CuFeO2–CeO2 nanopowder catalyst prepared by self-combustion glycine nitrate process and applied for hydrogen production from methanol steam reforming

Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical industry, hydrogen production is mainly accomplished by the steam reforming of natural gas. In the present study, CuFeO2–CeO2 nanopowder catalyst wi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 45; no. 32; pp. 15752 - 15762
Main Authors Yu, Chung-Lun, Sakthinathan, Subramanian, Hwang, Bae-Yinn, Lin, Sheng-Yi, Chiu, Te-Wei, Yu, Bing-Sheng, Fan, Yu-Jui, Chuang, Chenghao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 11.06.2020
Subjects
Online AccessGet full text
ISSN0360-3199
1879-3487
DOI10.1016/j.ijhydene.2020.04.077

Cover

Loading…
Abstract Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical industry, hydrogen production is mainly accomplished by the steam reforming of natural gas. In the present study, CuFeO2–CeO2 nanopowder catalyst with a heterogeneous delafossite structure was prepared by the self-combustion glycine nitrate process and used for steam reforming of methanol (SRM). The precursor solution was fabricated from Cu–Fe–Ce metal-nitrate mixed with glycine and an aqueous solution. The prepared CuFeO2–CeO2 nanopowder catalyst was studied by different physical and chemical characterization techniques. The prepared CuFeO2–CeO2 nanopowder catalyst was immensely porous with a coral-like structure. The BET surface area measurement revealed that the specific surface area of as-combusted CuFeO2–CeO2 nanopowder varied from 5.6248 m2/g to 19.5441 m2/g. In addition, the production rate of CuFeO2–CeO2 was improved by adding CeO2 and adjusting the feeding rate of the methanol. The highest H2 generation rate of the CuFeO2–CeO2 catalyst was 2582.25 (mL STP min−1 g-cat−1) at a flow rate of 30 sccm at 400 °C. Hence, the high specific surface area of the 70CuFeO2–30CeO2 nanopowder catalyst and the steam reforming process could have a very important industrial and economic impact. •CuFeO2–CeO2 nanopowder prepared by a self-combusted glycine nitrate process.•The BET surface area of CuFeO2_CeO2 varied from 5.6248 m2/g to 19.5441 m2/g.•The CuFeO2–CeO2 nanopowder was applied for the steam reforming of methanol.•The 70CuFeO2–30CeO2 exhibited H2 production rate of 2582.25 (mL STP min−1 g-cat−1).•High H2 production rate exhibited in flow rate of 30 sccm at 400 °C.
AbstractList Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical industry, hydrogen production is mainly accomplished by the steam reforming of natural gas. In the present study, CuFeO2–CeO2 nanopowder catalyst with a heterogeneous delafossite structure was prepared by the self-combustion glycine nitrate process and used for steam reforming of methanol (SRM). The precursor solution was fabricated from Cu–Fe–Ce metal-nitrate mixed with glycine and an aqueous solution. The prepared CuFeO2–CeO2 nanopowder catalyst was studied by different physical and chemical characterization techniques. The prepared CuFeO2–CeO2 nanopowder catalyst was immensely porous with a coral-like structure. The BET surface area measurement revealed that the specific surface area of as-combusted CuFeO2–CeO2 nanopowder varied from 5.6248 m2/g to 19.5441 m2/g. In addition, the production rate of CuFeO2–CeO2 was improved by adding CeO2 and adjusting the feeding rate of the methanol. The highest H2 generation rate of the CuFeO2–CeO2 catalyst was 2582.25 (mL STP min−1 g-cat−1) at a flow rate of 30 sccm at 400 °C. Hence, the high specific surface area of the 70CuFeO2–30CeO2 nanopowder catalyst and the steam reforming process could have a very important industrial and economic impact. •CuFeO2–CeO2 nanopowder prepared by a self-combusted glycine nitrate process.•The BET surface area of CuFeO2_CeO2 varied from 5.6248 m2/g to 19.5441 m2/g.•The CuFeO2–CeO2 nanopowder was applied for the steam reforming of methanol.•The 70CuFeO2–30CeO2 exhibited H2 production rate of 2582.25 (mL STP min−1 g-cat−1).•High H2 production rate exhibited in flow rate of 30 sccm at 400 °C.
Author Chiu, Te-Wei
Yu, Bing-Sheng
Fan, Yu-Jui
Sakthinathan, Subramanian
Hwang, Bae-Yinn
Yu, Chung-Lun
Lin, Sheng-Yi
Chuang, Chenghao
Author_xml – sequence: 1
  givenname: Chung-Lun
  surname: Yu
  fullname: Yu, Chung-Lun
  organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan
– sequence: 2
  givenname: Subramanian
  surname: Sakthinathan
  fullname: Sakthinathan, Subramanian
  organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan
– sequence: 3
  givenname: Bae-Yinn
  surname: Hwang
  fullname: Hwang, Bae-Yinn
  organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan
– sequence: 4
  givenname: Sheng-Yi
  surname: Lin
  fullname: Lin, Sheng-Yi
  organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan
– sequence: 5
  givenname: Te-Wei
  surname: Chiu
  fullname: Chiu, Te-Wei
  email: tewei@ntut.edu.tw
  organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan
– sequence: 6
  givenname: Bing-Sheng
  orcidid: 0000-0001-5450-4907
  surname: Yu
  fullname: Yu, Bing-Sheng
  organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan
– sequence: 7
  givenname: Yu-Jui
  surname: Fan
  fullname: Fan, Yu-Jui
  email: ray.yj.fan@tmu.edu.tw
  organization: School of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan
– sequence: 8
  givenname: Chenghao
  surname: Chuang
  fullname: Chuang, Chenghao
  organization: Department of Physics, Tamkang University, Tamsui, New Taipei City 251, Taiwan
BookMark eNqFkE1u2zAQRonCAer8XCHgBaSSkiiRQBctjDopYCCbdk1Q1NChIZECSTfQrnfoIvfrSUI3yaYbr2bzvZn53iVaOe8AoVtKSkpo--lQ2sPjMoCDsiIVKUlTkq77gNaUd6KoG96t0JrULSlqKsRHdBnjgRDakUas0fPmuIWH6u_vP5s8sFPOz_5pgIC1SmpcYsJzgFkFGHC_4AijKbSf-mNM1ju8HxdtHWBnU1AJctZriBErN2A1z6PNmPEB5_-C34M7BYaj_sea4Cc8QXrMN0ccE6gJB8jpybr9Nbowaoxw8zav0M_ttx-b-2L3cPd983VX6LrjKTfSAozSzEAjBG-5MawmtDcD59AaRjgwxXjfNqyvWU8ZVJXWQjHSiZYJXV-h9nWvDj7GfF7OwU4qLJISedIrD_JdrzzplaSRWW8GP_8HapvUqVg2Ycfz-JdXHHK5XxaCjNqC0zDYADrJwdtzK14A5eajJQ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_11_067
crossref_primary_10_3390_catal11050547
crossref_primary_10_3390_catal13040762
crossref_primary_10_1039_D1QM00641J
crossref_primary_10_3390_ma15248957
crossref_primary_10_3390_ma15248770
crossref_primary_10_1016_j_rser_2023_114147
crossref_primary_10_1021_acsanm_3c01571
crossref_primary_10_1016_j_matchemphys_2023_127417
crossref_primary_10_1016_j_micromeso_2021_111305
crossref_primary_10_1016_j_ijhydene_2020_09_245
crossref_primary_10_1039_D4SE00526K
crossref_primary_10_1021_acs_langmuir_4c04727
crossref_primary_10_1016_j_jiec_2023_09_043
crossref_primary_10_3390_en15031209
crossref_primary_10_1016_j_ijhydene_2024_12_339
crossref_primary_10_1016_j_susc_2021_121976
crossref_primary_10_1016_j_apcatb_2021_119935
crossref_primary_10_1016_j_fuel_2021_122733
crossref_primary_10_3390_molecules29163963
crossref_primary_10_1016_j_ijhydene_2021_07_097
crossref_primary_10_1021_acs_iecr_0c05041
crossref_primary_10_1039_D3EY00076A
crossref_primary_10_1039_D2RA03383F
crossref_primary_10_1016_j_ceja_2024_100625
crossref_primary_10_3390_hydrogen5010004
crossref_primary_10_1016_j_ijhydene_2021_01_010
crossref_primary_10_1016_j_mseb_2022_115989
crossref_primary_10_1016_j_ijhydene_2021_04_062
crossref_primary_10_2139_ssrn_4162450
Cites_doi 10.1016/j.catcom.2004.02.009
10.1016/S0926-860X(00)00854-1
10.1021/acsaem.9b01444
10.1016/S0920-5861(96)00195-2
10.1021/cr050198b
10.1016/j.ijhydene.2017.12.137
10.1016/j.jscs.2017.12.001
10.1007/s11664-010-1135-2
10.1016/j.apcatb.2010.06.015
10.1016/j.apcata.2003.07.012
10.1021/ie020349q
10.1016/j.ijhydene.2010.12.105
10.1016/S0920-5861(02)00235-3
10.1016/S0378-7753(01)01027-8
10.1016/j.cattod.2008.03.015
10.1016/j.apcata.2009.12.035
10.3390/app8020176
10.1016/j.ijhydene.2019.11.015
10.1016/j.ijhydene.2018.06.035
10.1016/j.ijhydene.2019.01.029
10.1016/j.ijhydene.2018.05.034
10.1016/j.ijhydene.2014.02.104
10.1016/j.micromeso.2006.11.029
10.1023/A:1023519802373
10.1016/S0926-860X(01)00500-2
10.1016/S0021-9517(04)00412-9
10.1016/S1381-1169(00)00296-X
10.1016/S0926-860X(99)00313-0
10.1016/j.tsf.2016.03.048
10.1016/j.ijhydene.2018.12.052
10.1016/j.ijhydene.2009.12.147
10.1016/S0021-9517(03)00221-5
10.1016/j.ceramint.2017.05.227
10.1021/ic900437x
10.1007/s10562-007-9277-4
10.1016/S0920-5861(01)00267-X
10.1016/j.rser.2013.08.032
10.1007/s10854-014-1801-x
ContentType Journal Article
Copyright 2020 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2020 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2020.04.077
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 15762
ExternalDocumentID 10_1016_j_ijhydene_2020_04_077
S0360319920314336
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c378t-31c9efac5fe499868ff5301bfd88e6f508e5a58b645b35b15e22cc9a5079659c3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Tue Jul 01 02:01:37 EDT 2025
Thu Apr 24 22:50:10 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords Delafossite material
CuFeO2–CeO2 nanopowder
Glycine nitrate process
Steam reforming
Hydrogen generation
Methanol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-31c9efac5fe499868ff5301bfd88e6f508e5a58b645b35b15e22cc9a5079659c3
ORCID 0000-0001-5450-4907
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2020_04_077
crossref_citationtrail_10_1016_j_ijhydene_2020_04_077
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_04_077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-11
PublicationDateYYYYMMDD 2020-06-11
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-11
  day: 11
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Basile, Parmaliana, Tosti, Iulianelli, Gallucci, Espro, Spooren (bib3) 2008; 137
Moharam, Rashad, Elsayed, Shahba (bib38) 2014; 25
Zhang, Huang, Zong, Lu, Wang, Cai (bib4) 2018; 8
Chiu, Shih, Chang (bib37) 2016; 618
Nozaki, Hayashi, Kajitani (bib35) 2010; 39
Wang, Lu, Wu, Yang, Chiu (bib8) 2011; 36
Taghizadeh, Akhoundzadeh, Rezayan, Sadeghian (bib13) 2018; 43
Liu, Hayakawa, Tsunoda, Suzuki, Hamakawa, Murata, Shiozaki, Ishii, Kumagai (bib30) 2003; 22
Ji, Lee, Choi, Seo (bib10) 2018; 43
Fujitani, Nakamura (bib23) 2000; 191
Lalanne, Barnabe, Mathieu, Tailhades (bib36) 2009; 48
Mohtashami, Taghizadeh (bib9) 2019; 44
Sa, Silva, Brandao, Sousa, Mendes (bib28) 2010; 99
Roselin, Chiu (bib18) 2018; 22
Tsai, Yoshimura (bib40) 2001; 214
Sheng, Chiu, Dong (bib33) 2017; 43
Chiu, Hong, Yu, Huang, Kameoka, Tsai (bib7) 2014; 39
Lin, Rei (bib15) 2001; 67
Shen, Song (bib5) 2002; 77
Kameoka, Tanabe, Tsai (bib39) 2010; 375
Takezawa, Iwasa (bib24) 1997; 36
Matsumura (bib27) 2018; 43
Palo (bib12) 2007; 107
Turco, Bagnasco, Costantino, Marmottini, Montanari, Ramis, Busca (bib11) 2004; 228
Huang, Ma, Wainwright (bib32) 2004; 257
Kameoka, Okada, Tsai (bib31) 2008; 120
Shanmugam, Neuberg, Zapf, Pennemann, Kolb (bib1) 2020; 45
Hwang, Sakthinathan, Chiu (bib6) 2019; 44
Tajrishi, Taghizadeh, Kiadehi (bib19) 2018; 43
Agrell, Birgersson, Boutonnet, Cabrera, Navarro, Fierro (bib29) 2003; 219
Iulianelli, Ribeirinha, Mendes, Basile (bib14) 2014; 29
Lai, Lak, Tsai (bib2) 2019; 11
Chen, Lin (bib20) 2010; 35
Twigg, Spencer (bib26) 2001; 212
Papavasiliou, Avgouropoulos, Ioannides (bib17) 2004; 5
Roggenbuck, Schafer, Tsoncheva, Minchev, Hanss, Tiemann (bib34) 2007; 101
Pajaie, Taghizadeh, Eliassi (bib16) 2012; 3
Agrell, Birgersson, Boutonnet (bib21) 2002; 106
Itoh, Kaneko, Igarashi (bib22) 2002; 41
Reitz, Ahmed, Krumpelt, Kumar, Kung (bib25) 2000; 162
Turco (10.1016/j.ijhydene.2020.04.077_bib11) 2004; 228
Shen (10.1016/j.ijhydene.2020.04.077_bib5) 2002; 77
Roselin (10.1016/j.ijhydene.2020.04.077_bib18) 2018; 22
Nozaki (10.1016/j.ijhydene.2020.04.077_bib35) 2010; 39
Iulianelli (10.1016/j.ijhydene.2020.04.077_bib14) 2014; 29
Moharam (10.1016/j.ijhydene.2020.04.077_bib38) 2014; 25
Basile (10.1016/j.ijhydene.2020.04.077_bib3) 2008; 137
Twigg (10.1016/j.ijhydene.2020.04.077_bib26) 2001; 212
Tsai (10.1016/j.ijhydene.2020.04.077_bib40) 2001; 214
Takezawa (10.1016/j.ijhydene.2020.04.077_bib24) 1997; 36
Kameoka (10.1016/j.ijhydene.2020.04.077_bib39) 2010; 375
Lai (10.1016/j.ijhydene.2020.04.077_bib2) 2019; 11
Shanmugam (10.1016/j.ijhydene.2020.04.077_bib1) 2020; 45
Sa (10.1016/j.ijhydene.2020.04.077_bib28) 2010; 99
Lin (10.1016/j.ijhydene.2020.04.077_bib15) 2001; 67
Wang (10.1016/j.ijhydene.2020.04.077_bib8) 2011; 36
Chiu (10.1016/j.ijhydene.2020.04.077_bib37) 2016; 618
Agrell (10.1016/j.ijhydene.2020.04.077_bib21) 2002; 106
Chiu (10.1016/j.ijhydene.2020.04.077_bib7) 2014; 39
Sheng (10.1016/j.ijhydene.2020.04.077_bib33) 2017; 43
Papavasiliou (10.1016/j.ijhydene.2020.04.077_bib17) 2004; 5
Chen (10.1016/j.ijhydene.2020.04.077_bib20) 2010; 35
Agrell (10.1016/j.ijhydene.2020.04.077_bib29) 2003; 219
Kameoka (10.1016/j.ijhydene.2020.04.077_bib31) 2008; 120
Pajaie (10.1016/j.ijhydene.2020.04.077_bib16) 2012; 3
Liu (10.1016/j.ijhydene.2020.04.077_bib30) 2003; 22
Huang (10.1016/j.ijhydene.2020.04.077_bib32) 2004; 257
Hwang (10.1016/j.ijhydene.2020.04.077_bib6) 2019; 44
Lalanne (10.1016/j.ijhydene.2020.04.077_bib36) 2009; 48
Matsumura (10.1016/j.ijhydene.2020.04.077_bib27) 2018; 43
Fujitani (10.1016/j.ijhydene.2020.04.077_bib23) 2000; 191
Mohtashami (10.1016/j.ijhydene.2020.04.077_bib9) 2019; 44
Zhang (10.1016/j.ijhydene.2020.04.077_bib4) 2018; 8
Ji (10.1016/j.ijhydene.2020.04.077_bib10) 2018; 43
Palo (10.1016/j.ijhydene.2020.04.077_bib12) 2007; 107
Tajrishi (10.1016/j.ijhydene.2020.04.077_bib19) 2018; 43
Roggenbuck (10.1016/j.ijhydene.2020.04.077_bib34) 2007; 101
Itoh (10.1016/j.ijhydene.2020.04.077_bib22) 2002; 41
Taghizadeh (10.1016/j.ijhydene.2020.04.077_bib13) 2018; 43
Reitz (10.1016/j.ijhydene.2020.04.077_bib25) 2000; 162
References_xml – volume: 39
  start-page: 14222
  year: 2014
  end-page: 14226
  ident: bib7
  article-title: Improving steam-reforming performance by nanopowdering CuCrO
  publication-title: Int J Hydrog Energy
– volume: 43
  start-page: S639
  year: 2017
  end-page: S642
  ident: bib33
  article-title: Preparation and characterization of CuCrO
  publication-title: Ceram Int
– volume: 22
  start-page: 692
  year: 2018
  end-page: 704
  ident: bib18
  article-title: Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO
  publication-title: J Saudi Chem Soc
– volume: 219
  start-page: 389
  year: 2003
  end-page: 403
  ident: bib29
  article-title: Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO
  publication-title: J Catal
– volume: 375
  start-page: 163
  year: 2010
  end-page: 171
  ident: bib39
  article-title: Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe
  publication-title: Appl Catal A: Gen
– volume: 106
  start-page: 249
  year: 2002
  end-page: 257
  ident: bib21
  article-title: Steam reforming of methanol over a Cu/ZnO/Al
  publication-title: J Power Sources
– volume: 29
  start-page: 355
  year: 2014
  end-page: 368
  ident: bib14
  article-title: Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review
  publication-title: Renew Sustain Energy Rev
– volume: 120
  start-page: 251
  year: 2008
  end-page: 256
  ident: bib31
  article-title: Preparation of a novel copper catalyst in terms of the immiscible interaction between copper and chromium
  publication-title: Catal Lett
– volume: 137
  start-page: 17
  year: 2008
  end-page: 22
  ident: bib3
  article-title: Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst
  publication-title: Catal Today
– volume: 43
  start-page: 3655
  year: 2018
  end-page: 3663
  ident: bib10
  article-title: Hydrogen production from steam reforming using an indirect heating method
  publication-title: Int J Hydrog Energy
– volume: 36
  start-page: 3666
  year: 2011
  end-page: 3672
  ident: bib8
  article-title: La
  publication-title: Int J Hydrogen Energy
– volume: 99
  start-page: 43
  year: 2010
  end-page: 57
  ident: bib28
  article-title: Catalysts for methanol steam reforming a review
  publication-title: Appl Catal B
– volume: 67
  start-page: 77
  year: 2001
  end-page: 84
  ident: bib15
  article-title: Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor
  publication-title: Catal Today
– volume: 43
  start-page: 10926
  year: 2018
  end-page: 10937
  ident: bib13
  article-title: Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming
  publication-title: Int J Hydrog Energy
– volume: 35
  start-page: 1987
  year: 2010
  end-page: 1997
  ident: bib20
  article-title: Effect of microwave double absorption on hydrogen generation from methanol steam reforming
  publication-title: Int J Hydrog Energy
– volume: 101
  start-page: 335
  year: 2007
  end-page: 341
  ident: bib34
  article-title: Mesoporous CeO
  publication-title: Microporous Mesoporous Mater
– volume: 41
  start-page: 4702
  year: 2002
  end-page: 4706
  ident: bib22
  article-title: Efficient hydrogen production via methanol steam reforming by preventing back-permeation of hydrogen in a palladium membrane reactor
  publication-title: Ind Eng Chem Res
– volume: 191
  start-page: 111
  year: 2000
  end-page: 129
  ident: bib23
  article-title: The chemical modification seen in the Cu/ZnO methanol synthesis catalysts
  publication-title: Appl Catal A
– volume: 5
  start-page: 231
  year: 2004
  end-page: 235
  ident: bib17
  article-title: Production of hydrogen via combined steam reforming of methanol over CuO-CeO
  publication-title: Catal Commun
– volume: 228
  start-page: 43
  year: 2004
  end-page: 55
  ident: bib11
  article-title: Production of hydrogen from oxidative steam reforming of methanol, I. Preparation and characterization of Cu/ZnO/Al
  publication-title: J Catal
– volume: 25
  start-page: 1798
  year: 2014
  end-page: 1803
  ident: bib38
  article-title: A facile novel synthesis of delafossite CuFeO
  publication-title: J Mater Sci Mater Electron
– volume: 257
  start-page: 235
  year: 2004
  end-page: 243
  ident: bib32
  article-title: The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions
  publication-title: Appl Catal A: Gen
– volume: 212
  start-page: 161
  year: 2001
  end-page: 174
  ident: bib26
  article-title: Deactivation of supported copper metal catalysts for hydrogenation reactions
  publication-title: Appl Catal A: Gen
– volume: 107
  start-page: 3992
  year: 2007
  end-page: 4021
  ident: bib12
  article-title: Methanol steam reforming for hydrogen production
  publication-title: Chem Rev
– volume: 43
  start-page: 14103
  year: 2018
  end-page: 14120
  ident: bib27
  article-title: Development of durable copper catalyst for hydrogen production by high temperature methanol steam reforming
  publication-title: Int J Hydrog Energy
– volume: 618
  start-page: 151
  year: 2016
  end-page: 158
  ident: bib37
  article-title: Preparation and properties of CuCr
  publication-title: Thin Solid Films
– volume: 44
  start-page: 2848
  year: 2019
  end-page: 2856
  ident: bib6
  article-title: Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr
  publication-title: Int J Hydrog Energy
– volume: 3
  start-page: 307
  year: 2012
  end-page: 313
  ident: bib16
  article-title: Hydrogen production from methanol steam reforming over Cu/ZnO/Al
  publication-title: J Energy Environ
– volume: 11
  start-page: 7963
  year: 2019
  end-page: 7971
  ident: bib2
  article-title: Hydrogen production via low-temperature steam-methane reforming using Ni-CeO
  publication-title: ACS Appl Energy Mater
– volume: 43
  start-page: 14103
  year: 2018
  end-page: 14120
  ident: bib19
  article-title: Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst
  publication-title: Int J Hydrog Energy
– volume: 39
  start-page: 1799
  year: 2010
  end-page: 1802
  ident: bib35
  article-title: Mn-substitution effect on thermal conductivity of delafossite-Type oxide CuFeO
  publication-title: J Electron Mater
– volume: 77
  start-page: 89
  year: 2002
  end-page: 98
  ident: bib5
  article-title: Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H
  publication-title: Catal Today
– volume: 36
  start-page: 45
  year: 1997
  end-page: 56
  ident: bib24
  article-title: Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals
  publication-title: Catal Today
– volume: 48
  start-page: 6065
  year: 2009
  end-page: 6071
  ident: bib36
  article-title: Synthesis and thermostructural studies of a CuFe
  publication-title: Inorg Chem
– volume: 162
  start-page: 275
  year: 2000
  end-page: 285
  ident: bib25
  article-title: Characterization of CuO ZnO under oxidizing conditions for the oxidative methanol reforming reaction
  publication-title: J Mol Catal A: Chem
– volume: 214
  start-page: 237
  year: 2001
  end-page: 241
  ident: bib40
  article-title: Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol
  publication-title: Appl Catal A: Gen
– volume: 8
  start-page: 176
  year: 2018
  ident: bib4
  article-title: Hydrogen production from methanol steam reforming over TiO
  publication-title: Appl Sci
– volume: 44
  start-page: 5725
  year: 2019
  end-page: 5738
  ident: bib9
  article-title: Performance of the ZrO
  publication-title: Int J Hydrog Energy
– volume: 45
  start-page: 1658
  year: 2020
  end-page: 1670
  ident: bib1
  article-title: Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: effect of support and co-support
  publication-title: Int J Hydrogen Energy
– volume: 22
  start-page: 3
  year: 2003
  end-page: 4
  ident: bib30
  article-title: Steam reforming of methanol over Cu=CeO
  publication-title: Top Catal
– volume: 5
  start-page: 231
  year: 2004
  ident: 10.1016/j.ijhydene.2020.04.077_bib17
  article-title: Production of hydrogen via combined steam reforming of methanol over CuO-CeO2 catalysts
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2004.02.009
– volume: 212
  start-page: 161
  year: 2001
  ident: 10.1016/j.ijhydene.2020.04.077_bib26
  article-title: Deactivation of supported copper metal catalysts for hydrogenation reactions
  publication-title: Appl Catal A: Gen
  doi: 10.1016/S0926-860X(00)00854-1
– volume: 11
  start-page: 7963
  year: 2019
  ident: 10.1016/j.ijhydene.2020.04.077_bib2
  article-title: Hydrogen production via low-temperature steam-methane reforming using Ni-CeO2-Al2O3 hybrid nanoparticle clusters as catalysts
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.9b01444
– volume: 36
  start-page: 45
  year: 1997
  ident: 10.1016/j.ijhydene.2020.04.077_bib24
  article-title: Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(96)00195-2
– volume: 107
  start-page: 3992
  year: 2007
  ident: 10.1016/j.ijhydene.2020.04.077_bib12
  article-title: Methanol steam reforming for hydrogen production
  publication-title: Chem Rev
  doi: 10.1021/cr050198b
– volume: 43
  start-page: 3655
  year: 2018
  ident: 10.1016/j.ijhydene.2020.04.077_bib10
  article-title: Hydrogen production from steam reforming using an indirect heating method
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2017.12.137
– volume: 22
  start-page: 692
  year: 2018
  ident: 10.1016/j.ijhydene.2020.04.077_bib18
  article-title: Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO2 catalysts
  publication-title: J Saudi Chem Soc
  doi: 10.1016/j.jscs.2017.12.001
– volume: 39
  start-page: 1799
  year: 2010
  ident: 10.1016/j.ijhydene.2020.04.077_bib35
  article-title: Mn-substitution effect on thermal conductivity of delafossite-Type oxide CuFeO2
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1135-2
– volume: 99
  start-page: 43
  year: 2010
  ident: 10.1016/j.ijhydene.2020.04.077_bib28
  article-title: Catalysts for methanol steam reforming a review
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2010.06.015
– volume: 257
  start-page: 235
  year: 2004
  ident: 10.1016/j.ijhydene.2020.04.077_bib32
  article-title: The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions
  publication-title: Appl Catal A: Gen
  doi: 10.1016/j.apcata.2003.07.012
– volume: 41
  start-page: 4702
  year: 2002
  ident: 10.1016/j.ijhydene.2020.04.077_bib22
  article-title: Efficient hydrogen production via methanol steam reforming by preventing back-permeation of hydrogen in a palladium membrane reactor
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie020349q
– volume: 36
  start-page: 3666
  year: 2011
  ident: 10.1016/j.ijhydene.2020.04.077_bib8
  article-title: La2O3-Al2O3-B2O3-SiO2 glasses for solid oxide fuel cell applications
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.105
– volume: 77
  start-page: 89
  year: 2002
  ident: 10.1016/j.ijhydene.2020.04.077_bib5
  article-title: Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(02)00235-3
– volume: 106
  start-page: 249
  year: 2002
  ident: 10.1016/j.ijhydene.2020.04.077_bib21
  article-title: Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(01)01027-8
– volume: 137
  start-page: 17
  year: 2008
  ident: 10.1016/j.ijhydene.2020.04.077_bib3
  article-title: Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2008.03.015
– volume: 375
  start-page: 163
  year: 2010
  ident: 10.1016/j.ijhydene.2020.04.077_bib39
  article-title: Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4
  publication-title: Appl Catal A: Gen
  doi: 10.1016/j.apcata.2009.12.035
– volume: 8
  start-page: 176
  year: 2018
  ident: 10.1016/j.ijhydene.2020.04.077_bib4
  article-title: Hydrogen production from methanol steam reforming over TiO2 and CeO2 pillared clay supported Au catalysts
  publication-title: Appl Sci
  doi: 10.3390/app8020176
– volume: 45
  start-page: 1658
  year: 2020
  ident: 10.1016/j.ijhydene.2020.04.077_bib1
  article-title: Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: effect of support and co-support
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.015
– volume: 43
  start-page: 14103
  year: 2018
  ident: 10.1016/j.ijhydene.2020.04.077_bib19
  article-title: Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2018.06.035
– volume: 44
  start-page: 5725
  year: 2019
  ident: 10.1016/j.ijhydene.2020.04.077_bib9
  article-title: Performance of the ZrO2 promoted CueZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.01.029
– volume: 43
  start-page: 10926
  year: 2018
  ident: 10.1016/j.ijhydene.2020.04.077_bib13
  article-title: Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2018.05.034
– volume: 39
  start-page: 14222
  year: 2014
  ident: 10.1016/j.ijhydene.2020.04.077_bib7
  article-title: Improving steam-reforming performance by nanopowdering CuCrO2
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2014.02.104
– volume: 43
  start-page: 14103
  year: 2018
  ident: 10.1016/j.ijhydene.2020.04.077_bib27
  article-title: Development of durable copper catalyst for hydrogen production by high temperature methanol steam reforming
  publication-title: Int J Hydrog Energy
– volume: 101
  start-page: 335
  year: 2007
  ident: 10.1016/j.ijhydene.2020.04.077_bib34
  article-title: Mesoporous CeO2: synthesis by nanocasting, characterisation and catalytic properties
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2006.11.029
– volume: 22
  start-page: 3
  year: 2003
  ident: 10.1016/j.ijhydene.2020.04.077_bib30
  article-title: Steam reforming of methanol over Cu=CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalyst
  publication-title: Top Catal
  doi: 10.1023/A:1023519802373
– volume: 214
  start-page: 237
  year: 2001
  ident: 10.1016/j.ijhydene.2020.04.077_bib40
  article-title: Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol
  publication-title: Appl Catal A: Gen
  doi: 10.1016/S0926-860X(01)00500-2
– volume: 228
  start-page: 43
  year: 2004
  ident: 10.1016/j.ijhydene.2020.04.077_bib11
  article-title: Production of hydrogen from oxidative steam reforming of methanol, I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor
  publication-title: J Catal
  doi: 10.1016/S0021-9517(04)00412-9
– volume: 162
  start-page: 275
  year: 2000
  ident: 10.1016/j.ijhydene.2020.04.077_bib25
  article-title: Characterization of CuO ZnO under oxidizing conditions for the oxidative methanol reforming reaction
  publication-title: J Mol Catal A: Chem
  doi: 10.1016/S1381-1169(00)00296-X
– volume: 191
  start-page: 111
  year: 2000
  ident: 10.1016/j.ijhydene.2020.04.077_bib23
  article-title: The chemical modification seen in the Cu/ZnO methanol synthesis catalysts
  publication-title: Appl Catal A
  doi: 10.1016/S0926-860X(99)00313-0
– volume: 618
  start-page: 151
  year: 2016
  ident: 10.1016/j.ijhydene.2020.04.077_bib37
  article-title: Preparation and properties of CuCr1− xFexO2 thin films prepared by chemical solution deposition with two-step annealing
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.03.048
– volume: 3
  start-page: 307
  issue: 4
  year: 2012
  ident: 10.1016/j.ijhydene.2020.04.077_bib16
  article-title: Hydrogen production from methanol steam reforming over Cu/ZnO/Al2O3/CeO2/ZrO nanocatalyst in an adiabatic fixed-bed reactor, Iran
  publication-title: J Energy Environ
– volume: 44
  start-page: 2848
  year: 2019
  ident: 10.1016/j.ijhydene.2020.04.077_bib6
  article-title: Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2018.12.052
– volume: 35
  start-page: 1987
  year: 2010
  ident: 10.1016/j.ijhydene.2020.04.077_bib20
  article-title: Effect of microwave double absorption on hydrogen generation from methanol steam reforming
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2009.12.147
– volume: 219
  start-page: 389
  year: 2003
  ident: 10.1016/j.ijhydene.2020.04.077_bib29
  article-title: Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3
  publication-title: J Catal
  doi: 10.1016/S0021-9517(03)00221-5
– volume: 43
  start-page: S639
  year: 2017
  ident: 10.1016/j.ijhydene.2020.04.077_bib33
  article-title: Preparation and characterization of CuCrO2-CeO2 composite nanopowder by a self-combustion glycine nitrate process
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.05.227
– volume: 48
  start-page: 6065
  year: 2009
  ident: 10.1016/j.ijhydene.2020.04.077_bib36
  article-title: Synthesis and thermostructural studies of a CuFe1-xCrxO2 delafossite solid solution with 0 ≤ X ≤ 1
  publication-title: Inorg Chem
  doi: 10.1021/ic900437x
– volume: 120
  start-page: 251
  year: 2008
  ident: 10.1016/j.ijhydene.2020.04.077_bib31
  article-title: Preparation of a novel copper catalyst in terms of the immiscible interaction between copper and chromium
  publication-title: Catal Lett
  doi: 10.1007/s10562-007-9277-4
– volume: 67
  start-page: 77
  year: 2001
  ident: 10.1016/j.ijhydene.2020.04.077_bib15
  article-title: Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(01)00267-X
– volume: 29
  start-page: 355
  year: 2014
  ident: 10.1016/j.ijhydene.2020.04.077_bib14
  article-title: Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.08.032
– volume: 25
  start-page: 1798
  year: 2014
  ident: 10.1016/j.ijhydene.2020.04.077_bib38
  article-title: A facile novel synthesis of delafossite CuFeO2 powders
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-014-1801-x
SSID ssj0017049
Score 2.4737613
Snippet Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 15752
SubjectTerms CuFeO2–CeO2 nanopowder
Delafossite material
Glycine nitrate process
Hydrogen generation
Methanol
Steam reforming
Title CuFeO2–CeO2 nanopowder catalyst prepared by self-combustion glycine nitrate process and applied for hydrogen production from methanol steam reforming
URI https://dx.doi.org/10.1016/j.ijhydene.2020.04.077
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXNoDAgoq5aE5cA2bOLaTHNGqqwVUOLRI3CLbsemuliRaFlV7QfwHDv1__SWdyQMtUiUOPUWJPErsefhLMvMNYycqLNCDVBgkYWQDYZ0KMstloLyNtY6l5p5qh79dqfGNuLiVt2ts2NfCUFplF_vbmN5E6-7KoFvNQT2ZDL5j7KUSnIwTA3scE-22EAlZ-enTa5pHlHQQGAcHNHqlSnh6Opn-XKJ7E10mDxvK0yT59wa1sumMtthmhxbhrH2gbbbmyh32cYVD8BP7PXwcuWv-5_lliAcodVnV1a_CzaH5MrN8WEA9d02eOZglPLiZD3Cyhrp4VSXczZb0ax3Qs4k0Auq2cAB0WYBuESogrgWcwbxCY6MBRcs4C1SaAtSCGu85AzKXe8D5VJRec7fLbkZffwzHQddtIbBxki5wcWzmvKbsM3wLSlXqvUTvN75IU6c8AjkntUyNEtLE0kTScW5tphFQEimhjffYelmV7jMDqZwXHF9kisKI1BqTSZFkXAvpZORtus9kv8S57ajIqSPGLO9zzqZ5r5qcVJOHIkfV7LPBq1zdknG8K5H1GszfmFWOO8Y7sl_-Q_aAfaAzyimLokO2vpg_uiNELwtz3JjnMds4O78cX_0FinL07Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSZ0gzFEkfSPrKDV1VS5RISWNgxHBezpAEyEaQFJnacCTBcVB463_o0P_XX5I7SwocoECGTgIkHiTyjseP4t13jH2TYYEzSIZBGkY2SKyTQW65CKS3sdax0NxT7vD5WI6uk5MbcbPBBl0uDIVVtr6_8ekrb93e6bej2a8nk_4l-l5Kwck5MbDHsXzFNomdSvTY5uHx6Wj8dJiQtigY2wcksJYoPP0-mf5Y4gwnxkwerlhP0_Tfa9TaujPcYW9awAiHzTftsg1XvmXbazSC79ifwcPQXfC_v34P8AKlLqu6-lm4Oax-zizvF1DP3SrUHMwS7t3MB9hfQ4W8qhJuZ0s6XQec3MQbAXWTOwC6LEA3IBUQ2gL2YF6hvVGDoiGdBcpOAapCje-cAVnMHWB_KoqwuX3ProdHV4NR0BZcCGycZgscHJs7rykADTdCmcy8F-gAjC-yzEmPWM4JLTIjE2FiYSLhOLc214gpiZfQxh9Yr6xKt8dASOcTjnuZojBJZo3JUTU514lwIvI222eiG2JlWzZyKooxU13Y2VR1qlGkGhUmClWzz_pPcnXDx_GiRN5pUD2zLIWLxguyH_9D9oBtja7Oz9TZ8fj0E3tNTyjELIo-s95i_uC-IJhZmK-tsT4C4LD3ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CuFeO2%E2%80%93CeO2+nanopowder+catalyst+prepared+by+self-combustion+glycine+nitrate+process+and+applied+for+hydrogen+production+from+methanol+steam+reforming&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Yu%2C+Chung-Lun&rft.au=Sakthinathan%2C+Subramanian&rft.au=Hwang%2C+Bae-Yinn&rft.au=Lin%2C+Sheng-Yi&rft.date=2020-06-11&rft.issn=0360-3199&rft.volume=45&rft.issue=32&rft.spage=15752&rft.epage=15762&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.04.077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2020_04_077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon