Effects of non-Fourier heat conduction and surface heating rate on thermoelastic waves in semi-infinite ceramics subject to thermal shock
Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected to surface heating shock based on non-Fourier C–V model, which may have its root application for future thermal protection system of space v...
Saved in:
Published in | Ceramics international Vol. 47; no. 12; pp. 17494 - 17501 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected to surface heating shock based on non-Fourier C–V model, which may have its root application for future thermal protection system of space vehicles. To simulate the surface heating process, a family of exponential functions is presented. Furthermore, the ratio of heating duration to thermal relaxation time, and the ratio of thermal wave speed to elastic wave speed are introduced to study the coupling effects of heating rate, non-Fourier heat conduction and inertia. Firstly, the time horizon and spatial scale where the non-Fourier effect is significant has been delimited. Secondly, it is demonstrated that the thermal stress component along depth increases and converges as the depth increasing. Thirdly, the domain where the maximum thermal stresses influenced by non-Fourier heat conduction are drawn by the critical lines in the plane of dimensionless heating duration vs thermoelastic wave speed. This study may be useful for designs of ceramic heat insulations. |
---|---|
AbstractList | Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected to surface heating shock based on non-Fourier C–V model, which may have its root application for future thermal protection system of space vehicles. To simulate the surface heating process, a family of exponential functions is presented. Furthermore, the ratio of heating duration to thermal relaxation time, and the ratio of thermal wave speed to elastic wave speed are introduced to study the coupling effects of heating rate, non-Fourier heat conduction and inertia. Firstly, the time horizon and spatial scale where the non-Fourier effect is significant has been delimited. Secondly, it is demonstrated that the thermal stress component along depth increases and converges as the depth increasing. Thirdly, the domain where the maximum thermal stresses influenced by non-Fourier heat conduction are drawn by the critical lines in the plane of dimensionless heating duration vs thermoelastic wave speed. This study may be useful for designs of ceramic heat insulations. |
Author | Wang, B.L. Wang, K.F. Guo, S.L. Zhang, Y.X. Zhang, C.W. |
Author_xml | – sequence: 1 givenname: S.L. surname: Guo fullname: Guo, S.L. organization: School of Civil Engineering, Qingdao University of Technology, Qingdao, 266525, PR China – sequence: 2 givenname: Y.X. surname: Zhang fullname: Zhang, Y.X. organization: Langfang Normal University, Langfang, 065000, PR China – sequence: 3 givenname: K.F. surname: Wang fullname: Wang, K.F. organization: School of Science, Harbin Institute of Technology, Harbin, 150001, PR China – sequence: 4 givenname: B.L. surname: Wang fullname: Wang, B.L. organization: School of Engineering, Western Sydney University, Penrith, NSW, 2751, Australia – sequence: 5 givenname: C.W. surname: Zhang fullname: Zhang, C.W. email: zhangchunwei@qut.edu.cn organization: School of Civil Engineering, Qingdao University of Technology, Qingdao, 266525, PR China |
BookMark | eNqFkM9OAyEQh4mpifXPKxheYFcWtuw28aAxrZqYeNEzYYfBUlswQDU-gm8ttXrx0tMcZr7fzHzHZOSDR0LOG1Y3rJEXyxow6rXzueaMNzUTNZPdARk3fScqMZ3IERkz3vGq71t-RI5TWrICTls2Jl8zaxFyosHSklvNwyY6jHSBOlMI3mwgu-Cp9oamTbQa8Kfn_AuNOiMtvbzAuA640ik7oB_6HRN1niZcu8p567wrc7sbIZWUYVk20hx2oF7RtAjwekoOrV4lPPutJ-R5Pnu6uaseHm_vb64fKhBdnyuOaHQrhTCaWylbwEEOzRQmphUcmG5gGLqJ7HthDfRMouwQe8N5pycSeStOyOUuF2JIKaJV4LLePpmjdivVMLXVqpbqT6vaalVMqKK14PIf_hbdWsfP_eDVDsTy3HtxrBI49IDGxeJDmeD2RXwDdI-c8Q |
CitedBy_id | crossref_primary_10_1016_j_tafmec_2022_103324 crossref_primary_10_1016_j_engfracmech_2022_108499 crossref_primary_10_1016_j_matchemphys_2023_127377 crossref_primary_10_1016_j_apm_2022_11_010 crossref_primary_10_1016_j_csite_2023_103265 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124581 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124451 crossref_primary_10_1007_s00419_022_02298_9 crossref_primary_10_1016_j_tws_2024_112854 crossref_primary_10_2298_TSCI220819043M crossref_primary_10_1007_s10483_024_3192_7 crossref_primary_10_3390_ma15217832 crossref_primary_10_1016_j_tafmec_2022_103508 crossref_primary_10_1016_j_icheatmasstransfer_2024_107940 crossref_primary_10_1016_j_engstruct_2022_115581 |
Cites_doi | 10.2514/1.41368 10.2514/1.A32580 10.1016/j.ceramint.2018.09.043 10.1007/s10765-012-1190-4 10.1002/pc.23263 10.1080/17455030.2013.768778 10.1016/0022-460X(72)90905-4 10.1016/j.ijheatmasstransfer.2018.05.084 10.1016/j.matchemphys.2008.05.048 10.1016/j.euromechsol.2020.104080 10.1111/j.1551-2916.2010.03971.x 10.1016/j.matlet.2014.09.137 10.1016/S1005-0302(10)60064-3 10.1115/1.2911439 10.1016/j.ceramint.2020.08.108 10.1016/j.physb.2010.10.005 10.1080/01495739.2013.818891 10.1179/1743280410Y.0000000001 10.1016/j.ijheatmasstransfer.2019.04.081 10.1016/j.ijengsci.2012.02.006 10.1016/j.ceramint.2011.12.076 10.1098/rspa.2014.0595 10.1016/j.tafmec.2019.102318 10.1016/j.ijthermalsci.2017.07.015 10.1016/j.ceramint.2018.11.163 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2021.03.067 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 17501 |
ExternalDocumentID | 10_1016_j_ceramint_2021_03_067 S0272884221007331 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RNS SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c378t-2eeda4633da2f664ceb6b19c5d432c0a1cbb756883fdc806e67ee8d227a56e243 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 03:38:50 EDT 2025 Fri Feb 23 02:40:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Thermaoelastic wave Non-Fourier heat conduction Surface heating rate Thermal shock |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-2eeda4633da2f664ceb6b19c5d432c0a1cbb756883fdc806e67ee8d227a56e243 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ceramint_2021_03_067 crossref_primary_10_1016_j_ceramint_2021_03_067 elsevier_sciencedirect_doi_10_1016_j_ceramint_2021_03_067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Wang, Wang (bib20) 2019; 45 Ezzat (bib18) 2011; 406 Cheng, Li, Lu, Shi, Fang (bib21) 2014; 51 Francis (bib23) 1972; 21 Zhang, Li, Deng, Shao, Zhang, Zhang, Kou, Tao, Qu (bib7) 2018; 44 Tzou, Ozisik, Chiffelle (bib24) 1994; 116 Chen, Hu (bib13) 2012; 33 Wang, Wang, Sun, He, Pan, Wang (bib4) 2012; 38 Wang, Han (bib12) 2012; 55 Vernotte (bib10) 1958; 246 Babaei, Chen (bib17) 2010; 24 Wang, Li, Yang (bib26) 2015; 471 Zimmermann, Hilmas, Fahrenholtz (bib3) 2008; 112 Sun (bib1) 2011; 56 Cattaneo (bib9) 1958; 247 Zhang, Li (bib16) 2019; 104 Guo, Wang, Wang, Li (bib19) 2019; 139 Shao, Xu, Meng, Bai, Jiang, Song (bib27) 2010; 93 Wang, Zhou (bib2) 2010; 26 Zhang, Li (bib15) 2017; 121 Parkus (bib25) 1976 Li, Wang, Wang, Li (bib8) 2020; 84 Peng, Zhang, Xie, Li (bib14) 2018; 126 Cheng, Li, Zhang, Fang (bib22) 2014; 37 Zhang, Fang, Pang (bib11) 2013; 23 Li, Wang, Li, Shen, Kou, Fang (bib5) 2015; 138 Li, Huang, Zhang, Xu (bib28) 2016; 37 Qiu, Duan, Zhang, Cai, Liao, He, Jia, Zhou (bib6) 2021; 47 Peng (10.1016/j.ceramint.2021.03.067_bib14) 2018; 126 Zhang (10.1016/j.ceramint.2021.03.067_bib16) 2019; 104 Li (10.1016/j.ceramint.2021.03.067_bib28) 2016; 37 Cheng (10.1016/j.ceramint.2021.03.067_bib21) 2014; 51 Cattaneo (10.1016/j.ceramint.2021.03.067_bib9) 1958; 247 Zhang (10.1016/j.ceramint.2021.03.067_bib7) 2018; 44 Zhang (10.1016/j.ceramint.2021.03.067_bib15) 2017; 121 Wang (10.1016/j.ceramint.2021.03.067_bib26) 2015; 471 Parkus (10.1016/j.ceramint.2021.03.067_bib25) 1976 Shao (10.1016/j.ceramint.2021.03.067_bib27) 2010; 93 Tzou (10.1016/j.ceramint.2021.03.067_bib24) 1994; 116 Zhang (10.1016/j.ceramint.2021.03.067_bib11) 2013; 23 Wang (10.1016/j.ceramint.2021.03.067_bib12) 2012; 55 Qiu (10.1016/j.ceramint.2021.03.067_bib6) 2021; 47 Sun (10.1016/j.ceramint.2021.03.067_bib1) 2011; 56 Guo (10.1016/j.ceramint.2021.03.067_bib20) 2019; 45 Cheng (10.1016/j.ceramint.2021.03.067_bib22) 2014; 37 Li (10.1016/j.ceramint.2021.03.067_bib8) 2020; 84 Wang (10.1016/j.ceramint.2021.03.067_bib4) 2012; 38 Vernotte (10.1016/j.ceramint.2021.03.067_bib10) 1958; 246 Ezzat (10.1016/j.ceramint.2021.03.067_bib18) 2011; 406 Wang (10.1016/j.ceramint.2021.03.067_bib2) 2010; 26 Guo (10.1016/j.ceramint.2021.03.067_bib19) 2019; 139 Francis (10.1016/j.ceramint.2021.03.067_bib23) 1972; 21 Chen (10.1016/j.ceramint.2021.03.067_bib13) 2012; 33 Babaei (10.1016/j.ceramint.2021.03.067_bib17) 2010; 24 Zimmermann (10.1016/j.ceramint.2021.03.067_bib3) 2008; 112 Li (10.1016/j.ceramint.2021.03.067_bib5) 2015; 138 |
References_xml | – volume: 44 start-page: 22656 year: 2018 end-page: 22663 ident: bib7 article-title: Theoretical prediction of temperature-dependent fracture strength for ultra-high temperature ceramic composites considering the evolution of damage and thermal residual stress publication-title: Ceram. Int. – volume: 246 start-page: 3154 year: 1958 end-page: 3155 ident: bib10 article-title: Les paradoxes de la theorie continue de l’equation de la chaleur publication-title: C. R. Acad. Sci. – volume: 93 start-page: 3006 year: 2010 end-page: 3008 ident: bib27 article-title: Crack patterns in ceramic plates after quenching publication-title: J. Am. Ceram. Soc. – volume: 121 start-page: 336 year: 2017 end-page: 347 ident: bib15 article-title: Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction publication-title: Int. J. Therm. Sci. – volume: 45 start-page: 4707 year: 2019 end-page: 4717 ident: bib20 article-title: Dual-phase-lag heat conduction and associate fracture mechanics of a ceramic fiber/matrix composite cylinder publication-title: Ceram. Int. – volume: 37 start-page: 14 year: 2014 end-page: 33 ident: bib22 article-title: Unified thermal shock resistance of ultra-high temperature ceramics under different thermal environments publication-title: J. Therm. Stresses – volume: 23 start-page: 1 year: 2013 end-page: 10 ident: bib11 article-title: On the dissipative transient waves in a piezoelectric microplate under strong thermal shock publication-title: Waves Random Complex Media – volume: 47 start-page: 73 year: 2021 end-page: 79 ident: bib6 article-title: Cyclic thermal shock resistance of h-BN composite ceramics with La2O3–Al2O3–SiO2 addition publication-title: Ceram. Int. – volume: 33 start-page: 895 year: 2012 end-page: 912 ident: bib13 article-title: Hyperbolic heat conduction in a cracked thermoelastic half-plane bonded to a coating publication-title: Int. J. Thermophys. – volume: 26 start-page: 385 year: 2010 end-page: 416 ident: bib2 article-title: Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review publication-title: J. Mater. Sci. Technol. – volume: 55 start-page: 66 year: 2012 end-page: 75 ident: bib12 article-title: Non-Fourier heat conduction in layered composite materials with an interface crack publication-title: Int. J. Eng. Sci. – volume: 104 start-page: 102318 year: 2019 ident: bib16 article-title: Transient response of a functionally graded thermoelastic plate with a crack via fractional heat conduction publication-title: Theor. Appl. Fract. Mech. – year: 1976 ident: bib25 article-title: Thermoelasticity – volume: 51 start-page: 986 year: 2014 end-page: 990 ident: bib21 article-title: Thermal shock resistance of ultra-high-temperature ceramic thermal protection system publication-title: J. Spacecraft Rockets – volume: 116 start-page: 1034 year: 1994 end-page: 1038 ident: bib24 article-title: The lattice temperature in the microscopic two-step model publication-title: J. Heat Transf.-Trans. ASME – volume: 37 start-page: 1034 year: 2016 end-page: 1041 ident: bib28 article-title: Effects of gradient density on thermal protection performance of AVCOAT composites under varied heat flux publication-title: Polym. Compos. – volume: 139 start-page: 317 year: 2019 end-page: 329 ident: bib19 article-title: Dual-phase-lagging heat conduction and associated thermal shock fracture of sandwich composite plates publication-title: Int. J. Heat Mass Tran. – volume: 112 start-page: 140 year: 2008 end-page: 145 ident: bib3 article-title: Thermal shock resistance of ZrB2 and ZrB2–30% SiC publication-title: Mater. Chem. Phys. – volume: 84 start-page: 104080 year: 2020 ident: bib8 article-title: Simulation of the thermal shock cracking behaviors of ceramics under water quenching for 3-dimension conditions publication-title: Eur. J. Mech. Solid. – volume: 126 start-page: 1094 year: 2018 end-page: 1103 ident: bib14 article-title: Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling publication-title: Int. J. Heat Mass Tran. – volume: 21 start-page: 181 year: 1972 end-page: 192 ident: bib23 article-title: Thermo-Mechanical effects in elastic wave propagation: a survey publication-title: J. Sound Vib. – volume: 56 start-page: 143 year: 2011 end-page: 166 ident: bib1 article-title: Progress in research and development on MAX phases: a family of layered ternary compounds publication-title: Int. Mater. Rev. – volume: 38 start-page: 3595 year: 2012 end-page: 3606 ident: bib4 article-title: Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying publication-title: Ceram. Int. – volume: 471 start-page: 20140595 year: 2015 ident: bib26 article-title: Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model publication-title: Proc. R. Soc. A-Math. Phys. Eng. Sci. – volume: 247 start-page: 431 year: 1958 end-page: 433 ident: bib9 article-title: Sur uneforme de l’equation de la chaleureliminant le paradoxed’ine propagation instantanee publication-title: C. R. Acad. Sci. – volume: 138 start-page: 216 year: 2015 end-page: 218 ident: bib5 article-title: Effect of the cooling medium temperature on the thermal shock resistance of ceramic materials publication-title: Mater. Lett. – volume: 24 start-page: 325 year: 2010 end-page: 330 ident: bib17 article-title: Transient hyperbolic heat conduction in a functionally graded hollow cylinder publication-title: J. Thermophys. Heat Tran. – volume: 406 start-page: 30 year: 2011 end-page: 35 ident: bib18 article-title: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer publication-title: Phys. B Condens. Matter – volume: 24 start-page: 325 year: 2010 ident: 10.1016/j.ceramint.2021.03.067_bib17 article-title: Transient hyperbolic heat conduction in a functionally graded hollow cylinder publication-title: J. Thermophys. Heat Tran. doi: 10.2514/1.41368 – volume: 51 start-page: 986 year: 2014 ident: 10.1016/j.ceramint.2021.03.067_bib21 article-title: Thermal shock resistance of ultra-high-temperature ceramic thermal protection system publication-title: J. Spacecraft Rockets doi: 10.2514/1.A32580 – volume: 44 start-page: 22656 year: 2018 ident: 10.1016/j.ceramint.2021.03.067_bib7 article-title: Theoretical prediction of temperature-dependent fracture strength for ultra-high temperature ceramic composites considering the evolution of damage and thermal residual stress publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.09.043 – volume: 33 start-page: 895 year: 2012 ident: 10.1016/j.ceramint.2021.03.067_bib13 article-title: Hyperbolic heat conduction in a cracked thermoelastic half-plane bonded to a coating publication-title: Int. J. Thermophys. doi: 10.1007/s10765-012-1190-4 – volume: 37 start-page: 1034 year: 2016 ident: 10.1016/j.ceramint.2021.03.067_bib28 article-title: Effects of gradient density on thermal protection performance of AVCOAT composites under varied heat flux publication-title: Polym. Compos. doi: 10.1002/pc.23263 – volume: 247 start-page: 431 year: 1958 ident: 10.1016/j.ceramint.2021.03.067_bib9 article-title: Sur uneforme de l’equation de la chaleureliminant le paradoxed’ine propagation instantanee publication-title: C. R. Acad. Sci. – volume: 23 start-page: 1 year: 2013 ident: 10.1016/j.ceramint.2021.03.067_bib11 article-title: On the dissipative transient waves in a piezoelectric microplate under strong thermal shock publication-title: Waves Random Complex Media doi: 10.1080/17455030.2013.768778 – volume: 21 start-page: 181 year: 1972 ident: 10.1016/j.ceramint.2021.03.067_bib23 article-title: Thermo-Mechanical effects in elastic wave propagation: a survey publication-title: J. Sound Vib. doi: 10.1016/0022-460X(72)90905-4 – volume: 126 start-page: 1094 year: 2018 ident: 10.1016/j.ceramint.2021.03.067_bib14 article-title: Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.05.084 – volume: 112 start-page: 140 year: 2008 ident: 10.1016/j.ceramint.2021.03.067_bib3 article-title: Thermal shock resistance of ZrB2 and ZrB2–30% SiC publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.05.048 – volume: 84 start-page: 104080 year: 2020 ident: 10.1016/j.ceramint.2021.03.067_bib8 article-title: Simulation of the thermal shock cracking behaviors of ceramics under water quenching for 3-dimension conditions publication-title: Eur. J. Mech. Solid. doi: 10.1016/j.euromechsol.2020.104080 – volume: 93 start-page: 3006 year: 2010 ident: 10.1016/j.ceramint.2021.03.067_bib27 article-title: Crack patterns in ceramic plates after quenching publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.03971.x – volume: 138 start-page: 216 year: 2015 ident: 10.1016/j.ceramint.2021.03.067_bib5 article-title: Effect of the cooling medium temperature on the thermal shock resistance of ceramic materials publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.09.137 – volume: 26 start-page: 385 year: 2010 ident: 10.1016/j.ceramint.2021.03.067_bib2 article-title: Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review publication-title: J. Mater. Sci. Technol. doi: 10.1016/S1005-0302(10)60064-3 – year: 1976 ident: 10.1016/j.ceramint.2021.03.067_bib25 – volume: 116 start-page: 1034 year: 1994 ident: 10.1016/j.ceramint.2021.03.067_bib24 article-title: The lattice temperature in the microscopic two-step model publication-title: J. Heat Transf.-Trans. ASME doi: 10.1115/1.2911439 – volume: 47 start-page: 73 year: 2021 ident: 10.1016/j.ceramint.2021.03.067_bib6 article-title: Cyclic thermal shock resistance of h-BN composite ceramics with La2O3–Al2O3–SiO2 addition publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.108 – volume: 406 start-page: 30 year: 2011 ident: 10.1016/j.ceramint.2021.03.067_bib18 article-title: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2010.10.005 – volume: 37 start-page: 14 year: 2014 ident: 10.1016/j.ceramint.2021.03.067_bib22 article-title: Unified thermal shock resistance of ultra-high temperature ceramics under different thermal environments publication-title: J. Therm. Stresses doi: 10.1080/01495739.2013.818891 – volume: 56 start-page: 143 year: 2011 ident: 10.1016/j.ceramint.2021.03.067_bib1 article-title: Progress in research and development on MAX phases: a family of layered ternary compounds publication-title: Int. Mater. Rev. doi: 10.1179/1743280410Y.0000000001 – volume: 139 start-page: 317 year: 2019 ident: 10.1016/j.ceramint.2021.03.067_bib19 article-title: Dual-phase-lagging heat conduction and associated thermal shock fracture of sandwich composite plates publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.04.081 – volume: 55 start-page: 66 year: 2012 ident: 10.1016/j.ceramint.2021.03.067_bib12 article-title: Non-Fourier heat conduction in layered composite materials with an interface crack publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2012.02.006 – volume: 38 start-page: 3595 year: 2012 ident: 10.1016/j.ceramint.2021.03.067_bib4 article-title: Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.12.076 – volume: 471 start-page: 20140595 year: 2015 ident: 10.1016/j.ceramint.2021.03.067_bib26 article-title: Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model publication-title: Proc. R. Soc. A-Math. Phys. Eng. Sci. doi: 10.1098/rspa.2014.0595 – volume: 104 start-page: 102318 year: 2019 ident: 10.1016/j.ceramint.2021.03.067_bib16 article-title: Transient response of a functionally graded thermoelastic plate with a crack via fractional heat conduction publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102318 – volume: 121 start-page: 336 year: 2017 ident: 10.1016/j.ceramint.2021.03.067_bib15 article-title: Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.07.015 – volume: 246 start-page: 3154 year: 1958 ident: 10.1016/j.ceramint.2021.03.067_bib10 article-title: Les paradoxes de la theorie continue de l’equation de la chaleur publication-title: C. R. Acad. Sci. – volume: 45 start-page: 4707 year: 2019 ident: 10.1016/j.ceramint.2021.03.067_bib20 article-title: Dual-phase-lag heat conduction and associate fracture mechanics of a ceramic fiber/matrix composite cylinder publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.163 |
SSID | ssj0016940 |
Score | 2.4076202 |
Snippet | Non-Fourier heat conduction has been observed in many fast heating experiments. This paper studies the thermoelastic fields of semi-infinite ceramics subjected... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 17494 |
SubjectTerms | Non-Fourier heat conduction Surface heating rate Thermal shock Thermaoelastic wave |
Title | Effects of non-Fourier heat conduction and surface heating rate on thermoelastic waves in semi-infinite ceramics subject to thermal shock |
URI | https://dx.doi.org/10.1016/j.ceramint.2021.03.067 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR27TsMw0KrKAgPiKcqj8sCaNnEcOxmriqqA6AKVukWOcxGp6ENNCxs7f805TqoiITEwxvbFj7vcw7kHIbcaIulC5jqBSfXJM-k5kZDc4eavYBZhQxnH_TQSwzF_mASTBunXsTDGrbLi_Zanl9y6aulWp9ld5nn3GQ0qFoacMc9WHjQR7FwaKu98bt08PBFxe88i8cvH0TtRwtOOhpWa5XPjU8m8MtlpWW_-FwG1I3QGR-Sw0hZpzy7omDRgfkIOdnIInpIvm3-4oIuMoinvDGwROmqYLEVjN7XpYamap7TYrDKloexDYGrSRFDsM0rgbAGoSOM89EO9Q0HzOS1gljtIgbnRS6ndhS7wLYm5vKHrhQXEBRavyFbPyHhw99IfOlV9BUf7Mlw7DOWj4sL3U8UyIbiGRCRepIOU-0y7ytNJIgMRhn6W6tAVICRAmDImVSCAcf-cNHFjcEEo2mEaNI5kQqGJqBIGSijPD1KcARLeIkF9qLGuko-bGhhvce1lNo1rZMQGGbHrx4iMFulu4ZY2_cafEFGNs_gHIcUoI_6AvfwH7BXZN0_Gi8wLrklzvdrADeor66RdEmSb7PXuH4ejb9jy7kw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RRvPLCmTRzHSUZUURVouwBSN8txLiKItqhpYWPnX3OOk6pISAysti9-nH0P5_wdIVca4tCFzHUCA_XJs9BzYhFyh5u_glmMBeU77sFQ9J743SgYNUinfgtjwior2W9leimtq5J2tZrttzxvP6BDxaKIM-bZzINrZJ3j8TVpDFqfyzgPT8TcXrSEePSx-coz4ZeWhpka5xMTVMm8Eu20TDj_i4Za0TrdHbJdmYv02o5olzRgske2VkAE98mXBSAu6DSj6Ms7XZuFjhopS9HbTS0-LFWTlBaLWaY0lHVITA1OBMU6YwWOp4CWNPZDP9Q7FDSf0ALGuYNbMDeGKbWz0AV-JTG3N3Q-tYQ4wOIZ5eoBeerePHZ6TpVgwdF-GM0dhgpSceH7qWKZEFxDIhIv1kHKfaZd5ekkCQMRRX6W6sgVIEKAKGUsVIEAxv1D0sSJwRGh6Ihp0NiSCYU-okoYKKE8P0ixB0j4MQnqRZW6Qh83STBeZR1m9iJrZkjDDOn6EplxTNpLujeLv_EnRVzzTP7YSRKVxB-0J_-gvSQbvcdBX_Zvh_enZNPUmJAyLzgjzflsAedovMyTi3JzfgNO9-_a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+non-Fourier+heat+conduction+and+surface+heating+rate+on+thermoelastic+waves+in+semi-infinite+ceramics+subject+to+thermal+shock&rft.jtitle=Ceramics+international&rft.au=Guo%2C+S.L.&rft.au=Zhang%2C+Y.X.&rft.au=Wang%2C+K.F.&rft.au=Wang%2C+B.L.&rft.date=2021-06-15&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=47&rft.issue=12&rft.spage=17494&rft.epage=17501&rft_id=info:doi/10.1016%2Fj.ceramint.2021.03.067&rft.externalDocID=S0272884221007331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |