroyo (smsac0cbcbib47) 2012; 183
Carrara (smsac0cbcbib169) 2012
Pennec (smsac0cbcbib100) 2010; 65
Chen (smsac0cbcbib39) 2014; 136
Ibrahim (smsac0cbcbib14) 2014; 52
Eltamaly (smsac0cbcbib78) 2016; 32
Apigo (smsac0cbcbib151) 2019; 122
Xiao (smsac0cbcbib58) 2015; 58–59
Gilbert (smsac0cbcbib1) 2008; 5
Milton (smsac0cbcbib105) 2007; 463
Kim (smsac0cbcbib6) 2015; 24
Deng (smsac0cbcbib178) 2019; 13
Djafari-Rouhani (smsac0cbcbib98)
Mir (smsac0cbcbib202) 2018; 139
Aly (smsac0cbcbib170) 2018; 123
Dwivedi (smsac0cbcbib128) 2019
Szarka (smsac0cbcbib83) 2011; 27
Wu (smsac0cbcbib62) 2014; 25
Deng (smsac0cbcbib179) 2019; 9
Mikoshiba (smsac0cbcbib110) 2013; 24
Aly (smsac0cbcbib18) 2017; 64
Priya (smsac0cbcbib50) 2007; 19
Cao (smsac0cbcbib69) 2015; 224
Zhang (smsac0cbcbib145) 2018; 27
Oudich (smsac0cbcbib173) 2017; 50
Benchabane (smsac0cbcbib101) 2006; 73
Li (smsac0cbcbib198) 2017; 28
Torres (smsac0cbcbib53) 2008; 56
Mann (smsac0cbcbib66) 2010; 329
Huang (smsac0cbcbib126) 2010; 132
Jo (smsac0cbcbib172) 2020; 127
Hobeck (smsac0cbcbib135) 2017
Rizzo (smsac0cbcbib197) 2017; 26
Hou (smsac0cbcbib102) 2004; 130
Shalaev (smsac0cbcbib22) 2005; 30
Yuan (smsac0cbcbib152) 2019; 10
Chen (smsac0cbcbib133) 2019; 2019
Park (smsac0cbcbib175) 2019; 57
Chen (smsac0cbcbib38) 2011; 20
Wang (smsac0cbcbib57) 2013; 22
Sigalas (smsac0cbcbib84) 1992; 158
Tang (smsac0cbcbib56) 2012; 23
Tol (smsac0cbcbib186) 2016
Moheimani (smsac0cbcbib36) 2006
Yao (smsac0cbcbib23) 2008; 321
Geng (smsac0cbcbib177) 2019; 125
Karami (smsac0cbcbib15) 2011; 133
Tang (smsac0cbcbib154) 2010; 21
Gong (smsac0cbcbib7) 2015; 107
Hu (smsac0cbcbib201) 2018
Zhao (smsac0cbcbib74) 2016; 27
Hussein (smsac0cbcbib19) 2014; 66
Hu (smsac0cbcbib46) 2017; 173
Saha (smsac0cbcbib52) 2006; 42
Hu (smsac0cbcbib123) 2006; 49
Lueke (smsac0cbcbib16) 2014; 24
Tol (smsac0cbcbib192) 2017
Jin (smsac0cbcbib147) 2019; 9
Liu (smsac0cbcbib73) 2018; 27
Beeby (smsac0cbcbib51) 2006; 17
Sugino (smsac0cbcbib120) 2017
Boisseau (smsac0cbcbib8) 2013; 80
Hu (smsac0cbcbib115) 2017; 139
Chen (smsac0cbcbib138) 2019; 28
Li (smsac0cbcbib139) 2016; 25
Liang (smsac0cbcbib34) 2009; 20
Laude (smsac0cbcbib96) 2005; 71
References_xml – volume: 122
  year: 2017
  ident: smsac0cbcbib107
  article-title: Frequency graded 1D metamaterials: a study on the attenuation bands
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4998446
– volume: 91
  start-page: 251
  year: 2018
  ident: smsac0cbcbib171
  article-title: Thermal properties of one-dimensional piezoelectric phononic crystal
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2018-90297-y
– volume: 132
  start-page: 2887
  year: 2012
  ident: smsac0cbcbib24
  article-title: Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4744977
– volume: 24
  start-page: 357
  year: 2013
  ident: smsac0cbcbib64
  article-title: A novel two-degrees-of-freedom piezoelectric energy harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12457254
– volume: 108
  year: 2016
  ident: smsac0cbcbib40
  article-title: Experimental study of an adaptive elastic metamaterial controlled by electric circuits
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4939546
– volume: 8
  start-page: 1288
  year: 2017
  ident: smsac0cbcbib158
  article-title: Ultra-low and ultra-broad-band nonlinear acoustic metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00671-9
– volume: 254
  year: 2019
  ident: smsac0cbcbib33
  article-title: Renewable energy harvesting and absorbing via multi-scale metamaterial systems for internet of things
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113717
– volume: 109
  year: 2016
  ident: smsac0cbcbib185
  article-title: Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4960792
– volume: 125
  year: 2019
  ident: smsac0cbcbib177
  article-title: Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5063949
– volume: 123
  year: 2018
  ident: smsac0cbcbib170
  article-title: The significance of temperature dependence on the piezoelectric energy harvesting by using a phononic crystal
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5019623
– volume: 21
  start-page: 1867
  year: 2010
  ident: smsac0cbcbib154
  article-title: Toward broadband vibration-based energy harvesting
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X10390249
– volume: 98
  year: 2011
  ident: smsac0cbcbib25
  article-title: An elastic metamaterial with simultaneously negative mass density and bulk modulus
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3597651
– volume: 27
  start-page: 453
  year: 2016
  ident: smsac0cbcbib74
  article-title: Synchronized charge extraction in galloping piezoelectric energy harvesting
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X15571384
– volume: 26
  year: 2017
  ident: smsac0cbcbib197
  article-title: Analysis of the geometric parameters of a solitary waves-based harvester to enhance its power output
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa7401
– volume: 49
  start-page: 2313
  year: 1994
  ident: smsac0cbcbib20
  article-title: Theory of acoustic band structure of periodic elastic composites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.2313
– volume: 59
  start-page: 846
  year: 2012
  ident: smsac0cbcbib12
  article-title: Low-frequency meandering piezoelectric vibration energy harvester
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2269
– volume: 58–59
  start-page: 355
  year: 2015
  ident: smsac0cbcbib58
  article-title: A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.12.008
– year: 2017
  ident: smsac0cbcbib119
  article-title: Metamaterial-inspired piezoelectric system with dual functionalities: energy harvesting and vibration suppression
– volume: 6
  year: 2016
  ident: smsac0cbcbib157
  article-title: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method
  publication-title: AIP Adv.
  doi: 10.1063/1.4971761
– volume: 30
  start-page: 2973
  year: 2019
  ident: smsac0cbcbib124
  article-title: A metamaterial structure capable of wave attenuation and concurrent energy harvesting
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X19880023
– volume: 179
  year: 2020
  ident: smsac0cbcbib174
  article-title: Designing a phononic crystal with a defect for energy localization and harvesting: supercell size and defect location
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105670
– volume: 9064
  year: 2014
  ident: smsac0cbcbib103
  article-title: Metamaterial structures with periodic local resonances
  publication-title: Proc. SPIE
– volume: 229
  start-page: 4575
  year: 2018
  ident: smsac0cbcbib199
  article-title: A unified electromechanical finite element dynamic analysis of multiple segmented smart plate energy harvesters: circuit connection patterns
  publication-title: Acta Mech.
  doi: 10.1007/s00707-018-2249-5
– year: 2019
  ident: smsac0cbcbib128
  article-title: Study of piezo embedded negative mass metamaterial using generalized Bloch theorem for energy harvesting system
  doi: 10.1117/12.2514248
– volume: 267
  year: 2020
  ident: smsac0cbcbib4
  article-title: The state-of-the-art review on energy harvesting from flow-induced vibrations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114902
– start-page: 1
  year: 2010
  ident: smsac0cbcbib54
– volume: 132
  year: 2010
  ident: smsac0cbcbib126
  article-title: Band gaps in a multiresonator acoustic metamaterial
  publication-title: J. Vib. Acoust.-Trans. ASME
  doi: 10.1115/1.4000784
– volume: 5
  year: 2018
  ident: smsac0cbcbib5
  article-title: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5074184
– volume: 37
  start-page: 1015
  year: 2018
  ident: smsac0cbcbib140
  article-title: Acoustic metastructure for effective low-frequency acoustic energy harvesting
  publication-title: J. Low Frequency Noise, Vib. Active Control
  doi: 10.1177/1461348418794832
– volume: 132
  start-page: 595
  year: 2019
  ident: smsac0cbcbib143
  article-title: On the modelling of membrane-coupled Helmholtz resonator and its application in acoustic metamaterial system
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.07.017
– volume: 29
  year: 2019
  ident: smsac0cbcbib188
  article-title: 3D-printed phononic crystal lens for elastic wave focusing and energy harvesting
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2019.100780
– volume: 10
  year: 2018
  ident: smsac0cbcbib146
  article-title: Investigation on acoustic energy harvesting based on quarter-wavelength resonator phononic crystals
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814017748077
– volume: 10
  year: 2008
  ident: smsac0cbcbib26
  article-title: Experimental study on negative effective mass in a 1D mass-spring system
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/4/043020
– volume: 26
  year: 2017
  ident: smsac0cbcbib191
  article-title: Smart metacomposite-based systems for transient elastic wave energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa5a5a
– volume: 25
  year: 2016
  ident: smsac0cbcbib139
  article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/4/045013
– volume: 136
  start-page: 2926
  year: 2014
  ident: smsac0cbcbib142
  article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4901706
– volume: 269
  start-page: 991
  year: 2004
  ident: smsac0cbcbib35
  article-title: Damping as a result of piezoelectric energy harvesting
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(03)00210-4
– volume: 42
  start-page: 3509
  year: 2006
  ident: smsac0cbcbib52
  article-title: Optimization of an electromagnetic energy harvesting device
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2006.879447
– year: 2011
  ident: smsac0cbcbib106
– volume: 5
  start-page: 452
  year: 2006
  ident: smsac0cbcbib108
  article-title: Ultrasonic metamaterials with negative modulus
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1644
– volume: 373
  start-page: 1189
  year: 2009
  ident: smsac0cbcbib162
  article-title: Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.01.051
– volume: 31
  start-page: 389
  year: 2019
  ident: smsac0cbcbib41
  article-title: Tunable metamaterial beam using negative capacitor for local resonators coupling
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X19891575
– volume: 19
  start-page: 167
  year: 2007
  ident: smsac0cbcbib50
  article-title: Advances in energy harvesting using low profile piezoelectric transducers
  publication-title: J. Electroceramics
  doi: 10.1007/s10832-007-9043-4
– volume: 20
  year: 2011
  ident: smsac0cbcbib38
  article-title: Band gap control of phononic beam with negative capacitance piezoelectric shunt
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/20/1/014301
– volume: 26
  year: 2017
  ident: smsac0cbcbib148
  article-title: Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa724e
– volume: 20
  start-page: 609
  year: 2009
  ident: smsac0cbcbib59
  article-title: Energy harvesting from ambient vibrations and heat
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08096888
– volume: 111
  year: 2017
  ident: smsac0cbcbib184
  article-title: Acoustic energy harvesting based on multilateral metasurfaces
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5003299
– volume: 20
  start-page: 515
  year: 2009
  ident: smsac0cbcbib34
  article-title: Piezoelectric energy harvesting and dissipation on structural damping
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08098194
– volume: 47
  start-page: 610
  year: 2009
  ident: smsac0cbcbib27
  article-title: On the negative effective mass density in acoustic metamaterials
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2008.12.007
– volume: 29
  year: 2020
  ident: smsac0cbcbib204
  article-title: Acoustic energy harvesting enhanced by locally resonant metamaterials
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab8fcc
– volume: 20
  year: 2008
  ident: smsac0cbcbib86
  article-title: Microfabricated phononic crystal devices and applications
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/1/012002
– volume: 84
  start-page: 4677
  year: 1998
  ident: smsac0cbcbib99
  article-title: Giant sonic stop bands in two-dimensional periodic system of fluids
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368710
– volume: 9
  start-page: 391
  year: 2019
  ident: smsac0cbcbib134
  article-title: Highly localized and efficient energy harvesting in a phononic crystal beam: defect placement and experimental validation
  publication-title: Crystals
  doi: 10.3390/cryst9080391
– volume: 438
  start-page: 1
  year: 2014
  ident: smsac0cbcbib31
  article-title: Metamaterials-based enhanced energy harvesting: a review
  publication-title: Physica B
  doi: 10.1016/j.physb.2013.12.040
– volume: 27
  year: 2018
  ident: smsac0cbcbib145
  article-title: Simultaneous realization of large sound insulation and efficient energy harvesting with acoustic metamaterial
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aade3e
– volume: 94
  year: 2009
  ident: smsac0cbcbib65
  article-title: Nonlinear oscillators for vibration energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3120279
– volume: 27
  year: 2018
  ident: smsac0cbcbib81
  article-title: Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaca56
– volume: 59
  start-page: 1950
  year: 2011
  ident: smsac0cbcbib77
  article-title: Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2167116
– volume: 410
  start-page: 5
  year: 2013
  ident: smsac0cbcbib118
  article-title: Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams
  publication-title: Physica B
  doi: 10.1016/j.physb.2012.10.029
– year: 2017
  ident: smsac0cbcbib132
  article-title: Effects of geometric and material parameters on band-gaps of piezoelectric vibration energy harvesting plate with local resonators
  doi: 10.1109/PHM.2017.8079153
– year: 2015
  ident: smsac0cbcbib113
  article-title: Energy scavenging from acousto-elastic metamaterial using local resonance phenomenon
  publication-title: Proc. SPIE
– volume: 115
  year: 2019
  ident: smsac0cbcbib189
  article-title: Gradient-index phononic crystals for highly dense flexural energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5111566
– year: 2018
  ident: smsac0cbcbib201
  article-title: Internally coupled piezoelectric metamaterial beam with multi-functionalities
– volume: 32
  start-page: 1897
  year: 2019
  ident: smsac0cbcbib17
  article-title: The optical properties of metamaterial-superconductor photonic band gap with/without defect layer
  publication-title: J. Supercond. Novel Magnet.
  doi: 10.1007/s10948-018-4922-2
– volume: 123
  year: 2018
  ident: smsac0cbcbib121
  article-title: Internally coupled metamaterial beam for simultaneous vibration suppression and low frequency energy harvesting
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5011999
– volume: 122
  year: 2019
  ident: smsac0cbcbib151
  article-title: Observation of topological edge modes in a quasiperiodic acoustic waveguide
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.095501
– volume: 27
  year: 2018
  ident: smsac0cbcbib80
  article-title: Optimal power, power limit and damping of vibration based piezoelectric power harvesters
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aabf4a
– volume: 69
  start-page: 31
  year: 1996
  ident: smsac0cbcbib95
  article-title: Giant acoustic stop bands in two‐dimensional periodic arrays of liquid cylinders
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118108
– volume: 111
  year: 2017
  ident: smsac0cbcbib193
  article-title: Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4991684
– volume: 10
  start-page: 48
  year: 2019
  ident: smsac0cbcbib152
  article-title: Recent developments of acoustic energy harvesting: a review
  publication-title: Micromachines
  doi: 10.3390/mi10010048
– volume: 139
  start-page: 282
  year: 2018
  ident: smsac0cbcbib202
  article-title: Acoustoelastic MetaWall noise barriers for industrial application with simultaneous energy harvesting capability
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2018.04.029
– volume: 64
  start-page: 74
  year: 2017
  ident: smsac0cbcbib18
  article-title: Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2016.1208298
– volume: 57
  start-page: 621
  year: 2009
  ident: smsac0cbcbib109
  article-title: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2008.11.002
– volume: 100
  year: 2012
  ident: smsac0cbcbib180
  article-title: Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4719098
– volume: 23
  start-page: 1631
  year: 2012
  ident: smsac0cbcbib56
  article-title: A multiple-degree-of-freedom piezoelectric energy harvesting model
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12449920
– year: 2019
  ident: smsac0cbcbib129
  article-title: Study of split ring metamaterial with simultaneous wave guiding and energy harvesting capability
  doi: 10.1117/12.2530296
– volume: 4
  year: 2014
  ident: smsac0cbcbib112
  article-title: Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial
  publication-title: AIP Adv.
  doi: 10.1063/1.4901915
– volume: 5
  start-page: 334
  year: 2008
  ident: smsac0cbcbib1
  article-title: Comparison of energy harvesting systems for wireless sensor networks
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-008-0334-2
– volume: 72
  year: 2020
  ident: smsac0cbcbib42
  article-title: Tunable and active phononic crystals and metamaterials
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4046222
– volume: 146
  start-page: 243
  year: 1991
  ident: smsac0cbcbib37
  article-title: Damping of structural vibrations with piezoelectric materials and passive electrical networks
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(91)90762-9
– volume: 212
  start-page: 362
  year: 2018
  ident: smsac0cbcbib48
  article-title: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.053
– year: 2017
  ident: smsac0cbcbib135
  article-title: Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures
– volume: 17
  start-page: 1145
  year: 2012
  ident: smsac0cbcbib76
  article-title: Impedance modeling and analysis for piezoelectric energy harvesting systems
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2011.2160275
– volume: 149
  start-page: 500
  year: 2018
  ident: smsac0cbcbib153
  article-title: A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.07.051
– volume: 51
  year: 2018
  ident: smsac0cbcbib125
  article-title: Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aab97e
– volume: 49
  start-page: 649
  year: 2006
  ident: smsac0cbcbib123
  article-title: A low frequency piezoelectric power harvester using a spiral-shaped bimorph
  publication-title: Sci. China Ser. G
  doi: 10.1007/s11433-006-2021-z
– volume: 289
  start-page: 1734
  year: 2000
  ident: smsac0cbcbib89
  article-title: Locally resonant sonic materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– year: 2016
  ident: smsac0cbcbib186
  article-title: Dramatic enhancement of elastic wave energy harvesting using a gradient-index phononic crystal lens
  doi: 10.1115/SMASIS2016-9264
– year: 2016
  ident: smsac0cbcbib181
  article-title: Embedded elastic wave mirrors for enhanced energy harvesting
  doi: 10.1109/ICSENS.2016.7808822
– volume: 8
  year: 2015
  ident: smsac0cbcbib166
  article-title: High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.8.057101
– volume: 1
  year: 2019
  ident: smsac0cbcbib195
  article-title: Review: wave propagation in granular metamaterials
  publication-title: Funct. Compos. Struct.
  doi: 10.1088/2631-6331/ab0c7e
– volume: 107
  year: 2015
  ident: smsac0cbcbib67
  article-title: Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4936607
– volume: 264
  start-page: 1
  year: 2017
  ident: smsac0cbcbib155
  article-title: A 2-degree-of-freedom cubic nonlinear piezoelectric harvester intended for practical low-frequency vibration
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2017.06.029
– volume: 30
  start-page: 3356
  year: 2005
  ident: smsac0cbcbib22
  article-title: Negative index of refraction in optical metamaterials
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.003356
– volume: 26
  year: 2017
  ident: smsac0cbcbib32
  article-title: A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa7bfb
– year: 2019
  ident: smsac0cbcbib160
  article-title: Energy harvesting characteristics in metamaterials based on bistable lattices
  doi: 10.1117/12.2514426
– volume: 25
  start-page: 1875
  year: 2014
  ident: smsac0cbcbib62
  article-title: Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X14541494
– volume: 9
  start-page: 1
  year: 2019
  ident: smsac0cbcbib147
  article-title: Ultrathin planar metasurface-based acoustic energy harvester with deep subwavelength thickness and mechanical rigidity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47649-9
– volume: 139
  year: 2017
  ident: smsac0cbcbib115
  article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4034770
– volume: 22
  year: 2013
  ident: smsac0cbcbib57
  article-title: Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/8/085011
– volume: 71
  year: 2005
  ident: smsac0cbcbib96
  article-title: Full band gap for surface acoustic waves in a piezoelectric phononic crystal
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.036607
– volume: 26
  start-page: 1131
  year: 2003
  ident: smsac0cbcbib55
  article-title: A study of low level vibrations as a power source for wireless sensor nodes
  publication-title: Comput. Commun.
  doi: 10.1016/S0140-3664(02)00248-7
– volume: 24
  year: 2015
  ident: smsac0cbcbib6
  article-title: Efficiency of piezoelectric mechanical vibration energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/5/055006
– volume: 97
  year: 2010
  ident: smsac0cbcbib70
  article-title: Passive self-tuning energy harvester for extracting energy from rotational motion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481689
– year: 2013
  ident: smsac0cbcbib11
– volume: 6
  year: 2013
  ident: smsac0cbcbib164
  article-title: Enhanced acoustic energy harvesting using coupled resonance structure of sonic crystal and Helmholtz resonator
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.127101
– volume: 18
  year: 2008
  ident: smsac0cbcbib10
  article-title: A wideband vibration-based energy harvester
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/18/11/115021
– year: 2006
  ident: smsac0cbcbib36
– volume: 31
  start-page: 1697
  year: 2020
  ident: smsac0cbcbib82
  article-title: Equivalent impedance and power analysis of monostable piezoelectric energy harvesters
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X20930080
– volume: 17
  start-page: 543
  year: 2006
  ident: smsac0cbcbib13
  article-title: Energy harvesting MEMS device based on thin film piezoelectric cantilevers
  publication-title: J. Electroceramics
  doi: 10.1007/s10832-006-6287-3
– volume: 133
  year: 2011
  ident: smsac0cbcbib15
  article-title: Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting
  publication-title: J. Vib. Acoust.-Trans. ASME
  doi: 10.1115/1.4002783
– volume: 12
  start-page: 34
  year: 2009
  ident: smsac0cbcbib21
  article-title: Phononic crystals and acoustic metamaterials
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(09)70315-3
– volume: 108
  year: 2016
  ident: smsac0cbcbib68
  article-title: Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4949557
– volume: 24
  year: 2014
  ident: smsac0cbcbib16
  article-title: Investigation of folded spring structures for vibration-based piezoelectric energy harvesting
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/24/12/125011
– volume: 143
  year: 2020
  ident: smsac0cbcbib137
  article-title: Elastic-electro-mechanical modeling and analysis of piezoelectric metamaterial plate with a self-powered synchronized charge extraction circuit for vibration energy harvesting
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106824
– volume: 52
  start-page: 584
  year: 2005
  ident: smsac0cbcbib60
  article-title: Toward energy harvesting using active materials and conversion improvement by nonlinear processing
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2005.1428041
– volume: 28
  year: 2019
  ident: smsac0cbcbib144
  article-title: A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials
  publication-title: Smart Mater. Struct.
– volume: 341
  start-page: 53
  year: 2015
  ident: smsac0cbcbib104
  article-title: Wave propagation in metamaterial plates with periodic local resonances
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.12.030
– volume: 113
  year: 2013
  ident: smsac0cbcbib91
  article-title: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators
  publication-title: J. Appl. Phys.
– volume: 26
  year: 2017
  ident: smsac0cbcbib183
  article-title: Analysis and experimental verification of multiple scattering of acoustoelastic waves in thin plates for enhanced energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa73e9
– volume: 32
  start-page: 7663
  year: 2016
  ident: smsac0cbcbib78
  article-title: A novel self-power SSHI circuit for piezoelectric energy harvester
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2636903
– start-page: 180
  year: 2013
  ident: smsac0cbcbib159
  article-title: Nonlinear locally resonant metamaterials: modeling and dispersion characteristics
  publication-title: Proc. Phononics
– volume: 13
  year: 2019
  ident: smsac0cbcbib149
  article-title: Acoustic energy harvesting based on the topological interface mode of 1D phononic crystal tube
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab5ff8
– volume: 50
  year: 2017
  ident: smsac0cbcbib173
  article-title: Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa779d
– volume: 57
  start-page: 327
  year: 2019
  ident: smsac0cbcbib175
  article-title: Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.026
– volume: 113
  year: 2018
  ident: smsac0cbcbib30
  article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5041731
– volume: 136
  year: 2014
  ident: smsac0cbcbib39
  article-title: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4028378
– volume: 25
  start-page: 65
  year: 2009
  ident: smsac0cbcbib97
  article-title: Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-008-0191-9
– year: 2017
  ident: smsac0cbcbib120
  article-title: Multifunctional energy harvesting locally resonant metastructures
  doi: 10.1115/SMASIS2017-3951
– volume: 27
  start-page: 276
  year: 2018
  ident: smsac0cbcbib43
  article-title: Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2792686
– volume: 31
  start-page: 1076
  year: 2020
  ident: smsac0cbcbib130
  article-title: Simultaneous energy harvesting and vibration attenuation in piezo-embedded negative stiffness metamaterial
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X20910261
– year: 2018
  ident: smsac0cbcbib116
  article-title: The possibility of harvesting electrical energy from industrial noise barriers using meta-wall bricks
  doi: 10.1117/12.2296422
– volume: 10
  year: 2008
  ident: smsac0cbcbib92
  article-title: Acoustic cloaking in two dimensions: a feasible approach
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/6/063015
– volume: 111
  year: 2017
  ident: smsac0cbcbib131
  article-title: Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5008674
– year: 2012
  ident: smsac0cbcbib200
  article-title: Multiple piezoelectric energy harvesters connected to different interface circuits
  doi: 10.1117/12.914791
– volume: 173
  start-page: 1463
  year: 2017
  ident: smsac0cbcbib46
  article-title: An impact-engaged two-degrees-of-freedom piezoelectric energy harvester for wideband operation
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2016.12.216
– ident: smsac0cbcbib98
  article-title: Phononic crystals: fundamental and applications
– volume: 104
  year: 2014
  ident: smsac0cbcbib165
  article-title: Enhanced acoustic wave localization effect using coupled sonic crystal resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4871804
– year: 2017
  ident: smsac0cbcbib176
  article-title: Piezoelectric harvester scavenges energy from cavity of phononic crystal
  doi: 10.1109/FCS.2017.8088994
– volume: 117
  year: 2015
  ident: smsac0cbcbib194
  article-title: Energy harvesting using arrays of granular chains and solid rods
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4921856
– volume: 122
  year: 2017
  ident: smsac0cbcbib182
  article-title: Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5008724
– volume: 332
  start-page: 7142
  year: 2013
  ident: smsac0cbcbib72
  article-title: Experimental passive self-tuning behavior of a beam resonator with sliding proof mass
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.08.023
– volume: 22
  year: 2013
  ident: smsac0cbcbib9
  article-title: A review of the recent research on vibration energy harvesting via bistable systems
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/2/023001
– volume: 27
  start-page: 803
  year: 2011
  ident: smsac0cbcbib83
  article-title: Review of power conditioning for kinetic energy harvesting systems
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2011.2161675
– volume: 95
  year: 2009
  ident: smsac0cbcbib163
  article-title: Acoustic energy harvesting using resonant cavity of a sonic crystal
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3176019
– volume: 112
  year: 2018
  ident: smsac0cbcbib190
  article-title: Continuous profile flexural GRIN lens: focusing and harvesting flexural waves
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5008576
– volume: 129
  start-page: 1173
  year: 2011
  ident: smsac0cbcbib87
  article-title: Noise control by sonic crystal barriers made of recycled materials
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3531815
– year: 2011
  ident: smsac0cbcbib71
  article-title: Passive-self-tunable vibrational energy harvester
  doi: 10.1109/TRANSDUCERS.2011.5969851
– volume: 333
  start-page: 2759
  year: 2014
  ident: smsac0cbcbib90
  article-title: A chiral elastic metamaterial beam for broadband vibration suppression
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.01.009
– volume: 31
  year: 2018
  ident: smsac0cbcbib122
  article-title: General framework for modeling multifunctional metamaterial beam based on a derived one-dimensional piezoelectric composite finite element
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000920
– volume: 28
  start-page: 772
  year: 2017
  ident: smsac0cbcbib198
  article-title: Experimental parametric analysis of an energy harvester based on highly nonlinear solitary waves
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X16657422
– volume: 130
  start-page: 745
  year: 2004
  ident: smsac0cbcbib102
  article-title: Phononic crystals containing piezoelectric material
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2004.03.052
– year: 2013
  ident: smsac0cbcbib111
  article-title: Low-frequency broadband energy harvesting based on locally resonant phononic crystals
  doi: 10.1115/IMECE2013-62527
– year: 2017
  ident: smsac0cbcbib192
  article-title: Low-frequency elastic wave focusing and harvesting via locally resonant metamaterials
  doi: 10.1115/SMASIS2017-3957
– volume: 183
  start-page: 148
  year: 2012
  ident: smsac0cbcbib47
  article-title: Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2012.04.033
– volume: 28
  year: 2019
  ident: smsac0cbcbib138
  article-title: Revisit of synchronized electric charge extraction (SECE) in piezoelectric energy harvesting by using impedance modeling
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab38fb
– volume: 108
  year: 2016
  ident: smsac0cbcbib28
  article-title: Acoustic energy harvesting based on a planar acoustic metamaterial
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4954987
– volume: 16
  start-page: 865
  year: 2005
  ident: smsac0cbcbib61
  article-title: Piezoelectric energy harvesting device optimization by synchronous electric charge extraction
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X05056859
– volume: 292
  start-page: 198
  year: 2001
  ident: smsac0cbcbib161
  article-title: Point defect states in two-dimensional phononic crystals
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00800-3
– volume: 76
  year: 2007
  ident: smsac0cbcbib88
  article-title: Subdiffractive propagation of ultrasound in sonic crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.140302
– volume: 158
  start-page: 377
  year: 1992
  ident: smsac0cbcbib84
  article-title: Elastic and acoustic wave band structure
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(92)90059-7
– volume: 87
  year: 2013
  ident: smsac0cbcbib93
  article-title: Elastic metamaterials with inertial locally resonant structures: application to lensing and localization
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.174303
– volume: 2019
  start-page: 1
  year: 2019
  ident: smsac0cbcbib133
  article-title: Vibration bandgaps of piezoelectric metamaterial plate with local resonators for vibration energy harvesting
  publication-title: Shock Vib.
  doi: 10.1155/2019/1397123
– year: 2012
  ident: smsac0cbcbib169
  article-title: Metamaterial concepts for structure-borne wave energy harvesting: focusing, funneling, and localization
  doi: 10.1115/SMASIS2012-8166
– year: 2018
  ident: smsac0cbcbib127
  article-title: Dynamic characterization and control of a metamaterials-inspired smart composite
  doi: 10.1115/SMASIS2018-7961
– volume: 56
  start-page: 1938
  year: 2008
  ident: smsac0cbcbib53
  article-title: Electrostatic energy-harvesting and battery-charging CMOS system prototype
  publication-title: IEEE Trans. Circ. Syst. I
  doi: 10.1109/TCSI.2008.2011578
– volume: 30
  start-page: 5364
  year: 2015
  ident: smsac0cbcbib79
  article-title: A highly efficient P-SSHI rectifier for piezoelectric energy harvesting
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2422717
– volume: 43
  start-page: A1–A54
  year: 1996
  ident: smsac0cbcbib49
  article-title: IEEE standard on piezoelectricity
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 321
  start-page: 930
  year: 2008
  ident: smsac0cbcbib23
  article-title: Optical negative refraction in bulk metamaterials of nanowires
  publication-title: Science
  doi: 10.1126/science.1157566
– year: 2018
  ident: smsac0cbcbib117
  article-title: Modeling of a 3D acoustoelastic metamaterial energy harvester
  doi: 10.1117/12.2296638
– volume: 22
  year: 2013
  ident: smsac0cbcbib167
  article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/6/065004
– volume: 251
  year: 2019
  ident: smsac0cbcbib156
  article-title: Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113412
– volume: 463
  start-page: 855
  year: 2007
  ident: smsac0cbcbib105
  article-title: On modifications of Newton’s second law and linear continuum elastodynamics
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2006.1795
– volume: 24
  year: 2015
  ident: smsac0cbcbib196
  article-title: A parametric study on the optimization of a metamaterial-based energy harvester
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/11/115019
– volume: 107
  year: 2015
  ident: smsac0cbcbib7
  article-title: Harvesting vibration energy using two modal vibrations of a folded piezoelectric device
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4927331
– year: 2015
  ident: smsac0cbcbib203
  article-title: Sound insulation and energy harvesting based on acoustic metamaterial plate
– volume: 16
  start-page: 2253
  year: 2007
  ident: smsac0cbcbib75
  article-title: An improved analysis of the SSHI interface in piezoelectric energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/6/028
– volume: 66
  year: 2014
  ident: smsac0cbcbib19
  article-title: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4026911
– volume: 98
  year: 2011
  ident: smsac0cbcbib63
  article-title: Broadband energy-harvesting using a two degree-of-freedom vibrating body
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3595278
– volume: 29
  year: 2015
  ident: smsac0cbcbib94
  article-title: Low-frequency vibration energy harvesting using a locally resonant phononic crystal plate with spiral beams
  publication-title: Modern Phys. Lett. B
  doi: 10.1142/S0217984914502595
– volume: 65
  start-page: 229
  year: 2010
  ident: smsac0cbcbib100
  article-title: Two-dimensional phononic crystals: examples and applications
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2010.08.002
– volume: 2020
  start-page: 1
  year: 2020
  ident: smsac0cbcbib136
  article-title: A metamaterial-inspired structure for simultaneous vibration attenuation and energy harvesting
  publication-title: Shock Vib.
  doi: 10.1155/2020/4063025
– volume: 127
  year: 2020
  ident: smsac0cbcbib172
  article-title: Elastic wave localization and harvesting using double defect modes of a phononic crystal
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0003688
– year: 2005
  ident: smsac0cbcbib2
  article-title: Review of energy harvesting techniques and applications for microelectronics (Keynote Address)
  publication-title: Proc. SPIE
  doi: 10.1117/12.613046
– volume: 13
  year: 2019
  ident: smsac0cbcbib178
  article-title: Tunability of band gaps and energy harvesting based on the point defect in a magneto-elastic acoustic metamaterial plate
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab5836
– volume: 52
  start-page: 584
  year: 2014
  ident: smsac0cbcbib14
  article-title: Modeling, fabrication, and experimental validation of hybrid piezo-magnetostrictive and piezomagnetic energy harvesting units
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 19
  year: 2010
  ident: smsac0cbcbib29
  article-title: Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/4/045016
– volume: 8
  year: 2018
  ident: smsac0cbcbib44
  article-title: Dual serial vortex-induced energy harvesting system for enhanced energy harvesting
  publication-title: AIP Adv.
  doi: 10.1063/1.5038884
– volume: 264
  start-page: 317
  year: 2003
  ident: smsac0cbcbib85
  article-title: Passive reduction of gear mesh vibration using a periodic drive shaft
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(02)01213-0
– volume: 136
  start-page: 969
  year: 2014
  ident: smsac0cbcbib141
  article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4892870
– volume: 17
  start-page: R175
  year: 2006
  ident: smsac0cbcbib51
  article-title: Energy harvesting vibration sources for microsystems applications
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/12/R01
– volume: 19
  year: 2017
  ident: smsac0cbcbib150
  article-title: Edge waves in plates with resonators: an elastic analogue of the quantum valley hall effect
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa56a2
– volume: 9
  start-page: 261
  year: 2019
  ident: smsac0cbcbib179
  article-title: A magnetic-dependent vibration energy harvester based on the tunable point defect in 2D magneto-elastic phononic crystals
  publication-title: Crystals
  doi: 10.3390/cryst9050261
– volume: 24
  start-page: 168
  year: 2013
  ident: smsac0cbcbib110
  article-title: Energy harvesting using an array of multifunctional resonators
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12460335
– volume: 114
  year: 2019
  ident: smsac0cbcbib45
  article-title: A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5098439
– volume: 224
  start-page: 2867
  year: 2015
  ident: smsac0cbcbib69
  article-title: Internal resonance for nonlinear vibration energy harvesting
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2015-02594-4
– volume: vol 21
  year: 2009
  ident: smsac0cbcbib3
– volume: 329
  start-page: 1215
  year: 2010
  ident: smsac0cbcbib66
  article-title: Investigations of a nonlinear energy harvester with a bistable potential well
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.11.034
– volume: 73
  year: 2006
  ident: smsac0cbcbib101
  article-title: Evidence for complete surface wave band gap in a piezoelectric phononic crystal
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.73.065601
– year: 2017
  ident: smsac0cbcbib187
  article-title: 3D-printed lens for structure-borne wave focusing and energy harvesting
– volume: 102
  year: 2013
  ident: smsac0cbcbib168
  article-title: Vibration energy harvesting using a phononic crystal with point defect states
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788810
– volume: 28
  start-page: 381
  year: 2017
  ident: smsac0cbcbib114
  article-title: A sub-wavelength scale acoustoelastic sonic crystal for harvesting energies at very low frequencies (<∼1 kHz) using controlled geometric configurations
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X16645863
– volume: 80
  year: 2013
  ident: smsac0cbcbib8
  article-title: Nonlinear H-shaped springs to improve efficiency of vibration energy harvesters
  publication-title: J. Appl. Mech.-Trans. ASME
  doi: 10.1115/1.4023961
– volume: 27
  year: 2018
  ident: smsac0cbcbib73
  article-title: Compact self-powered synchronous energy extraction circuit design with enhanced performance
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aab339
SSID ssj0011831
Score 2.608869
SecondaryResourceType review_article
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 85025
SubjectTerms energy harvesting
metamaterials
phononic crystals
Title Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review
URI https://iopscience.iop.org/article/10.1088/1361-665X/ac0cbc
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8qoEnjwKAMwT6QD-ywQ9omtmOHnSpEVSFtcChSD5Msxx8gAaVqwwH--j07adVOE0I7JUpeHOv5-fln-b3fAzhJbebQ9ZrEIzxImLA4pWSWJlwYoS3FVzHD--evfHjNLsZ83IIfy1yYx2nj-jt4WxMF1ypsAuJkN6V5muQ5H3e16ZnSbMAWlbhwhuy9y6vlEQLaaiyXV-QswVV6cUb5rxbW1qQN_O_KEjP4AL8XnasjS-46T1XZMS9_8Tb-Z-93YaeBnqRfi-5By03asL1CSNiGdzEg1Mz3YdQ3j7HQV-IQX-OVPLhKI7ytLZboiSUhrD0w6xIze0aQiU8RARMXswnJrZ5FBo_JzSnRpM6Q-QjXg_PR2TBpKjAkhgpZoffpOYSIuRWF4KmTOhCaCS6oZ9xrxgtEL9IVQgtn0FG5gvvMeu8pE7nFjRY9gE3siDsEok1BvZZouAx3MFqUgUinZBkzNksdNUfQXYyBMg09eaiSca_iMbmUKmhOBc2pWnNH8H35xbSm5nhF9hsOiGrm5_wVObImN3-YK9pTUgVmv4yrqfWf3tjUZ3ifhfiXGCz4BTar2ZP7igCmKo-jof4BPJbrIQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BVaty6INSAX35UA49ZHfjR-xU6gGVrqC0lANIe3MdP1qpZVltghD9U_0r_CTGTnYFVYV64dBTosSJbI_H84088w3A69xRj1uvzQLCg4xLhyqlaJ4JaaVxDF-lDO_P-8XOEf84EqMF-D3PhTmZdFt_D29bouB2CruAONXPWZFnRSFGfWMHtrL9iQtdVOWePz9Dn61-t7uNAt6kdPjh8P1O1pUVyCyTqkGVGnjEPYWTpRS5VyaydEkhWeAiGC5KNMnKl9JIb1H7fCkCdSEExmXh0Htg-N9FuCMY2uqYMfjlYH5sgfqRSvSVBc8QGczORf_W62t2cBHHesWsDR_CxWxC2miWH73TpurZX39wRf5HM_YIHnQQm2y13XsMC368AstXiBdX4G4KfLX1EzjcsiepoFnm0Y_AKzn2jUEY32omMWNHYvh-ZBAmdnqOYBqfItInPmVNku9mmphKxt_eEkPaTKBVOLqVAT6FJeyIXwNibMmCUaigHD01I6tIGFRxyq2juWd2HfozuWvb0bDHaiA_dQoHUEpHaekoLd1Kax3ezL-YtBQkN7TdxEWgu32ovqEdudauPq41G2ilI4MhFRoXyMY__uoV3DvYHupPu_t7z-A-jSE_KT7yOSw101P_AjFbU71MekLg620vs0uPLUfh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic-elastic+metamaterials+and+phononic+crystals+for+energy+harvesting%3A+a+review&rft.jtitle=Smart+materials+and+structures&rft.au=Hu%2C+Guobiao&rft.au=Tang%2C+Lihua&rft.au=Liang%2C+Junrui&rft.au=Lan%2C+Chunbo&rft.date=2021-08-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=30&rft.issue=8&rft.spage=85025&rft_id=info:doi/10.1088%2F1361-665X%2Fac0cbc&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ac0cbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon