Hierarchical structures of stainless steel 316L manufactured by Electron Beam Melting
One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which sig...
Saved in:
Published in | Additive manufacturing Vol. 17; pp. 106 - 112 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy. |
---|---|
AbstractList | One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy. One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy. One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this technology. It is particularly true for the Electron Beam Melting (EBM®) process, where only a few materials are commercially available, which significantly limits the use of the method. One of the dominant trends in AM today is developing processes for technological materials already widely used by other methods and developed for other industrial applications, gaining further advantages through the unique value added by additive manufacturing. Developing new materials specifically for additive manufacturing that can utilize the properties and specifics of the method in full is still a research and development subject, and such materials are yet far from full scale industrial usage. Stainless steels are widely used in industry due to good mechanical properties, corrosion resistance and low cost of material. Hence, there is potentially a market for this material and one possible business driver compared with casting for example is that lead times could be cut drastically by utilizing an additive approach for one-off or small series production. This paper presents results from the additive manufacturing of components from the known alloy 316L using EBM®. Previously the samples of 316L were made by laser-based AM technology. This work was performed as a part of the large project with the long term aim to use additively manufactured components in a nuclear fusion reactor. Components and test samples successfully made from 316L stainless steel using EBM® process show promising mechanical properties, density and hardness compared to its counterpart made by powder metallurgy (hot isostatic pressing, HIP). As with the other materials made by EBM® process, 316L samples show rather low porosity. Present paper also reports on the hierarchical microstructure features of the 316L material processed by EBM® characterized by optical and electron microscopy. |
Author | Saeidi, Kamran Rännar, Lars-Erik Olsén, Jon Koptyug, Andrey Shen, Zhijian |
Author_xml | – sequence: 1 givenname: Lars-Erik surname: Rännar fullname: Rännar, Lars-Erik email: lars-erik.rannar@miun.se organization: Mid Sweden University, Sports Tech Research Centre, Akademigatan 1, SE-83125, Östersund, Sweden – sequence: 2 givenname: Andrey surname: Koptyug fullname: Koptyug, Andrey organization: Mid Sweden University, Sports Tech Research Centre, Akademigatan 1, SE-83125, Östersund, Sweden – sequence: 3 givenname: Jon surname: Olsén fullname: Olsén, Jon organization: Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, SE-10691, Stockholm, Sweden – sequence: 4 givenname: Kamran surname: Saeidi fullname: Saeidi, Kamran organization: Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, SE-10691, Stockholm, Sweden – sequence: 5 givenname: Zhijian surname: Shen fullname: Shen, Zhijian organization: Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, SE-10691, Stockholm, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-32203$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-176454$$DView record from Swedish Publication Index |
BookMark | eNqFkc9OwzAMhyMEEjB4Ai59ADqcpku6Awf-gzTEBbhGbuJCpjZFSQvi7Qkb4sCBSZZsS7_Ph8_7bNv3nhg74jDlwOXJcorWdjgtgKsppAKxxfaKgpe5qjhs_8yVhHKXHca4BAA-E2peFXvs6dZRwGBencE2i0MYzTAGilnfpA2dbynGNBG1meBykXXoxwZXIZvVn9lVS2YIvc_OCbvsntrB-ZcDttNgG-nwp0_Y0_XV48Vtvni4ubs4W-RGqGrIhWykqnkFJQisZw1JK0DZhpe8BAtAmFbT1KJWZOclRyOxqgtpkVSNMxQTdry-Gz_obaz1W3Adhk_do9OX7vlM9-FFx1FzJctZmeL55njnRq9FUYBIebHOm9DHGKj5JTjob_d6qVfu9bd7DalW1PwPZdyAg-v9ENC1G9jTNUvJ2nt6jY7GkTdkXUiete3dv_wXRYykBQ |
CitedBy_id | crossref_primary_10_4028_www_scientific_net_MSF_941_2190 crossref_primary_10_1016_j_msea_2019_138607 crossref_primary_10_1016_j_scriptamat_2020_08_028 crossref_primary_10_1016_j_matchar_2019_110016 crossref_primary_10_1016_j_msea_2019_138587 crossref_primary_10_1016_j_pmatsci_2019_100578 crossref_primary_10_1002_adem_202200341 crossref_primary_10_1002_adfm_202420658 crossref_primary_10_1016_j_addma_2019_02_005 crossref_primary_10_2351_7_0000824 crossref_primary_10_1016_j_cirpj_2022_11_006 crossref_primary_10_1088_2631_8695_ab8115 crossref_primary_10_1088_1742_6596_2671_1_012004 crossref_primary_10_1007_s40964_025_01006_7 crossref_primary_10_1007_s11665_019_04484_3 crossref_primary_10_1021_acs_jpcc_0c05795 crossref_primary_10_1016_j_surfcoat_2019_07_048 crossref_primary_10_1088_2631_7990_ad92cc crossref_primary_10_1515_htm_2023_0015 crossref_primary_10_1016_j_msea_2020_139684 crossref_primary_10_1002_adem_202000957 crossref_primary_10_1016_j_matdes_2018_03_035 crossref_primary_10_1016_j_actamat_2021_117404 crossref_primary_10_1016_j_procir_2022_10_052 crossref_primary_10_1002_adem_202300375 crossref_primary_10_1007_s12540_019_00264_9 crossref_primary_10_1088_1757_899X_1121_1_012049 crossref_primary_10_1088_1742_6596_1676_1_012097 |
Cites_doi | 10.1007/s00170-014-5954-9 10.1108/13552540510573365 10.1016/j.actamat.2009.11.032 10.1108/01445150310698652 10.1111/j.1749-6632.1966.tb49743.x 10.1108/13552541211231572 10.1007/BF00544702 10.1039/C4RA16721J 10.1016/j.matlet.2014.12.105 10.4314/ijest.v4i2.13 10.1016/j.jmatprotec.2009.06.012 10.1007/s11661-011-0748-2 10.1016/j.addma.2015.07.002 10.1007/s11661-999-0129-2 10.1016/j.jmatprotec.2012.05.012 10.1016/j.jmatprotec.2003.11.051 10.1016/0921-5093(94)90541-X 10.1016/j.msea.2014.12.018 10.1007/s11665-014-0958-z 10.1115/1.4028539 10.1016/j.addma.2015.07.003 10.1007/s00170-014-6297-2 10.1016/j.matdes.2016.01.041 10.1016/j.addma.2015.07.001 10.1115/1.4028484 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION ADTPV AOWAS DG5 DG7 |
DOI | 10.1016/j.addma.2017.07.003 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Mittuniversitetet SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
EndPage | 112 |
ExternalDocumentID | oai_DiVA_org_su_176454 oai_DiVA_org_miun_32203 10_1016_j_addma_2017_07_003 S2214860416300549 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ADTPV AOWAS DG5 EFKBS DG7 |
ID | FETCH-LOGICAL-c378t-36f67b180403ab5fe6d307df14140d00ea307cfb3b7ed941ac6a8b26dae7ba5a3 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 2214-7810 |
IngestDate | Thu Aug 21 07:05:09 EDT 2025 Thu Aug 21 07:30:39 EDT 2025 Tue Jul 01 01:46:55 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Fri Feb 23 02:34:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Characterization 316L Microstructures Electron beam melting Stainless steel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-36f67b180403ab5fe6d307df14140d00ea307cfb3b7ed941ac6a8b26dae7ba5a3 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_176454 swepub_primary_oai_DiVA_org_miun_32203 crossref_primary_10_1016_j_addma_2017_07_003 crossref_citationtrail_10_1016_j_addma_2017_07_003 elsevier_sciencedirect_doi_10_1016_j_addma_2017_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shamsaei, Yadollahi, Bian, Thompson (bib0150) 2015; 8 Kerber, Tverberg (bib0185) 2000; 11 Schwerdtfeger, Singer, Korner (bib0210) 2012; 18 Su, Yang (bib0130) 2012; 212 Cherry, Davies, Mehmood, Lavery, Brown (bib0160) 2015; 76 Romano, Ladani, Razmi, Sadowski (bib0025) 2015; 8 Murr, Martinez, Gaytan, Ramirez, Machado, Shindo, Martinez, Medina, Wooten, Ciscel, Ackelid, Wicker (bib0065) 2011; 42A Hemmer, Grong (bib0105) 1999; 30 Gibson, Rosen, Stucker (bib0005) 2017 Cheng, Price, Gong, Chou (bib0020) 2014 Thompson, Bian, Shamsaei, Yadollahi (bib0145) 2015; 8 Fu, Guo (bib0030) 2014; 136 Mahale (bib0175) 2017 Koptyug, Rännar, Bäckström, Langlet (bib0045) 2013 Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts (bib0115) 2004; 149 Kruth, Mercelis, Van Vaerenbergh, Froyen, Rombouts (bib0120) 2009; 11 Saeidi, Kvetková, Lofaj, Shen (bib0140) 2015; 5 Lodes, Guschlbaueroch, Körner (bib0060) 2014; 143 Rafi, Starr, Stucker, Gong (bib0205) 2013 Pfann (bib0040) 2017 Kamath, El-dasher, Gallegos, King, Sisto (bib0165) 2014; 74 Herington (bib0035) 1966; 137 Tsukamoto, Harada, Bhadeshia (bib0190) 1994; 178 Hinojos, Mireles, Reichardt, Frigola, Hosemann, Murr, Wicker (bib0080) 2016 Quian (bib0195) 2014 Cheng, Price, Lydon, Cooper, Chou (bib0015) 2014; 136 Degallaix, Seddouki, Degallaix (bib0070) 2012 Kruth, Wang, Laoui, Froyen (bib0110) 2003; 23 Murr, Gaytan, Ceylan, Martinez, Martinez, Hernandez, Machado, Ramirez, Medina, Collins, Wicker (bib0055) 2010; 58 Kruth, Badrossamay, Yasa, Deckers, Thijs, Van Humbeeck (bib0155) 2010 Ge, Lin, Guo (bib0180) 2014 Raasch, Munir (bib0100) 1978; 13 Frazier (bib0010) 2014; 23 Kraus (bib0090) 1989; 68 Ekrami, Forth, Waid (bib0170) 2011 Saeidi, Gao, Zhong, Shen (bib0200) 2015; 625 Cormier, Harrysson, Mahale, West (bib0050) 2007 Marder, Rath, Obenschain (bib0075) 2008 Simonelli, Tuck, Aboulkhair, Maskery, Ashcroft, Wildman, Hague (bib0135) 2015 GokulAnanth, Babu, Chakravarthy, Jayakumar, Manickavasagam, Arunprakash, Gopalakrishnan (bib0095) 2013; 3 Hao, Dadbakhsh, Seaman, Felstead (bib0125) 2009; 209 Joseph, Katherasan, Sathiya, Murthy (bib0085) 2012; 4 Romano (10.1016/j.addma.2017.07.003_bib0025) 2015; 8 Kruth (10.1016/j.addma.2017.07.003_bib0115) 2004; 149 Gibson (10.1016/j.addma.2017.07.003_bib0005) 2017 Frazier (10.1016/j.addma.2017.07.003_bib0010) 2014; 23 Thompson (10.1016/j.addma.2017.07.003_bib0145) 2015; 8 Lodes (10.1016/j.addma.2017.07.003_bib0060) 2014; 143 Ekrami (10.1016/j.addma.2017.07.003_bib0170) 2011 Degallaix (10.1016/j.addma.2017.07.003_bib0070) 2012 Saeidi (10.1016/j.addma.2017.07.003_bib0140) 2015; 5 Raasch (10.1016/j.addma.2017.07.003_bib0100) 1978; 13 Simonelli (10.1016/j.addma.2017.07.003_bib0135) 2015 Schwerdtfeger (10.1016/j.addma.2017.07.003_bib0210) 2012; 18 Saeidi (10.1016/j.addma.2017.07.003_bib0200) 2015; 625 GokulAnanth (10.1016/j.addma.2017.07.003_bib0095) 2013; 3 Kerber (10.1016/j.addma.2017.07.003_bib0185) 2000; 11 Pfann (10.1016/j.addma.2017.07.003_bib0040) 2017 Shamsaei (10.1016/j.addma.2017.07.003_bib0150) 2015; 8 Kamath (10.1016/j.addma.2017.07.003_bib0165) 2014; 74 Hemmer (10.1016/j.addma.2017.07.003_bib0105) 1999; 30 Kruth (10.1016/j.addma.2017.07.003_bib0110) 2003; 23 Cherry (10.1016/j.addma.2017.07.003_bib0160) 2015; 76 Kruth (10.1016/j.addma.2017.07.003_bib0120) 2009; 11 Quian (10.1016/j.addma.2017.07.003_bib0195) 2014 Herington (10.1016/j.addma.2017.07.003_bib0035) 1966; 137 Kruth (10.1016/j.addma.2017.07.003_bib0155) 2010 Hinojos (10.1016/j.addma.2017.07.003_bib0080) 2016 Koptyug (10.1016/j.addma.2017.07.003_bib0045) 2013 Mahale (10.1016/j.addma.2017.07.003_bib0175) 2017 Tsukamoto (10.1016/j.addma.2017.07.003_bib0190) 1994; 178 Cheng (10.1016/j.addma.2017.07.003_bib0015) 2014; 136 Kraus (10.1016/j.addma.2017.07.003_bib0090) 1989; 68 Hao (10.1016/j.addma.2017.07.003_bib0125) 2009; 209 Su (10.1016/j.addma.2017.07.003_bib0130) 2012; 212 Fu (10.1016/j.addma.2017.07.003_bib0030) 2014; 136 Murr (10.1016/j.addma.2017.07.003_bib0065) 2011; 42A Marder (10.1016/j.addma.2017.07.003_bib0075) 2008 Rafi (10.1016/j.addma.2017.07.003_bib0205) 2013 Cheng (10.1016/j.addma.2017.07.003_bib0020) 2014 Cormier (10.1016/j.addma.2017.07.003_bib0050) 2007 Murr (10.1016/j.addma.2017.07.003_bib0055) 2010; 58 Ge (10.1016/j.addma.2017.07.003_bib0180) 2014 Joseph (10.1016/j.addma.2017.07.003_bib0085) 2012; 4 |
References_xml | – volume: 58 start-page: 1887 year: 2010 end-page: 1894 ident: bib0055 article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting publication-title: Acta Mater. – year: 2014 ident: bib0180 article-title: The effect of scan pattern on microstructure evolution and mechanical properties in electron beam melting Ti47Al2Cr2Nb publication-title: Proc. Solid Freeform Fabrication Symp. – volume: 23 start-page: 1917 year: 2014 end-page: 1928 ident: bib0010 article-title: Metal Additive Manufacturing: A Review publication-title: J. Mater. Eng. Perform. – volume: 178 start-page: 189 year: 1994 end-page: 194 ident: bib0190 article-title: Metastable phase solidification in electron beam welding of dissimilar stainless steels publication-title: Mater. Sci. Eng. – volume: 136 start-page: 061018 year: 2014 end-page: 061018-12 ident: bib0015 article-title: On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation publication-title: J. Manuf. Sci. Eng. – year: 2017 ident: bib0175 article-title: Electron beam melting of advanced materials and structures – volume: 149 start-page: 616 year: 2004 end-page: 622 ident: bib0115 article-title: Selective laser melting of iron-based powder publication-title: J. Mat. Process. – volume: 212 start-page: 2074 year: 2012 end-page: 2079 ident: bib0130 article-title: Research on track overlapping during Selective Laser Melting of powders publication-title: J. Mat. Process. Tech. – start-page: 2882 year: 2015 ident: bib0135 article-title: A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4 V publication-title: Metall. Mat. Trans. – year: 2014 ident: bib0195 article-title: Laser Sintered Materials with Non-Equilibrium Structures – year: 2017 ident: bib0005 article-title: Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing – volume: 23 start-page: 357 year: 2003 end-page: 371 ident: bib0110 article-title: Lasers and materials in selective laser sintering publication-title: Assembly Autom. – volume: 8 start-page: 12 year: 2015 end-page: 35 ident: bib0150 article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, process parameter optimization and control publication-title: Addit. Manuf. – volume: 8 start-page: 36 year: 2015 end-page: 62 ident: bib0145 article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics publication-title: Addit. Manuf. – start-page: 1 year: 2007 end-page: 4 ident: bib0050 article-title: Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders publication-title: Res. Lett. MatSci. – start-page: 76 year: 2012 end-page: 82 ident: bib0070 article-title: Low Cycle Fatigue of a Duplex Stainless Steel Alloyed with Nitrogen publication-title: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials – volume: 68 start-page: 269 year: 1989 end-page: 279 ident: bib0090 article-title: Experimental measurement of stationary ss304, ss316L and 8630 GTA weld pool surface temperatures publication-title: Weld. J. – volume: 76 start-page: 869 year: 2015 end-page: 879 ident: bib0160 article-title: Investigation into the effect of process parameters on microstructure and physical properties of 316L stainless steel parts by selective laser melting publication-title: Int. J. Adv. Manuf. Tech. – year: 2014 ident: bib0020 article-title: Speed Function Effects in Electron Beam Additive Manufacturing publication-title: Proc. ASME 2014 Inter. Mech. Eng. Congr IMECE2014 – volume: 5 start-page: 20747 year: 2015 end-page: 20750 ident: bib0140 article-title: Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions publication-title: RSC Adv. – volume: 3 start-page: 45 year: 2013 end-page: 50 ident: bib0095 article-title: Experimental Investigations on Electron Beam Welding of Austenetic/Ferritic Stainless Steel for Space Applications publication-title: Int. J. Res. Mech. Eng. Technol. – year: 2013 ident: bib0045 article-title: Bulk Metallic Glass Manufacturing using Electron Beam Melting publication-title: Proc.Int. Conf. Addit. Manuf. 3D Print, July 8-9 – volume: 143 start-page: 298 year: 2014 end-page: 301 ident: bib0060 article-title: Process development for the manufacturing of 99.94% pure copper via selective electron beam melting publication-title: Mater. Lett. – volume: 209 start-page: 5793 year: 2009 end-page: 5801 ident: bib0125 article-title: Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development publication-title: J. Mat. Process. Tech. – volume: 30 start-page: 2915 year: 1999 end-page: 2929 ident: bib0105 article-title: A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model publication-title: Metall. Mat. Trans. – volume: 136 start-page: 061004 year: 2014 end-page: 061004-7 ident: bib0030 article-title: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4 V publication-title: J. Manuf. Sci. Eng. – volume: 625 start-page: 221 year: 2015 end-page: 229 ident: bib0200 article-title: Hardened austenite steel with columnar sub-grain structure formed by laser melting publication-title: Mat. Sci. Eng. – volume: 18 start-page: 259 year: 2012 end-page: 263 ident: bib0210 article-title: In situ flaw detection by IR imaging during electron beam melting publication-title: Rapid Prototyp. J. – volume: 13 start-page: 1061 year: 1978 end-page: 1074 ident: bib0100 article-title: The effect of electron beam welding on various properties of three austenitic stainless steels publication-title: J. Mat. Sci. – start-page: 39 year: 2008 end-page: 41 ident: bib0075 article-title: International Thermonuclear Experimental Reactor publication-title: Adv. Mater. Process. – volume: 42A start-page: 3491 year: 2011 end-page: 3508 ident: bib0065 article-title: Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting publication-title: Metall. Mat. Trans. – volume: 137 start-page: 63 year: 1966 end-page: 71 ident: bib0035 article-title: Zone refinement as a purification tool publication-title: Annals N. Y. Acad. Sci. – year: 2017 ident: bib0040 article-title: Zone Melting, Literary Licensing LLC, ISBN-13 – volume: 11 start-page: 26 year: 2009 end-page: 36 ident: bib0120 article-title: Binding mechanisms in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. – year: 2010 ident: bib0155 article-title: Part and material properties in selective laser melting of metals publication-title: Proc. 16th Int. Symp. Electromach. – volume: 4 start-page: 169 year: 2012 end-page: 176 ident: bib0085 article-title: Weld metal characterization of 316L(N) austenitic stainless steel by electron beam welding process publication-title: Int. J. Eng. Sci. Tech. – volume: 11 start-page: 33 year: 2000 end-page: 36 ident: bib0185 article-title: Stainless steel surface analysis publication-title: Adv. Mater. Process – start-page: 17 year: 2016 end-page: 27 ident: bib0080 article-title: Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology publication-title: Mater. Des. – volume: 74 start-page: 65 year: 2014 end-page: 78 ident: bib0165 article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W publication-title: Int. J. Adv. Manuf. Tech. – volume: 8 start-page: 1 year: 2015 end-page: 11 ident: bib0025 article-title: Temperature Distribution and Melt Geometry in Laser and Electron-Beam Melting Processes-A Comparison among Common Materials publication-title: Addit. Manuf. – year: 2011 ident: bib0170 article-title: Characterization of Electron Beam Free-Form Fabricated 2219 Aluminum and 316 Stainless Steel, NASA Technical Report JSC-CN-23047 – year: 2013 ident: bib0205 article-title: The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting publication-title: Proc. Solid Freeform Fabrication Symp. – volume: 74 start-page: 65 issue: 1–4 year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0165 article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-014-5954-9 – volume: 11 start-page: 26 issue: 1 year: 2009 ident: 10.1016/j.addma.2017.07.003_bib0120 article-title: Binding mechanisms in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. doi: 10.1108/13552540510573365 – year: 2011 ident: 10.1016/j.addma.2017.07.003_bib0170 – volume: 58 start-page: 1887 year: 2010 ident: 10.1016/j.addma.2017.07.003_bib0055 article-title: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.11.032 – volume: 23 start-page: 357 issue: 4 year: 2003 ident: 10.1016/j.addma.2017.07.003_bib0110 article-title: Lasers and materials in selective laser sintering publication-title: Assembly Autom. doi: 10.1108/01445150310698652 – volume: 137 start-page: 63 year: 1966 ident: 10.1016/j.addma.2017.07.003_bib0035 article-title: Zone refinement as a purification tool publication-title: Annals N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1966.tb49743.x – year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0195 – start-page: 1 year: 2007 ident: 10.1016/j.addma.2017.07.003_bib0050 article-title: Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders publication-title: Res. Lett. MatSci. – volume: 18 start-page: 259 issue: 4 year: 2012 ident: 10.1016/j.addma.2017.07.003_bib0210 article-title: In situ flaw detection by IR imaging during electron beam melting publication-title: Rapid Prototyp. J. doi: 10.1108/13552541211231572 – volume: 13 start-page: 1061 issue: 5 year: 1978 ident: 10.1016/j.addma.2017.07.003_bib0100 article-title: The effect of electron beam welding on various properties of three austenitic stainless steels publication-title: J. Mat. Sci. doi: 10.1007/BF00544702 – year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0180 article-title: The effect of scan pattern on microstructure evolution and mechanical properties in electron beam melting Ti47Al2Cr2Nb publication-title: Proc. Solid Freeform Fabrication Symp. – volume: 5 start-page: 20747 year: 2015 ident: 10.1016/j.addma.2017.07.003_bib0140 article-title: Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions publication-title: RSC Adv. doi: 10.1039/C4RA16721J – year: 2017 ident: 10.1016/j.addma.2017.07.003_bib0175 – volume: 143 start-page: 298 year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0060 article-title: Process development for the manufacturing of 99.94% pure copper via selective electron beam melting publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.12.105 – year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0020 article-title: Speed Function Effects in Electron Beam Additive Manufacturing publication-title: Proc. ASME 2014 Inter. Mech. Eng. Congr IMECE2014 – volume: 4 start-page: 169 issue: 2 year: 2012 ident: 10.1016/j.addma.2017.07.003_bib0085 article-title: Weld metal characterization of 316L(N) austenitic stainless steel by electron beam welding process publication-title: Int. J. Eng. Sci. Tech. doi: 10.4314/ijest.v4i2.13 – volume: 209 start-page: 5793 issue: 17 year: 2009 ident: 10.1016/j.addma.2017.07.003_bib0125 article-title: Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development publication-title: J. Mat. Process. Tech. doi: 10.1016/j.jmatprotec.2009.06.012 – volume: 42A start-page: 3491 year: 2011 ident: 10.1016/j.addma.2017.07.003_bib0065 article-title: Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting publication-title: Metall. Mat. Trans. doi: 10.1007/s11661-011-0748-2 – volume: 8 start-page: 12 year: 2015 ident: 10.1016/j.addma.2017.07.003_bib0150 article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, process parameter optimization and control publication-title: Addit. Manuf. doi: 10.1016/j.addma.2015.07.002 – volume: 68 start-page: 269 year: 1989 ident: 10.1016/j.addma.2017.07.003_bib0090 article-title: Experimental measurement of stationary ss304, ss316L and 8630 GTA weld pool surface temperatures publication-title: Weld. J. – volume: 30 start-page: 2915 issue: 11 year: 1999 ident: 10.1016/j.addma.2017.07.003_bib0105 article-title: A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model publication-title: Metall. Mat. Trans. doi: 10.1007/s11661-999-0129-2 – volume: 212 start-page: 2074 issue: 10 year: 2012 ident: 10.1016/j.addma.2017.07.003_bib0130 article-title: Research on track overlapping during Selective Laser Melting of powders publication-title: J. Mat. Process. Tech. doi: 10.1016/j.jmatprotec.2012.05.012 – start-page: 39 year: 2008 ident: 10.1016/j.addma.2017.07.003_bib0075 article-title: International Thermonuclear Experimental Reactor publication-title: Adv. Mater. Process. – start-page: 2882 year: 2015 ident: 10.1016/j.addma.2017.07.003_bib0135 article-title: A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4 V publication-title: Metall. Mat. Trans. – volume: 149 start-page: 616 issue: 1–3 year: 2004 ident: 10.1016/j.addma.2017.07.003_bib0115 article-title: Selective laser melting of iron-based powder publication-title: J. Mat. Process. doi: 10.1016/j.jmatprotec.2003.11.051 – volume: 178 start-page: 189 year: 1994 ident: 10.1016/j.addma.2017.07.003_bib0190 article-title: Metastable phase solidification in electron beam welding of dissimilar stainless steels publication-title: Mater. Sci. Eng. doi: 10.1016/0921-5093(94)90541-X – year: 2013 ident: 10.1016/j.addma.2017.07.003_bib0045 article-title: Bulk Metallic Glass Manufacturing using Electron Beam Melting – volume: 625 start-page: 221 year: 2015 ident: 10.1016/j.addma.2017.07.003_bib0200 article-title: Hardened austenite steel with columnar sub-grain structure formed by laser melting publication-title: Mat. Sci. Eng. doi: 10.1016/j.msea.2014.12.018 – year: 2010 ident: 10.1016/j.addma.2017.07.003_bib0155 article-title: Part and material properties in selective laser melting of metals publication-title: Proc. 16th Int. Symp. Electromach. – volume: 11 start-page: 33 year: 2000 ident: 10.1016/j.addma.2017.07.003_bib0185 article-title: Stainless steel surface analysis publication-title: Adv. Mater. Process – volume: 3 start-page: 45 issue: 2 year: 2013 ident: 10.1016/j.addma.2017.07.003_bib0095 article-title: Experimental Investigations on Electron Beam Welding of Austenetic/Ferritic Stainless Steel for Space Applications publication-title: Int. J. Res. Mech. Eng. Technol. – year: 2017 ident: 10.1016/j.addma.2017.07.003_bib0005 – year: 2013 ident: 10.1016/j.addma.2017.07.003_bib0205 article-title: The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting publication-title: Proc. Solid Freeform Fabrication Symp. – volume: 23 start-page: 1917 issue: 6 year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0010 article-title: Metal Additive Manufacturing: A Review publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-014-0958-z – start-page: 76 year: 2012 ident: 10.1016/j.addma.2017.07.003_bib0070 article-title: Low Cycle Fatigue of a Duplex Stainless Steel Alloyed with Nitrogen – volume: 136 start-page: 061004 year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0030 article-title: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4 V publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028539 – volume: 8 start-page: 1 year: 2015 ident: 10.1016/j.addma.2017.07.003_bib0025 article-title: Temperature Distribution and Melt Geometry in Laser and Electron-Beam Melting Processes-A Comparison among Common Materials publication-title: Addit. Manuf. doi: 10.1016/j.addma.2015.07.003 – volume: 76 start-page: 869 issue: 5–8 year: 2015 ident: 10.1016/j.addma.2017.07.003_bib0160 article-title: Investigation into the effect of process parameters on microstructure and physical properties of 316L stainless steel parts by selective laser melting publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-014-6297-2 – start-page: 17 year: 2016 ident: 10.1016/j.addma.2017.07.003_bib0080 article-title: Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.041 – volume: 8 start-page: 36 year: 2015 ident: 10.1016/j.addma.2017.07.003_bib0145 article-title: An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics publication-title: Addit. Manuf. doi: 10.1016/j.addma.2015.07.001 – volume: 136 start-page: 061018 issue: 6 year: 2014 ident: 10.1016/j.addma.2017.07.003_bib0015 article-title: On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028484 – year: 2017 ident: 10.1016/j.addma.2017.07.003_bib0040 |
SSID | ssj0001537982 |
Score | 2.381939 |
Snippet | One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this... One of the serious obstacles preventing wide industrial use of additive manufacturing (AM) in metals and alloys is a lack of materials available for this... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | 316L Characterization Electron beam melting materialkemi Materials Chemistry Microstructures Stainless steel |
Title | Hierarchical structures of stainless steel 316L manufactured by Electron Beam Melting |
URI | https://dx.doi.org/10.1016/j.addma.2017.07.003 https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-32203 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-176454 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnqI8Kg_ARGgdJ04yltKqPBcoYrPs2EZBaYqADCz8dnxOUkBCHdji6KxYd_b57Nx9H0KHJhWxSoWBQ47xAl8qT9p9zgtCyYiiKmEEipNvbtloHFw-ho8LqN_UwkBaZe37K5_uvHX9plNrs_OSZZ073yfAoAQRBQQeUMQXBBHM8tNP8n3PEtIocZxRIO9BhwZ8yKV52fXt8IdI5EA8G_KsPzaon0iibvcZrqHVOmzEvWpk62hBFxto5QeY4CYajzIoJnbcJjmucGFLe5jGU4NdkVRunZp90jrHlLBrPBFFCXUNVkhh-YEHNSMOPtNigm90DhnRW2g8HNz3R15NmuClNIrfPcoMiySJ7eKkQoZGM2WXsTIksEcp1e1qYZupkVRGWiUBESkTsfSZEjqSIhR0Gy0W00LvIMx8LYxKqNK-DqgU0gY3oa-IAUSXRJEW8htN8bRGFAdii5w3qWPP3KmXg3p5F_500xY6mXV6qQA15ouzxgT817zg1uXP73hcGWz2FQDSPs8eenz6-sQnWVlw68xA8Gie4FvJSQSwZ7v_HckeWoZWlQG4jxat_fWBjWTeZdtN1TZa6l1cjW6_APQ-9HI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdaysMHyomwaztxNgcOhbba0t1e6KLejB3bKCibrdquUC_8Kf4gM05SioT2gNRbHpPEGk_GM8nM9wG8DqUZudIESnJCkgrrEovrXJJmVnEnXaE4NSdPj9R4ln46yU7W4FffC0NllZ3vb3169NbdkUGnzcFpVQ0-C8GJQYkiCgo8iq6y8tBf_sC87fz9wS5O8rYQ-3vHH8dJRy2QlDIfXSRSBZVbPkITlsZmwSuHxu4CTzHhcMOhN7hbBitt7l2RclMqM7JCOeNzazIj8b634HaK7oJoE9795H8-7GQyLyJJFQ0woRH2aEexrgwdSgQ84nlEDe3Zuv6xIl6HLo3L3f4DuN_FqWynVcVDWPPNI7h3Db3wMczGFXUvRzKVmrVAtEvM3tkisNiVVaMXxS3vaya5mrC5aZbUSIFCjtlLttdR8LAP3szZ1NdUgv0EZjeiyqew3iwavwFMCW-CK6TzwqfSGovRVCYcDwQhUzi-CaLXlC47CHNi0qh1X6v2XUf1alKvHtKvdbkJb68uOm0RPFaLq34K9F-GqHGNWX3hm3bCrp5CyN271ZcdvTj7pufVstHoPUlwe5Xg-VLznHDWnv3vSF7BnfHxdKInB0eHW3CXzrTlh89hHW3Bv8Aw6sK-jGbL4OtNvye_AQoSMS0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+structures+of+stainless+steel+316L+manufactured+by+Electron+Beam+Melting&rft.jtitle=Additive+manufacturing&rft.au=R%C3%A4nnar%2C+Lars-Erik&rft.au=Koptyug%2C+Andrey&rft.au=Ols%C3%A9n%2C+Jon&rft.au=Saeidi%2C+Kamran&rft.date=2017-10-01&rft.issn=2214-7810&rft.volume=17&rft.spage=106&rft_id=info:doi/10.1016%2Fj.addma.2017.07.003&rft.externalDocID=oai_DiVA_org_su_176454 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |