Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism
•The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response surface method is used to optimize the solidification performance of LHTES.•The fluid-structure coupling functions of solidification time for e...
Saved in:
Published in | Applied energy Vol. 331; p. 120435 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response surface method is used to optimize the solidification performance of LHTES.•The fluid-structure coupling functions of solidification time for each parameter are fitted.
In this paper, the rotation mechanism is applied to a triplex-tube latent heat thermal energy storage system for the first time. Numerical simulation is used to study the effect of rotation on the solidification performance of this system, and the accuracy of the numerical model is verified experimentally. Firstly, the evolution of the liquid phase, the total amount of heat energy released, and the rate of heat energy released in the solidification process of the thermal energy storage system without rotation and at different rotational speeds are compared and analyzed. It is found that the solidification time of the system at 1 rpm is reduced by 83.85 % and the heat release rate is 4.98 times higher than that at the no-rotation state. It shows that the incorporation of a rotational mechanism can effectively reduce the solidification time and increase the heat release rate of the system. Then, the internal dynamic temperature/flow rate response is used to investigate the change in the heat transfer mode of the solidification process by the addition of rotation and the improvement of the phenomenon of difficult solidification zones, which improved the internal temperature uniformity and thus the solidification behavior. By response surface method, the geometric factors of the heat storage system (fin length, fin width, fin angle) are analyzed by multiple factors. The function of the optimized target (solidification time) on each variable is fitted, and it is found that the fin length had the most significant effect on the optimized target. Finally, the effect of relevant physical parameters on the solidification process and heat release of the thermal energy storage system is investigated. To ensure low solidification time and high heat release rate, this study recommends that the temperature difference between phase change material and tube wall is higher than 25 K. This paper also proves the feasibility and superiority of copper fin/tube wall material. |
---|---|
AbstractList | •The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response surface method is used to optimize the solidification performance of LHTES.•The fluid-structure coupling functions of solidification time for each parameter are fitted.
In this paper, the rotation mechanism is applied to a triplex-tube latent heat thermal energy storage system for the first time. Numerical simulation is used to study the effect of rotation on the solidification performance of this system, and the accuracy of the numerical model is verified experimentally. Firstly, the evolution of the liquid phase, the total amount of heat energy released, and the rate of heat energy released in the solidification process of the thermal energy storage system without rotation and at different rotational speeds are compared and analyzed. It is found that the solidification time of the system at 1 rpm is reduced by 83.85 % and the heat release rate is 4.98 times higher than that at the no-rotation state. It shows that the incorporation of a rotational mechanism can effectively reduce the solidification time and increase the heat release rate of the system. Then, the internal dynamic temperature/flow rate response is used to investigate the change in the heat transfer mode of the solidification process by the addition of rotation and the improvement of the phenomenon of difficult solidification zones, which improved the internal temperature uniformity and thus the solidification behavior. By response surface method, the geometric factors of the heat storage system (fin length, fin width, fin angle) are analyzed by multiple factors. The function of the optimized target (solidification time) on each variable is fitted, and it is found that the fin length had the most significant effect on the optimized target. Finally, the effect of relevant physical parameters on the solidification process and heat release of the thermal energy storage system is investigated. To ensure low solidification time and high heat release rate, this study recommends that the temperature difference between phase change material and tube wall is higher than 25 K. This paper also proves the feasibility and superiority of copper fin/tube wall material. |
ArticleNumber | 120435 |
Author | Li, Fangfei Xiao, Tian Gao, Xinyu He, Ya-Ling Guo, Junfei Wang, Fan Yang, Xiaohu Huang, Xinyu |
Author_xml | – sequence: 1 givenname: Xinyu surname: Huang fullname: Huang, Xinyu organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 2 givenname: Fangfei surname: Li fullname: Li, Fangfei organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 3 givenname: Tian surname: Xiao fullname: Xiao, Tian organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 4 givenname: Junfei surname: Guo fullname: Guo, Junfei organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 5 givenname: Fan surname: Wang fullname: Wang, Fan organization: China Northwest Architecture Design and Research Institute Co. Ltd, Xi’an 710077, Shaanxi Province, China – sequence: 6 givenname: Xinyu surname: Gao fullname: Gao, Xinyu organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 7 givenname: Xiaohu surname: Yang fullname: Yang, Xiaohu email: xiaohuyang@xjtu.edu.cn organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 8 givenname: Ya-Ling surname: He fullname: He, Ya-Ling email: yalinghe@xjtu.edu.cn organization: Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China |
BookMark | eNqFkE1OwzAQhS1UJNrCFZAvkOKfNEklFqCKn0qV2MDamiTj1lViR7apKKfgyKQENmy6GunNe08z34SMrLNIyDVnM854drObQYcW_eYwE0yIGRcslfMzMuZFLpIF58WIjJlkWSIyvrggkxB2jDHR-8bka2X3GKLZQDTOUrA1dV00rfkcBKdpcI2pjTbVoHTotfMt2AqPW6DRm67BjyS-l0gbiGgj3SJEGrfY-xo6HEdDdB42SMMhRGxpeaDexZ_O3tNitQVrQntJzjU0Aa9-55S8PT68Lp-T9cvTanm_TiqZFzGRAmGhNauR6ULzopRZmqUpiFzzkkMpket5qiVwrHPMc4CclTUvi1QXMuW5nJLbobfyLgSPWlVmuCZ6MI3iTB3pqp36o6uOdNVAt49n_-KdNy34w-ng3RDE_rm9Qa9CZbCHWRuPVVS1M6cqvgEfSKBb |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_121887 crossref_primary_10_1016_j_icheatmasstransfer_2025_108835 crossref_primary_10_1016_j_ijhydene_2023_08_003 crossref_primary_10_1016_j_applthermaleng_2023_121764 crossref_primary_10_1016_j_applthermaleng_2024_125405 crossref_primary_10_1016_j_est_2023_110178 crossref_primary_10_1016_j_est_2024_111105 crossref_primary_10_1016_j_est_2024_112436 crossref_primary_10_1016_j_applthermaleng_2023_121082 crossref_primary_10_1016_j_est_2024_113445 crossref_primary_10_1016_j_est_2024_113643 crossref_primary_10_1016_j_est_2024_114575 crossref_primary_10_1016_j_icheatmasstransfer_2024_108283 crossref_primary_10_1016_j_apenergy_2023_122422 crossref_primary_10_18686_cest237 crossref_primary_10_1016_j_est_2025_116096 crossref_primary_10_1016_j_enconman_2025_119693 crossref_primary_10_1016_j_energy_2024_132101 crossref_primary_10_1016_j_applthermaleng_2024_123855 crossref_primary_10_1016_j_heliyon_2023_e21012 crossref_primary_10_1063_5_0193078 crossref_primary_10_1016_j_energy_2023_128164 crossref_primary_10_1016_j_est_2024_113018 crossref_primary_10_1016_j_est_2024_111353 crossref_primary_10_1016_j_solener_2023_112008 crossref_primary_10_1016_j_renene_2024_121899 crossref_primary_10_1016_j_apenergy_2023_121623 crossref_primary_10_1016_j_renene_2023_119167 crossref_primary_10_1016_j_icheatmasstransfer_2024_107648 crossref_primary_10_1016_j_energy_2024_131087 crossref_primary_10_1093_ijlct_ctae014 crossref_primary_10_1016_j_adapen_2023_100149 crossref_primary_10_1016_j_energy_2023_127100 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124076 crossref_primary_10_1016_j_taml_2023_100458 crossref_primary_10_32604_fhmt_2023_045134 crossref_primary_10_1016_j_est_2024_112577 crossref_primary_10_2339_politeknik_1303193 crossref_primary_10_1016_j_apenergy_2023_121352 crossref_primary_10_1016_j_renene_2024_120537 crossref_primary_10_1016_j_enbuild_2023_113099 crossref_primary_10_1016_j_energy_2024_130839 crossref_primary_10_1007_s12273_023_1091_4 crossref_primary_10_1016_j_solmat_2023_112584 crossref_primary_10_1080_10407782_2023_2279290 crossref_primary_10_1016_j_apenergy_2023_121158 crossref_primary_10_1016_j_est_2024_111120 crossref_primary_10_1016_j_est_2024_113063 crossref_primary_10_1016_j_icheatmasstransfer_2024_107774 crossref_primary_10_1088_2631_8695_acfae3 crossref_primary_10_1080_10407782_2024_2332478 crossref_primary_10_1038_s41467_024_49333_7 crossref_primary_10_1016_j_csite_2024_105623 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124517 crossref_primary_10_1016_j_est_2023_108902 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125458 crossref_primary_10_1016_j_enconman_2023_117177 crossref_primary_10_1016_j_csite_2024_105093 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124384 crossref_primary_10_1016_j_egyr_2023_03_037 crossref_primary_10_1016_j_icheatmasstransfer_2023_107080 crossref_primary_10_1016_j_ijthermalsci_2023_108757 crossref_primary_10_1016_j_est_2024_114840 crossref_primary_10_1016_j_apenergy_2024_122997 crossref_primary_10_1016_j_est_2024_114045 crossref_primary_10_3390_en16104165 crossref_primary_10_1007_s11771_024_5696_2 crossref_primary_10_1016_j_apenergy_2023_121488 crossref_primary_10_1016_j_applthermaleng_2024_124246 crossref_primary_10_1016_j_egyr_2023_01_009 crossref_primary_10_1016_j_applthermaleng_2023_121595 crossref_primary_10_1016_j_applthermaleng_2023_121154 crossref_primary_10_1016_j_renene_2023_119269 |
Cites_doi | 10.1016/j.molliq.2019.111140 10.1016/j.ijheatmasstransfer.2019.02.003 10.1016/j.applthermaleng.2021.117997 10.1016/j.ijheatmasstransfer.2013.02.030 10.1016/j.ijheatmasstransfer.2021.122420 10.1016/j.energy.2019.02.155 10.1016/j.renene.2022.01.097 10.1016/j.renene.2022.02.035 10.1016/j.applthermaleng.2019.114163 10.1016/j.ijheatmasstransfer.2019.04.121 10.1016/j.enconman.2020.113797 10.1016/B978-0-08-100536-1.00006-0 10.1016/j.enbuild.2018.11.018 10.1016/j.renene.2020.03.054 10.1016/j.apenergy.2017.10.050 10.1016/j.apenergy.2022.118633 10.1016/j.icheatmasstransfer.2017.10.003 10.1016/j.adapen.2021.100052 10.1016/j.jclepro.2021.129922 10.1016/j.apenergy.2014.07.015 10.1016/j.apenergy.2020.115772 10.1016/j.solener.2017.06.024 10.1016/j.adapen.2021.100022 10.1016/j.ijthermalsci.2022.107809 10.1016/j.apenergy.2019.113806 10.1016/j.rser.2021.111812 10.1016/j.apenergy.2016.11.036 10.1016/j.apenergy.2013.04.072 10.1016/j.applthermaleng.2021.117104 10.1016/j.rser.2018.05.028 10.1016/j.enconman.2021.114608 10.1016/j.ijheatmasstransfer.2021.121640 10.1016/j.icheatmasstransfer.2022.105993 10.1016/j.icheatmasstransfer.2020.104775 10.1016/j.ijheatmasstransfer.2017.06.081 10.1016/j.pecs.2015.10.003 10.1016/j.apenergy.2017.11.082 10.1016/j.enbuild.2013.09.007 10.1016/j.solener.2019.05.062 10.1016/j.applthermaleng.2022.118564 10.1016/j.ijheatmasstransfer.2021.121667 10.1016/j.apenergy.2017.08.087 10.1039/D1EE00527H 10.1016/j.applthermaleng.2022.118124 10.1016/j.adapen.2021.100064 10.1016/j.adapen.2022.100112 10.1038/s41560-021-00964-w 10.1016/j.adapen.2022.100091 10.1016/j.ijheatmasstransfer.2021.120949 10.1016/j.rser.2013.07.028 10.1016/j.applthermaleng.2019.114436 10.1016/j.rser.2021.111918 10.1016/j.apenergy.2020.115019 10.1021/acs.chemrev.8b00315 10.1016/j.apenergy.2019.113993 10.1016/j.applthermaleng.2022.118812 10.1016/j.applthermaleng.2013.01.011 10.1126/science.aad1920 10.1016/j.solmat.2022.111686 10.1016/j.renene.2021.04.066 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apenergy.2022.120435 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2022_120435 S0306261922016920 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 |
ID | FETCH-LOGICAL-c378t-32ea9ff0de0f8f18b364644a27f1b1ab3e1f54f3a1ed7e77aa70bd1b84f834173 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Tue Jul 01 04:01:12 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal energy storage Rotational mechanism Phase change material Heat release efficiency Response surface method Solidification performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-32ea9ff0de0f8f18b364644a27f1b1ab3e1f54f3a1ed7e77aa70bd1b84f834173 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apenergy_2022_120435 crossref_primary_10_1016_j_apenergy_2022_120435 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mozafari, Lee, Cheng (b0110) 2022; 186 Soltani, Soltani, Karimi, Nathwani (b0285) 2021; 179 Aftab, Usman, Shi, Yuan, Qin, Zou (b0060) 2021; 14 Hu, Li, Xu, Fan (b0075) 2022; 155 Lewis NS. Research opportunities to advance solar energy utilization. Science. 2016;351:aad1920. Mahdi, Nsofor (b0175) 2018; 211 Soltani, Soltani, Karimi, Nathwani (b0290) 2022; 331 Carrillo, Gonzalez-Aguilar, Romero, Coronado (b0055) 2019; 119 Pizzolato, Sharma, Maute, Sciacovelli, Verda (b0245) 2017; 208 Loth, Qin, Simpson, Dykes (b0015) 2022; 8 Liu, Peng, Hu, Ling, Huang (b0145) 2019; 138 Deng, Nie, Wei, Ye (b0300) 2019; 183 Srinivasan, Diallo, Saha, Abass, Sharma, Balasubramanian (b0305) 2017; 114 Tian, Liu, Xu, Luo, Zheng, Song (b0255) 2021; 194 Huang, Yao, Yang, Zhou (b0070) 2022; 188 Xiao, Liu, Guo, Shu, Lu, Yang (b0105) 2022; 53 Sheikholeslami, Haq, Shafee, Li, Elaraki, Tlili (b0200) 2019; 135 Yang, Wei, Wang, He (b0100) 2020; 268 Alizadeh, Hosseinzadeh, Shahavi, Ganji (b0155) 2019; 163 Abdulateef, Abdulateef, Mat, Sopian, Elhub, Mussa (b0190) 2018; 90 Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (b0315) 2014; 68 Yang, Guo, Yang, Cheng, Wei, He (b0130) 2020; 279 Tao, He (b0045) 2018; 93 Hosseinzadeh, Montazer, Shafii, Ganji (b0235) 2021; 34 Kennedy, Ruggles, Rinaldi, Dowling, Duan, Caldeira (b0035) 2022; 6 Guo, Mu, Jia, Deng, Xu, Yu (b0020) 2021; 4 Jahan A, Edwards KL, Bahraminasab M. 6 - Multiple objective decision-making for material and geometry design. In: Jahan A, Edwards KL, Bahraminasab M, editors. Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design (Second Edition): Butterworth-Heinemann; 2016. p. 127-46. Yin, Zheng, Kim, Seo, Linga (b0050) 2021; 2 Mahdi, Mohammed, Hashim, Talebizadehsardari, Nsofor (b0115) 2020; 257 Guo, Du, Liu, Yang, Li (b0215) 2022; 206 Costa, Kenisarin (b0090) 2022; 154 Fell, Gilbert, Jenkins, Mildenberger (b0005) 2022; 7 Liu, Du, Xiao, Guo, Lu, Yang (b0220) 2022; 182 Selimefendigil, Öztop (b0265) 2020; 200 Wu, Zhang, Liu (b0160) 2020; 32 Ge, Li, Li, Liu (b0260) 2022; 187 Hosseinzadeh, Alizadeh, Alipour, Jafari, Ganji (b0165) 2019; 289 Zhang, Baeyens, Cáceres, Degrève, Lv (b0030) 2016; 53 Modi, Wang, Negnevitsky (b0295) 2022; 214 Singh, Patel (b0310) 2022; 134 Johnson, Papageorgiou, Harper, Rhodes, Hanson, Webber (b0025) 2021; 3 Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (b0185) 2013; 53 Ho, See, Leong, Wong (b0250) 2021; 245 Huang, Yao, Yang, Zhou, Luo, Shen (b0080) 2022; 204 Bauer, Pfleger, Breidenbach, Eck, Laing, Kaesche (b0040) 2013; 111 Humbert, Ding, Sciacovelli (b0170) 2022; 311 Liu, Xiao, Guo, Wei, Yang, Hooman (b0225) 2022; 212 Pizzolato, Sharma, Ge, Maute, Verda, Sciacovelli (b0240) 2020; 203 Ma, Xu, Liu, Peng, Ling (b0095) 2021; 169 Bai, Li, Xie, Zhang, Lv, Xiao (b0120) 2022; 239 Huang, Liu (b0135) 2021; 174 Hosseinzadeh, Moghaddam, Asadi, Mogharrebi, Ganji (b0230) 2020; 154 Li, Li, Du, Jiang, Ding (b0085) 2019; 255 Ren, Ma, Li, Tyagi, Pandey (b0325) 2021; 230 Yang, Niu, Guo, Bai, Li, He (b0205) 2020; 117 Mahdi, Nsofor (b0125) 2017; 191 Cárdenas, León (b0065) 2013; 27 Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (b0180) 2013; 61 Sciacovelli, Gagliardi, Verda (b0150) 2015; 137 Fathi, Mussa (b0280) 2021; 39 Huang, Han, Liu (b0140) 2021; 179 Yang, Niu, Bai, Li, Cui, He (b0210) 2019; 161 Jaberi Khosroshahi, Hossainpour (b0275) 2021; 36 Abdulateef, Mat, Sopian, Abdulateef, Gitan (b0195) 2017; 155 Kurnia, Sasmito (b0270) 2018; 227 Abdulateef (10.1016/j.apenergy.2022.120435_b0190) 2018; 90 Liu (10.1016/j.apenergy.2022.120435_b0225) 2022; 212 Guo (10.1016/j.apenergy.2022.120435_b0020) 2021; 4 Li (10.1016/j.apenergy.2022.120435_b0085) 2019; 255 Jaberi Khosroshahi (10.1016/j.apenergy.2022.120435_b0275) 2021; 36 Fathi (10.1016/j.apenergy.2022.120435_b0280) 2021; 39 Sciacovelli (10.1016/j.apenergy.2022.120435_b0150) 2015; 137 Deng (10.1016/j.apenergy.2022.120435_b0300) 2019; 183 Loth (10.1016/j.apenergy.2022.120435_b0015) 2022; 8 Hosseinzadeh (10.1016/j.apenergy.2022.120435_b0235) 2021; 34 Ma (10.1016/j.apenergy.2022.120435_b0095) 2021; 169 Mozafari (10.1016/j.apenergy.2022.120435_b0110) 2022; 186 Modi (10.1016/j.apenergy.2022.120435_b0295) 2022; 214 Cárdenas (10.1016/j.apenergy.2022.120435_b0065) 2013; 27 Huang (10.1016/j.apenergy.2022.120435_b0070) 2022; 188 Ho (10.1016/j.apenergy.2022.120435_b0250) 2021; 245 Huang (10.1016/j.apenergy.2022.120435_b0135) 2021; 174 Fell (10.1016/j.apenergy.2022.120435_b0005) 2022; 7 Alizadeh (10.1016/j.apenergy.2022.120435_b0155) 2019; 163 Pizzolato (10.1016/j.apenergy.2022.120435_b0240) 2020; 203 Yang (10.1016/j.apenergy.2022.120435_b0210) 2019; 161 Humbert (10.1016/j.apenergy.2022.120435_b0170) 2022; 311 Xiao (10.1016/j.apenergy.2022.120435_b0105) 2022; 53 Al-Abidi (10.1016/j.apenergy.2022.120435_b0315) 2014; 68 Mahdi (10.1016/j.apenergy.2022.120435_b0175) 2018; 211 Costa (10.1016/j.apenergy.2022.120435_b0090) 2022; 154 Hosseinzadeh (10.1016/j.apenergy.2022.120435_b0230) 2020; 154 Yang (10.1016/j.apenergy.2022.120435_b0205) 2020; 117 Srinivasan (10.1016/j.apenergy.2022.120435_b0305) 2017; 114 Pizzolato (10.1016/j.apenergy.2022.120435_b0245) 2017; 208 10.1016/j.apenergy.2022.120435_b0010 Bauer (10.1016/j.apenergy.2022.120435_b0040) 2013; 111 Yang (10.1016/j.apenergy.2022.120435_b0100) 2020; 268 Selimefendigil (10.1016/j.apenergy.2022.120435_b0265) 2020; 200 Johnson (10.1016/j.apenergy.2022.120435_b0025) 2021; 3 Liu (10.1016/j.apenergy.2022.120435_b0145) 2019; 138 Tao (10.1016/j.apenergy.2022.120435_b0045) 2018; 93 Soltani (10.1016/j.apenergy.2022.120435_b0290) 2022; 331 Abdulateef (10.1016/j.apenergy.2022.120435_b0195) 2017; 155 Soltani (10.1016/j.apenergy.2022.120435_b0285) 2021; 179 Aftab (10.1016/j.apenergy.2022.120435_b0060) 2021; 14 Tian (10.1016/j.apenergy.2022.120435_b0255) 2021; 194 Kennedy (10.1016/j.apenergy.2022.120435_b0035) 2022; 6 Bai (10.1016/j.apenergy.2022.120435_b0120) 2022; 239 Ge (10.1016/j.apenergy.2022.120435_b0260) 2022; 187 Singh (10.1016/j.apenergy.2022.120435_b0310) 2022; 134 Huang (10.1016/j.apenergy.2022.120435_b0140) 2021; 179 Liu (10.1016/j.apenergy.2022.120435_b0220) 2022; 182 Ren (10.1016/j.apenergy.2022.120435_b0325) 2021; 230 Kurnia (10.1016/j.apenergy.2022.120435_b0270) 2018; 227 Mahdi (10.1016/j.apenergy.2022.120435_b0115) 2020; 257 Carrillo (10.1016/j.apenergy.2022.120435_b0055) 2019; 119 Huang (10.1016/j.apenergy.2022.120435_b0080) 2022; 204 10.1016/j.apenergy.2022.120435_b0320 Al-Abidi (10.1016/j.apenergy.2022.120435_b0180) 2013; 61 Yang (10.1016/j.apenergy.2022.120435_b0130) 2020; 279 Hu (10.1016/j.apenergy.2022.120435_b0075) 2022; 155 Wu (10.1016/j.apenergy.2022.120435_b0160) 2020; 32 Sheikholeslami (10.1016/j.apenergy.2022.120435_b0200) 2019; 135 Guo (10.1016/j.apenergy.2022.120435_b0215) 2022; 206 Zhang (10.1016/j.apenergy.2022.120435_b0030) 2016; 53 Hosseinzadeh (10.1016/j.apenergy.2022.120435_b0165) 2019; 289 Al-Abidi (10.1016/j.apenergy.2022.120435_b0185) 2013; 53 Yin (10.1016/j.apenergy.2022.120435_b0050) 2021; 2 Mahdi (10.1016/j.apenergy.2022.120435_b0125) 2017; 191 |
References_xml | – volume: 255 year: 2019 ident: b0085 article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications publication-title: Appl Energy – volume: 183 start-page: 161 year: 2019 end-page: 173 ident: b0300 article-title: Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube publication-title: Energ Buildings – volume: 68 start-page: 33 year: 2014 end-page: 41 ident: b0315 article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins publication-title: Energ Buildings – reference: Lewis NS. Research opportunities to advance solar energy utilization. Science. 2016;351:aad1920. – volume: 32 year: 2020 ident: b0160 article-title: Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins publication-title: J Storage Mater – volume: 268 year: 2020 ident: b0100 article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam publication-title: Appl Energy – volume: 188 start-page: 890 year: 2022 end-page: 910 ident: b0070 article-title: Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection publication-title: Renew Energy – volume: 214 year: 2022 ident: b0295 article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage publication-title: Appl Therm Eng – volume: 3 year: 2021 ident: b0025 article-title: The economic and reliability impacts of grid-scale storage in a high penetration renewable energy system publication-title: Adv Appl Energy – volume: 138 start-page: 667 year: 2019 end-page: 676 ident: b0145 article-title: Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins publication-title: Int J Heat Mass Transf – volume: 245 year: 2021 ident: b0250 article-title: An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure publication-title: Energ Conver Manage – volume: 27 start-page: 724 year: 2013 end-page: 737 ident: b0065 article-title: High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques publication-title: Renew Sustain Energy Rev – volume: 206 year: 2022 ident: b0215 article-title: Compression effect of metal foam on melting phase change in a shell-and-tube unit publication-title: Appl Therm Eng – volume: 135 start-page: 470 year: 2019 end-page: 478 ident: b0200 article-title: Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger publication-title: Int J Heat Mass Transf – volume: 208 start-page: 210 year: 2017 end-page: 227 ident: b0245 article-title: Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization publication-title: Appl Energy – volume: 182 year: 2022 ident: b0220 article-title: Design and assessments on a hybrid pin fin-metal foam structure towards enhancing melting heat transfer: An experimental study publication-title: Int J Therm Sci – volume: 36 year: 2021 ident: b0275 article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system publication-title: J Storage Mater – volume: 279 year: 2020 ident: b0130 article-title: Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit publication-title: Appl Energy – volume: 187 start-page: 829 year: 2022 end-page: 843 ident: b0260 article-title: Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system publication-title: Renew Energy – volume: 204 year: 2022 ident: b0080 article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system publication-title: Appl Therm Eng – volume: 155 year: 2022 ident: b0075 article-title: Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting publication-title: Renew Sustain Energy Rev – volume: 230 year: 2021 ident: b0325 article-title: Optimisation of a renewable cooling and heating system using an integer-based genetic algorithm, response surface method and life cycle analysis publication-title: Energ Conver Manage – volume: 203 year: 2020 ident: b0240 article-title: Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements publication-title: Energy – volume: 186 year: 2022 ident: b0110 article-title: A novel dual-PCM configuration to improve simultaneous energy storage and recovery in triplex-tube heat exchanger publication-title: Int J Heat Mass Transf – volume: 200 start-page: 61 year: 2020 end-page: 75 ident: b0265 article-title: Mixed convection in a PCM filled cavity under the influence of a rotating cylinder publication-title: Sol Energy – volume: 191 start-page: 22 year: 2017 end-page: 34 ident: b0125 article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination publication-title: Appl Energy – volume: 289 year: 2019 ident: b0165 article-title: Effect of nanoparticle shape factor and snowflake crystal structure on discharging acceleration LHTESS containing (Al2O3 - GO) HNEPCM publication-title: J Mol Liq – volume: 14 start-page: 4268 year: 2021 end-page: 4291 ident: b0060 article-title: Phase change material-integrated latent heat storage systems for sustainable energy solutions publication-title: Energ Environ Sci – volume: 2 year: 2021 ident: b0050 article-title: Hydrates for cold energy storage and transport: A review publication-title: Adv Appl Energy – volume: 161 year: 2019 ident: b0210 article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage publication-title: Appl Therm Eng – volume: 174 start-page: 199 year: 2021 end-page: 217 ident: b0135 article-title: Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins publication-title: Renew Energy – volume: 39 year: 2021 ident: b0280 article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage publication-title: J Storage Mater – volume: 111 start-page: 1114 year: 2013 end-page: 1119 ident: b0040 article-title: Material aspects of Solar Salt for sensible heat storage publication-title: Appl Energy – volume: 34 year: 2021 ident: b0235 article-title: Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles publication-title: J Storage Mater – volume: 8 year: 2022 ident: b0015 article-title: Why we must move beyond LCOE for renewable energy design publication-title: Adv Appl Energy – volume: 212 year: 2022 ident: b0225 article-title: Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: Evaluation on gradient in pore structure publication-title: Appl Therm Eng – volume: 90 start-page: 73 year: 2018 end-page: 84 ident: b0190 article-title: Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins publication-title: Int Commun Heat Mass Transfer – volume: 117 year: 2020 ident: b0205 article-title: Role of pin fin-metal foam composite structure in improving solidification: Performance evaluation publication-title: Int Commun Heat Mass Transfer – volume: 194 year: 2021 ident: b0255 article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage publication-title: Appl Therm Eng – volume: 257 year: 2020 ident: b0115 article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system publication-title: Appl Energy – volume: 6 year: 2022 ident: b0035 article-title: The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy publication-title: Adv Appl Energy – volume: 61 start-page: 684 year: 2013 end-page: 695 ident: b0180 article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins publication-title: Int J Heat Mass Transf – reference: Jahan A, Edwards KL, Bahraminasab M. 6 - Multiple objective decision-making for material and geometry design. In: Jahan A, Edwards KL, Bahraminasab M, editors. Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design (Second Edition): Butterworth-Heinemann; 2016. p. 127-46. – volume: 53 start-page: 1 year: 2016 end-page: 40 ident: b0030 article-title: Thermal energy storage: Recent developments and practical aspects publication-title: Prog Energy Combust Sci – volume: 154 year: 2022 ident: b0090 article-title: A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges publication-title: Renew Sustain Energy Rev – volume: 169 year: 2021 ident: b0095 article-title: Numerical study on solidification behavior and exergy analysis of a latent heat storage unit with innovative circular superimposed longitudinal fins publication-title: Int J Heat Mass Transf – volume: 93 start-page: 245 year: 2018 end-page: 259 ident: b0045 article-title: A review of phase change material and performance enhancement method for latent heat storage system publication-title: Renew Sustain Energy Rev – volume: 331 year: 2022 ident: b0290 article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism publication-title: J Clean Prod – volume: 114 start-page: 318 year: 2017 end-page: 323 ident: b0305 article-title: Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane publication-title: Int J Heat Mass Transf – volume: 119 start-page: 4777 year: 2019 end-page: 4816 ident: b0055 article-title: Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials publication-title: Chem Rev – volume: 155 start-page: 142 year: 2017 end-page: 153 ident: b0195 article-title: Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins publication-title: Sol Energy – volume: 137 start-page: 707 year: 2015 end-page: 715 ident: b0150 article-title: Maximization of performance of a PCM latent heat storage system with innovative fins publication-title: Appl Energy – volume: 163 year: 2019 ident: b0155 article-title: Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material publication-title: Appl Therm Eng – volume: 134 year: 2022 ident: b0310 article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions publication-title: Int Commun Heat Mass Transfer – volume: 53 start-page: 147 year: 2013 end-page: 156 ident: b0185 article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers publication-title: Appl Therm Eng – volume: 53 year: 2022 ident: b0105 article-title: Effect of metal foam on improving solid–liquid phase change in a multi-channel thermal storage tank publication-title: Sustainable Energy Technol Assess – volume: 211 start-page: 975 year: 2018 end-page: 986 ident: b0175 article-title: Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins publication-title: Appl Energy – volume: 154 start-page: 497 year: 2020 end-page: 507 ident: b0230 article-title: Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation publication-title: Renew Energy – volume: 4 year: 2021 ident: b0020 article-title: Electric/thermal hybrid energy storage planning for park-level integrated energy systems with second-life battery utilization publication-title: Adv Appl Energy – volume: 311 year: 2022 ident: b0170 article-title: Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures publication-title: Appl Energy – volume: 227 start-page: 542 year: 2018 end-page: 554 ident: b0270 article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage publication-title: Appl Energy – volume: 7 start-page: 25 year: 2022 end-page: 29 ident: b0005 article-title: Nuclear power and renewable energy are both associated with national decarbonization publication-title: Nat Energy – volume: 239 year: 2022 ident: b0120 article-title: Emerging PEG/VO2 dual phase change materials for thermal energy storage publication-title: Sol Energy Mater Sol Cells – volume: 179 year: 2021 ident: b0140 article-title: Experimental investigation on the melting and solidification performance enhancement of a fractal latent heat storage unit publication-title: Int J Heat Mass Transf – volume: 179 year: 2021 ident: b0285 article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms publication-title: Int J Heat Mass Transf – volume: 32 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0160 article-title: Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins publication-title: J Storage Mater – volume: 289 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0165 article-title: Effect of nanoparticle shape factor and snowflake crystal structure on discharging acceleration LHTESS containing (Al2O3 - GO) HNEPCM publication-title: J Mol Liq doi: 10.1016/j.molliq.2019.111140 – volume: 135 start-page: 470 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0200 article-title: Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.02.003 – volume: 39 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0280 article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage publication-title: J Storage Mater – volume: 53 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0105 article-title: Effect of metal foam on improving solid–liquid phase change in a multi-channel thermal storage tank publication-title: Sustainable Energy Technol Assess – volume: 204 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0080 article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117997 – volume: 61 start-page: 684 year: 2013 ident: 10.1016/j.apenergy.2022.120435_b0180 article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.02.030 – volume: 36 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0275 article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system publication-title: J Storage Mater – volume: 186 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0110 article-title: A novel dual-PCM configuration to improve simultaneous energy storage and recovery in triplex-tube heat exchanger publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2021.122420 – volume: 203 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0240 article-title: Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements publication-title: Energy doi: 10.1016/j.energy.2019.02.155 – volume: 187 start-page: 829 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0260 article-title: Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system publication-title: Renew Energy doi: 10.1016/j.renene.2022.01.097 – volume: 188 start-page: 890 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0070 article-title: Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection publication-title: Renew Energy doi: 10.1016/j.renene.2022.02.035 – volume: 161 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0210 article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114163 – volume: 138 start-page: 667 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0145 article-title: Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.04.121 – volume: 230 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0325 article-title: Optimisation of a renewable cooling and heating system using an integer-based genetic algorithm, response surface method and life cycle analysis publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2020.113797 – ident: 10.1016/j.apenergy.2022.120435_b0320 doi: 10.1016/B978-0-08-100536-1.00006-0 – volume: 183 start-page: 161 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0300 article-title: Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube publication-title: Energ Buildings doi: 10.1016/j.enbuild.2018.11.018 – volume: 154 start-page: 497 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0230 article-title: Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation publication-title: Renew Energy doi: 10.1016/j.renene.2020.03.054 – volume: 208 start-page: 210 year: 2017 ident: 10.1016/j.apenergy.2022.120435_b0245 article-title: Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.050 – volume: 311 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0170 article-title: Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118633 – volume: 90 start-page: 73 year: 2018 ident: 10.1016/j.apenergy.2022.120435_b0190 article-title: Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2017.10.003 – volume: 3 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0025 article-title: The economic and reliability impacts of grid-scale storage in a high penetration renewable energy system publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2021.100052 – volume: 331 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0290 article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.129922 – volume: 137 start-page: 707 year: 2015 ident: 10.1016/j.apenergy.2022.120435_b0150 article-title: Maximization of performance of a PCM latent heat storage system with innovative fins publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.07.015 – volume: 279 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0130 article-title: Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115772 – volume: 155 start-page: 142 year: 2017 ident: 10.1016/j.apenergy.2022.120435_b0195 article-title: Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins publication-title: Sol Energy doi: 10.1016/j.solener.2017.06.024 – volume: 34 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0235 article-title: Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles publication-title: J Storage Mater – volume: 2 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0050 article-title: Hydrates for cold energy storage and transport: A review publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2021.100022 – volume: 182 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0220 article-title: Design and assessments on a hybrid pin fin-metal foam structure towards enhancing melting heat transfer: An experimental study publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107809 – volume: 255 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0085 article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113806 – volume: 154 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0090 article-title: A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111812 – volume: 191 start-page: 22 year: 2017 ident: 10.1016/j.apenergy.2022.120435_b0125 article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.036 – volume: 111 start-page: 1114 year: 2013 ident: 10.1016/j.apenergy.2022.120435_b0040 article-title: Material aspects of Solar Salt for sensible heat storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.04.072 – volume: 194 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0255 article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117104 – volume: 93 start-page: 245 year: 2018 ident: 10.1016/j.apenergy.2022.120435_b0045 article-title: A review of phase change material and performance enhancement method for latent heat storage system publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.05.028 – volume: 245 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0250 article-title: An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2021.114608 – volume: 179 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0140 article-title: Experimental investigation on the melting and solidification performance enhancement of a fractal latent heat storage unit publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2021.121640 – volume: 134 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0310 article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.105993 – volume: 117 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0205 article-title: Role of pin fin-metal foam composite structure in improving solidification: Performance evaluation publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104775 – volume: 114 start-page: 318 year: 2017 ident: 10.1016/j.apenergy.2022.120435_b0305 article-title: Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.06.081 – volume: 53 start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2022.120435_b0030 article-title: Thermal energy storage: Recent developments and practical aspects publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2015.10.003 – volume: 211 start-page: 975 year: 2018 ident: 10.1016/j.apenergy.2022.120435_b0175 article-title: Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.11.082 – volume: 68 start-page: 33 year: 2014 ident: 10.1016/j.apenergy.2022.120435_b0315 article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins publication-title: Energ Buildings doi: 10.1016/j.enbuild.2013.09.007 – volume: 200 start-page: 61 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0265 article-title: Mixed convection in a PCM filled cavity under the influence of a rotating cylinder publication-title: Sol Energy doi: 10.1016/j.solener.2019.05.062 – volume: 212 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0225 article-title: Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: Evaluation on gradient in pore structure publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118564 – volume: 179 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0285 article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2021.121667 – volume: 227 start-page: 542 year: 2018 ident: 10.1016/j.apenergy.2022.120435_b0270 article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.087 – volume: 14 start-page: 4268 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0060 article-title: Phase change material-integrated latent heat storage systems for sustainable energy solutions publication-title: Energ Environ Sci doi: 10.1039/D1EE00527H – volume: 206 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0215 article-title: Compression effect of metal foam on melting phase change in a shell-and-tube unit publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118124 – volume: 4 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0020 article-title: Electric/thermal hybrid energy storage planning for park-level integrated energy systems with second-life battery utilization publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2021.100064 – volume: 8 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0015 article-title: Why we must move beyond LCOE for renewable energy design publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2022.100112 – volume: 7 start-page: 25 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0005 article-title: Nuclear power and renewable energy are both associated with national decarbonization publication-title: Nat Energy doi: 10.1038/s41560-021-00964-w – volume: 6 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0035 article-title: The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2022.100091 – volume: 169 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0095 article-title: Numerical study on solidification behavior and exergy analysis of a latent heat storage unit with innovative circular superimposed longitudinal fins publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2021.120949 – volume: 27 start-page: 724 year: 2013 ident: 10.1016/j.apenergy.2022.120435_b0065 article-title: High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.07.028 – volume: 163 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0155 article-title: Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114436 – volume: 155 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0075 article-title: Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111918 – volume: 268 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0100 article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115019 – volume: 119 start-page: 4777 year: 2019 ident: 10.1016/j.apenergy.2022.120435_b0055 article-title: Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00315 – volume: 257 year: 2020 ident: 10.1016/j.apenergy.2022.120435_b0115 article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113993 – volume: 214 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0295 article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118812 – volume: 53 start-page: 147 year: 2013 ident: 10.1016/j.apenergy.2022.120435_b0185 article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.01.011 – ident: 10.1016/j.apenergy.2022.120435_b0010 doi: 10.1126/science.aad1920 – volume: 239 year: 2022 ident: 10.1016/j.apenergy.2022.120435_b0120 article-title: Emerging PEG/VO2 dual phase change materials for thermal energy storage publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2022.111686 – volume: 174 start-page: 199 year: 2021 ident: 10.1016/j.apenergy.2022.120435_b0135 article-title: Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins publication-title: Renew Energy doi: 10.1016/j.renene.2021.04.066 |
SSID | ssj0002120 |
Score | 2.6169524 |
Snippet | •The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 120435 |
SubjectTerms | Heat release efficiency Phase change material Response surface method Rotational mechanism Solidification performance Thermal energy storage |
Title | Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism |
URI | https://dx.doi.org/10.1016/j.apenergy.2022.120435 |
Volume | 331 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjBKErEB9mD1wLdbWk5EgJBjVyUhFuz291NINASKIle_A3-ZGfarWBi4sHrdiZtd2bnsZn5hpB7OD-SI76dH3PteLzrOlKzLqQqMYdkTCuWT4l4nnTHU-9x5s8qZFD2wmBZpbX9hU3PrbVdadvdbK_n8_YLRrt5_M8QUYRh3u55AWp562Nf5sEsNCMQO0h90CW8aIm1zjvsIE9krOVin6j_u4M6cDqjM3Jqo0XaLz7onFR0UiMnBxiCNVIf7lvVgNSe1e0F-TyA0EgTKhJFU7APK9t4SVNDQe_mCmuFipX1vokAnwqabfAa_s3JdlLTJUSlSUbReFOMGlfwtuK_KFZYgl2iBSw0le90k2b2lpGuNDYXz7erSzIdDV8HY8fOX3BiHoSZw5kWPWM6SndMaNxQ8q4H4ZNggXGlKyTXrvE9w4WrVaCDQIigI5UrQ8-E4BwDXifVJE30FaFKQdzUiX2D2DSc96RQkGchkRfyUMkG8ctNj2ILTo4zMpZRWYW2iEphRSisqBBWg7S_-dYFPMefHL1SptEPRYvAh_zBe_0P3htyjJPqi4LvW1LNNjt9B_FMJpu5wjbJUf_haTz5Aijq-Y0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTuMwEB7xcwAOaIFFsOyCD-wxbWInTXrgsNoFld_LgsQta8e21IomVRu0cOEZeBdekJnEoUVC4oC4xp7E8difZ6yZbwD2cf8oQfx2USaMF4pO4CnDO-iqZAKdMaN5VSXi_KLTuwpPrqPrOXhqcmEorNJhf43pFVq7J203m-1Rv9_-S9ZuZf9zYhThvousPDX3_9Fvmxwc_0El_-T86PDyd89zpQW8TMRJ6QluZNdaXxvfJjZIlOiEaBlIHttABVIJE9gotEIGRscmjqWMfaUDlYQ2QdyPBb53HhZDhAsqm9B6mMaVcMcFiaPzaHgzacmDlhyZKqUPHVPOWwElpkZvn4gzp9zRF1h15in7Vc_AGsyZfB1WZkgL12HzcJobh10dOEw24HGGs6PImcw1KxCQhi7TkxWW4ULvawpOqp-MplkL1CpZOaZ7_zuvvFWG3aAZnJeMTgtGZuoQv1b_F6OQTgRCVvNQM3XPxkXprjXZ0FA2c38y_ApXn6KVTVjIi9xsAdMaDTU_iyyR4QjRVVKjY0edwkQkWm1D1Ex6mjk2dCrKcZM2YW-DtFFWSspKa2VtQ_tFblTzgbwr0W10mr5a2SkeWu_IfvuA7B4s9S7Pz9Kz44vTHVjGFlFHm3-HhXJ8a36gMVWq3WrxMvj32bvlGW4rNho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+and+optimization+of+solidification+performance+of+a+triplex-tube+latent+heat+thermal+energy+storage+system+by+rotational+mechanism&rft.jtitle=Applied+energy&rft.au=Huang%2C+Xinyu&rft.au=Li%2C+Fangfei&rft.au=Xiao%2C+Tian&rft.au=Guo%2C+Junfei&rft.date=2023-02-01&rft.issn=0306-2619&rft.volume=331&rft.spage=120435&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_120435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |