Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel
Using Atangana-Baleanu ($ AB $) fractional integral operators, we first establish some fractional Hermite-Hadamard-Mercer inclusions for interval-valued functions in this study. In this, some fresh developments of the Hermite-Hadamard inequality for fractional integral operators are presented. A few...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 5; pp. 10001 - 10020 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023506 |
Cover
Loading…
Abstract | Using Atangana-Baleanu ($ AB $) fractional integral operators, we first establish some fractional Hermite-Hadamard-Mercer inclusions for interval-valued functions in this study. In this, some fresh developments of the Hermite-Hadamard inequality for fractional integral operators are presented. A few instances are also given to support our conclusions. The resulting results could provide new insight into a variety of integral inequalities for fuzzy interval-valued functions, fractional interval-valued functions, and the optimization issues they raise. Finally, matrices-related applications are also shown. |
---|---|
AbstractList | Using Atangana-Baleanu (AB) fractional integral operators, we first establish some fractional Hermite-Hadamard-Mercer inclusions for interval-valued functions in this study. In this, some fresh developments of the Hermite-Hadamard inequality for fractional integral operators are presented. A few instances are also given to support our conclusions. The resulting results could provide new insight into a variety of integral inequalities for fuzzy interval-valued functions, fractional interval-valued functions, and the optimization issues they raise. Finally, matrices-related applications are also shown. |
Author | Aydi, Hassen Qaisar, Shahid Nasir, Jamshed Mansour, Saber |
Author_xml | – sequence: 1 givenname: Jamshed surname: Nasir fullname: Nasir, Jamshed organization: Virtual University of Pakistan, Department of Mathematics, Lahore Campus, Pakistan – sequence: 2 givenname: Saber surname: Mansour fullname: Mansour, Saber organization: Department of Mathematics, Umm Al-Qura University, Faculty of Applied sciences, P.O. Box 14035, Holly Makkah 21955, Saudi Arabia – sequence: 3 givenname: Shahid surname: Qaisar fullname: Qaisar, Shahid organization: COMSATS University of Pakistan, Department of Mathematics, Sahiwal Campus, Pakistan – sequence: 4 givenname: Hassen surname: Aydi fullname: Aydi, Hassen organization: Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, 4000, Tunisia, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa |
BookMark | eNptUE1LxDAQDaLg1978Abl5sZomadIeRdQVFQ_quUyTiUa7iSRZwX9v1xUR8TDM13uPmbdLNkMMSMhBzY5FJ-TJAsrzMWdcNExtkB0utahU17abv-ptMsv5hTHGay65ljvE38cF0ndIHkLJNAZ6i8lgOsx0jmnhC1ZzsLCAZOnoX5H6YMZl9jFMYDd1BdM7jNUUS7TULYMpX0sXE80lxfBErzEFHPfJloMx4-w775HHi_OHs3l1c3d5dXZ6Uxmh21IJzjTrBqWEa6F1aKbncBi6BjolLR84Y1a1Ams1yLoVyrqmkytErS1DDWKPXK11bYSX_i356faPPoLvvwYxPfWQijcj9jXTTvOJqxRIzRxo2yknG2GFagyXk9bRWsukmHNC96NXs37ler9yvf92fYLzP3DjC6z8KAn8-D_pE7IxiS8 |
CitedBy_id | crossref_primary_10_3390_sym15061188 |
Cites_doi | 10.12785/pfda/010201 10.1007/BF03322144 10.13001/1081-3810.1684 10.1016/j.cam.2018.10.022 10.1007/s00500-018-3538-6 10.1016/j.laa.2006.02.030 10.55730/1300-0098.3263 10.1016/j.ins.2017.08.055 10.7153/jmi-2020-14-24 10.1016/j.na.2009.01.120 10.1016/S0034-4877(17)30059-9 10.1016/j.laa.2012.12.011 10.1186/s13660-018-1896-3 10.1155/2020/7061549 10.1090/proc/14741 10.1016/j.chaos.2022.111846 10.1590/S1807-03022012000300002 10.1007/s00500-014-1483-6 10.2298/TSCI160111018A 10.1016/j.fss.2014.04.005 10.1016/j.fss.2017.02.001 10.7153/mia-20-03 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023506 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 10020 |
ExternalDocumentID | oai_doaj_org_article_107f72ebb66a470fa7d96f453d365c24 10_3934_math_2023506 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-320709b663f8a8fec393ebb95a964d2b200d683e16b41836df5943ebb17d0e7a3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:32:17 EDT 2025 Tue Jul 01 03:57:00 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-320709b663f8a8fec393ebb95a964d2b200d683e16b41836df5943ebb17d0e7a3 |
OpenAccessLink | https://doaj.org/article/107f72ebb66a470fa7d96f453d365c24 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_107f72ebb66a470fa7d96f453d365c24 crossref_primary_10_3934_math_2023506 crossref_citationtrail_10_3934_math_2023506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023506-19 key-10.3934/math.2023506-12 key-10.3934/math.2023506-11 key-10.3934/math.2023506-14 key-10.3934/math.2023506-13 key-10.3934/math.2023506-16 key-10.3934/math.2023506-15 key-10.3934/math.2023506-18 key-10.3934/math.2023506-17 key-10.3934/math.2023506-30 key-10.3934/math.2023506-10 key-10.3934/math.2023506-32 key-10.3934/math.2023506-31 key-10.3934/math.2023506-5 key-10.3934/math.2023506-4 key-10.3934/math.2023506-7 key-10.3934/math.2023506-6 key-10.3934/math.2023506-1 key-10.3934/math.2023506-3 key-10.3934/math.2023506-2 key-10.3934/math.2023506-23 key-10.3934/math.2023506-22 key-10.3934/math.2023506-25 key-10.3934/math.2023506-24 key-10.3934/math.2023506-9 key-10.3934/math.2023506-27 key-10.3934/math.2023506-8 key-10.3934/math.2023506-26 key-10.3934/math.2023506-29 key-10.3934/math.2023506-28 key-10.3934/math.2023506-21 key-10.3934/math.2023506-20 |
References_xml | – ident: key-10.3934/math.2023506-11 doi: 10.12785/pfda/010201 – ident: key-10.3934/math.2023506-28 doi: 10.1007/BF03322144 – ident: key-10.3934/math.2023506-7 doi: 10.13001/1081-3810.1684 – ident: key-10.3934/math.2023506-30 – ident: key-10.3934/math.2023506-1 doi: 10.1016/j.cam.2018.10.022 – ident: key-10.3934/math.2023506-3 – ident: key-10.3934/math.2023506-27 doi: 10.1007/s00500-018-3538-6 – ident: key-10.3934/math.2023506-4 doi: 10.1016/j.laa.2006.02.030 – ident: key-10.3934/math.2023506-21 doi: 10.55730/1300-0098.3263 – ident: key-10.3934/math.2023506-18 doi: 10.1016/j.ins.2017.08.055 – ident: key-10.3934/math.2023506-9 doi: 10.7153/jmi-2020-14-24 – ident: key-10.3934/math.2023506-5 doi: 10.1016/j.na.2009.01.120 – ident: key-10.3934/math.2023506-31 – ident: key-10.3934/math.2023506-29 – ident: key-10.3934/math.2023506-12 doi: 10.1016/S0034-4877(17)30059-9 – ident: key-10.3934/math.2023506-6 doi: 10.1016/j.laa.2012.12.011 – ident: key-10.3934/math.2023506-20 – ident: key-10.3934/math.2023506-19 doi: 10.1186/s13660-018-1896-3 – ident: key-10.3934/math.2023506-8 doi: 10.1155/2020/7061549 – ident: key-10.3934/math.2023506-2 – ident: key-10.3934/math.2023506-16 doi: 10.1090/proc/14741 – ident: key-10.3934/math.2023506-25 doi: 10.1016/j.chaos.2022.111846 – ident: key-10.3934/math.2023506-14 doi: 10.1590/S1807-03022012000300002 – ident: key-10.3934/math.2023506-15 doi: 10.1007/s00500-014-1483-6 – ident: key-10.3934/math.2023506-24 – ident: key-10.3934/math.2023506-10 doi: 10.1016/j.na.2009.01.120 – ident: key-10.3934/math.2023506-26 – ident: key-10.3934/math.2023506-13 doi: 10.2298/TSCI160111018A – ident: key-10.3934/math.2023506-22 – ident: key-10.3934/math.2023506-23 doi: 10.1016/j.fss.2014.04.005 – ident: key-10.3934/math.2023506-17 doi: 10.1016/j.fss.2017.02.001 – ident: key-10.3934/math.2023506-32 doi: 10.7153/mia-20-03 |
SSID | ssj0002124274 |
Score | 2.2348735 |
Snippet | Using Atangana-Baleanu ($ AB $) fractional integral operators, we first establish some fractional Hermite-Hadamard-Mercer inclusions for interval-valued... Using Atangana-Baleanu (AB) fractional integral operators, we first establish some fractional Hermite-Hadamard-Mercer inclusions for interval-valued functions... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 10001 |
SubjectTerms | atangana-baleanu fractional integral operator convex function interval-valued function mercer's hermite-hadamard inequality |
Title | Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel |
URI | https://doaj.org/article/107f72ebb66a470fa7d96f453d365c24 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gBiQBFp_IpHQFQVqCxQqVvk-IEqQoralN_PXRKqLIiFNTrZzne2784-f0fIhfE-9XmOL3pCHHEnVJSnjOPtYx0FaavxcfL4WY4m_HEqpp1SX5gT1tADN8DBqlZBJdCclIarOBjltAxcMMeksEnNBAo2rxNM4R4MGzKHnppMd6YZvwH_D-8eEiawuFHHBnWo-mubMtwh260zSG-bQeySDV_uka3xmkl1uU9mL_MPT78gosWEFTov6RhTURZXSzrCPJbKR7B5mA9QNC1m757OSlus8AgMhAOd1SmNpoiQ1Ns7imasnmkUnFW6xHPwN_rkF6UvDshk-PB6P4ra8giRZSqtIpbActWACwupSYO38J-AkxZGS-6SHMB2MmV-IHMOC1e6IDRHiYFysVeGHZJeOS_9EaEi9tqxHIlxGM9tYqCpRMkQO3CwnLB9cv0DWGZb7nAsYVFkEEMgvBnCm7Xw9snlWvqz4cz4Re4OsV_LINN1_QH0n7X6z_7S__F_NHJCNnFMzdHKKelVi5U_A2ejys_refUNDjzS7w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+variants+on+Mercer%27s+Hermite-Hadamard+like+inclusions+of+interval-valued+functions+for+strong+Kernel&rft.jtitle=AIMS+mathematics&rft.au=Jamshed+Nasir&rft.au=Saber+Mansour&rft.au=Shahid+Qaisar&rft.au=Hassen+Aydi&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=5&rft.spage=10001&rft.epage=10020&rft_id=info:doi/10.3934%2Fmath.2023506&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_107f72ebb66a470fa7d96f453d365c24 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |