Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator

In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian ope...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 5; pp. 10160 - 10176
Main Authors Kaushik, Kirti, Kumar, Anoop, Khan, Aziz, Abdeljawad, Thabet
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023514

Cover

Loading…
Abstract In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian operator. To continue, we will apply Green's function to determine the suggested FDE's equivalent integral form. The Guo-Krasnosel'skii fixed point theorem and the properties of the $ p $-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result.
AbstractList In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian operator. To continue, we will apply Green's function to determine the suggested FDE's equivalent integral form. The Guo-Krasnosel'skii fixed point theorem and the properties of the $ p $-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result.
Author Khan, Aziz
Kumar, Anoop
Kaushik, Kirti
Abdeljawad, Thabet
Author_xml – sequence: 1
  givenname: Kirti
  surname: Kaushik
  fullname: Kaushik, Kirti
  organization: Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, India
– sequence: 2
  givenname: Anoop
  surname: Kumar
  fullname: Kumar, Anoop
  organization: Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, India
– sequence: 3
  givenname: Aziz
  surname: Khan
  fullname: Khan, Aziz
  organization: Department of Mathematics and Sciences, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia
– sequence: 4
  givenname: Thabet
  surname: Abdeljawad
  fullname: Abdeljawad, Thabet
  organization: Department of Mathematics and Sciences, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia, Department of Medical Research, China Medical University, Taichung 40402, Taiwan, Department of Mathematics, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 02447, Korea
BookMark eNptkU1LAzEQhoMoWGtv_oAcenRrPvYrRxE_CgUvel6myaRN2W7WbIp68L-72xYR8TQzL-88A_NekNPGN0jIFWczqWR6s4W4ngkmZMbTEzISaSGTXJXl6a_-nEy6bsMYE1ykokhH5Ov-w3URG43UW9r5ehedbzq6_KTWfaChrXdNpHGNPuB28KywwQA1NVhDbwqgh41BcNZiwCa6fsC3HQw6fXdxTae0pdNkAW0N2kFDfdsjog-X5MxC3eHkWMfk9eH-5e4pWTw_zu9uF4mWRRkTYTPJMym0ZIUtpObCZDlyKy03S8W4KfOS5UplRiAiM4qhLgwCR2NSKLgck_mBazxsqja4LYTPyoOr9oIPqwpCdLrGClAUubRL1R9KM2WWnOdYslKr_oLRrGddH1g6-K4LaH94nFVDEtWQRHVMoreLP3bt4v41MYCr_1_6BmC8kLE
CitedBy_id crossref_primary_10_1016_j_chaos_2023_113901
crossref_primary_10_1016_j_rico_2023_100363
crossref_primary_10_1080_25765299_2024_2334130
crossref_primary_10_1016_j_rinp_2023_107030
crossref_primary_10_1007_s12190_024_02300_3
crossref_primary_10_1016_j_rinp_2023_107098
crossref_primary_10_1371_journal_pone_0301338
crossref_primary_10_1186_s13661_023_01751_0
crossref_primary_10_1016_j_aej_2025_01_060
crossref_primary_10_1080_27684830_2024_2322044
crossref_primary_10_3934_math_20241006
crossref_primary_10_3390_sym15040922
crossref_primary_10_1016_j_chaos_2024_115127
crossref_primary_10_1007_s12190_025_02388_1
crossref_primary_10_1016_j_asej_2023_102566
crossref_primary_10_1007_s41478_024_00725_4
Cites_doi 10.1073/pnas.27.4.222
10.3934/dcdss.2020139
10.1186/s13662-020-02729-3
10.1080/25765299.2020.1796199
10.1186/s13661-018-0930-1
10.1002/mma.5263
10.1063/1.5086771
10.11948/20180322
10.1016/j.mcm.2012.06.024
10.1002/mma.7608
10.1140/epjp/i2017-11371-6
10.1002/mma.4835
10.1016/j.geomphys.2019.06.004
10.1007/s13398-022-01246-0
10.1007/s12346-022-00624-8
10.1002/num.20504
10.1142/S0217984920500098
10.1186/s13662-019-2367-y
10.1007/s40314-021-01595-3
10.1155/2021/7325102
10.1186/s13662-017-1460-3
10.1016/j.chaos.2019.08.017
10.1155/2016/8164978
10.1186/1687-1847-2014-25
10.1186/1687-1847-2013-30
10.1002/mma.4743
10.1186/s13661-017-0878-6
10.1186/s13662-019-1955-1
10.1002/mma.4405
10.1016/j.aej.2022.02.044
10.1007/s11425-008-0068-1
10.1016/j.na.2011.12.020
10.1186/s13662-017-1172-8
10.1063/1.2970709
10.1186/s13662-019-2054-z
10.3934/math.20221057
10.1186/s13661-015-0425-2
10.1155/2013/816803
10.1142/p614
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023514
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 10176
ExternalDocumentID oai_doaj_org_article_ae2763fb9f73459db116e808c9069dc0
10_3934_math_2023514
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-2f531532c307f73c12d56e1f3f1db901d86806995d2eee0d90ec7dea1edd4a713
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:04 EDT 2025
Tue Jul 01 03:57:00 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-2f531532c307f73c12d56e1f3f1db901d86806995d2eee0d90ec7dea1edd4a713
OpenAccessLink https://doaj.org/article/ae2763fb9f73459db116e808c9069dc0
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ae2763fb9f73459db116e808c9069dc0
crossref_primary_10_3934_math_2023514
crossref_citationtrail_10_3934_math_2023514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023514-9
key-10.3934/math.2023514-7
key-10.3934/math.2023514-8
key-10.3934/math.2023514-5
key-10.3934/math.2023514-6
key-10.3934/math.2023514-3
key-10.3934/math.2023514-4
key-10.3934/math.2023514-40
key-10.3934/math.2023514-26
key-10.3934/math.2023514-25
key-10.3934/math.2023514-24
key-10.3934/math.2023514-23
key-10.3934/math.2023514-45
key-10.3934/math.2023514-22
key-10.3934/math.2023514-44
key-10.3934/math.2023514-21
key-10.3934/math.2023514-43
key-10.3934/math.2023514-20
key-10.3934/math.2023514-42
key-10.3934/math.2023514-41
key-10.3934/math.2023514-29
key-10.3934/math.2023514-28
key-10.3934/math.2023514-27
key-10.3934/math.2023514-15
key-10.3934/math.2023514-37
key-10.3934/math.2023514-14
key-10.3934/math.2023514-36
key-10.3934/math.2023514-13
key-10.3934/math.2023514-35
key-10.3934/math.2023514-12
key-10.3934/math.2023514-34
key-10.3934/math.2023514-11
key-10.3934/math.2023514-33
key-10.3934/math.2023514-10
key-10.3934/math.2023514-32
key-10.3934/math.2023514-31
key-10.3934/math.2023514-30
key-10.3934/math.2023514-1
key-10.3934/math.2023514-2
key-10.3934/math.2023514-19
key-10.3934/math.2023514-18
key-10.3934/math.2023514-17
key-10.3934/math.2023514-39
key-10.3934/math.2023514-16
key-10.3934/math.2023514-38
References_xml – ident: key-10.3934/math.2023514-24
  doi: 10.1073/pnas.27.4.222
– ident: key-10.3934/math.2023514-22
  doi: 10.3934/dcdss.2020139
– ident: key-10.3934/math.2023514-29
  doi: 10.1186/s13662-020-02729-3
– ident: key-10.3934/math.2023514-36
  doi: 10.1080/25765299.2020.1796199
– ident: key-10.3934/math.2023514-17
  doi: 10.1186/s13661-018-0930-1
– ident: key-10.3934/math.2023514-27
  doi: 10.1002/mma.5263
– ident: key-10.3934/math.2023514-7
  doi: 10.1063/1.5086771
– ident: key-10.3934/math.2023514-37
  doi: 10.11948/20180322
– ident: key-10.3934/math.2023514-6
  doi: 10.1016/j.mcm.2012.06.024
– ident: key-10.3934/math.2023514-26
– ident: key-10.3934/math.2023514-31
  doi: 10.1002/mma.7608
– ident: key-10.3934/math.2023514-5
  doi: 10.1140/epjp/i2017-11371-6
– ident: key-10.3934/math.2023514-20
  doi: 10.1002/mma.4835
– ident: key-10.3934/math.2023514-10
  doi: 10.1016/j.geomphys.2019.06.004
– ident: key-10.3934/math.2023514-39
  doi: 10.1007/s13398-022-01246-0
– ident: key-10.3934/math.2023514-42
  doi: 10.1007/s12346-022-00624-8
– ident: key-10.3934/math.2023514-3
– ident: key-10.3934/math.2023514-45
  doi: 10.1002/num.20504
– ident: key-10.3934/math.2023514-11
  doi: 10.1142/S0217984920500098
– ident: key-10.3934/math.2023514-35
  doi: 10.1186/s13662-019-2367-y
– ident: key-10.3934/math.2023514-38
  doi: 10.1007/s40314-021-01595-3
– ident: key-10.3934/math.2023514-1
– ident: key-10.3934/math.2023514-41
  doi: 10.1155/2021/7325102
– ident: key-10.3934/math.2023514-13
  doi: 10.1186/s13662-017-1460-3
– ident: key-10.3934/math.2023514-19
  doi: 10.1016/j.chaos.2019.08.017
– ident: key-10.3934/math.2023514-34
  doi: 10.1155/2016/8164978
– ident: key-10.3934/math.2023514-14
  doi: 10.1186/1687-1847-2014-25
– ident: key-10.3934/math.2023514-18
  doi: 10.1186/1687-1847-2013-30
– ident: key-10.3934/math.2023514-9
  doi: 10.1002/mma.4743
– ident: key-10.3934/math.2023514-21
  doi: 10.1186/s13661-017-0878-6
– ident: key-10.3934/math.2023514-23
  doi: 10.1186/s13662-019-1955-1
– ident: key-10.3934/math.2023514-32
  doi: 10.1002/mma.4835
– ident: key-10.3934/math.2023514-25
– ident: key-10.3934/math.2023514-33
  doi: 10.1002/mma.4405
– ident: key-10.3934/math.2023514-40
  doi: 10.1016/j.aej.2022.02.044
– ident: key-10.3934/math.2023514-8
  doi: 10.1007/s11425-008-0068-1
– ident: key-10.3934/math.2023514-16
  doi: 10.1016/j.na.2011.12.020
– ident: key-10.3934/math.2023514-15
  doi: 10.1186/s13662-017-1172-8
– ident: key-10.3934/math.2023514-28
  doi: 10.1063/1.2970709
– ident: key-10.3934/math.2023514-30
  doi: 10.1186/s13662-019-2054-z
– ident: key-10.3934/math.2023514-43
  doi: 10.3934/math.20221057
– ident: key-10.3934/math.2023514-2
– ident: key-10.3934/math.2023514-12
  doi: 10.1186/s13661-015-0425-2
– ident: key-10.3934/math.2023514-44
  doi: 10.1155/2013/816803
– ident: key-10.3934/math.2023514-4
  doi: 10.1142/p614
SSID ssj0002124274
Score 2.3246436
Snippet In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 10160
SubjectTerms caputo's derivative
fixed point theorems
green's function
hyres-ulam stability
riemann-liouville integral
Title Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator
URI https://doaj.org/article/ae2763fb9f73459db116e808c9069dc0
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMV4KQc4oWptkz5yBDQ0IcaJSbtVSeOiSaMdo0jbv8duSjUOiAvXyK2iL3ZsJ85nxq6kNAkYX3uxtKkn0WF7Br2yl0LkmxiEtkCvkcfP8WgiH6fRdKPVF9WEOXpgB9xAQ4gmUBhVJEJGypogiCH101z5sbJ5k62jz9tIpmgPxg1ZYr7lKt2FEnKA8R_dPYRUuf7DB21Q9Tc-5WGP7bbBIL91k9hnW1AesJ1xx6T6ccjWwxUtBC4NrwreKQo3a17MVmD5opqVNXfvEd9I5tURSXOif0ShpXu5QANtLxS06TmHd8fxzekgli-8J03VWagrvFpAc_V-xCYPw5f7kde2S_BykaS1FxZoT5EIczRbBCsPQhvFEBSiCKxBt2_TOEXMVGRDAPCt8iFPLOgArJUak9Vj1iurEk4YD6Ow0MIHCl-kwi8VgLRBYqXQGE-qPrv5BjDLWy5xamkxzzCnILgzgjtr4e6z60564Tg0fpG7o7XoZIj5uhlAfchafcj-0ofT__jJGdumObmjlnPWq5efcIHBR20uGz37Aq7N2i0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+solutions+by+fixed+point+theorem+of+general+delay+fractional+differential+equation+with+%24+p+%24-Laplacian+operator&rft.jtitle=AIMS+mathematics&rft.au=Kaushik%2C+Kirti&rft.au=Kumar%2C+Anoop&rft.au=Khan%2C+Aziz&rft.au=Abdeljawad%2C+Thabet&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=5&rft.spage=10160&rft.epage=10176&rft_id=info:doi/10.3934%2Fmath.2023514&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon