Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator
In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian ope...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 5; pp. 10160 - 10176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023514 |
Cover
Loading…
Abstract | In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian operator. To continue, we will apply Green's function to determine the suggested FDE's equivalent integral form. The Guo-Krasnosel'skii fixed point theorem and the properties of the $ p $-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result. |
---|---|
AbstractList | In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian operator. To continue, we will apply Green's function to determine the suggested FDE's equivalent integral form. The Guo-Krasnosel'skii fixed point theorem and the properties of the $ p $-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result. |
Author | Khan, Aziz Kumar, Anoop Kaushik, Kirti Abdeljawad, Thabet |
Author_xml | – sequence: 1 givenname: Kirti surname: Kaushik fullname: Kaushik, Kirti organization: Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, India – sequence: 2 givenname: Anoop surname: Kumar fullname: Kumar, Anoop organization: Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, India – sequence: 3 givenname: Aziz surname: Khan fullname: Khan, Aziz organization: Department of Mathematics and Sciences, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia – sequence: 4 givenname: Thabet surname: Abdeljawad fullname: Abdeljawad, Thabet organization: Department of Mathematics and Sciences, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia, Department of Medical Research, China Medical University, Taichung 40402, Taiwan, Department of Mathematics, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 02447, Korea |
BookMark | eNptkU1LAzEQhoMoWGtv_oAcenRrPvYrRxE_CgUvel6myaRN2W7WbIp68L-72xYR8TQzL-88A_NekNPGN0jIFWczqWR6s4W4ngkmZMbTEzISaSGTXJXl6a_-nEy6bsMYE1ykokhH5Ov-w3URG43UW9r5ehedbzq6_KTWfaChrXdNpHGNPuB28KywwQA1NVhDbwqgh41BcNZiwCa6fsC3HQw6fXdxTae0pdNkAW0N2kFDfdsjog-X5MxC3eHkWMfk9eH-5e4pWTw_zu9uF4mWRRkTYTPJMym0ZIUtpObCZDlyKy03S8W4KfOS5UplRiAiM4qhLgwCR2NSKLgck_mBazxsqja4LYTPyoOr9oIPqwpCdLrGClAUubRL1R9KM2WWnOdYslKr_oLRrGddH1g6-K4LaH94nFVDEtWQRHVMoreLP3bt4v41MYCr_1_6BmC8kLE |
CitedBy_id | crossref_primary_10_1016_j_chaos_2023_113901 crossref_primary_10_1016_j_rico_2023_100363 crossref_primary_10_1080_25765299_2024_2334130 crossref_primary_10_1016_j_rinp_2023_107030 crossref_primary_10_1007_s12190_024_02300_3 crossref_primary_10_1016_j_rinp_2023_107098 crossref_primary_10_1371_journal_pone_0301338 crossref_primary_10_1186_s13661_023_01751_0 crossref_primary_10_1016_j_aej_2025_01_060 crossref_primary_10_1080_27684830_2024_2322044 crossref_primary_10_3934_math_20241006 crossref_primary_10_3390_sym15040922 crossref_primary_10_1016_j_chaos_2024_115127 crossref_primary_10_1007_s12190_025_02388_1 crossref_primary_10_1016_j_asej_2023_102566 crossref_primary_10_1007_s41478_024_00725_4 |
Cites_doi | 10.1073/pnas.27.4.222 10.3934/dcdss.2020139 10.1186/s13662-020-02729-3 10.1080/25765299.2020.1796199 10.1186/s13661-018-0930-1 10.1002/mma.5263 10.1063/1.5086771 10.11948/20180322 10.1016/j.mcm.2012.06.024 10.1002/mma.7608 10.1140/epjp/i2017-11371-6 10.1002/mma.4835 10.1016/j.geomphys.2019.06.004 10.1007/s13398-022-01246-0 10.1007/s12346-022-00624-8 10.1002/num.20504 10.1142/S0217984920500098 10.1186/s13662-019-2367-y 10.1007/s40314-021-01595-3 10.1155/2021/7325102 10.1186/s13662-017-1460-3 10.1016/j.chaos.2019.08.017 10.1155/2016/8164978 10.1186/1687-1847-2014-25 10.1186/1687-1847-2013-30 10.1002/mma.4743 10.1186/s13661-017-0878-6 10.1186/s13662-019-1955-1 10.1002/mma.4405 10.1016/j.aej.2022.02.044 10.1007/s11425-008-0068-1 10.1016/j.na.2011.12.020 10.1186/s13662-017-1172-8 10.1063/1.2970709 10.1186/s13662-019-2054-z 10.3934/math.20221057 10.1186/s13661-015-0425-2 10.1155/2013/816803 10.1142/p614 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023514 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 10176 |
ExternalDocumentID | oai_doaj_org_article_ae2763fb9f73459db116e808c9069dc0 10_3934_math_2023514 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-2f531532c307f73c12d56e1f3f1db901d86806995d2eee0d90ec7dea1edd4a713 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:04 EDT 2025 Tue Jul 01 03:57:00 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-2f531532c307f73c12d56e1f3f1db901d86806995d2eee0d90ec7dea1edd4a713 |
OpenAccessLink | https://doaj.org/article/ae2763fb9f73459db116e808c9069dc0 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae2763fb9f73459db116e808c9069dc0 crossref_primary_10_3934_math_2023514 crossref_citationtrail_10_3934_math_2023514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023514-9 key-10.3934/math.2023514-7 key-10.3934/math.2023514-8 key-10.3934/math.2023514-5 key-10.3934/math.2023514-6 key-10.3934/math.2023514-3 key-10.3934/math.2023514-4 key-10.3934/math.2023514-40 key-10.3934/math.2023514-26 key-10.3934/math.2023514-25 key-10.3934/math.2023514-24 key-10.3934/math.2023514-23 key-10.3934/math.2023514-45 key-10.3934/math.2023514-22 key-10.3934/math.2023514-44 key-10.3934/math.2023514-21 key-10.3934/math.2023514-43 key-10.3934/math.2023514-20 key-10.3934/math.2023514-42 key-10.3934/math.2023514-41 key-10.3934/math.2023514-29 key-10.3934/math.2023514-28 key-10.3934/math.2023514-27 key-10.3934/math.2023514-15 key-10.3934/math.2023514-37 key-10.3934/math.2023514-14 key-10.3934/math.2023514-36 key-10.3934/math.2023514-13 key-10.3934/math.2023514-35 key-10.3934/math.2023514-12 key-10.3934/math.2023514-34 key-10.3934/math.2023514-11 key-10.3934/math.2023514-33 key-10.3934/math.2023514-10 key-10.3934/math.2023514-32 key-10.3934/math.2023514-31 key-10.3934/math.2023514-30 key-10.3934/math.2023514-1 key-10.3934/math.2023514-2 key-10.3934/math.2023514-19 key-10.3934/math.2023514-18 key-10.3934/math.2023514-17 key-10.3934/math.2023514-39 key-10.3934/math.2023514-16 key-10.3934/math.2023514-38 |
References_xml | – ident: key-10.3934/math.2023514-24 doi: 10.1073/pnas.27.4.222 – ident: key-10.3934/math.2023514-22 doi: 10.3934/dcdss.2020139 – ident: key-10.3934/math.2023514-29 doi: 10.1186/s13662-020-02729-3 – ident: key-10.3934/math.2023514-36 doi: 10.1080/25765299.2020.1796199 – ident: key-10.3934/math.2023514-17 doi: 10.1186/s13661-018-0930-1 – ident: key-10.3934/math.2023514-27 doi: 10.1002/mma.5263 – ident: key-10.3934/math.2023514-7 doi: 10.1063/1.5086771 – ident: key-10.3934/math.2023514-37 doi: 10.11948/20180322 – ident: key-10.3934/math.2023514-6 doi: 10.1016/j.mcm.2012.06.024 – ident: key-10.3934/math.2023514-26 – ident: key-10.3934/math.2023514-31 doi: 10.1002/mma.7608 – ident: key-10.3934/math.2023514-5 doi: 10.1140/epjp/i2017-11371-6 – ident: key-10.3934/math.2023514-20 doi: 10.1002/mma.4835 – ident: key-10.3934/math.2023514-10 doi: 10.1016/j.geomphys.2019.06.004 – ident: key-10.3934/math.2023514-39 doi: 10.1007/s13398-022-01246-0 – ident: key-10.3934/math.2023514-42 doi: 10.1007/s12346-022-00624-8 – ident: key-10.3934/math.2023514-3 – ident: key-10.3934/math.2023514-45 doi: 10.1002/num.20504 – ident: key-10.3934/math.2023514-11 doi: 10.1142/S0217984920500098 – ident: key-10.3934/math.2023514-35 doi: 10.1186/s13662-019-2367-y – ident: key-10.3934/math.2023514-38 doi: 10.1007/s40314-021-01595-3 – ident: key-10.3934/math.2023514-1 – ident: key-10.3934/math.2023514-41 doi: 10.1155/2021/7325102 – ident: key-10.3934/math.2023514-13 doi: 10.1186/s13662-017-1460-3 – ident: key-10.3934/math.2023514-19 doi: 10.1016/j.chaos.2019.08.017 – ident: key-10.3934/math.2023514-34 doi: 10.1155/2016/8164978 – ident: key-10.3934/math.2023514-14 doi: 10.1186/1687-1847-2014-25 – ident: key-10.3934/math.2023514-18 doi: 10.1186/1687-1847-2013-30 – ident: key-10.3934/math.2023514-9 doi: 10.1002/mma.4743 – ident: key-10.3934/math.2023514-21 doi: 10.1186/s13661-017-0878-6 – ident: key-10.3934/math.2023514-23 doi: 10.1186/s13662-019-1955-1 – ident: key-10.3934/math.2023514-32 doi: 10.1002/mma.4835 – ident: key-10.3934/math.2023514-25 – ident: key-10.3934/math.2023514-33 doi: 10.1002/mma.4405 – ident: key-10.3934/math.2023514-40 doi: 10.1016/j.aej.2022.02.044 – ident: key-10.3934/math.2023514-8 doi: 10.1007/s11425-008-0068-1 – ident: key-10.3934/math.2023514-16 doi: 10.1016/j.na.2011.12.020 – ident: key-10.3934/math.2023514-15 doi: 10.1186/s13662-017-1172-8 – ident: key-10.3934/math.2023514-28 doi: 10.1063/1.2970709 – ident: key-10.3934/math.2023514-30 doi: 10.1186/s13662-019-2054-z – ident: key-10.3934/math.2023514-43 doi: 10.3934/math.20221057 – ident: key-10.3934/math.2023514-2 – ident: key-10.3934/math.2023514-12 doi: 10.1186/s13661-015-0425-2 – ident: key-10.3934/math.2023514-44 doi: 10.1155/2013/816803 – ident: key-10.3934/math.2023514-4 doi: 10.1142/p614 |
SSID | ssj0002124274 |
Score | 2.3246436 |
Snippet | In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 10160 |
SubjectTerms | caputo's derivative fixed point theorems green's function hyres-ulam stability riemann-liouville integral |
Title | Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator |
URI | https://doaj.org/article/ae2763fb9f73459db116e808c9069dc0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMV4KQc4oWptkz5yBDQ0IcaJSbtVSeOiSaMdo0jbv8duSjUOiAvXyK2iL3ZsJ85nxq6kNAkYX3uxtKkn0WF7Br2yl0LkmxiEtkCvkcfP8WgiH6fRdKPVF9WEOXpgB9xAQ4gmUBhVJEJGypogiCH101z5sbJ5k62jz9tIpmgPxg1ZYr7lKt2FEnKA8R_dPYRUuf7DB21Q9Tc-5WGP7bbBIL91k9hnW1AesJ1xx6T6ccjWwxUtBC4NrwreKQo3a17MVmD5opqVNXfvEd9I5tURSXOif0ShpXu5QANtLxS06TmHd8fxzekgli-8J03VWagrvFpAc_V-xCYPw5f7kde2S_BykaS1FxZoT5EIczRbBCsPQhvFEBSiCKxBt2_TOEXMVGRDAPCt8iFPLOgArJUak9Vj1iurEk4YD6Ow0MIHCl-kwi8VgLRBYqXQGE-qPrv5BjDLWy5xamkxzzCnILgzgjtr4e6z60564Tg0fpG7o7XoZIj5uhlAfchafcj-0ofT__jJGdumObmjlnPWq5efcIHBR20uGz37Aq7N2i0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+solutions+by+fixed+point+theorem+of+general+delay+fractional+differential+equation+with+%24+p+%24-Laplacian+operator&rft.jtitle=AIMS+mathematics&rft.au=Kaushik%2C+Kirti&rft.au=Kumar%2C+Anoop&rft.au=Khan%2C+Aziz&rft.au=Abdeljawad%2C+Thabet&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=5&rft.spage=10160&rft.epage=10176&rft_id=info:doi/10.3934%2Fmath.2023514&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |