Hierarchical structures of stainless steel 316L manufactured by Electron Beam Melting

One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which sig...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 17; pp. 106 - 112
Main Authors Rännar, Lars-Erik, Koptyug, Andrey, Olsén, Jon, Saeidi, Kamran, Shen, Zhijian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy.
AbstractList One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy.
One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy. 
One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy.
Author Saeidi, Kamran
Rännar, Lars-Erik
Olsén, Jon
Koptyug, Andrey
Shen, Zhijian
Author_xml – sequence: 1
  givenname: Lars-Erik
  surname: Rännar
  fullname: Rännar, Lars-Erik
  email: lars-erik.rannar@miun.se
  organization: Mid Sweden University, Sports Tech Research Centre, Akademigatan 1, SE-83125, Östersund, Sweden
– sequence: 2
  givenname: Andrey
  surname: Koptyug
  fullname: Koptyug, Andrey
  organization: Mid Sweden University, Sports Tech Research Centre, Akademigatan 1, SE-83125, Östersund, Sweden
– sequence: 3
  givenname: Jon
  surname: Olsén
  fullname: Olsén, Jon
  organization: Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, SE-10691, Stockholm, Sweden
– sequence: 4
  givenname: Kamran
  surname: Saeidi
  fullname: Saeidi, Kamran
  organization: Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, SE-10691, Stockholm, Sweden
– sequence: 5
  givenname: Zhijian
  surname: Shen
  fullname: Shen, Zhijian
  organization: Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, SE-10691, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-32203$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-176454$$DView record from Swedish Publication Index
BookMark eNqFkc9OwzAMhyMEEjB4Ai59ADqcpku6Awf-gzTEBbhGbuJCpjZFSQvi7Qkb4sCBSZZsS7_Ph8_7bNv3nhg74jDlwOXJcorWdjgtgKsppAKxxfaKgpe5qjhs_8yVhHKXHca4BAA-E2peFXvs6dZRwGBencE2i0MYzTAGilnfpA2dbynGNBG1meBykXXoxwZXIZvVn9lVS2YIvc_OCbvsntrB-ZcDttNgG-nwp0_Y0_XV48Vtvni4ubs4W-RGqGrIhWykqnkFJQisZw1JK0DZhpe8BAtAmFbT1KJWZOclRyOxqgtpkVSNMxQTdry-Gz_obaz1W3Adhk_do9OX7vlM9-FFx1FzJctZmeL55njnRq9FUYBIebHOm9DHGKj5JTjob_d6qVfu9bd7DalW1PwPZdyAg-v9ENC1G9jTNUvJ2nt6jY7GkTdkXUiete3dv_wXRYykBQ
CitedBy_id crossref_primary_10_4028_www_scientific_net_MSF_941_2190
crossref_primary_10_1016_j_msea_2019_138607
crossref_primary_10_1016_j_scriptamat_2020_08_028
crossref_primary_10_1016_j_matchar_2019_110016
crossref_primary_10_1016_j_msea_2019_138587
crossref_primary_10_1016_j_pmatsci_2019_100578
crossref_primary_10_1002_adem_202200341
crossref_primary_10_1002_adfm_202420658
crossref_primary_10_1016_j_addma_2019_02_005
crossref_primary_10_2351_7_0000824
crossref_primary_10_1016_j_cirpj_2022_11_006
crossref_primary_10_1088_2631_8695_ab8115
crossref_primary_10_1088_1742_6596_2671_1_012004
crossref_primary_10_1007_s40964_025_01006_7
crossref_primary_10_1007_s11665_019_04484_3
crossref_primary_10_1021_acs_jpcc_0c05795
crossref_primary_10_1016_j_surfcoat_2019_07_048
crossref_primary_10_1088_2631_7990_ad92cc
crossref_primary_10_1515_htm_2023_0015
crossref_primary_10_1016_j_msea_2020_139684
crossref_primary_10_1002_adem_202000957
crossref_primary_10_1016_j_matdes_2018_03_035
crossref_primary_10_1016_j_actamat_2021_117404
crossref_primary_10_1016_j_procir_2022_10_052
crossref_primary_10_1002_adem_202300375
crossref_primary_10_1007_s12540_019_00264_9
crossref_primary_10_1088_1757_899X_1121_1_012049
crossref_primary_10_1088_1742_6596_1676_1_012097
Cites_doi 10.1007/s00170-014-5954-9
10.1108/13552540510573365
10.1016/j.actamat.2009.11.032
10.1108/01445150310698652
10.1111/j.1749-6632.1966.tb49743.x
10.1108/13552541211231572
10.1007/BF00544702
10.1039/C4RA16721J
10.1016/j.matlet.2014.12.105
10.4314/ijest.v4i2.13
10.1016/j.jmatprotec.2009.06.012
10.1007/s11661-011-0748-2
10.1016/j.addma.2015.07.002
10.1007/s11661-999-0129-2
10.1016/j.jmatprotec.2012.05.012
10.1016/j.jmatprotec.2003.11.051
10.1016/0921-5093(94)90541-X
10.1016/j.msea.2014.12.018
10.1007/s11665-014-0958-z
10.1115/1.4028539
10.1016/j.addma.2015.07.003
10.1007/s00170-014-6297-2
10.1016/j.matdes.2016.01.041
10.1016/j.addma.2015.07.001
10.1115/1.4028484
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
DG5
DG7
DOI 10.1016/j.addma.2017.07.003
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Mittuniversitetet
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
EndPage 112
ExternalDocumentID oai_DiVA_org_su_176454
oai_DiVA_org_miun_32203
10_1016_j_addma_2017_07_003
S2214860416300549
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ADTPV
AOWAS
DG5
EFKBS
DG7
ID FETCH-LOGICAL-c378t-36f67b180403ab5fe6d307df14140d00ea307cfb3b7ed941ac6a8b26dae7ba5a3
IEDL.DBID .~1
ISSN 2214-8604
2214-7810
IngestDate Thu Aug 21 07:05:09 EDT 2025
Thu Aug 21 07:30:39 EDT 2025
Tue Jul 01 01:46:55 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Fri Feb 23 02:34:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Characterization
316L
Microstructures
Electron beam melting
Stainless steel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-36f67b180403ab5fe6d307df14140d00ea307cfb3b7ed941ac6a8b26dae7ba5a3
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_su_176454
swepub_primary_oai_DiVA_org_miun_32203
crossref_primary_10_1016_j_addma_2017_07_003
crossref_citationtrail_10_1016_j_addma_2017_07_003
elsevier_sciencedirect_doi_10_1016_j_addma_2017_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Additive manufacturing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shamsaei, Yadollahi, Bian, Thompson (bib0150) 2015; 8
Kerber, Tverberg (bib0185) 2000; 11
Schwerdtfeger, Singer, Korner (bib0210) 2012; 18
Su, Yang (bib0130) 2012; 212
Cherry, Davies, Mehmood, Lavery, Brown (bib0160) 2015; 76
Romano, Ladani, Razmi, Sadowski (bib0025) 2015; 8
Murr, Martinez, Gaytan, Ramirez, Machado, Shindo, Martinez, Medina, Wooten, Ciscel, Ackelid, Wicker (bib0065) 2011; 42A
Hemmer, Grong (bib0105) 1999; 30
Gibson, Rosen, Stucker (bib0005) 2017
Cheng, Price, Gong, Chou (bib0020) 2014
Thompson, Bian, Shamsaei, Yadollahi (bib0145) 2015; 8
Fu, Guo (bib0030) 2014; 136
Mahale (bib0175) 2017
Koptyug, Rännar, Bäckström, Langlet (bib0045) 2013
Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts (bib0115) 2004; 149
Kruth, Mercelis, Van Vaerenbergh, Froyen, Rombouts (bib0120) 2009; 11
Saeidi, Kvetková, Lofaj, Shen (bib0140) 2015; 5
Lodes, Guschlbaueroch, Körner (bib0060) 2014; 143
Rafi, Starr, Stucker, Gong (bib0205) 2013
Pfann (bib0040) 2017
Kamath, El-dasher, Gallegos, King, Sisto (bib0165) 2014; 74
Herington (bib0035) 1966; 137
Tsukamoto, Harada, Bhadeshia (bib0190) 1994; 178
Hinojos, Mireles, Reichardt, Frigola, Hosemann, Murr, Wicker (bib0080) 2016
Quian (bib0195) 2014
Cheng, Price, Lydon, Cooper, Chou (bib0015) 2014; 136
Degallaix, Seddouki, Degallaix (bib0070) 2012
Kruth, Wang, Laoui, Froyen (bib0110) 2003; 23
Murr, Gaytan, Ceylan, Martinez, Martinez, Hernandez, Machado, Ramirez, Medina, Collins, Wicker (bib0055) 2010; 58
Kruth, Badrossamay, Yasa, Deckers, Thijs, Van Humbeeck (bib0155) 2010
Ge, Lin, Guo (bib0180) 2014
Raasch, Munir (bib0100) 1978; 13
Frazier (bib0010) 2014; 23
Kraus (bib0090) 1989; 68
Ekrami, Forth, Waid (bib0170) 2011
Saeidi, Gao, Zhong, Shen (bib0200) 2015; 625
Cormier, Harrysson, Mahale, West (bib0050) 2007
Marder, Rath, Obenschain (bib0075) 2008
Simonelli, Tuck, Aboulkhair, Maskery, Ashcroft, Wildman, Hague (bib0135) 2015
GokulAnanth, Babu, Chakravarthy, Jayakumar, Manickavasagam, Arunprakash, Gopalakrishnan (bib0095) 2013; 3
Hao, Dadbakhsh, Seaman, Felstead (bib0125) 2009; 209
Joseph, Katherasan, Sathiya, Murthy (bib0085) 2012; 4
Romano (10.1016/j.addma.2017.07.003_bib0025) 2015; 8
Kruth (10.1016/j.addma.2017.07.003_bib0115) 2004; 149
Gibson (10.1016/j.addma.2017.07.003_bib0005) 2017
Frazier (10.1016/j.addma.2017.07.003_bib0010) 2014; 23
Thompson (10.1016/j.addma.2017.07.003_bib0145) 2015; 8
Lodes (10.1016/j.addma.2017.07.003_bib0060) 2014; 143
Ekrami (10.1016/j.addma.2017.07.003_bib0170) 2011
Degallaix (10.1016/j.addma.2017.07.003_bib0070) 2012
Saeidi (10.1016/j.addma.2017.07.003_bib0140) 2015; 5
Raasch (10.1016/j.addma.2017.07.003_bib0100) 1978; 13
Simonelli (10.1016/j.addma.2017.07.003_bib0135) 2015
Schwerdtfeger (10.1016/j.addma.2017.07.003_bib0210) 2012; 18
Saeidi (10.1016/j.addma.2017.07.003_bib0200) 2015; 625
GokulAnanth (10.1016/j.addma.2017.07.003_bib0095) 2013; 3
Kerber (10.1016/j.addma.2017.07.003_bib0185) 2000; 11
Pfann (10.1016/j.addma.2017.07.003_bib0040) 2017
Shamsaei (10.1016/j.addma.2017.07.003_bib0150) 2015; 8
Kamath (10.1016/j.addma.2017.07.003_bib0165) 2014; 74
Hemmer (10.1016/j.addma.2017.07.003_bib0105) 1999; 30
Kruth (10.1016/j.addma.2017.07.003_bib0110) 2003; 23
Cherry (10.1016/j.addma.2017.07.003_bib0160) 2015; 76
Kruth (10.1016/j.addma.2017.07.003_bib0120) 2009; 11
Quian (10.1016/j.addma.2017.07.003_bib0195) 2014
Herington (10.1016/j.addma.2017.07.003_bib0035) 1966; 137
Kruth (10.1016/j.addma.2017.07.003_bib0155) 2010
Hinojos (10.1016/j.addma.2017.07.003_bib0080) 2016
Koptyug (10.1016/j.addma.2017.07.003_bib0045) 2013
Mahale (10.1016/j.addma.2017.07.003_bib0175) 2017
Tsukamoto (10.1016/j.addma.2017.07.003_bib0190) 1994; 178
Cheng (10.1016/j.addma.2017.07.003_bib0015) 2014; 136
Kraus (10.1016/j.addma.2017.07.003_bib0090) 1989; 68
Hao (10.1016/j.addma.2017.07.003_bib0125) 2009; 209
Su (10.1016/j.addma.2017.07.003_bib0130) 2012; 212
Fu (10.1016/j.addma.2017.07.003_bib0030) 2014; 136
Murr (10.1016/j.addma.2017.07.003_bib0065) 2011; 42A
Marder (10.1016/j.addma.2017.07.003_bib0075) 2008
Rafi (10.1016/j.addma.2017.07.003_bib0205) 2013
Cheng (10.1016/j.addma.2017.07.003_bib0020) 2014
Cormier (10.1016/j.addma.2017.07.003_bib0050) 2007
Murr (10.1016/j.addma.2017.07.003_bib0055) 2010; 58
Ge (10.1016/j.addma.2017.07.003_bib0180) 2014
Joseph (10.1016/j.addma.2017.07.003_bib0085) 2012; 4
References_xml – volume: 58
  start-page: 1887
  year: 2010
  end-page: 1894
  ident: bib0055
  article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting
  publication-title: Acta Mater.
– year: 2014
  ident: bib0180
  article-title: The effect of scan pattern on microstructure evolution and mechanical properties in electron beam melting Ti47Al2Cr2Nb
  publication-title: Proc. Solid Freeform Fabrication Symp.
– volume: 23
  start-page: 1917
  year: 2014
  end-page: 1928
  ident: bib0010
  article-title: Metal Additive Manufacturing: A Review
  publication-title: J. Mater. Eng. Perform.
– volume: 178
  start-page: 189
  year: 1994
  end-page: 194
  ident: bib0190
  article-title: Metastable phase solidification in electron beam welding of dissimilar stainless steels
  publication-title: Mater. Sci. Eng.
– volume: 136
  start-page: 061018
  year: 2014
  end-page: 061018-12
  ident: bib0015
  article-title: On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
  publication-title: J. Manuf. Sci. Eng.
– year: 2017
  ident: bib0175
  article-title: Electron beam melting of advanced materials and structures
– volume: 149
  start-page: 616
  year: 2004
  end-page: 622
  ident: bib0115
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mat. Process.
– volume: 212
  start-page: 2074
  year: 2012
  end-page: 2079
  ident: bib0130
  article-title: Research on track overlapping during Selective Laser Melting of powders
  publication-title: J. Mat. Process. Tech.
– start-page: 2882
  year: 2015
  ident: bib0135
  article-title: A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4 V
  publication-title: Metall. Mat. Trans.
– year: 2014
  ident: bib0195
  article-title: Laser Sintered Materials with Non-Equilibrium Structures
– year: 2017
  ident: bib0005
  article-title: Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing
– volume: 23
  start-page: 357
  year: 2003
  end-page: 371
  ident: bib0110
  article-title: Lasers and materials in selective laser sintering
  publication-title: Assembly Autom.
– volume: 8
  start-page: 12
  year: 2015
  end-page: 35
  ident: bib0150
  article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, process parameter optimization and control
  publication-title: Addit. Manuf.
– volume: 8
  start-page: 36
  year: 2015
  end-page: 62
  ident: bib0145
  article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
  publication-title: Addit. Manuf.
– start-page: 1
  year: 2007
  end-page: 4
  ident: bib0050
  article-title: Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders
  publication-title: Res. Lett. MatSci.
– start-page: 76
  year: 2012
  end-page: 82
  ident: bib0070
  article-title: Low Cycle Fatigue of a Duplex Stainless Steel Alloyed with Nitrogen
  publication-title: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials
– volume: 68
  start-page: 269
  year: 1989
  end-page: 279
  ident: bib0090
  article-title: Experimental measurement of stationary ss304, ss316L and 8630 GTA weld pool surface temperatures
  publication-title: Weld. J.
– volume: 76
  start-page: 869
  year: 2015
  end-page: 879
  ident: bib0160
  article-title: Investigation into the effect of process parameters on microstructure and physical properties of 316L stainless steel parts by selective laser melting
  publication-title: Int. J. Adv. Manuf. Tech.
– year: 2014
  ident: bib0020
  article-title: Speed Function Effects in Electron Beam Additive Manufacturing
  publication-title: Proc. ASME 2014 Inter. Mech. Eng. Congr IMECE2014
– volume: 5
  start-page: 20747
  year: 2015
  end-page: 20750
  ident: bib0140
  article-title: Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions
  publication-title: RSC Adv.
– volume: 3
  start-page: 45
  year: 2013
  end-page: 50
  ident: bib0095
  article-title: Experimental Investigations on Electron Beam Welding of Austenetic/Ferritic Stainless Steel for Space Applications
  publication-title: Int. J. Res. Mech. Eng. Technol.
– year: 2013
  ident: bib0045
  article-title: Bulk Metallic Glass Manufacturing using Electron Beam Melting
  publication-title: Proc.Int. Conf. Addit. Manuf. 3D Print, July 8-9
– volume: 143
  start-page: 298
  year: 2014
  end-page: 301
  ident: bib0060
  article-title: Process development for the manufacturing of 99.94% pure copper via selective electron beam melting
  publication-title: Mater. Lett.
– volume: 209
  start-page: 5793
  year: 2009
  end-page: 5801
  ident: bib0125
  article-title: Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development
  publication-title: J. Mat. Process. Tech.
– volume: 30
  start-page: 2915
  year: 1999
  end-page: 2929
  ident: bib0105
  article-title: A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model
  publication-title: Metall. Mat. Trans.
– volume: 136
  start-page: 061004
  year: 2014
  end-page: 061004-7
  ident: bib0030
  article-title: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4 V
  publication-title: J. Manuf. Sci. Eng.
– volume: 625
  start-page: 221
  year: 2015
  end-page: 229
  ident: bib0200
  article-title: Hardened austenite steel with columnar sub-grain structure formed by laser melting
  publication-title: Mat. Sci. Eng.
– volume: 18
  start-page: 259
  year: 2012
  end-page: 263
  ident: bib0210
  article-title: In situ flaw detection by IR imaging during electron beam melting
  publication-title: Rapid Prototyp. J.
– volume: 13
  start-page: 1061
  year: 1978
  end-page: 1074
  ident: bib0100
  article-title: The effect of electron beam welding on various properties of three austenitic stainless steels
  publication-title: J. Mat. Sci.
– start-page: 39
  year: 2008
  end-page: 41
  ident: bib0075
  article-title: International Thermonuclear Experimental Reactor
  publication-title: Adv. Mater. Process.
– volume: 42A
  start-page: 3491
  year: 2011
  end-page: 3508
  ident: bib0065
  article-title: Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting
  publication-title: Metall. Mat. Trans.
– volume: 137
  start-page: 63
  year: 1966
  end-page: 71
  ident: bib0035
  article-title: Zone refinement as a purification tool
  publication-title: Annals N. Y. Acad. Sci.
– year: 2017
  ident: bib0040
  article-title: Zone Melting, Literary Licensing LLC, ISBN-13
– volume: 11
  start-page: 26
  year: 2009
  end-page: 36
  ident: bib0120
  article-title: Binding mechanisms in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
– year: 2010
  ident: bib0155
  article-title: Part and material properties in selective laser melting of metals
  publication-title: Proc. 16th Int. Symp. Electromach.
– volume: 4
  start-page: 169
  year: 2012
  end-page: 176
  ident: bib0085
  article-title: Weld metal characterization of 316L(N) austenitic stainless steel by electron beam welding process
  publication-title: Int. J. Eng. Sci. Tech.
– volume: 11
  start-page: 33
  year: 2000
  end-page: 36
  ident: bib0185
  article-title: Stainless steel surface analysis
  publication-title: Adv. Mater. Process
– start-page: 17
  year: 2016
  end-page: 27
  ident: bib0080
  article-title: Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology
  publication-title: Mater. Des.
– volume: 74
  start-page: 65
  year: 2014
  end-page: 78
  ident: bib0165
  article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W
  publication-title: Int. J. Adv. Manuf. Tech.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib0025
  article-title: Temperature Distribution and Melt Geometry in Laser and Electron-Beam Melting Processes-A Comparison among Common Materials
  publication-title: Addit. Manuf.
– year: 2011
  ident: bib0170
  article-title: Characterization of Electron Beam Free-Form Fabricated 2219 Aluminum and 316 Stainless Steel, NASA Technical Report JSC-CN-23047
– year: 2013
  ident: bib0205
  article-title: The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
  publication-title: Proc. Solid Freeform Fabrication Symp.
– volume: 74
  start-page: 65
  issue: 1–4
  year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0165
  article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-014-5954-9
– volume: 11
  start-page: 26
  issue: 1
  year: 2009
  ident: 10.1016/j.addma.2017.07.003_bib0120
  article-title: Binding mechanisms in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540510573365
– year: 2011
  ident: 10.1016/j.addma.2017.07.003_bib0170
– volume: 58
  start-page: 1887
  year: 2010
  ident: 10.1016/j.addma.2017.07.003_bib0055
  article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.11.032
– volume: 23
  start-page: 357
  issue: 4
  year: 2003
  ident: 10.1016/j.addma.2017.07.003_bib0110
  article-title: Lasers and materials in selective laser sintering
  publication-title: Assembly Autom.
  doi: 10.1108/01445150310698652
– volume: 137
  start-page: 63
  year: 1966
  ident: 10.1016/j.addma.2017.07.003_bib0035
  article-title: Zone refinement as a purification tool
  publication-title: Annals N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1966.tb49743.x
– year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0195
– start-page: 1
  year: 2007
  ident: 10.1016/j.addma.2017.07.003_bib0050
  article-title: Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders
  publication-title: Res. Lett. MatSci.
– volume: 18
  start-page: 259
  issue: 4
  year: 2012
  ident: 10.1016/j.addma.2017.07.003_bib0210
  article-title: In situ flaw detection by IR imaging during electron beam melting
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541211231572
– volume: 13
  start-page: 1061
  issue: 5
  year: 1978
  ident: 10.1016/j.addma.2017.07.003_bib0100
  article-title: The effect of electron beam welding on various properties of three austenitic stainless steels
  publication-title: J. Mat. Sci.
  doi: 10.1007/BF00544702
– year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0180
  article-title: The effect of scan pattern on microstructure evolution and mechanical properties in electron beam melting Ti47Al2Cr2Nb
  publication-title: Proc. Solid Freeform Fabrication Symp.
– volume: 5
  start-page: 20747
  year: 2015
  ident: 10.1016/j.addma.2017.07.003_bib0140
  article-title: Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16721J
– year: 2017
  ident: 10.1016/j.addma.2017.07.003_bib0175
– volume: 143
  start-page: 298
  year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0060
  article-title: Process development for the manufacturing of 99.94% pure copper via selective electron beam melting
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.12.105
– year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0020
  article-title: Speed Function Effects in Electron Beam Additive Manufacturing
  publication-title: Proc. ASME 2014 Inter. Mech. Eng. Congr IMECE2014
– volume: 4
  start-page: 169
  issue: 2
  year: 2012
  ident: 10.1016/j.addma.2017.07.003_bib0085
  article-title: Weld metal characterization of 316L(N) austenitic stainless steel by electron beam welding process
  publication-title: Int. J. Eng. Sci. Tech.
  doi: 10.4314/ijest.v4i2.13
– volume: 209
  start-page: 5793
  issue: 17
  year: 2009
  ident: 10.1016/j.addma.2017.07.003_bib0125
  article-title: Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development
  publication-title: J. Mat. Process. Tech.
  doi: 10.1016/j.jmatprotec.2009.06.012
– volume: 42A
  start-page: 3491
  year: 2011
  ident: 10.1016/j.addma.2017.07.003_bib0065
  article-title: Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting
  publication-title: Metall. Mat. Trans.
  doi: 10.1007/s11661-011-0748-2
– volume: 8
  start-page: 12
  year: 2015
  ident: 10.1016/j.addma.2017.07.003_bib0150
  article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, process parameter optimization and control
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2015.07.002
– volume: 68
  start-page: 269
  year: 1989
  ident: 10.1016/j.addma.2017.07.003_bib0090
  article-title: Experimental measurement of stationary ss304, ss316L and 8630 GTA weld pool surface temperatures
  publication-title: Weld. J.
– volume: 30
  start-page: 2915
  issue: 11
  year: 1999
  ident: 10.1016/j.addma.2017.07.003_bib0105
  article-title: A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model
  publication-title: Metall. Mat. Trans.
  doi: 10.1007/s11661-999-0129-2
– volume: 212
  start-page: 2074
  issue: 10
  year: 2012
  ident: 10.1016/j.addma.2017.07.003_bib0130
  article-title: Research on track overlapping during Selective Laser Melting of powders
  publication-title: J. Mat. Process. Tech.
  doi: 10.1016/j.jmatprotec.2012.05.012
– start-page: 39
  year: 2008
  ident: 10.1016/j.addma.2017.07.003_bib0075
  article-title: International Thermonuclear Experimental Reactor
  publication-title: Adv. Mater. Process.
– start-page: 2882
  year: 2015
  ident: 10.1016/j.addma.2017.07.003_bib0135
  article-title: A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4 V
  publication-title: Metall. Mat. Trans.
– volume: 149
  start-page: 616
  issue: 1–3
  year: 2004
  ident: 10.1016/j.addma.2017.07.003_bib0115
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mat. Process.
  doi: 10.1016/j.jmatprotec.2003.11.051
– volume: 178
  start-page: 189
  year: 1994
  ident: 10.1016/j.addma.2017.07.003_bib0190
  article-title: Metastable phase solidification in electron beam welding of dissimilar stainless steels
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0921-5093(94)90541-X
– year: 2013
  ident: 10.1016/j.addma.2017.07.003_bib0045
  article-title: Bulk Metallic Glass Manufacturing using Electron Beam Melting
– volume: 625
  start-page: 221
  year: 2015
  ident: 10.1016/j.addma.2017.07.003_bib0200
  article-title: Hardened austenite steel with columnar sub-grain structure formed by laser melting
  publication-title: Mat. Sci. Eng.
  doi: 10.1016/j.msea.2014.12.018
– year: 2010
  ident: 10.1016/j.addma.2017.07.003_bib0155
  article-title: Part and material properties in selective laser melting of metals
  publication-title: Proc. 16th Int. Symp. Electromach.
– volume: 11
  start-page: 33
  year: 2000
  ident: 10.1016/j.addma.2017.07.003_bib0185
  article-title: Stainless steel surface analysis
  publication-title: Adv. Mater. Process
– volume: 3
  start-page: 45
  issue: 2
  year: 2013
  ident: 10.1016/j.addma.2017.07.003_bib0095
  article-title: Experimental Investigations on Electron Beam Welding of Austenetic/Ferritic Stainless Steel for Space Applications
  publication-title: Int. J. Res. Mech. Eng. Technol.
– year: 2017
  ident: 10.1016/j.addma.2017.07.003_bib0005
– year: 2013
  ident: 10.1016/j.addma.2017.07.003_bib0205
  article-title: The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
  publication-title: Proc. Solid Freeform Fabrication Symp.
– volume: 23
  start-page: 1917
  issue: 6
  year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0010
  article-title: Metal Additive Manufacturing: A Review
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-014-0958-z
– start-page: 76
  year: 2012
  ident: 10.1016/j.addma.2017.07.003_bib0070
  article-title: Low Cycle Fatigue of a Duplex Stainless Steel Alloyed with Nitrogen
– volume: 136
  start-page: 061004
  year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0030
  article-title: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4 V
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028539
– volume: 8
  start-page: 1
  year: 2015
  ident: 10.1016/j.addma.2017.07.003_bib0025
  article-title: Temperature Distribution and Melt Geometry in Laser and Electron-Beam Melting Processes-A Comparison among Common Materials
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2015.07.003
– volume: 76
  start-page: 869
  issue: 5–8
  year: 2015
  ident: 10.1016/j.addma.2017.07.003_bib0160
  article-title: Investigation into the effect of process parameters on microstructure and physical properties of 316L stainless steel parts by selective laser melting
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-014-6297-2
– start-page: 17
  year: 2016
  ident: 10.1016/j.addma.2017.07.003_bib0080
  article-title: Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.041
– volume: 8
  start-page: 36
  year: 2015
  ident: 10.1016/j.addma.2017.07.003_bib0145
  article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2015.07.001
– volume: 136
  start-page: 061018
  issue: 6
  year: 2014
  ident: 10.1016/j.addma.2017.07.003_bib0015
  article-title: On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028484
– year: 2017
  ident: 10.1016/j.addma.2017.07.003_bib0040
SSID ssj0001537982
Score 2.381939
Snippet One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this...
One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms 316L
Characterization
Electron beam melting
materialkemi
Materials Chemistry
Microstructures
Stainless steel
Title Hierarchical structures of stainless steel 316L manufactured by Electron Beam Melting
URI https://dx.doi.org/10.1016/j.addma.2017.07.003
https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-32203
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-176454
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnqI8Kg_ARGgdJ04yltKqPBcoYrPs2EZBaYqADCz8dnxOUkBCHdji6KxYd_b57Nx9H0KHJhWxSoWBQ47xAl8qT9p9zgtCyYiiKmEEipNvbtloHFw-ho8LqN_UwkBaZe37K5_uvHX9plNrs_OSZZ073yfAoAQRBQQeUMQXBBHM8tNP8n3PEtIocZxRIO9BhwZ8yKV52fXt8IdI5EA8G_KsPzaon0iibvcZrqHVOmzEvWpk62hBFxto5QeY4CYajzIoJnbcJjmucGFLe5jGU4NdkVRunZp90jrHlLBrPBFFCXUNVkhh-YEHNSMOPtNigm90DhnRW2g8HNz3R15NmuClNIrfPcoMiySJ7eKkQoZGM2WXsTIksEcp1e1qYZupkVRGWiUBESkTsfSZEjqSIhR0Gy0W00LvIMx8LYxKqNK-DqgU0gY3oa-IAUSXRJEW8htN8bRGFAdii5w3qWPP3KmXg3p5F_500xY6mXV6qQA15ouzxgT817zg1uXP73hcGWz2FQDSPs8eenz6-sQnWVlw68xA8Gie4FvJSQSwZ7v_HckeWoZWlQG4jxat_fWBjWTeZdtN1TZa6l1cjW6_APQ-9HI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdaysMHyomwaztxNgcOhbba0t1e6KLejB3bKCibrdquUC_8Kf4gM05SioT2gNRbHpPEGk_GM8nM9wG8DqUZudIESnJCkgrrEovrXJJmVnEnXaE4NSdPj9R4ln46yU7W4FffC0NllZ3vb3169NbdkUGnzcFpVQ0-C8GJQYkiCgo8iq6y8tBf_sC87fz9wS5O8rYQ-3vHH8dJRy2QlDIfXSRSBZVbPkITlsZmwSuHxu4CTzHhcMOhN7hbBitt7l2RclMqM7JCOeNzazIj8b634HaK7oJoE9795H8-7GQyLyJJFQ0woRH2aEexrgwdSgQ84nlEDe3Zuv6xIl6HLo3L3f4DuN_FqWynVcVDWPPNI7h3Db3wMczGFXUvRzKVmrVAtEvM3tkisNiVVaMXxS3vaya5mrC5aZbUSIFCjtlLttdR8LAP3szZ1NdUgv0EZjeiyqew3iwavwFMCW-CK6TzwqfSGovRVCYcDwQhUzi-CaLXlC47CHNi0qh1X6v2XUf1alKvHtKvdbkJb68uOm0RPFaLq34K9F-GqHGNWX3hm3bCrp5CyN271ZcdvTj7pufVstHoPUlwe5Xg-VLznHDWnv3vSF7BnfHxdKInB0eHW3CXzrTlh89hHW3Bv8Aw6sK-jGbL4OtNvye_AQoSMS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+structures+of+stainless+steel+316L+manufactured+by+Electron+Beam+Melting&rft.jtitle=Additive+manufacturing&rft.au=R%C3%A4nnar%2C+Lars-Erik&rft.au=Koptyug%2C+Andrey&rft.au=Ols%C3%A9n%2C+Jon&rft.au=Saeidi%2C+Kamran&rft.date=2017-10-01&rft.issn=2214-7810&rft.volume=17&rft.spage=106&rft_id=info:doi/10.1016%2Fj.addma.2017.07.003&rft.externalDocID=oai_DiVA_org_su_176454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon