CuFeO2–CeO2 nanopowder catalyst prepared by self-combustion glycine nitrate process and applied for hydrogen production from methanol steam reforming
Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical industry, hydrogen production is mainly accomplished by the steam reforming of natural gas. In the present study, CuFeO2–CeO2 nanopowder catalyst wi...
Saved in:
Published in | International journal of hydrogen energy Vol. 45; no. 32; pp. 15752 - 15762 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
11.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-3199 1879-3487 |
DOI | 10.1016/j.ijhydene.2020.04.077 |
Cover
Loading…
Abstract | Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical industry, hydrogen production is mainly accomplished by the steam reforming of natural gas. In the present study, CuFeO2–CeO2 nanopowder catalyst with a heterogeneous delafossite structure was prepared by the self-combustion glycine nitrate process and used for steam reforming of methanol (SRM). The precursor solution was fabricated from Cu–Fe–Ce metal-nitrate mixed with glycine and an aqueous solution. The prepared CuFeO2–CeO2 nanopowder catalyst was studied by different physical and chemical characterization techniques. The prepared CuFeO2–CeO2 nanopowder catalyst was immensely porous with a coral-like structure. The BET surface area measurement revealed that the specific surface area of as-combusted CuFeO2–CeO2 nanopowder varied from 5.6248 m2/g to 19.5441 m2/g. In addition, the production rate of CuFeO2–CeO2 was improved by adding CeO2 and adjusting the feeding rate of the methanol. The highest H2 generation rate of the CuFeO2–CeO2 catalyst was 2582.25 (mL STP min−1 g-cat−1) at a flow rate of 30 sccm at 400 °C. Hence, the high specific surface area of the 70CuFeO2–30CeO2 nanopowder catalyst and the steam reforming process could have a very important industrial and economic impact.
•CuFeO2–CeO2 nanopowder prepared by a self-combusted glycine nitrate process.•The BET surface area of CuFeO2_CeO2 varied from 5.6248 m2/g to 19.5441 m2/g.•The CuFeO2–CeO2 nanopowder was applied for the steam reforming of methanol.•The 70CuFeO2–30CeO2 exhibited H2 production rate of 2582.25 (mL STP min−1 g-cat−1).•High H2 production rate exhibited in flow rate of 30 sccm at 400 °C. |
---|---|
AbstractList | Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical industry, hydrogen production is mainly accomplished by the steam reforming of natural gas. In the present study, CuFeO2–CeO2 nanopowder catalyst with a heterogeneous delafossite structure was prepared by the self-combustion glycine nitrate process and used for steam reforming of methanol (SRM). The precursor solution was fabricated from Cu–Fe–Ce metal-nitrate mixed with glycine and an aqueous solution. The prepared CuFeO2–CeO2 nanopowder catalyst was studied by different physical and chemical characterization techniques. The prepared CuFeO2–CeO2 nanopowder catalyst was immensely porous with a coral-like structure. The BET surface area measurement revealed that the specific surface area of as-combusted CuFeO2–CeO2 nanopowder varied from 5.6248 m2/g to 19.5441 m2/g. In addition, the production rate of CuFeO2–CeO2 was improved by adding CeO2 and adjusting the feeding rate of the methanol. The highest H2 generation rate of the CuFeO2–CeO2 catalyst was 2582.25 (mL STP min−1 g-cat−1) at a flow rate of 30 sccm at 400 °C. Hence, the high specific surface area of the 70CuFeO2–30CeO2 nanopowder catalyst and the steam reforming process could have a very important industrial and economic impact.
•CuFeO2–CeO2 nanopowder prepared by a self-combusted glycine nitrate process.•The BET surface area of CuFeO2_CeO2 varied from 5.6248 m2/g to 19.5441 m2/g.•The CuFeO2–CeO2 nanopowder was applied for the steam reforming of methanol.•The 70CuFeO2–30CeO2 exhibited H2 production rate of 2582.25 (mL STP min−1 g-cat−1).•High H2 production rate exhibited in flow rate of 30 sccm at 400 °C. |
Author | Chiu, Te-Wei Yu, Bing-Sheng Fan, Yu-Jui Sakthinathan, Subramanian Hwang, Bae-Yinn Yu, Chung-Lun Lin, Sheng-Yi Chuang, Chenghao |
Author_xml | – sequence: 1 givenname: Chung-Lun surname: Yu fullname: Yu, Chung-Lun organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan – sequence: 2 givenname: Subramanian surname: Sakthinathan fullname: Sakthinathan, Subramanian organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan – sequence: 3 givenname: Bae-Yinn surname: Hwang fullname: Hwang, Bae-Yinn organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan – sequence: 4 givenname: Sheng-Yi surname: Lin fullname: Lin, Sheng-Yi organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan – sequence: 5 givenname: Te-Wei surname: Chiu fullname: Chiu, Te-Wei email: tewei@ntut.edu.tw organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan – sequence: 6 givenname: Bing-Sheng orcidid: 0000-0001-5450-4907 surname: Yu fullname: Yu, Bing-Sheng organization: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan – sequence: 7 givenname: Yu-Jui surname: Fan fullname: Fan, Yu-Jui email: ray.yj.fan@tmu.edu.tw organization: School of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Taipei 11031, Taiwan – sequence: 8 givenname: Chenghao surname: Chuang fullname: Chuang, Chenghao organization: Department of Physics, Tamkang University, Tamsui, New Taipei City 251, Taiwan |
BookMark | eNqFkE1u2zAQRonCAer8XCHgBaSSkiiRQBctjDopYCCbdk1Q1NChIZECSTfQrnfoIvfrSUI3yaYbr2bzvZn53iVaOe8AoVtKSkpo--lQ2sPjMoCDsiIVKUlTkq77gNaUd6KoG96t0JrULSlqKsRHdBnjgRDakUas0fPmuIWH6u_vP5s8sFPOz_5pgIC1SmpcYsJzgFkFGHC_4AijKbSf-mNM1ju8HxdtHWBnU1AJctZriBErN2A1z6PNmPEB5_-C34M7BYaj_sea4Cc8QXrMN0ccE6gJB8jpybr9Nbowaoxw8zav0M_ttx-b-2L3cPd983VX6LrjKTfSAozSzEAjBG-5MawmtDcD59AaRjgwxXjfNqyvWU8ZVJXWQjHSiZYJXV-h9nWvDj7GfF7OwU4qLJISedIrD_JdrzzplaSRWW8GP_8HapvUqVg2Ycfz-JdXHHK5XxaCjNqC0zDYADrJwdtzK14A5eajJQ |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_11_067 crossref_primary_10_3390_catal11050547 crossref_primary_10_3390_catal13040762 crossref_primary_10_1039_D1QM00641J crossref_primary_10_3390_ma15248957 crossref_primary_10_3390_ma15248770 crossref_primary_10_1016_j_rser_2023_114147 crossref_primary_10_1021_acsanm_3c01571 crossref_primary_10_1016_j_matchemphys_2023_127417 crossref_primary_10_1016_j_micromeso_2021_111305 crossref_primary_10_1016_j_ijhydene_2020_09_245 crossref_primary_10_1039_D4SE00526K crossref_primary_10_1021_acs_langmuir_4c04727 crossref_primary_10_1016_j_jiec_2023_09_043 crossref_primary_10_3390_en15031209 crossref_primary_10_1016_j_ijhydene_2024_12_339 crossref_primary_10_1016_j_susc_2021_121976 crossref_primary_10_1016_j_apcatb_2021_119935 crossref_primary_10_1016_j_fuel_2021_122733 crossref_primary_10_3390_molecules29163963 crossref_primary_10_1016_j_ijhydene_2021_07_097 crossref_primary_10_1021_acs_iecr_0c05041 crossref_primary_10_1039_D3EY00076A crossref_primary_10_1039_D2RA03383F crossref_primary_10_1016_j_ceja_2024_100625 crossref_primary_10_3390_hydrogen5010004 crossref_primary_10_1016_j_ijhydene_2021_01_010 crossref_primary_10_1016_j_mseb_2022_115989 crossref_primary_10_1016_j_ijhydene_2021_04_062 crossref_primary_10_2139_ssrn_4162450 |
Cites_doi | 10.1016/j.catcom.2004.02.009 10.1016/S0926-860X(00)00854-1 10.1021/acsaem.9b01444 10.1016/S0920-5861(96)00195-2 10.1021/cr050198b 10.1016/j.ijhydene.2017.12.137 10.1016/j.jscs.2017.12.001 10.1007/s11664-010-1135-2 10.1016/j.apcatb.2010.06.015 10.1016/j.apcata.2003.07.012 10.1021/ie020349q 10.1016/j.ijhydene.2010.12.105 10.1016/S0920-5861(02)00235-3 10.1016/S0378-7753(01)01027-8 10.1016/j.cattod.2008.03.015 10.1016/j.apcata.2009.12.035 10.3390/app8020176 10.1016/j.ijhydene.2019.11.015 10.1016/j.ijhydene.2018.06.035 10.1016/j.ijhydene.2019.01.029 10.1016/j.ijhydene.2018.05.034 10.1016/j.ijhydene.2014.02.104 10.1016/j.micromeso.2006.11.029 10.1023/A:1023519802373 10.1016/S0926-860X(01)00500-2 10.1016/S0021-9517(04)00412-9 10.1016/S1381-1169(00)00296-X 10.1016/S0926-860X(99)00313-0 10.1016/j.tsf.2016.03.048 10.1016/j.ijhydene.2018.12.052 10.1016/j.ijhydene.2009.12.147 10.1016/S0021-9517(03)00221-5 10.1016/j.ceramint.2017.05.227 10.1021/ic900437x 10.1007/s10562-007-9277-4 10.1016/S0920-5861(01)00267-X 10.1016/j.rser.2013.08.032 10.1007/s10854-014-1801-x |
ContentType | Journal Article |
Copyright | 2020 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2020 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2020.04.077 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 15762 |
ExternalDocumentID | 10_1016_j_ijhydene_2020_04_077 S0360319920314336 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c378t-31c9efac5fe499868ff5301bfd88e6f508e5a58b645b35b15e22cc9a5079659c3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 02:01:37 EDT 2025 Thu Apr 24 22:50:10 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | Delafossite material CuFeO2–CeO2 nanopowder Glycine nitrate process Steam reforming Hydrogen generation Methanol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-31c9efac5fe499868ff5301bfd88e6f508e5a58b645b35b15e22cc9a5079659c3 |
ORCID | 0000-0001-5450-4907 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2020_04_077 crossref_citationtrail_10_1016_j_ijhydene_2020_04_077 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_04_077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-11 |
PublicationDateYYYYMMDD | 2020-06-11 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Basile, Parmaliana, Tosti, Iulianelli, Gallucci, Espro, Spooren (bib3) 2008; 137 Moharam, Rashad, Elsayed, Shahba (bib38) 2014; 25 Zhang, Huang, Zong, Lu, Wang, Cai (bib4) 2018; 8 Chiu, Shih, Chang (bib37) 2016; 618 Nozaki, Hayashi, Kajitani (bib35) 2010; 39 Wang, Lu, Wu, Yang, Chiu (bib8) 2011; 36 Taghizadeh, Akhoundzadeh, Rezayan, Sadeghian (bib13) 2018; 43 Liu, Hayakawa, Tsunoda, Suzuki, Hamakawa, Murata, Shiozaki, Ishii, Kumagai (bib30) 2003; 22 Ji, Lee, Choi, Seo (bib10) 2018; 43 Fujitani, Nakamura (bib23) 2000; 191 Lalanne, Barnabe, Mathieu, Tailhades (bib36) 2009; 48 Mohtashami, Taghizadeh (bib9) 2019; 44 Sa, Silva, Brandao, Sousa, Mendes (bib28) 2010; 99 Roselin, Chiu (bib18) 2018; 22 Tsai, Yoshimura (bib40) 2001; 214 Sheng, Chiu, Dong (bib33) 2017; 43 Chiu, Hong, Yu, Huang, Kameoka, Tsai (bib7) 2014; 39 Lin, Rei (bib15) 2001; 67 Shen, Song (bib5) 2002; 77 Kameoka, Tanabe, Tsai (bib39) 2010; 375 Takezawa, Iwasa (bib24) 1997; 36 Matsumura (bib27) 2018; 43 Palo (bib12) 2007; 107 Turco, Bagnasco, Costantino, Marmottini, Montanari, Ramis, Busca (bib11) 2004; 228 Huang, Ma, Wainwright (bib32) 2004; 257 Kameoka, Okada, Tsai (bib31) 2008; 120 Shanmugam, Neuberg, Zapf, Pennemann, Kolb (bib1) 2020; 45 Hwang, Sakthinathan, Chiu (bib6) 2019; 44 Tajrishi, Taghizadeh, Kiadehi (bib19) 2018; 43 Agrell, Birgersson, Boutonnet, Cabrera, Navarro, Fierro (bib29) 2003; 219 Iulianelli, Ribeirinha, Mendes, Basile (bib14) 2014; 29 Lai, Lak, Tsai (bib2) 2019; 11 Chen, Lin (bib20) 2010; 35 Twigg, Spencer (bib26) 2001; 212 Papavasiliou, Avgouropoulos, Ioannides (bib17) 2004; 5 Roggenbuck, Schafer, Tsoncheva, Minchev, Hanss, Tiemann (bib34) 2007; 101 Pajaie, Taghizadeh, Eliassi (bib16) 2012; 3 Agrell, Birgersson, Boutonnet (bib21) 2002; 106 Itoh, Kaneko, Igarashi (bib22) 2002; 41 Reitz, Ahmed, Krumpelt, Kumar, Kung (bib25) 2000; 162 Turco (10.1016/j.ijhydene.2020.04.077_bib11) 2004; 228 Shen (10.1016/j.ijhydene.2020.04.077_bib5) 2002; 77 Roselin (10.1016/j.ijhydene.2020.04.077_bib18) 2018; 22 Nozaki (10.1016/j.ijhydene.2020.04.077_bib35) 2010; 39 Iulianelli (10.1016/j.ijhydene.2020.04.077_bib14) 2014; 29 Moharam (10.1016/j.ijhydene.2020.04.077_bib38) 2014; 25 Basile (10.1016/j.ijhydene.2020.04.077_bib3) 2008; 137 Twigg (10.1016/j.ijhydene.2020.04.077_bib26) 2001; 212 Tsai (10.1016/j.ijhydene.2020.04.077_bib40) 2001; 214 Takezawa (10.1016/j.ijhydene.2020.04.077_bib24) 1997; 36 Kameoka (10.1016/j.ijhydene.2020.04.077_bib39) 2010; 375 Lai (10.1016/j.ijhydene.2020.04.077_bib2) 2019; 11 Shanmugam (10.1016/j.ijhydene.2020.04.077_bib1) 2020; 45 Sa (10.1016/j.ijhydene.2020.04.077_bib28) 2010; 99 Lin (10.1016/j.ijhydene.2020.04.077_bib15) 2001; 67 Wang (10.1016/j.ijhydene.2020.04.077_bib8) 2011; 36 Chiu (10.1016/j.ijhydene.2020.04.077_bib37) 2016; 618 Agrell (10.1016/j.ijhydene.2020.04.077_bib21) 2002; 106 Chiu (10.1016/j.ijhydene.2020.04.077_bib7) 2014; 39 Sheng (10.1016/j.ijhydene.2020.04.077_bib33) 2017; 43 Papavasiliou (10.1016/j.ijhydene.2020.04.077_bib17) 2004; 5 Chen (10.1016/j.ijhydene.2020.04.077_bib20) 2010; 35 Agrell (10.1016/j.ijhydene.2020.04.077_bib29) 2003; 219 Kameoka (10.1016/j.ijhydene.2020.04.077_bib31) 2008; 120 Pajaie (10.1016/j.ijhydene.2020.04.077_bib16) 2012; 3 Liu (10.1016/j.ijhydene.2020.04.077_bib30) 2003; 22 Huang (10.1016/j.ijhydene.2020.04.077_bib32) 2004; 257 Hwang (10.1016/j.ijhydene.2020.04.077_bib6) 2019; 44 Lalanne (10.1016/j.ijhydene.2020.04.077_bib36) 2009; 48 Matsumura (10.1016/j.ijhydene.2020.04.077_bib27) 2018; 43 Fujitani (10.1016/j.ijhydene.2020.04.077_bib23) 2000; 191 Mohtashami (10.1016/j.ijhydene.2020.04.077_bib9) 2019; 44 Zhang (10.1016/j.ijhydene.2020.04.077_bib4) 2018; 8 Ji (10.1016/j.ijhydene.2020.04.077_bib10) 2018; 43 Palo (10.1016/j.ijhydene.2020.04.077_bib12) 2007; 107 Tajrishi (10.1016/j.ijhydene.2020.04.077_bib19) 2018; 43 Roggenbuck (10.1016/j.ijhydene.2020.04.077_bib34) 2007; 101 Itoh (10.1016/j.ijhydene.2020.04.077_bib22) 2002; 41 Taghizadeh (10.1016/j.ijhydene.2020.04.077_bib13) 2018; 43 Reitz (10.1016/j.ijhydene.2020.04.077_bib25) 2000; 162 |
References_xml | – volume: 39 start-page: 14222 year: 2014 end-page: 14226 ident: bib7 article-title: Improving steam-reforming performance by nanopowdering CuCrO publication-title: Int J Hydrog Energy – volume: 43 start-page: S639 year: 2017 end-page: S642 ident: bib33 article-title: Preparation and characterization of CuCrO publication-title: Ceram Int – volume: 22 start-page: 692 year: 2018 end-page: 704 ident: bib18 article-title: Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO publication-title: J Saudi Chem Soc – volume: 219 start-page: 389 year: 2003 end-page: 403 ident: bib29 article-title: Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO publication-title: J Catal – volume: 375 start-page: 163 year: 2010 end-page: 171 ident: bib39 article-title: Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe publication-title: Appl Catal A: Gen – volume: 106 start-page: 249 year: 2002 end-page: 257 ident: bib21 article-title: Steam reforming of methanol over a Cu/ZnO/Al publication-title: J Power Sources – volume: 29 start-page: 355 year: 2014 end-page: 368 ident: bib14 article-title: Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review publication-title: Renew Sustain Energy Rev – volume: 120 start-page: 251 year: 2008 end-page: 256 ident: bib31 article-title: Preparation of a novel copper catalyst in terms of the immiscible interaction between copper and chromium publication-title: Catal Lett – volume: 137 start-page: 17 year: 2008 end-page: 22 ident: bib3 article-title: Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst publication-title: Catal Today – volume: 43 start-page: 3655 year: 2018 end-page: 3663 ident: bib10 article-title: Hydrogen production from steam reforming using an indirect heating method publication-title: Int J Hydrog Energy – volume: 36 start-page: 3666 year: 2011 end-page: 3672 ident: bib8 article-title: La publication-title: Int J Hydrogen Energy – volume: 99 start-page: 43 year: 2010 end-page: 57 ident: bib28 article-title: Catalysts for methanol steam reforming a review publication-title: Appl Catal B – volume: 67 start-page: 77 year: 2001 end-page: 84 ident: bib15 article-title: Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor publication-title: Catal Today – volume: 43 start-page: 10926 year: 2018 end-page: 10937 ident: bib13 article-title: Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming publication-title: Int J Hydrog Energy – volume: 35 start-page: 1987 year: 2010 end-page: 1997 ident: bib20 article-title: Effect of microwave double absorption on hydrogen generation from methanol steam reforming publication-title: Int J Hydrog Energy – volume: 101 start-page: 335 year: 2007 end-page: 341 ident: bib34 article-title: Mesoporous CeO publication-title: Microporous Mesoporous Mater – volume: 41 start-page: 4702 year: 2002 end-page: 4706 ident: bib22 article-title: Efficient hydrogen production via methanol steam reforming by preventing back-permeation of hydrogen in a palladium membrane reactor publication-title: Ind Eng Chem Res – volume: 191 start-page: 111 year: 2000 end-page: 129 ident: bib23 article-title: The chemical modification seen in the Cu/ZnO methanol synthesis catalysts publication-title: Appl Catal A – volume: 5 start-page: 231 year: 2004 end-page: 235 ident: bib17 article-title: Production of hydrogen via combined steam reforming of methanol over CuO-CeO publication-title: Catal Commun – volume: 228 start-page: 43 year: 2004 end-page: 55 ident: bib11 article-title: Production of hydrogen from oxidative steam reforming of methanol, I. Preparation and characterization of Cu/ZnO/Al publication-title: J Catal – volume: 25 start-page: 1798 year: 2014 end-page: 1803 ident: bib38 article-title: A facile novel synthesis of delafossite CuFeO publication-title: J Mater Sci Mater Electron – volume: 257 start-page: 235 year: 2004 end-page: 243 ident: bib32 article-title: The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions publication-title: Appl Catal A: Gen – volume: 212 start-page: 161 year: 2001 end-page: 174 ident: bib26 article-title: Deactivation of supported copper metal catalysts for hydrogenation reactions publication-title: Appl Catal A: Gen – volume: 107 start-page: 3992 year: 2007 end-page: 4021 ident: bib12 article-title: Methanol steam reforming for hydrogen production publication-title: Chem Rev – volume: 43 start-page: 14103 year: 2018 end-page: 14120 ident: bib27 article-title: Development of durable copper catalyst for hydrogen production by high temperature methanol steam reforming publication-title: Int J Hydrog Energy – volume: 618 start-page: 151 year: 2016 end-page: 158 ident: bib37 article-title: Preparation and properties of CuCr publication-title: Thin Solid Films – volume: 44 start-page: 2848 year: 2019 end-page: 2856 ident: bib6 article-title: Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr publication-title: Int J Hydrog Energy – volume: 3 start-page: 307 year: 2012 end-page: 313 ident: bib16 article-title: Hydrogen production from methanol steam reforming over Cu/ZnO/Al publication-title: J Energy Environ – volume: 11 start-page: 7963 year: 2019 end-page: 7971 ident: bib2 article-title: Hydrogen production via low-temperature steam-methane reforming using Ni-CeO publication-title: ACS Appl Energy Mater – volume: 43 start-page: 14103 year: 2018 end-page: 14120 ident: bib19 article-title: Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst publication-title: Int J Hydrog Energy – volume: 39 start-page: 1799 year: 2010 end-page: 1802 ident: bib35 article-title: Mn-substitution effect on thermal conductivity of delafossite-Type oxide CuFeO publication-title: J Electron Mater – volume: 77 start-page: 89 year: 2002 end-page: 98 ident: bib5 article-title: Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H publication-title: Catal Today – volume: 36 start-page: 45 year: 1997 end-page: 56 ident: bib24 article-title: Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals publication-title: Catal Today – volume: 48 start-page: 6065 year: 2009 end-page: 6071 ident: bib36 article-title: Synthesis and thermostructural studies of a CuFe publication-title: Inorg Chem – volume: 162 start-page: 275 year: 2000 end-page: 285 ident: bib25 article-title: Characterization of CuO ZnO under oxidizing conditions for the oxidative methanol reforming reaction publication-title: J Mol Catal A: Chem – volume: 214 start-page: 237 year: 2001 end-page: 241 ident: bib40 article-title: Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol publication-title: Appl Catal A: Gen – volume: 8 start-page: 176 year: 2018 ident: bib4 article-title: Hydrogen production from methanol steam reforming over TiO publication-title: Appl Sci – volume: 44 start-page: 5725 year: 2019 end-page: 5738 ident: bib9 article-title: Performance of the ZrO publication-title: Int J Hydrog Energy – volume: 45 start-page: 1658 year: 2020 end-page: 1670 ident: bib1 article-title: Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: effect of support and co-support publication-title: Int J Hydrogen Energy – volume: 22 start-page: 3 year: 2003 end-page: 4 ident: bib30 article-title: Steam reforming of methanol over Cu=CeO publication-title: Top Catal – volume: 5 start-page: 231 year: 2004 ident: 10.1016/j.ijhydene.2020.04.077_bib17 article-title: Production of hydrogen via combined steam reforming of methanol over CuO-CeO2 catalysts publication-title: Catal Commun doi: 10.1016/j.catcom.2004.02.009 – volume: 212 start-page: 161 year: 2001 ident: 10.1016/j.ijhydene.2020.04.077_bib26 article-title: Deactivation of supported copper metal catalysts for hydrogenation reactions publication-title: Appl Catal A: Gen doi: 10.1016/S0926-860X(00)00854-1 – volume: 11 start-page: 7963 year: 2019 ident: 10.1016/j.ijhydene.2020.04.077_bib2 article-title: Hydrogen production via low-temperature steam-methane reforming using Ni-CeO2-Al2O3 hybrid nanoparticle clusters as catalysts publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b01444 – volume: 36 start-page: 45 year: 1997 ident: 10.1016/j.ijhydene.2020.04.077_bib24 article-title: Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals publication-title: Catal Today doi: 10.1016/S0920-5861(96)00195-2 – volume: 107 start-page: 3992 year: 2007 ident: 10.1016/j.ijhydene.2020.04.077_bib12 article-title: Methanol steam reforming for hydrogen production publication-title: Chem Rev doi: 10.1021/cr050198b – volume: 43 start-page: 3655 year: 2018 ident: 10.1016/j.ijhydene.2020.04.077_bib10 article-title: Hydrogen production from steam reforming using an indirect heating method publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2017.12.137 – volume: 22 start-page: 692 year: 2018 ident: 10.1016/j.ijhydene.2020.04.077_bib18 article-title: Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO2 catalysts publication-title: J Saudi Chem Soc doi: 10.1016/j.jscs.2017.12.001 – volume: 39 start-page: 1799 year: 2010 ident: 10.1016/j.ijhydene.2020.04.077_bib35 article-title: Mn-substitution effect on thermal conductivity of delafossite-Type oxide CuFeO2 publication-title: J Electron Mater doi: 10.1007/s11664-010-1135-2 – volume: 99 start-page: 43 year: 2010 ident: 10.1016/j.ijhydene.2020.04.077_bib28 article-title: Catalysts for methanol steam reforming a review publication-title: Appl Catal B doi: 10.1016/j.apcatb.2010.06.015 – volume: 257 start-page: 235 year: 2004 ident: 10.1016/j.ijhydene.2020.04.077_bib32 article-title: The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2003.07.012 – volume: 41 start-page: 4702 year: 2002 ident: 10.1016/j.ijhydene.2020.04.077_bib22 article-title: Efficient hydrogen production via methanol steam reforming by preventing back-permeation of hydrogen in a palladium membrane reactor publication-title: Ind Eng Chem Res doi: 10.1021/ie020349q – volume: 36 start-page: 3666 year: 2011 ident: 10.1016/j.ijhydene.2020.04.077_bib8 article-title: La2O3-Al2O3-B2O3-SiO2 glasses for solid oxide fuel cell applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.105 – volume: 77 start-page: 89 year: 2002 ident: 10.1016/j.ijhydene.2020.04.077_bib5 article-title: Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells publication-title: Catal Today doi: 10.1016/S0920-5861(02)00235-3 – volume: 106 start-page: 249 year: 2002 ident: 10.1016/j.ijhydene.2020.04.077_bib21 article-title: Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation publication-title: J Power Sources doi: 10.1016/S0378-7753(01)01027-8 – volume: 137 start-page: 17 year: 2008 ident: 10.1016/j.ijhydene.2020.04.077_bib3 article-title: Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst publication-title: Catal Today doi: 10.1016/j.cattod.2008.03.015 – volume: 375 start-page: 163 year: 2010 ident: 10.1016/j.ijhydene.2020.04.077_bib39 article-title: Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4 publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2009.12.035 – volume: 8 start-page: 176 year: 2018 ident: 10.1016/j.ijhydene.2020.04.077_bib4 article-title: Hydrogen production from methanol steam reforming over TiO2 and CeO2 pillared clay supported Au catalysts publication-title: Appl Sci doi: 10.3390/app8020176 – volume: 45 start-page: 1658 year: 2020 ident: 10.1016/j.ijhydene.2020.04.077_bib1 article-title: Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: effect of support and co-support publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.015 – volume: 43 start-page: 14103 year: 2018 ident: 10.1016/j.ijhydene.2020.04.077_bib19 article-title: Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2018.06.035 – volume: 44 start-page: 5725 year: 2019 ident: 10.1016/j.ijhydene.2020.04.077_bib9 article-title: Performance of the ZrO2 promoted CueZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.01.029 – volume: 43 start-page: 10926 year: 2018 ident: 10.1016/j.ijhydene.2020.04.077_bib13 article-title: Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2018.05.034 – volume: 39 start-page: 14222 year: 2014 ident: 10.1016/j.ijhydene.2020.04.077_bib7 article-title: Improving steam-reforming performance by nanopowdering CuCrO2 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2014.02.104 – volume: 43 start-page: 14103 year: 2018 ident: 10.1016/j.ijhydene.2020.04.077_bib27 article-title: Development of durable copper catalyst for hydrogen production by high temperature methanol steam reforming publication-title: Int J Hydrog Energy – volume: 101 start-page: 335 year: 2007 ident: 10.1016/j.ijhydene.2020.04.077_bib34 article-title: Mesoporous CeO2: synthesis by nanocasting, characterisation and catalytic properties publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2006.11.029 – volume: 22 start-page: 3 year: 2003 ident: 10.1016/j.ijhydene.2020.04.077_bib30 article-title: Steam reforming of methanol over Cu=CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalyst publication-title: Top Catal doi: 10.1023/A:1023519802373 – volume: 214 start-page: 237 year: 2001 ident: 10.1016/j.ijhydene.2020.04.077_bib40 article-title: Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol publication-title: Appl Catal A: Gen doi: 10.1016/S0926-860X(01)00500-2 – volume: 228 start-page: 43 year: 2004 ident: 10.1016/j.ijhydene.2020.04.077_bib11 article-title: Production of hydrogen from oxidative steam reforming of methanol, I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor publication-title: J Catal doi: 10.1016/S0021-9517(04)00412-9 – volume: 162 start-page: 275 year: 2000 ident: 10.1016/j.ijhydene.2020.04.077_bib25 article-title: Characterization of CuO ZnO under oxidizing conditions for the oxidative methanol reforming reaction publication-title: J Mol Catal A: Chem doi: 10.1016/S1381-1169(00)00296-X – volume: 191 start-page: 111 year: 2000 ident: 10.1016/j.ijhydene.2020.04.077_bib23 article-title: The chemical modification seen in the Cu/ZnO methanol synthesis catalysts publication-title: Appl Catal A doi: 10.1016/S0926-860X(99)00313-0 – volume: 618 start-page: 151 year: 2016 ident: 10.1016/j.ijhydene.2020.04.077_bib37 article-title: Preparation and properties of CuCr1− xFexO2 thin films prepared by chemical solution deposition with two-step annealing publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.03.048 – volume: 3 start-page: 307 issue: 4 year: 2012 ident: 10.1016/j.ijhydene.2020.04.077_bib16 article-title: Hydrogen production from methanol steam reforming over Cu/ZnO/Al2O3/CeO2/ZrO nanocatalyst in an adiabatic fixed-bed reactor, Iran publication-title: J Energy Environ – volume: 44 start-page: 2848 year: 2019 ident: 10.1016/j.ijhydene.2020.04.077_bib6 article-title: Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2018.12.052 – volume: 35 start-page: 1987 year: 2010 ident: 10.1016/j.ijhydene.2020.04.077_bib20 article-title: Effect of microwave double absorption on hydrogen generation from methanol steam reforming publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2009.12.147 – volume: 219 start-page: 389 year: 2003 ident: 10.1016/j.ijhydene.2020.04.077_bib29 article-title: Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 publication-title: J Catal doi: 10.1016/S0021-9517(03)00221-5 – volume: 43 start-page: S639 year: 2017 ident: 10.1016/j.ijhydene.2020.04.077_bib33 article-title: Preparation and characterization of CuCrO2-CeO2 composite nanopowder by a self-combustion glycine nitrate process publication-title: Ceram Int doi: 10.1016/j.ceramint.2017.05.227 – volume: 48 start-page: 6065 year: 2009 ident: 10.1016/j.ijhydene.2020.04.077_bib36 article-title: Synthesis and thermostructural studies of a CuFe1-xCrxO2 delafossite solid solution with 0 ≤ X ≤ 1 publication-title: Inorg Chem doi: 10.1021/ic900437x – volume: 120 start-page: 251 year: 2008 ident: 10.1016/j.ijhydene.2020.04.077_bib31 article-title: Preparation of a novel copper catalyst in terms of the immiscible interaction between copper and chromium publication-title: Catal Lett doi: 10.1007/s10562-007-9277-4 – volume: 67 start-page: 77 year: 2001 ident: 10.1016/j.ijhydene.2020.04.077_bib15 article-title: Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor publication-title: Catal Today doi: 10.1016/S0920-5861(01)00267-X – volume: 29 start-page: 355 year: 2014 ident: 10.1016/j.ijhydene.2020.04.077_bib14 article-title: Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.032 – volume: 25 start-page: 1798 year: 2014 ident: 10.1016/j.ijhydene.2020.04.077_bib38 article-title: A facile novel synthesis of delafossite CuFeO2 powders publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-014-1801-x |
SSID | ssj0017049 |
Score | 2.4737613 |
Snippet | Hydrogen (H2) is being considered as an alternate renewable energy carrier due to the energy crisis, climate change and global warming. In the chemical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 15752 |
SubjectTerms | CuFeO2–CeO2 nanopowder Delafossite material Glycine nitrate process Hydrogen generation Methanol Steam reforming |
Title | CuFeO2–CeO2 nanopowder catalyst prepared by self-combustion glycine nitrate process and applied for hydrogen production from methanol steam reforming |
URI | https://dx.doi.org/10.1016/j.ijhydene.2020.04.077 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXNoDAgoq5aE5cA2bOLaTHNGqqwVUOLRI3CLbsemuliRaFlV7QfwHDv1__SWdyQMtUiUOPUWJPErsefhLMvMNYycqLNCDVBgkYWQDYZ0KMstloLyNtY6l5p5qh79dqfGNuLiVt2ts2NfCUFplF_vbmN5E6-7KoFvNQT2ZDL5j7KUSnIwTA3scE-22EAlZ-enTa5pHlHQQGAcHNHqlSnh6Opn-XKJ7E10mDxvK0yT59wa1sumMtthmhxbhrH2gbbbmyh32cYVD8BP7PXwcuWv-5_lliAcodVnV1a_CzaH5MrN8WEA9d02eOZglPLiZD3Cyhrp4VSXczZb0ax3Qs4k0Auq2cAB0WYBuESogrgWcwbxCY6MBRcs4C1SaAtSCGu85AzKXe8D5VJRec7fLbkZffwzHQddtIbBxki5wcWzmvKbsM3wLSlXqvUTvN75IU6c8AjkntUyNEtLE0kTScW5tphFQEimhjffYelmV7jMDqZwXHF9kisKI1BqTSZFkXAvpZORtus9kv8S57ajIqSPGLO9zzqZ5r5qcVJOHIkfV7LPBq1zdknG8K5H1GszfmFWOO8Y7sl_-Q_aAfaAzyimLokO2vpg_uiNELwtz3JjnMds4O78cX_0FinL07Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSZ0gzFEkfSPrKDV1VS5RISWNgxHBezpAEyEaQFJnacCTBcVB463_o0P_XX5I7SwocoECGTgIkHiTyjseP4t13jH2TYYEzSIZBGkY2SKyTQW65CKS3sdax0NxT7vD5WI6uk5MbcbPBBl0uDIVVtr6_8ekrb93e6bej2a8nk_4l-l5Kwck5MbDHsXzFNomdSvTY5uHx6Wj8dJiQtigY2wcksJYoPP0-mf5Y4gwnxkwerlhP0_Tfa9TaujPcYW9awAiHzTftsg1XvmXbazSC79ifwcPQXfC_v34P8AKlLqu6-lm4Oax-zizvF1DP3SrUHMwS7t3MB9hfQ4W8qhJuZ0s6XQec3MQbAXWTOwC6LEA3IBUQ2gL2YF6hvVGDoiGdBcpOAapCje-cAVnMHWB_KoqwuX3ProdHV4NR0BZcCGycZgscHJs7rykADTdCmcy8F-gAjC-yzEmPWM4JLTIjE2FiYSLhOLc214gpiZfQxh9Yr6xKt8dASOcTjnuZojBJZo3JUTU514lwIvI222eiG2JlWzZyKooxU13Y2VR1qlGkGhUmClWzz_pPcnXDx_GiRN5pUD2zLIWLxguyH_9D9oBtja7Oz9TZ8fj0E3tNTyjELIo-s95i_uC-IJhZmK-tsT4C4LD3ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CuFeO2%E2%80%93CeO2+nanopowder+catalyst+prepared+by+self-combustion+glycine+nitrate+process+and+applied+for+hydrogen+production+from+methanol+steam+reforming&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Yu%2C+Chung-Lun&rft.au=Sakthinathan%2C+Subramanian&rft.au=Hwang%2C+Bae-Yinn&rft.au=Lin%2C+Sheng-Yi&rft.date=2020-06-11&rft.issn=0360-3199&rft.volume=45&rft.issue=32&rft.spage=15752&rft.epage=15762&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.04.077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2020_04_077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |