Effects of non-Fourier heat conduction and surface heating rate on thermoelastic waves in semi-infinite ceramics subject to thermal shock

Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected to surface heating shock based on non-Fourier C–V model, which may have its root application for future thermal protection system of space v...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 47; no. 12; pp. 17494 - 17501
Main Authors Guo, S.L., Zhang, Y.X., Wang, K.F., Wang, B.L., Zhang, C.W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected to surface heating shock based on non-Fourier C–V model, which may have its root application for future thermal protection system of space vehicles. To simulate the surface heating process, a family of exponential functions is presented. Furthermore, the ratio of heating duration to thermal relaxation time, and the ratio of thermal wave speed to elastic wave speed are introduced to study the coupling effects of heating rate, non-Fourier heat conduction and inertia. Firstly, the time horizon and spatial scale where the non-Fourier effect is significant has been delimited. Secondly, it is demonstrated that the thermal stress component along depth increases and converges as the depth increasing. Thirdly, the domain where the maximum thermal stresses influenced by non-Fourier heat conduction are drawn by the critical lines in the plane of dimensionless heating duration vs thermoelastic wave speed. This study may be useful for designs of ceramic heat insulations.
AbstractList Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected to surface heating shock based on non-Fourier C–V model, which may have its root application for future thermal protection system of space vehicles. To simulate the surface heating process, a family of exponential functions is presented. Furthermore, the ratio of heating duration to thermal relaxation time, and the ratio of thermal wave speed to elastic wave speed are introduced to study the coupling effects of heating rate, non-Fourier heat conduction and inertia. Firstly, the time horizon and spatial scale where the non-Fourier effect is significant has been delimited. Secondly, it is demonstrated that the thermal stress component along depth increases and converges as the depth increasing. Thirdly, the domain where the maximum thermal stresses influenced by non-Fourier heat conduction are drawn by the critical lines in the plane of dimensionless heating duration vs thermoelastic wave speed. This study may be useful for designs of ceramic heat insulations.
Author Wang, B.L.
Wang, K.F.
Guo, S.L.
Zhang, Y.X.
Zhang, C.W.
Author_xml – sequence: 1
  givenname: S.L.
  surname: Guo
  fullname: Guo, S.L.
  organization: School of Civil Engineering, Qingdao University of Technology, Qingdao, 266525, PR China
– sequence: 2
  givenname: Y.X.
  surname: Zhang
  fullname: Zhang, Y.X.
  organization: Langfang Normal University, Langfang, 065000, PR China
– sequence: 3
  givenname: K.F.
  surname: Wang
  fullname: Wang, K.F.
  organization: School of Science, Harbin Institute of Technology, Harbin, 150001, PR China
– sequence: 4
  givenname: B.L.
  surname: Wang
  fullname: Wang, B.L.
  organization: School of Engineering, Western Sydney University, Penrith, NSW, 2751, Australia
– sequence: 5
  givenname: C.W.
  surname: Zhang
  fullname: Zhang, C.W.
  email: zhangchunwei@qut.edu.cn
  organization: School of Civil Engineering, Qingdao University of Technology, Qingdao, 266525, PR China
BookMark eNqFkM9OAyEQh4mpifXPKxheYFcWtuw28aAxrZqYeNEzYYfBUlswQDU-gm8ttXrx0tMcZr7fzHzHZOSDR0LOG1Y3rJEXyxow6rXzueaMNzUTNZPdARk3fScqMZ3IERkz3vGq71t-RI5TWrICTls2Jl8zaxFyosHSklvNwyY6jHSBOlMI3mwgu-Cp9oamTbQa8Kfn_AuNOiMtvbzAuA640ik7oB_6HRN1niZcu8p567wrc7sbIZWUYVk20hx2oF7RtAjwekoOrV4lPPutJ-R5Pnu6uaseHm_vb64fKhBdnyuOaHQrhTCaWylbwEEOzRQmphUcmG5gGLqJ7HthDfRMouwQe8N5pycSeStOyOUuF2JIKaJV4LLePpmjdivVMLXVqpbqT6vaalVMqKK14PIf_hbdWsfP_eDVDsTy3HtxrBI49IDGxeJDmeD2RXwDdI-c8Q
CitedBy_id crossref_primary_10_1016_j_tafmec_2022_103324
crossref_primary_10_1016_j_engfracmech_2022_108499
crossref_primary_10_1016_j_matchemphys_2023_127377
crossref_primary_10_1016_j_apm_2022_11_010
crossref_primary_10_1016_j_csite_2023_103265
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124581
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124451
crossref_primary_10_1007_s00419_022_02298_9
crossref_primary_10_1016_j_tws_2024_112854
crossref_primary_10_2298_TSCI220819043M
crossref_primary_10_1007_s10483_024_3192_7
crossref_primary_10_3390_ma15217832
crossref_primary_10_1016_j_tafmec_2022_103508
crossref_primary_10_1016_j_icheatmasstransfer_2024_107940
crossref_primary_10_1016_j_engstruct_2022_115581
Cites_doi 10.2514/1.41368
10.2514/1.A32580
10.1016/j.ceramint.2018.09.043
10.1007/s10765-012-1190-4
10.1002/pc.23263
10.1080/17455030.2013.768778
10.1016/0022-460X(72)90905-4
10.1016/j.ijheatmasstransfer.2018.05.084
10.1016/j.matchemphys.2008.05.048
10.1016/j.euromechsol.2020.104080
10.1111/j.1551-2916.2010.03971.x
10.1016/j.matlet.2014.09.137
10.1016/S1005-0302(10)60064-3
10.1115/1.2911439
10.1016/j.ceramint.2020.08.108
10.1016/j.physb.2010.10.005
10.1080/01495739.2013.818891
10.1179/1743280410Y.0000000001
10.1016/j.ijheatmasstransfer.2019.04.081
10.1016/j.ijengsci.2012.02.006
10.1016/j.ceramint.2011.12.076
10.1098/rspa.2014.0595
10.1016/j.tafmec.2019.102318
10.1016/j.ijthermalsci.2017.07.015
10.1016/j.ceramint.2018.11.163
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2021.03.067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3956
EndPage 17501
ExternalDocumentID 10_1016_j_ceramint_2021_03_067
S0272884221007331
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
RNS
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c378t-2eeda4633da2f664ceb6b19c5d432c0a1cbb756883fdc806e67ee8d227a56e243
IEDL.DBID .~1
ISSN 0272-8842
IngestDate Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 03:38:50 EDT 2025
Fri Feb 23 02:40:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Thermaoelastic wave
Non-Fourier heat conduction
Surface heating rate
Thermal shock
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-2eeda4633da2f664ceb6b19c5d432c0a1cbb756883fdc806e67ee8d227a56e243
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_ceramint_2021_03_067
crossref_primary_10_1016_j_ceramint_2021_03_067
elsevier_sciencedirect_doi_10_1016_j_ceramint_2021_03_067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Ceramics international
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Wang, Wang (bib20) 2019; 45
Ezzat (bib18) 2011; 406
Cheng, Li, Lu, Shi, Fang (bib21) 2014; 51
Francis (bib23) 1972; 21
Zhang, Li, Deng, Shao, Zhang, Zhang, Kou, Tao, Qu (bib7) 2018; 44
Tzou, Ozisik, Chiffelle (bib24) 1994; 116
Chen, Hu (bib13) 2012; 33
Wang, Wang, Sun, He, Pan, Wang (bib4) 2012; 38
Wang, Han (bib12) 2012; 55
Vernotte (bib10) 1958; 246
Babaei, Chen (bib17) 2010; 24
Wang, Li, Yang (bib26) 2015; 471
Zimmermann, Hilmas, Fahrenholtz (bib3) 2008; 112
Sun (bib1) 2011; 56
Cattaneo (bib9) 1958; 247
Zhang, Li (bib16) 2019; 104
Guo, Wang, Wang, Li (bib19) 2019; 139
Shao, Xu, Meng, Bai, Jiang, Song (bib27) 2010; 93
Wang, Zhou (bib2) 2010; 26
Zhang, Li (bib15) 2017; 121
Parkus (bib25) 1976
Li, Wang, Wang, Li (bib8) 2020; 84
Peng, Zhang, Xie, Li (bib14) 2018; 126
Cheng, Li, Zhang, Fang (bib22) 2014; 37
Zhang, Fang, Pang (bib11) 2013; 23
Li, Wang, Li, Shen, Kou, Fang (bib5) 2015; 138
Li, Huang, Zhang, Xu (bib28) 2016; 37
Qiu, Duan, Zhang, Cai, Liao, He, Jia, Zhou (bib6) 2021; 47
Peng (10.1016/j.ceramint.2021.03.067_bib14) 2018; 126
Zhang (10.1016/j.ceramint.2021.03.067_bib16) 2019; 104
Li (10.1016/j.ceramint.2021.03.067_bib28) 2016; 37
Cheng (10.1016/j.ceramint.2021.03.067_bib21) 2014; 51
Cattaneo (10.1016/j.ceramint.2021.03.067_bib9) 1958; 247
Zhang (10.1016/j.ceramint.2021.03.067_bib7) 2018; 44
Zhang (10.1016/j.ceramint.2021.03.067_bib15) 2017; 121
Wang (10.1016/j.ceramint.2021.03.067_bib26) 2015; 471
Parkus (10.1016/j.ceramint.2021.03.067_bib25) 1976
Shao (10.1016/j.ceramint.2021.03.067_bib27) 2010; 93
Tzou (10.1016/j.ceramint.2021.03.067_bib24) 1994; 116
Zhang (10.1016/j.ceramint.2021.03.067_bib11) 2013; 23
Wang (10.1016/j.ceramint.2021.03.067_bib12) 2012; 55
Qiu (10.1016/j.ceramint.2021.03.067_bib6) 2021; 47
Sun (10.1016/j.ceramint.2021.03.067_bib1) 2011; 56
Guo (10.1016/j.ceramint.2021.03.067_bib20) 2019; 45
Cheng (10.1016/j.ceramint.2021.03.067_bib22) 2014; 37
Li (10.1016/j.ceramint.2021.03.067_bib8) 2020; 84
Wang (10.1016/j.ceramint.2021.03.067_bib4) 2012; 38
Vernotte (10.1016/j.ceramint.2021.03.067_bib10) 1958; 246
Ezzat (10.1016/j.ceramint.2021.03.067_bib18) 2011; 406
Wang (10.1016/j.ceramint.2021.03.067_bib2) 2010; 26
Guo (10.1016/j.ceramint.2021.03.067_bib19) 2019; 139
Francis (10.1016/j.ceramint.2021.03.067_bib23) 1972; 21
Chen (10.1016/j.ceramint.2021.03.067_bib13) 2012; 33
Babaei (10.1016/j.ceramint.2021.03.067_bib17) 2010; 24
Zimmermann (10.1016/j.ceramint.2021.03.067_bib3) 2008; 112
Li (10.1016/j.ceramint.2021.03.067_bib5) 2015; 138
References_xml – volume: 44
  start-page: 22656
  year: 2018
  end-page: 22663
  ident: bib7
  article-title: Theoretical prediction of temperature-dependent fracture strength for ultra-high temperature ceramic composites considering the evolution of damage and thermal residual stress
  publication-title: Ceram. Int.
– volume: 246
  start-page: 3154
  year: 1958
  end-page: 3155
  ident: bib10
  article-title: Les paradoxes de la theorie continue de l’equation de la chaleur
  publication-title: C. R. Acad. Sci.
– volume: 93
  start-page: 3006
  year: 2010
  end-page: 3008
  ident: bib27
  article-title: Crack patterns in ceramic plates after quenching
  publication-title: J. Am. Ceram. Soc.
– volume: 121
  start-page: 336
  year: 2017
  end-page: 347
  ident: bib15
  article-title: Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction
  publication-title: Int. J. Therm. Sci.
– volume: 45
  start-page: 4707
  year: 2019
  end-page: 4717
  ident: bib20
  article-title: Dual-phase-lag heat conduction and associate fracture mechanics of a ceramic fiber/matrix composite cylinder
  publication-title: Ceram. Int.
– volume: 37
  start-page: 14
  year: 2014
  end-page: 33
  ident: bib22
  article-title: Unified thermal shock resistance of ultra-high temperature ceramics under different thermal environments
  publication-title: J. Therm. Stresses
– volume: 23
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib11
  article-title: On the dissipative transient waves in a piezoelectric microplate under strong thermal shock
  publication-title: Waves Random Complex Media
– volume: 47
  start-page: 73
  year: 2021
  end-page: 79
  ident: bib6
  article-title: Cyclic thermal shock resistance of h-BN composite ceramics with La2O3–Al2O3–SiO2 addition
  publication-title: Ceram. Int.
– volume: 33
  start-page: 895
  year: 2012
  end-page: 912
  ident: bib13
  article-title: Hyperbolic heat conduction in a cracked thermoelastic half-plane bonded to a coating
  publication-title: Int. J. Thermophys.
– volume: 26
  start-page: 385
  year: 2010
  end-page: 416
  ident: bib2
  article-title: Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review
  publication-title: J. Mater. Sci. Technol.
– volume: 55
  start-page: 66
  year: 2012
  end-page: 75
  ident: bib12
  article-title: Non-Fourier heat conduction in layered composite materials with an interface crack
  publication-title: Int. J. Eng. Sci.
– volume: 104
  start-page: 102318
  year: 2019
  ident: bib16
  article-title: Transient response of a functionally graded thermoelastic plate with a crack via fractional heat conduction
  publication-title: Theor. Appl. Fract. Mech.
– year: 1976
  ident: bib25
  article-title: Thermoelasticity
– volume: 51
  start-page: 986
  year: 2014
  end-page: 990
  ident: bib21
  article-title: Thermal shock resistance of ultra-high-temperature ceramic thermal protection system
  publication-title: J. Spacecraft Rockets
– volume: 116
  start-page: 1034
  year: 1994
  end-page: 1038
  ident: bib24
  article-title: The lattice temperature in the microscopic two-step model
  publication-title: J. Heat Transf.-Trans. ASME
– volume: 37
  start-page: 1034
  year: 2016
  end-page: 1041
  ident: bib28
  article-title: Effects of gradient density on thermal protection performance of AVCOAT composites under varied heat flux
  publication-title: Polym. Compos.
– volume: 139
  start-page: 317
  year: 2019
  end-page: 329
  ident: bib19
  article-title: Dual-phase-lagging heat conduction and associated thermal shock fracture of sandwich composite plates
  publication-title: Int. J. Heat Mass Tran.
– volume: 112
  start-page: 140
  year: 2008
  end-page: 145
  ident: bib3
  article-title: Thermal shock resistance of ZrB2 and ZrB2–30% SiC
  publication-title: Mater. Chem. Phys.
– volume: 84
  start-page: 104080
  year: 2020
  ident: bib8
  article-title: Simulation of the thermal shock cracking behaviors of ceramics under water quenching for 3-dimension conditions
  publication-title: Eur. J. Mech. Solid.
– volume: 126
  start-page: 1094
  year: 2018
  end-page: 1103
  ident: bib14
  article-title: Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling
  publication-title: Int. J. Heat Mass Tran.
– volume: 21
  start-page: 181
  year: 1972
  end-page: 192
  ident: bib23
  article-title: Thermo-Mechanical effects in elastic wave propagation: a survey
  publication-title: J. Sound Vib.
– volume: 56
  start-page: 143
  year: 2011
  end-page: 166
  ident: bib1
  article-title: Progress in research and development on MAX phases: a family of layered ternary compounds
  publication-title: Int. Mater. Rev.
– volume: 38
  start-page: 3595
  year: 2012
  end-page: 3606
  ident: bib4
  article-title: Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying
  publication-title: Ceram. Int.
– volume: 471
  start-page: 20140595
  year: 2015
  ident: bib26
  article-title: Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model
  publication-title: Proc. R. Soc. A-Math. Phys. Eng. Sci.
– volume: 247
  start-page: 431
  year: 1958
  end-page: 433
  ident: bib9
  article-title: Sur uneforme de l’equation de la chaleureliminant le paradoxed’ine propagation instantanee
  publication-title: C. R. Acad. Sci.
– volume: 138
  start-page: 216
  year: 2015
  end-page: 218
  ident: bib5
  article-title: Effect of the cooling medium temperature on the thermal shock resistance of ceramic materials
  publication-title: Mater. Lett.
– volume: 24
  start-page: 325
  year: 2010
  end-page: 330
  ident: bib17
  article-title: Transient hyperbolic heat conduction in a functionally graded hollow cylinder
  publication-title: J. Thermophys. Heat Tran.
– volume: 406
  start-page: 30
  year: 2011
  end-page: 35
  ident: bib18
  article-title: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer
  publication-title: Phys. B Condens. Matter
– volume: 24
  start-page: 325
  year: 2010
  ident: 10.1016/j.ceramint.2021.03.067_bib17
  article-title: Transient hyperbolic heat conduction in a functionally graded hollow cylinder
  publication-title: J. Thermophys. Heat Tran.
  doi: 10.2514/1.41368
– volume: 51
  start-page: 986
  year: 2014
  ident: 10.1016/j.ceramint.2021.03.067_bib21
  article-title: Thermal shock resistance of ultra-high-temperature ceramic thermal protection system
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A32580
– volume: 44
  start-page: 22656
  year: 2018
  ident: 10.1016/j.ceramint.2021.03.067_bib7
  article-title: Theoretical prediction of temperature-dependent fracture strength for ultra-high temperature ceramic composites considering the evolution of damage and thermal residual stress
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.09.043
– volume: 33
  start-page: 895
  year: 2012
  ident: 10.1016/j.ceramint.2021.03.067_bib13
  article-title: Hyperbolic heat conduction in a cracked thermoelastic half-plane bonded to a coating
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-012-1190-4
– volume: 37
  start-page: 1034
  year: 2016
  ident: 10.1016/j.ceramint.2021.03.067_bib28
  article-title: Effects of gradient density on thermal protection performance of AVCOAT composites under varied heat flux
  publication-title: Polym. Compos.
  doi: 10.1002/pc.23263
– volume: 247
  start-page: 431
  year: 1958
  ident: 10.1016/j.ceramint.2021.03.067_bib9
  article-title: Sur uneforme de l’equation de la chaleureliminant le paradoxed’ine propagation instantanee
  publication-title: C. R. Acad. Sci.
– volume: 23
  start-page: 1
  year: 2013
  ident: 10.1016/j.ceramint.2021.03.067_bib11
  article-title: On the dissipative transient waves in a piezoelectric microplate under strong thermal shock
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2013.768778
– volume: 21
  start-page: 181
  year: 1972
  ident: 10.1016/j.ceramint.2021.03.067_bib23
  article-title: Thermo-Mechanical effects in elastic wave propagation: a survey
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(72)90905-4
– volume: 126
  start-page: 1094
  year: 2018
  ident: 10.1016/j.ceramint.2021.03.067_bib14
  article-title: Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.05.084
– volume: 112
  start-page: 140
  year: 2008
  ident: 10.1016/j.ceramint.2021.03.067_bib3
  article-title: Thermal shock resistance of ZrB2 and ZrB2–30% SiC
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.05.048
– volume: 84
  start-page: 104080
  year: 2020
  ident: 10.1016/j.ceramint.2021.03.067_bib8
  article-title: Simulation of the thermal shock cracking behaviors of ceramics under water quenching for 3-dimension conditions
  publication-title: Eur. J. Mech. Solid.
  doi: 10.1016/j.euromechsol.2020.104080
– volume: 93
  start-page: 3006
  year: 2010
  ident: 10.1016/j.ceramint.2021.03.067_bib27
  article-title: Crack patterns in ceramic plates after quenching
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2010.03971.x
– volume: 138
  start-page: 216
  year: 2015
  ident: 10.1016/j.ceramint.2021.03.067_bib5
  article-title: Effect of the cooling medium temperature on the thermal shock resistance of ceramic materials
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.09.137
– volume: 26
  start-page: 385
  year: 2010
  ident: 10.1016/j.ceramint.2021.03.067_bib2
  article-title: Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(10)60064-3
– year: 1976
  ident: 10.1016/j.ceramint.2021.03.067_bib25
– volume: 116
  start-page: 1034
  year: 1994
  ident: 10.1016/j.ceramint.2021.03.067_bib24
  article-title: The lattice temperature in the microscopic two-step model
  publication-title: J. Heat Transf.-Trans. ASME
  doi: 10.1115/1.2911439
– volume: 47
  start-page: 73
  year: 2021
  ident: 10.1016/j.ceramint.2021.03.067_bib6
  article-title: Cyclic thermal shock resistance of h-BN composite ceramics with La2O3–Al2O3–SiO2 addition
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.108
– volume: 406
  start-page: 30
  year: 2011
  ident: 10.1016/j.ceramint.2021.03.067_bib18
  article-title: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2010.10.005
– volume: 37
  start-page: 14
  year: 2014
  ident: 10.1016/j.ceramint.2021.03.067_bib22
  article-title: Unified thermal shock resistance of ultra-high temperature ceramics under different thermal environments
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495739.2013.818891
– volume: 56
  start-page: 143
  year: 2011
  ident: 10.1016/j.ceramint.2021.03.067_bib1
  article-title: Progress in research and development on MAX phases: a family of layered ternary compounds
  publication-title: Int. Mater. Rev.
  doi: 10.1179/1743280410Y.0000000001
– volume: 139
  start-page: 317
  year: 2019
  ident: 10.1016/j.ceramint.2021.03.067_bib19
  article-title: Dual-phase-lagging heat conduction and associated thermal shock fracture of sandwich composite plates
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.04.081
– volume: 55
  start-page: 66
  year: 2012
  ident: 10.1016/j.ceramint.2021.03.067_bib12
  article-title: Non-Fourier heat conduction in layered composite materials with an interface crack
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2012.02.006
– volume: 38
  start-page: 3595
  year: 2012
  ident: 10.1016/j.ceramint.2021.03.067_bib4
  article-title: Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2011.12.076
– volume: 471
  start-page: 20140595
  year: 2015
  ident: 10.1016/j.ceramint.2021.03.067_bib26
  article-title: Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model
  publication-title: Proc. R. Soc. A-Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2014.0595
– volume: 104
  start-page: 102318
  year: 2019
  ident: 10.1016/j.ceramint.2021.03.067_bib16
  article-title: Transient response of a functionally graded thermoelastic plate with a crack via fractional heat conduction
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102318
– volume: 121
  start-page: 336
  year: 2017
  ident: 10.1016/j.ceramint.2021.03.067_bib15
  article-title: Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.07.015
– volume: 246
  start-page: 3154
  year: 1958
  ident: 10.1016/j.ceramint.2021.03.067_bib10
  article-title: Les paradoxes de la theorie continue de l’equation de la chaleur
  publication-title: C. R. Acad. Sci.
– volume: 45
  start-page: 4707
  year: 2019
  ident: 10.1016/j.ceramint.2021.03.067_bib20
  article-title: Dual-phase-lag heat conduction and associate fracture mechanics of a ceramic fiber/matrix composite cylinder
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.11.163
SSID ssj0016940
Score 2.4076202
Snippet Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 17494
SubjectTerms Non-Fourier heat conduction
Surface heating rate
Thermal shock
Thermaoelastic wave
Title Effects of non-Fourier heat conduction and surface heating rate on thermoelastic waves in semi-infinite ceramics subject to thermal shock
URI https://dx.doi.org/10.1016/j.ceramint.2021.03.067
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR27TsMw0KrKAgPiKcqj8sCaNnEcOxmriqqA6AKVukWOcxGp6ENNCxs7f805TqoiITEwxvbFj7vcw7kHIbcaIulC5jqBSfXJM-k5kZDc4eavYBZhQxnH_TQSwzF_mASTBunXsTDGrbLi_Zanl9y6aulWp9ld5nn3GQ0qFoacMc9WHjQR7FwaKu98bt08PBFxe88i8cvH0TtRwtOOhpWa5XPjU8m8MtlpWW_-FwG1I3QGR-Sw0hZpzy7omDRgfkIOdnIInpIvm3-4oIuMoinvDGwROmqYLEVjN7XpYamap7TYrDKloexDYGrSRFDsM0rgbAGoSOM89EO9Q0HzOS1gljtIgbnRS6ndhS7wLYm5vKHrhQXEBRavyFbPyHhw99IfOlV9BUf7Mlw7DOWj4sL3U8UyIbiGRCRepIOU-0y7ytNJIgMRhn6W6tAVICRAmDImVSCAcf-cNHFjcEEo2mEaNI5kQqGJqBIGSijPD1KcARLeIkF9qLGuko-bGhhvce1lNo1rZMQGGbHrx4iMFulu4ZY2_cafEFGNs_gHIcUoI_6AvfwH7BXZN0_Gi8wLrklzvdrADeor66RdEmSb7PXuH4ejb9jy7kw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RRvPLCmTRzHSUZUURVouwBSN8txLiKItqhpYWPnX3OOk6pISAysti9-nH0P5_wdIVca4tCFzHUCA_XJs9BzYhFyh5u_glmMBeU77sFQ9J743SgYNUinfgtjwior2W9leimtq5J2tZrttzxvP6BDxaKIM-bZzINrZJ3j8TVpDFqfyzgPT8TcXrSEePSx-coz4ZeWhpka5xMTVMm8Eu20TDj_i4Za0TrdHbJdmYv02o5olzRgske2VkAE98mXBSAu6DSj6Ms7XZuFjhopS9HbTS0-LFWTlBaLWaY0lHVITA1OBMU6YwWOp4CWNPZDP9Q7FDSf0ALGuYNbMDeGKbWz0AV-JTG3N3Q-tYQ4wOIZ5eoBeerePHZ6TpVgwdF-GM0dhgpSceH7qWKZEFxDIhIv1kHKfaZd5ekkCQMRRX6W6sgVIEKAKGUsVIEAxv1D0sSJwRGh6Ihp0NiSCYU-okoYKKE8P0ixB0j4MQnqRZW6Qh83STBeZR1m9iJrZkjDDOn6EplxTNpLujeLv_EnRVzzTP7YSRKVxB-0J_-gvSQbvcdBX_Zvh_enZNPUmJAyLzgjzflsAedovMyTi3JzfgNO9-_a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+non-Fourier+heat+conduction+and+surface+heating+rate+on+thermoelastic+waves+in+semi-infinite+ceramics+subject+to+thermal+shock&rft.jtitle=Ceramics+international&rft.au=Guo%2C+S.L.&rft.au=Zhang%2C+Y.X.&rft.au=Wang%2C+K.F.&rft.au=Wang%2C+B.L.&rft.date=2021-06-15&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=47&rft.issue=12&rft.spage=17494&rft.epage=17501&rft_id=info:doi/10.1016%2Fj.ceramint.2021.03.067&rft.externalDocID=S0272884221007331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon