Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism

•The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response surface method is used to optimize the solidification performance of LHTES.•The fluid-structure coupling functions of solidification time for e...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 331; p. 120435
Main Authors Huang, Xinyu, Li, Fangfei, Xiao, Tian, Guo, Junfei, Wang, Fan, Gao, Xinyu, Yang, Xiaohu, He, Ya-Ling
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response surface method is used to optimize the solidification performance of LHTES.•The fluid-structure coupling functions of solidification time for each parameter are fitted. In this paper, the rotation mechanism is applied to a triplex-tube latent heat thermal energy storage system for the first time. Numerical simulation is used to study the effect of rotation on the solidification performance of this system, and the accuracy of the numerical model is verified experimentally. Firstly, the evolution of the liquid phase, the total amount of heat energy released, and the rate of heat energy released in the solidification process of the thermal energy storage system without rotation and at different rotational speeds are compared and analyzed. It is found that the solidification time of the system at 1 rpm is reduced by 83.85 % and the heat release rate is 4.98 times higher than that at the no-rotation state. It shows that the incorporation of a rotational mechanism can effectively reduce the solidification time and increase the heat release rate of the system. Then, the internal dynamic temperature/flow rate response is used to investigate the change in the heat transfer mode of the solidification process by the addition of rotation and the improvement of the phenomenon of difficult solidification zones, which improved the internal temperature uniformity and thus the solidification behavior. By response surface method, the geometric factors of the heat storage system (fin length, fin width, fin angle) are analyzed by multiple factors. The function of the optimized target (solidification time) on each variable is fitted, and it is found that the fin length had the most significant effect on the optimized target. Finally, the effect of relevant physical parameters on the solidification process and heat release of the thermal energy storage system is investigated. To ensure low solidification time and high heat release rate, this study recommends that the temperature difference between phase change material and tube wall is higher than 25 K. This paper also proves the feasibility and superiority of copper fin/tube wall material.
AbstractList •The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response surface method is used to optimize the solidification performance of LHTES.•The fluid-structure coupling functions of solidification time for each parameter are fitted. In this paper, the rotation mechanism is applied to a triplex-tube latent heat thermal energy storage system for the first time. Numerical simulation is used to study the effect of rotation on the solidification performance of this system, and the accuracy of the numerical model is verified experimentally. Firstly, the evolution of the liquid phase, the total amount of heat energy released, and the rate of heat energy released in the solidification process of the thermal energy storage system without rotation and at different rotational speeds are compared and analyzed. It is found that the solidification time of the system at 1 rpm is reduced by 83.85 % and the heat release rate is 4.98 times higher than that at the no-rotation state. It shows that the incorporation of a rotational mechanism can effectively reduce the solidification time and increase the heat release rate of the system. Then, the internal dynamic temperature/flow rate response is used to investigate the change in the heat transfer mode of the solidification process by the addition of rotation and the improvement of the phenomenon of difficult solidification zones, which improved the internal temperature uniformity and thus the solidification behavior. By response surface method, the geometric factors of the heat storage system (fin length, fin width, fin angle) are analyzed by multiple factors. The function of the optimized target (solidification time) on each variable is fitted, and it is found that the fin length had the most significant effect on the optimized target. Finally, the effect of relevant physical parameters on the solidification process and heat release of the thermal energy storage system is investigated. To ensure low solidification time and high heat release rate, this study recommends that the temperature difference between phase change material and tube wall is higher than 25 K. This paper also proves the feasibility and superiority of copper fin/tube wall material.
ArticleNumber 120435
Author Li, Fangfei
Xiao, Tian
Gao, Xinyu
He, Ya-Ling
Guo, Junfei
Wang, Fan
Yang, Xiaohu
Huang, Xinyu
Author_xml – sequence: 1
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 2
  givenname: Fangfei
  surname: Li
  fullname: Li, Fangfei
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 3
  givenname: Tian
  surname: Xiao
  fullname: Xiao, Tian
  organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 4
  givenname: Junfei
  surname: Guo
  fullname: Guo, Junfei
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 5
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  organization: China Northwest Architecture Design and Research Institute Co. Ltd, Xi’an 710077, Shaanxi Province, China
– sequence: 6
  givenname: Xinyu
  surname: Gao
  fullname: Gao, Xinyu
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 7
  givenname: Xiaohu
  surname: Yang
  fullname: Yang, Xiaohu
  email: xiaohuyang@xjtu.edu.cn
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 8
  givenname: Ya-Ling
  surname: He
  fullname: He, Ya-Ling
  email: yalinghe@xjtu.edu.cn
  organization: Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
BookMark eNqFkE1OwzAQhS1UJNrCFZAvkOKfNEklFqCKn0qV2MDamiTj1lViR7apKKfgyKQENmy6GunNe08z34SMrLNIyDVnM854drObQYcW_eYwE0yIGRcslfMzMuZFLpIF58WIjJlkWSIyvrggkxB2jDHR-8bka2X3GKLZQDTOUrA1dV00rfkcBKdpcI2pjTbVoHTotfMt2AqPW6DRm67BjyS-l0gbiGgj3SJEGrfY-xo6HEdDdB42SMMhRGxpeaDexZ_O3tNitQVrQntJzjU0Aa9-55S8PT68Lp-T9cvTanm_TiqZFzGRAmGhNauR6ULzopRZmqUpiFzzkkMpket5qiVwrHPMc4CclTUvi1QXMuW5nJLbobfyLgSPWlVmuCZ6MI3iTB3pqp36o6uOdNVAt49n_-KdNy34w-ng3RDE_rm9Qa9CZbCHWRuPVVS1M6cqvgEfSKBb
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2023_121887
crossref_primary_10_1016_j_icheatmasstransfer_2025_108835
crossref_primary_10_1016_j_ijhydene_2023_08_003
crossref_primary_10_1016_j_applthermaleng_2023_121764
crossref_primary_10_1016_j_applthermaleng_2024_125405
crossref_primary_10_1016_j_est_2023_110178
crossref_primary_10_1016_j_est_2024_111105
crossref_primary_10_1016_j_est_2024_112436
crossref_primary_10_1016_j_applthermaleng_2023_121082
crossref_primary_10_1016_j_est_2024_113445
crossref_primary_10_1016_j_est_2024_113643
crossref_primary_10_1016_j_est_2024_114575
crossref_primary_10_1016_j_icheatmasstransfer_2024_108283
crossref_primary_10_1016_j_apenergy_2023_122422
crossref_primary_10_18686_cest237
crossref_primary_10_1016_j_est_2025_116096
crossref_primary_10_1016_j_enconman_2025_119693
crossref_primary_10_1016_j_energy_2024_132101
crossref_primary_10_1016_j_applthermaleng_2024_123855
crossref_primary_10_1016_j_heliyon_2023_e21012
crossref_primary_10_1063_5_0193078
crossref_primary_10_1016_j_energy_2023_128164
crossref_primary_10_1016_j_est_2024_113018
crossref_primary_10_1016_j_est_2024_111353
crossref_primary_10_1016_j_solener_2023_112008
crossref_primary_10_1016_j_renene_2024_121899
crossref_primary_10_1016_j_apenergy_2023_121623
crossref_primary_10_1016_j_renene_2023_119167
crossref_primary_10_1016_j_icheatmasstransfer_2024_107648
crossref_primary_10_1016_j_energy_2024_131087
crossref_primary_10_1093_ijlct_ctae014
crossref_primary_10_1016_j_adapen_2023_100149
crossref_primary_10_1016_j_energy_2023_127100
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124076
crossref_primary_10_1016_j_taml_2023_100458
crossref_primary_10_32604_fhmt_2023_045134
crossref_primary_10_1016_j_est_2024_112577
crossref_primary_10_2339_politeknik_1303193
crossref_primary_10_1016_j_apenergy_2023_121352
crossref_primary_10_1016_j_renene_2024_120537
crossref_primary_10_1016_j_enbuild_2023_113099
crossref_primary_10_1016_j_energy_2024_130839
crossref_primary_10_1007_s12273_023_1091_4
crossref_primary_10_1016_j_solmat_2023_112584
crossref_primary_10_1080_10407782_2023_2279290
crossref_primary_10_1016_j_apenergy_2023_121158
crossref_primary_10_1016_j_est_2024_111120
crossref_primary_10_1016_j_est_2024_113063
crossref_primary_10_1016_j_icheatmasstransfer_2024_107774
crossref_primary_10_1088_2631_8695_acfae3
crossref_primary_10_1080_10407782_2024_2332478
crossref_primary_10_1038_s41467_024_49333_7
crossref_primary_10_1016_j_csite_2024_105623
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124517
crossref_primary_10_1016_j_est_2023_108902
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125458
crossref_primary_10_1016_j_enconman_2023_117177
crossref_primary_10_1016_j_csite_2024_105093
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124384
crossref_primary_10_1016_j_egyr_2023_03_037
crossref_primary_10_1016_j_icheatmasstransfer_2023_107080
crossref_primary_10_1016_j_ijthermalsci_2023_108757
crossref_primary_10_1016_j_est_2024_114840
crossref_primary_10_1016_j_apenergy_2024_122997
crossref_primary_10_1016_j_est_2024_114045
crossref_primary_10_3390_en16104165
crossref_primary_10_1007_s11771_024_5696_2
crossref_primary_10_1016_j_apenergy_2023_121488
crossref_primary_10_1016_j_applthermaleng_2024_124246
crossref_primary_10_1016_j_egyr_2023_01_009
crossref_primary_10_1016_j_applthermaleng_2023_121595
crossref_primary_10_1016_j_applthermaleng_2023_121154
crossref_primary_10_1016_j_renene_2023_119269
Cites_doi 10.1016/j.molliq.2019.111140
10.1016/j.ijheatmasstransfer.2019.02.003
10.1016/j.applthermaleng.2021.117997
10.1016/j.ijheatmasstransfer.2013.02.030
10.1016/j.ijheatmasstransfer.2021.122420
10.1016/j.energy.2019.02.155
10.1016/j.renene.2022.01.097
10.1016/j.renene.2022.02.035
10.1016/j.applthermaleng.2019.114163
10.1016/j.ijheatmasstransfer.2019.04.121
10.1016/j.enconman.2020.113797
10.1016/B978-0-08-100536-1.00006-0
10.1016/j.enbuild.2018.11.018
10.1016/j.renene.2020.03.054
10.1016/j.apenergy.2017.10.050
10.1016/j.apenergy.2022.118633
10.1016/j.icheatmasstransfer.2017.10.003
10.1016/j.adapen.2021.100052
10.1016/j.jclepro.2021.129922
10.1016/j.apenergy.2014.07.015
10.1016/j.apenergy.2020.115772
10.1016/j.solener.2017.06.024
10.1016/j.adapen.2021.100022
10.1016/j.ijthermalsci.2022.107809
10.1016/j.apenergy.2019.113806
10.1016/j.rser.2021.111812
10.1016/j.apenergy.2016.11.036
10.1016/j.apenergy.2013.04.072
10.1016/j.applthermaleng.2021.117104
10.1016/j.rser.2018.05.028
10.1016/j.enconman.2021.114608
10.1016/j.ijheatmasstransfer.2021.121640
10.1016/j.icheatmasstransfer.2022.105993
10.1016/j.icheatmasstransfer.2020.104775
10.1016/j.ijheatmasstransfer.2017.06.081
10.1016/j.pecs.2015.10.003
10.1016/j.apenergy.2017.11.082
10.1016/j.enbuild.2013.09.007
10.1016/j.solener.2019.05.062
10.1016/j.applthermaleng.2022.118564
10.1016/j.ijheatmasstransfer.2021.121667
10.1016/j.apenergy.2017.08.087
10.1039/D1EE00527H
10.1016/j.applthermaleng.2022.118124
10.1016/j.adapen.2021.100064
10.1016/j.adapen.2022.100112
10.1038/s41560-021-00964-w
10.1016/j.adapen.2022.100091
10.1016/j.ijheatmasstransfer.2021.120949
10.1016/j.rser.2013.07.028
10.1016/j.applthermaleng.2019.114436
10.1016/j.rser.2021.111918
10.1016/j.apenergy.2020.115019
10.1021/acs.chemrev.8b00315
10.1016/j.apenergy.2019.113993
10.1016/j.applthermaleng.2022.118812
10.1016/j.applthermaleng.2013.01.011
10.1126/science.aad1920
10.1016/j.solmat.2022.111686
10.1016/j.renene.2021.04.066
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apenergy.2022.120435
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_120435
S0306261922016920
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
ID FETCH-LOGICAL-c378t-32ea9ff0de0f8f18b364644a27f1b1ab3e1f54f3a1ed7e77aa70bd1b84f834173
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Tue Jul 01 04:01:12 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal energy storage
Rotational mechanism
Phase change material
Heat release efficiency
Response surface method
Solidification performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-32ea9ff0de0f8f18b364644a27f1b1ab3e1f54f3a1ed7e77aa70bd1b84f834173
ParticipantIDs crossref_citationtrail_10_1016_j_apenergy_2022_120435
crossref_primary_10_1016_j_apenergy_2022_120435
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mozafari, Lee, Cheng (b0110) 2022; 186
Soltani, Soltani, Karimi, Nathwani (b0285) 2021; 179
Aftab, Usman, Shi, Yuan, Qin, Zou (b0060) 2021; 14
Hu, Li, Xu, Fan (b0075) 2022; 155
Lewis NS. Research opportunities to advance solar energy utilization. Science. 2016;351:aad1920.
Mahdi, Nsofor (b0175) 2018; 211
Soltani, Soltani, Karimi, Nathwani (b0290) 2022; 331
Carrillo, Gonzalez-Aguilar, Romero, Coronado (b0055) 2019; 119
Pizzolato, Sharma, Maute, Sciacovelli, Verda (b0245) 2017; 208
Loth, Qin, Simpson, Dykes (b0015) 2022; 8
Liu, Peng, Hu, Ling, Huang (b0145) 2019; 138
Deng, Nie, Wei, Ye (b0300) 2019; 183
Srinivasan, Diallo, Saha, Abass, Sharma, Balasubramanian (b0305) 2017; 114
Tian, Liu, Xu, Luo, Zheng, Song (b0255) 2021; 194
Huang, Yao, Yang, Zhou (b0070) 2022; 188
Xiao, Liu, Guo, Shu, Lu, Yang (b0105) 2022; 53
Sheikholeslami, Haq, Shafee, Li, Elaraki, Tlili (b0200) 2019; 135
Yang, Wei, Wang, He (b0100) 2020; 268
Alizadeh, Hosseinzadeh, Shahavi, Ganji (b0155) 2019; 163
Abdulateef, Abdulateef, Mat, Sopian, Elhub, Mussa (b0190) 2018; 90
Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (b0315) 2014; 68
Yang, Guo, Yang, Cheng, Wei, He (b0130) 2020; 279
Tao, He (b0045) 2018; 93
Hosseinzadeh, Montazer, Shafii, Ganji (b0235) 2021; 34
Kennedy, Ruggles, Rinaldi, Dowling, Duan, Caldeira (b0035) 2022; 6
Guo, Mu, Jia, Deng, Xu, Yu (b0020) 2021; 4
Jahan A, Edwards KL, Bahraminasab M. 6 - Multiple objective decision-making for material and geometry design. In: Jahan A, Edwards KL, Bahraminasab M, editors. Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design (Second Edition): Butterworth-Heinemann; 2016. p. 127-46.
Yin, Zheng, Kim, Seo, Linga (b0050) 2021; 2
Mahdi, Mohammed, Hashim, Talebizadehsardari, Nsofor (b0115) 2020; 257
Guo, Du, Liu, Yang, Li (b0215) 2022; 206
Costa, Kenisarin (b0090) 2022; 154
Fell, Gilbert, Jenkins, Mildenberger (b0005) 2022; 7
Liu, Du, Xiao, Guo, Lu, Yang (b0220) 2022; 182
Selimefendigil, Öztop (b0265) 2020; 200
Wu, Zhang, Liu (b0160) 2020; 32
Ge, Li, Li, Liu (b0260) 2022; 187
Hosseinzadeh, Alizadeh, Alipour, Jafari, Ganji (b0165) 2019; 289
Zhang, Baeyens, Cáceres, Degrève, Lv (b0030) 2016; 53
Modi, Wang, Negnevitsky (b0295) 2022; 214
Singh, Patel (b0310) 2022; 134
Johnson, Papageorgiou, Harper, Rhodes, Hanson, Webber (b0025) 2021; 3
Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (b0185) 2013; 53
Ho, See, Leong, Wong (b0250) 2021; 245
Huang, Yao, Yang, Zhou, Luo, Shen (b0080) 2022; 204
Bauer, Pfleger, Breidenbach, Eck, Laing, Kaesche (b0040) 2013; 111
Humbert, Ding, Sciacovelli (b0170) 2022; 311
Liu, Xiao, Guo, Wei, Yang, Hooman (b0225) 2022; 212
Pizzolato, Sharma, Ge, Maute, Verda, Sciacovelli (b0240) 2020; 203
Ma, Xu, Liu, Peng, Ling (b0095) 2021; 169
Bai, Li, Xie, Zhang, Lv, Xiao (b0120) 2022; 239
Huang, Liu (b0135) 2021; 174
Hosseinzadeh, Moghaddam, Asadi, Mogharrebi, Ganji (b0230) 2020; 154
Li, Li, Du, Jiang, Ding (b0085) 2019; 255
Ren, Ma, Li, Tyagi, Pandey (b0325) 2021; 230
Yang, Niu, Guo, Bai, Li, He (b0205) 2020; 117
Mahdi, Nsofor (b0125) 2017; 191
Cárdenas, León (b0065) 2013; 27
Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (b0180) 2013; 61
Sciacovelli, Gagliardi, Verda (b0150) 2015; 137
Fathi, Mussa (b0280) 2021; 39
Huang, Han, Liu (b0140) 2021; 179
Yang, Niu, Bai, Li, Cui, He (b0210) 2019; 161
Jaberi Khosroshahi, Hossainpour (b0275) 2021; 36
Abdulateef, Mat, Sopian, Abdulateef, Gitan (b0195) 2017; 155
Kurnia, Sasmito (b0270) 2018; 227
Abdulateef (10.1016/j.apenergy.2022.120435_b0190) 2018; 90
Liu (10.1016/j.apenergy.2022.120435_b0225) 2022; 212
Guo (10.1016/j.apenergy.2022.120435_b0020) 2021; 4
Li (10.1016/j.apenergy.2022.120435_b0085) 2019; 255
Jaberi Khosroshahi (10.1016/j.apenergy.2022.120435_b0275) 2021; 36
Fathi (10.1016/j.apenergy.2022.120435_b0280) 2021; 39
Sciacovelli (10.1016/j.apenergy.2022.120435_b0150) 2015; 137
Deng (10.1016/j.apenergy.2022.120435_b0300) 2019; 183
Loth (10.1016/j.apenergy.2022.120435_b0015) 2022; 8
Hosseinzadeh (10.1016/j.apenergy.2022.120435_b0235) 2021; 34
Ma (10.1016/j.apenergy.2022.120435_b0095) 2021; 169
Mozafari (10.1016/j.apenergy.2022.120435_b0110) 2022; 186
Modi (10.1016/j.apenergy.2022.120435_b0295) 2022; 214
Cárdenas (10.1016/j.apenergy.2022.120435_b0065) 2013; 27
Huang (10.1016/j.apenergy.2022.120435_b0070) 2022; 188
Ho (10.1016/j.apenergy.2022.120435_b0250) 2021; 245
Huang (10.1016/j.apenergy.2022.120435_b0135) 2021; 174
Fell (10.1016/j.apenergy.2022.120435_b0005) 2022; 7
Alizadeh (10.1016/j.apenergy.2022.120435_b0155) 2019; 163
Pizzolato (10.1016/j.apenergy.2022.120435_b0240) 2020; 203
Yang (10.1016/j.apenergy.2022.120435_b0210) 2019; 161
Humbert (10.1016/j.apenergy.2022.120435_b0170) 2022; 311
Xiao (10.1016/j.apenergy.2022.120435_b0105) 2022; 53
Al-Abidi (10.1016/j.apenergy.2022.120435_b0315) 2014; 68
Mahdi (10.1016/j.apenergy.2022.120435_b0175) 2018; 211
Costa (10.1016/j.apenergy.2022.120435_b0090) 2022; 154
Hosseinzadeh (10.1016/j.apenergy.2022.120435_b0230) 2020; 154
Yang (10.1016/j.apenergy.2022.120435_b0205) 2020; 117
Srinivasan (10.1016/j.apenergy.2022.120435_b0305) 2017; 114
Pizzolato (10.1016/j.apenergy.2022.120435_b0245) 2017; 208
10.1016/j.apenergy.2022.120435_b0010
Bauer (10.1016/j.apenergy.2022.120435_b0040) 2013; 111
Yang (10.1016/j.apenergy.2022.120435_b0100) 2020; 268
Selimefendigil (10.1016/j.apenergy.2022.120435_b0265) 2020; 200
Johnson (10.1016/j.apenergy.2022.120435_b0025) 2021; 3
Liu (10.1016/j.apenergy.2022.120435_b0145) 2019; 138
Tao (10.1016/j.apenergy.2022.120435_b0045) 2018; 93
Soltani (10.1016/j.apenergy.2022.120435_b0290) 2022; 331
Abdulateef (10.1016/j.apenergy.2022.120435_b0195) 2017; 155
Soltani (10.1016/j.apenergy.2022.120435_b0285) 2021; 179
Aftab (10.1016/j.apenergy.2022.120435_b0060) 2021; 14
Tian (10.1016/j.apenergy.2022.120435_b0255) 2021; 194
Kennedy (10.1016/j.apenergy.2022.120435_b0035) 2022; 6
Bai (10.1016/j.apenergy.2022.120435_b0120) 2022; 239
Ge (10.1016/j.apenergy.2022.120435_b0260) 2022; 187
Singh (10.1016/j.apenergy.2022.120435_b0310) 2022; 134
Huang (10.1016/j.apenergy.2022.120435_b0140) 2021; 179
Liu (10.1016/j.apenergy.2022.120435_b0220) 2022; 182
Ren (10.1016/j.apenergy.2022.120435_b0325) 2021; 230
Kurnia (10.1016/j.apenergy.2022.120435_b0270) 2018; 227
Mahdi (10.1016/j.apenergy.2022.120435_b0115) 2020; 257
Carrillo (10.1016/j.apenergy.2022.120435_b0055) 2019; 119
Huang (10.1016/j.apenergy.2022.120435_b0080) 2022; 204
10.1016/j.apenergy.2022.120435_b0320
Al-Abidi (10.1016/j.apenergy.2022.120435_b0180) 2013; 61
Yang (10.1016/j.apenergy.2022.120435_b0130) 2020; 279
Hu (10.1016/j.apenergy.2022.120435_b0075) 2022; 155
Wu (10.1016/j.apenergy.2022.120435_b0160) 2020; 32
Sheikholeslami (10.1016/j.apenergy.2022.120435_b0200) 2019; 135
Guo (10.1016/j.apenergy.2022.120435_b0215) 2022; 206
Zhang (10.1016/j.apenergy.2022.120435_b0030) 2016; 53
Hosseinzadeh (10.1016/j.apenergy.2022.120435_b0165) 2019; 289
Al-Abidi (10.1016/j.apenergy.2022.120435_b0185) 2013; 53
Yin (10.1016/j.apenergy.2022.120435_b0050) 2021; 2
Mahdi (10.1016/j.apenergy.2022.120435_b0125) 2017; 191
References_xml – volume: 255
  year: 2019
  ident: b0085
  article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications
  publication-title: Appl Energy
– volume: 183
  start-page: 161
  year: 2019
  end-page: 173
  ident: b0300
  article-title: Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube
  publication-title: Energ Buildings
– volume: 68
  start-page: 33
  year: 2014
  end-page: 41
  ident: b0315
  article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins
  publication-title: Energ Buildings
– reference: Lewis NS. Research opportunities to advance solar energy utilization. Science. 2016;351:aad1920.
– volume: 32
  year: 2020
  ident: b0160
  article-title: Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins
  publication-title: J Storage Mater
– volume: 268
  year: 2020
  ident: b0100
  article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam
  publication-title: Appl Energy
– volume: 188
  start-page: 890
  year: 2022
  end-page: 910
  ident: b0070
  article-title: Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection
  publication-title: Renew Energy
– volume: 214
  year: 2022
  ident: b0295
  article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage
  publication-title: Appl Therm Eng
– volume: 3
  year: 2021
  ident: b0025
  article-title: The economic and reliability impacts of grid-scale storage in a high penetration renewable energy system
  publication-title: Adv Appl Energy
– volume: 138
  start-page: 667
  year: 2019
  end-page: 676
  ident: b0145
  article-title: Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins
  publication-title: Int J Heat Mass Transf
– volume: 245
  year: 2021
  ident: b0250
  article-title: An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure
  publication-title: Energ Conver Manage
– volume: 27
  start-page: 724
  year: 2013
  end-page: 737
  ident: b0065
  article-title: High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques
  publication-title: Renew Sustain Energy Rev
– volume: 206
  year: 2022
  ident: b0215
  article-title: Compression effect of metal foam on melting phase change in a shell-and-tube unit
  publication-title: Appl Therm Eng
– volume: 135
  start-page: 470
  year: 2019
  end-page: 478
  ident: b0200
  article-title: Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger
  publication-title: Int J Heat Mass Transf
– volume: 208
  start-page: 210
  year: 2017
  end-page: 227
  ident: b0245
  article-title: Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization
  publication-title: Appl Energy
– volume: 182
  year: 2022
  ident: b0220
  article-title: Design and assessments on a hybrid pin fin-metal foam structure towards enhancing melting heat transfer: An experimental study
  publication-title: Int J Therm Sci
– volume: 36
  year: 2021
  ident: b0275
  article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system
  publication-title: J Storage Mater
– volume: 279
  year: 2020
  ident: b0130
  article-title: Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit
  publication-title: Appl Energy
– volume: 187
  start-page: 829
  year: 2022
  end-page: 843
  ident: b0260
  article-title: Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system
  publication-title: Renew Energy
– volume: 204
  year: 2022
  ident: b0080
  article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system
  publication-title: Appl Therm Eng
– volume: 155
  year: 2022
  ident: b0075
  article-title: Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting
  publication-title: Renew Sustain Energy Rev
– volume: 230
  year: 2021
  ident: b0325
  article-title: Optimisation of a renewable cooling and heating system using an integer-based genetic algorithm, response surface method and life cycle analysis
  publication-title: Energ Conver Manage
– volume: 203
  year: 2020
  ident: b0240
  article-title: Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements
  publication-title: Energy
– volume: 186
  year: 2022
  ident: b0110
  article-title: A novel dual-PCM configuration to improve simultaneous energy storage and recovery in triplex-tube heat exchanger
  publication-title: Int J Heat Mass Transf
– volume: 200
  start-page: 61
  year: 2020
  end-page: 75
  ident: b0265
  article-title: Mixed convection in a PCM filled cavity under the influence of a rotating cylinder
  publication-title: Sol Energy
– volume: 191
  start-page: 22
  year: 2017
  end-page: 34
  ident: b0125
  article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination
  publication-title: Appl Energy
– volume: 289
  year: 2019
  ident: b0165
  article-title: Effect of nanoparticle shape factor and snowflake crystal structure on discharging acceleration LHTESS containing (Al2O3 - GO) HNEPCM
  publication-title: J Mol Liq
– volume: 14
  start-page: 4268
  year: 2021
  end-page: 4291
  ident: b0060
  article-title: Phase change material-integrated latent heat storage systems for sustainable energy solutions
  publication-title: Energ Environ Sci
– volume: 2
  year: 2021
  ident: b0050
  article-title: Hydrates for cold energy storage and transport: A review
  publication-title: Adv Appl Energy
– volume: 161
  year: 2019
  ident: b0210
  article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage
  publication-title: Appl Therm Eng
– volume: 174
  start-page: 199
  year: 2021
  end-page: 217
  ident: b0135
  article-title: Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins
  publication-title: Renew Energy
– volume: 39
  year: 2021
  ident: b0280
  article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage
  publication-title: J Storage Mater
– volume: 111
  start-page: 1114
  year: 2013
  end-page: 1119
  ident: b0040
  article-title: Material aspects of Solar Salt for sensible heat storage
  publication-title: Appl Energy
– volume: 34
  year: 2021
  ident: b0235
  article-title: Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles
  publication-title: J Storage Mater
– volume: 8
  year: 2022
  ident: b0015
  article-title: Why we must move beyond LCOE for renewable energy design
  publication-title: Adv Appl Energy
– volume: 212
  year: 2022
  ident: b0225
  article-title: Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: Evaluation on gradient in pore structure
  publication-title: Appl Therm Eng
– volume: 90
  start-page: 73
  year: 2018
  end-page: 84
  ident: b0190
  article-title: Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins
  publication-title: Int Commun Heat Mass Transfer
– volume: 117
  year: 2020
  ident: b0205
  article-title: Role of pin fin-metal foam composite structure in improving solidification: Performance evaluation
  publication-title: Int Commun Heat Mass Transfer
– volume: 194
  year: 2021
  ident: b0255
  article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage
  publication-title: Appl Therm Eng
– volume: 257
  year: 2020
  ident: b0115
  article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system
  publication-title: Appl Energy
– volume: 6
  year: 2022
  ident: b0035
  article-title: The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy
  publication-title: Adv Appl Energy
– volume: 61
  start-page: 684
  year: 2013
  end-page: 695
  ident: b0180
  article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins
  publication-title: Int J Heat Mass Transf
– reference: Jahan A, Edwards KL, Bahraminasab M. 6 - Multiple objective decision-making for material and geometry design. In: Jahan A, Edwards KL, Bahraminasab M, editors. Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design (Second Edition): Butterworth-Heinemann; 2016. p. 127-46.
– volume: 53
  start-page: 1
  year: 2016
  end-page: 40
  ident: b0030
  article-title: Thermal energy storage: Recent developments and practical aspects
  publication-title: Prog Energy Combust Sci
– volume: 154
  year: 2022
  ident: b0090
  article-title: A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges
  publication-title: Renew Sustain Energy Rev
– volume: 169
  year: 2021
  ident: b0095
  article-title: Numerical study on solidification behavior and exergy analysis of a latent heat storage unit with innovative circular superimposed longitudinal fins
  publication-title: Int J Heat Mass Transf
– volume: 93
  start-page: 245
  year: 2018
  end-page: 259
  ident: b0045
  article-title: A review of phase change material and performance enhancement method for latent heat storage system
  publication-title: Renew Sustain Energy Rev
– volume: 331
  year: 2022
  ident: b0290
  article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism
  publication-title: J Clean Prod
– volume: 114
  start-page: 318
  year: 2017
  end-page: 323
  ident: b0305
  article-title: Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane
  publication-title: Int J Heat Mass Transf
– volume: 119
  start-page: 4777
  year: 2019
  end-page: 4816
  ident: b0055
  article-title: Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials
  publication-title: Chem Rev
– volume: 155
  start-page: 142
  year: 2017
  end-page: 153
  ident: b0195
  article-title: Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins
  publication-title: Sol Energy
– volume: 137
  start-page: 707
  year: 2015
  end-page: 715
  ident: b0150
  article-title: Maximization of performance of a PCM latent heat storage system with innovative fins
  publication-title: Appl Energy
– volume: 163
  year: 2019
  ident: b0155
  article-title: Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material
  publication-title: Appl Therm Eng
– volume: 134
  year: 2022
  ident: b0310
  article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions
  publication-title: Int Commun Heat Mass Transfer
– volume: 53
  start-page: 147
  year: 2013
  end-page: 156
  ident: b0185
  article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers
  publication-title: Appl Therm Eng
– volume: 53
  year: 2022
  ident: b0105
  article-title: Effect of metal foam on improving solid–liquid phase change in a multi-channel thermal storage tank
  publication-title: Sustainable Energy Technol Assess
– volume: 211
  start-page: 975
  year: 2018
  end-page: 986
  ident: b0175
  article-title: Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins
  publication-title: Appl Energy
– volume: 154
  start-page: 497
  year: 2020
  end-page: 507
  ident: b0230
  article-title: Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation
  publication-title: Renew Energy
– volume: 4
  year: 2021
  ident: b0020
  article-title: Electric/thermal hybrid energy storage planning for park-level integrated energy systems with second-life battery utilization
  publication-title: Adv Appl Energy
– volume: 311
  year: 2022
  ident: b0170
  article-title: Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures
  publication-title: Appl Energy
– volume: 227
  start-page: 542
  year: 2018
  end-page: 554
  ident: b0270
  article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage
  publication-title: Appl Energy
– volume: 7
  start-page: 25
  year: 2022
  end-page: 29
  ident: b0005
  article-title: Nuclear power and renewable energy are both associated with national decarbonization
  publication-title: Nat Energy
– volume: 239
  year: 2022
  ident: b0120
  article-title: Emerging PEG/VO2 dual phase change materials for thermal energy storage
  publication-title: Sol Energy Mater Sol Cells
– volume: 179
  year: 2021
  ident: b0140
  article-title: Experimental investigation on the melting and solidification performance enhancement of a fractal latent heat storage unit
  publication-title: Int J Heat Mass Transf
– volume: 179
  year: 2021
  ident: b0285
  article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms
  publication-title: Int J Heat Mass Transf
– volume: 32
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0160
  article-title: Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins
  publication-title: J Storage Mater
– volume: 289
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0165
  article-title: Effect of nanoparticle shape factor and snowflake crystal structure on discharging acceleration LHTESS containing (Al2O3 - GO) HNEPCM
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2019.111140
– volume: 135
  start-page: 470
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0200
  article-title: Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.02.003
– volume: 39
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0280
  article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage
  publication-title: J Storage Mater
– volume: 53
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0105
  article-title: Effect of metal foam on improving solid–liquid phase change in a multi-channel thermal storage tank
  publication-title: Sustainable Energy Technol Assess
– volume: 204
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0080
  article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117997
– volume: 61
  start-page: 684
  year: 2013
  ident: 10.1016/j.apenergy.2022.120435_b0180
  article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2013.02.030
– volume: 36
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0275
  article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system
  publication-title: J Storage Mater
– volume: 186
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0110
  article-title: A novel dual-PCM configuration to improve simultaneous energy storage and recovery in triplex-tube heat exchanger
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2021.122420
– volume: 203
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0240
  article-title: Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.155
– volume: 187
  start-page: 829
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0260
  article-title: Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.01.097
– volume: 188
  start-page: 890
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0070
  article-title: Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.02.035
– volume: 161
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0210
  article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114163
– volume: 138
  start-page: 667
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0145
  article-title: Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.04.121
– volume: 230
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0325
  article-title: Optimisation of a renewable cooling and heating system using an integer-based genetic algorithm, response surface method and life cycle analysis
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2020.113797
– ident: 10.1016/j.apenergy.2022.120435_b0320
  doi: 10.1016/B978-0-08-100536-1.00006-0
– volume: 183
  start-page: 161
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0300
  article-title: Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2018.11.018
– volume: 154
  start-page: 497
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0230
  article-title: Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.03.054
– volume: 208
  start-page: 210
  year: 2017
  ident: 10.1016/j.apenergy.2022.120435_b0245
  article-title: Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.050
– volume: 311
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0170
  article-title: Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118633
– volume: 90
  start-page: 73
  year: 2018
  ident: 10.1016/j.apenergy.2022.120435_b0190
  article-title: Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2017.10.003
– volume: 3
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0025
  article-title: The economic and reliability impacts of grid-scale storage in a high penetration renewable energy system
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2021.100052
– volume: 331
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0290
  article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.129922
– volume: 137
  start-page: 707
  year: 2015
  ident: 10.1016/j.apenergy.2022.120435_b0150
  article-title: Maximization of performance of a PCM latent heat storage system with innovative fins
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.015
– volume: 279
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0130
  article-title: Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115772
– volume: 155
  start-page: 142
  year: 2017
  ident: 10.1016/j.apenergy.2022.120435_b0195
  article-title: Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.06.024
– volume: 34
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0235
  article-title: Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles
  publication-title: J Storage Mater
– volume: 2
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0050
  article-title: Hydrates for cold energy storage and transport: A review
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2021.100022
– volume: 182
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0220
  article-title: Design and assessments on a hybrid pin fin-metal foam structure towards enhancing melting heat transfer: An experimental study
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107809
– volume: 255
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0085
  article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113806
– volume: 154
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0090
  article-title: A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111812
– volume: 191
  start-page: 22
  year: 2017
  ident: 10.1016/j.apenergy.2022.120435_b0125
  article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.036
– volume: 111
  start-page: 1114
  year: 2013
  ident: 10.1016/j.apenergy.2022.120435_b0040
  article-title: Material aspects of Solar Salt for sensible heat storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.04.072
– volume: 194
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0255
  article-title: Bionic topology optimization of fins for rapid latent heat thermal energy storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117104
– volume: 93
  start-page: 245
  year: 2018
  ident: 10.1016/j.apenergy.2022.120435_b0045
  article-title: A review of phase change material and performance enhancement method for latent heat storage system
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.05.028
– volume: 245
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0250
  article-title: An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2021.114608
– volume: 179
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0140
  article-title: Experimental investigation on the melting and solidification performance enhancement of a fractal latent heat storage unit
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2021.121640
– volume: 134
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0310
  article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.105993
– volume: 117
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0205
  article-title: Role of pin fin-metal foam composite structure in improving solidification: Performance evaluation
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104775
– volume: 114
  start-page: 318
  year: 2017
  ident: 10.1016/j.apenergy.2022.120435_b0305
  article-title: Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.06.081
– volume: 53
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2022.120435_b0030
  article-title: Thermal energy storage: Recent developments and practical aspects
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2015.10.003
– volume: 211
  start-page: 975
  year: 2018
  ident: 10.1016/j.apenergy.2022.120435_b0175
  article-title: Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.082
– volume: 68
  start-page: 33
  year: 2014
  ident: 10.1016/j.apenergy.2022.120435_b0315
  article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2013.09.007
– volume: 200
  start-page: 61
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0265
  article-title: Mixed convection in a PCM filled cavity under the influence of a rotating cylinder
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.05.062
– volume: 212
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0225
  article-title: Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: Evaluation on gradient in pore structure
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118564
– volume: 179
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0285
  article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2021.121667
– volume: 227
  start-page: 542
  year: 2018
  ident: 10.1016/j.apenergy.2022.120435_b0270
  article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.087
– volume: 14
  start-page: 4268
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0060
  article-title: Phase change material-integrated latent heat storage systems for sustainable energy solutions
  publication-title: Energ Environ Sci
  doi: 10.1039/D1EE00527H
– volume: 206
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0215
  article-title: Compression effect of metal foam on melting phase change in a shell-and-tube unit
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118124
– volume: 4
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0020
  article-title: Electric/thermal hybrid energy storage planning for park-level integrated energy systems with second-life battery utilization
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2021.100064
– volume: 8
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0015
  article-title: Why we must move beyond LCOE for renewable energy design
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2022.100112
– volume: 7
  start-page: 25
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0005
  article-title: Nuclear power and renewable energy are both associated with national decarbonization
  publication-title: Nat Energy
  doi: 10.1038/s41560-021-00964-w
– volume: 6
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0035
  article-title: The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2022.100091
– volume: 169
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0095
  article-title: Numerical study on solidification behavior and exergy analysis of a latent heat storage unit with innovative circular superimposed longitudinal fins
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2021.120949
– volume: 27
  start-page: 724
  year: 2013
  ident: 10.1016/j.apenergy.2022.120435_b0065
  article-title: High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.07.028
– volume: 163
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0155
  article-title: Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114436
– volume: 155
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0075
  article-title: Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111918
– volume: 268
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0100
  article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115019
– volume: 119
  start-page: 4777
  year: 2019
  ident: 10.1016/j.apenergy.2022.120435_b0055
  article-title: Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00315
– volume: 257
  year: 2020
  ident: 10.1016/j.apenergy.2022.120435_b0115
  article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113993
– volume: 214
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0295
  article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118812
– volume: 53
  start-page: 147
  year: 2013
  ident: 10.1016/j.apenergy.2022.120435_b0185
  article-title: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.01.011
– ident: 10.1016/j.apenergy.2022.120435_b0010
  doi: 10.1126/science.aad1920
– volume: 239
  year: 2022
  ident: 10.1016/j.apenergy.2022.120435_b0120
  article-title: Emerging PEG/VO2 dual phase change materials for thermal energy storage
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2022.111686
– volume: 174
  start-page: 199
  year: 2021
  ident: 10.1016/j.apenergy.2022.120435_b0135
  article-title: Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.04.066
SSID ssj0002120
Score 2.6169524
Snippet •The rotating mechanism is applied to a triplex-tube LHTES system.•The effect of rotation on heat transfer during solidification of PCM is studied.•Response...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120435
SubjectTerms Heat release efficiency
Phase change material
Response surface method
Rotational mechanism
Solidification performance
Thermal energy storage
Title Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism
URI https://dx.doi.org/10.1016/j.apenergy.2022.120435
Volume 331
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjBKErEB9mD1wLdbWk5EgJBjVyUhFuz291NINASKIle_A3-ZGfarWBi4sHrdiZtd2bnsZn5hpB7OD-SI76dH3PteLzrOlKzLqQqMYdkTCuWT4l4nnTHU-9x5s8qZFD2wmBZpbX9hU3PrbVdadvdbK_n8_YLRrt5_M8QUYRh3u55AWp562Nf5sEsNCMQO0h90CW8aIm1zjvsIE9krOVin6j_u4M6cDqjM3Jqo0XaLz7onFR0UiMnBxiCNVIf7lvVgNSe1e0F-TyA0EgTKhJFU7APK9t4SVNDQe_mCmuFipX1vokAnwqabfAa_s3JdlLTJUSlSUbReFOMGlfwtuK_KFZYgl2iBSw0le90k2b2lpGuNDYXz7erSzIdDV8HY8fOX3BiHoSZw5kWPWM6SndMaNxQ8q4H4ZNggXGlKyTXrvE9w4WrVaCDQIigI5UrQ8-E4BwDXifVJE30FaFKQdzUiX2D2DSc96RQkGchkRfyUMkG8ctNj2ILTo4zMpZRWYW2iEphRSisqBBWg7S_-dYFPMefHL1SptEPRYvAh_zBe_0P3htyjJPqi4LvW1LNNjt9B_FMJpu5wjbJUf_haTz5Aijq-Y0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTuMwEB7xcwAOaIFFsOyCD-wxbWInTXrgsNoFld_LgsQta8e21IomVRu0cOEZeBdekJnEoUVC4oC4xp7E8difZ6yZbwD2cf8oQfx2USaMF4pO4CnDO-iqZAKdMaN5VSXi_KLTuwpPrqPrOXhqcmEorNJhf43pFVq7J203m-1Rv9_-S9ZuZf9zYhThvousPDX3_9Fvmxwc_0El_-T86PDyd89zpQW8TMRJ6QluZNdaXxvfJjZIlOiEaBlIHttABVIJE9gotEIGRscmjqWMfaUDlYQ2QdyPBb53HhZDhAsqm9B6mMaVcMcFiaPzaHgzacmDlhyZKqUPHVPOWwElpkZvn4gzp9zRF1h15in7Vc_AGsyZfB1WZkgL12HzcJobh10dOEw24HGGs6PImcw1KxCQhi7TkxWW4ULvawpOqp-MplkL1CpZOaZ7_zuvvFWG3aAZnJeMTgtGZuoQv1b_F6OQTgRCVvNQM3XPxkXprjXZ0FA2c38y_ApXn6KVTVjIi9xsAdMaDTU_iyyR4QjRVVKjY0edwkQkWm1D1Ex6mjk2dCrKcZM2YW-DtFFWSspKa2VtQ_tFblTzgbwr0W10mr5a2SkeWu_IfvuA7B4s9S7Pz9Kz44vTHVjGFlFHm3-HhXJ8a36gMVWq3WrxMvj32bvlGW4rNho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+and+optimization+of+solidification+performance+of+a+triplex-tube+latent+heat+thermal+energy+storage+system+by+rotational+mechanism&rft.jtitle=Applied+energy&rft.au=Huang%2C+Xinyu&rft.au=Li%2C+Fangfei&rft.au=Xiao%2C+Tian&rft.au=Guo%2C+Junfei&rft.date=2023-02-01&rft.issn=0306-2619&rft.volume=331&rft.spage=120435&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_120435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon