Solving fractional partial differential equations via a new scheme
In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of ti...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 3; pp. 5318 - 5337 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023267 |
Cover
Loading…
Abstract | In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of time-fractional partial problems. We introduce a new theorem to explain the required substitutions of the proposed method. In addition, convergence analysis conditions of the method are given. Furthermore, some different illustrative examples of time-fractional partial differential equations and systems are discussed to show the applicability and simplicity of the new approach. |
---|---|
AbstractList | In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of time-fractional partial problems. We introduce a new theorem to explain the required substitutions of the proposed method. In addition, convergence analysis conditions of the method are given. Furthermore, some different illustrative examples of time-fractional partial differential equations and systems are discussed to show the applicability and simplicity of the new approach. |
Author | Saadeh, Rania Qazza, Ahmad Salah, Emad |
Author_xml | – sequence: 1 givenname: Ahmad surname: Qazza fullname: Qazza, Ahmad – sequence: 2 givenname: Rania surname: Saadeh fullname: Saadeh, Rania – sequence: 3 givenname: Emad surname: Salah fullname: Salah, Emad |
BookMark | eNptkN1OwkAQhTcGExG58wH6ABb3r93tpRJFEhIv1OvNdHcWlpQWtxXj20uBGGO8OvNz5svkXJJB3dRIyDWjE1EIebuBbjXhlAueqzMy5FKJNC-0HvyqL8i4bdeUUs645EoOyf1LU-1CvUx8BNuFpoYq2ULswl5d8B4j1ocG3z-g37fJLkACSY2fSWtXuMErcu6hanF80hF5e3x4nT6li-fZfHq3SK1Quks5utyyTHqncsx1VqAV2oHEnHkuSmnL3FNNReGVR3Ci1CBLxxCLzAkHTIzI_Mh1DazNNoYNxC_TQDCHQROXpn_cVmhkQdEXgmbItMx0Bk4iVd5x4dFaJfesmyPLxqZtI_ofHqOmj9P0cZpTnHs7_2O3oTvE0UUI1f9H3zx4fGk |
CitedBy_id | crossref_primary_10_3390_sym15112076 crossref_primary_10_1016_j_heliyon_2023_e15891 crossref_primary_10_1155_2023_6229486 crossref_primary_10_1515_math_2024_0036 crossref_primary_10_37394_23206_2023_22_36 crossref_primary_10_32604_cmes_2024_051588 crossref_primary_10_1016_j_padiff_2023_100533 crossref_primary_10_1155_2023_6973734 crossref_primary_10_3934_math_20241588 crossref_primary_10_3934_math_2023754 crossref_primary_10_37394_232013_2022_17_22 crossref_primary_10_3390_fractalfract7040332 crossref_primary_10_1155_2023_8453459 crossref_primary_10_33889_IJMEMS_2023_8_5_052 crossref_primary_10_3390_fractalfract7100763 crossref_primary_10_3934_math_2024472 crossref_primary_10_3389_fphy_2024_1294506 crossref_primary_10_4236_jamp_2024_1210206 crossref_primary_10_3390_fractalfract8120711 |
Cites_doi | 10.1016/j.physleta.2006.06.024 10.1016/j.chaos.2020.109619 10.1016/j.rinp.2020.103667 10.1016/j.physa.2020.125150 10.1016/j.rinp.2015.01.008 10.1142/p614 10.1109/TMTT.1970.1127270 10.5373/JARAM.1447.051912 10.3390/sym14010050 10.1016/j.apm.2015.10.021 10.1016/j.cam.2014.01.002 10.3390/sym12060925 10.1515/nleng-2021-0022 10.17512/jamcm.2020.1.05 10.1186/1687-1847-2013-18 10.3390/axioms12020111 10.3390/fractalfract6080419 10.1007/s11071-017-3820-7 10.1016/j.amc.2015.01.034 10.3390/e15125305 10.3390/axioms10040332 10.1016/j.nahs.2009.10.006 10.1007/978-981-15-8498-5_2 10.5899/2016/cna-00235 10.1016/j.cnsns.2010.07.016 10.1002/mma.5842 10.1201/9780203489659 10.3390/fractalfract6090490 10.1016/S0096-3003(01)00312-5 10.1002/num.22683 10.1016/j.aej.2020.03.044 10.22436/jnsa.009.11.10 10.1016/j.aej.2022.07.022 10.1016/j.aej.2020.03.029 10.3233/FI-2019-1795 10.1016/j.micromeso.2013.02.054 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023267 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 5337 |
ExternalDocumentID | oai_doaj_org_article_490ef9305e184585ad4e07fd23fecc74 10_3934_math_2023267 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-2ed6c154fd76e6859ec38da4e61f23b4cb6f08039f7fead3b8a4bd1ee95d3da13 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:20:43 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-2ed6c154fd76e6859ec38da4e61f23b4cb6f08039f7fead3b8a4bd1ee95d3da13 |
OpenAccessLink | https://doaj.org/article/490ef9305e184585ad4e07fd23fecc74 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_490ef9305e184585ad4e07fd23fecc74 crossref_primary_10_3934_math_2023267 crossref_citationtrail_10_3934_math_2023267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023267-6 key-10.3934/math.2023267-7 key-10.3934/math.2023267-4 key-10.3934/math.2023267-5 key-10.3934/math.2023267-2 key-10.3934/math.2023267-3 key-10.3934/math.2023267-30 key-10.3934/math.2023267-31 key-10.3934/math.2023267-1 key-10.3934/math.2023267-10 key-10.3934/math.2023267-32 key-10.3934/math.2023267-11 key-10.3934/math.2023267-33 key-10.3934/math.2023267-12 key-10.3934/math.2023267-34 key-10.3934/math.2023267-13 key-10.3934/math.2023267-35 key-10.3934/math.2023267-14 key-10.3934/math.2023267-36 key-10.3934/math.2023267-15 key-10.3934/math.2023267-37 key-10.3934/math.2023267-16 key-10.3934/math.2023267-38 key-10.3934/math.2023267-17 key-10.3934/math.2023267-39 key-10.3934/math.2023267-18 key-10.3934/math.2023267-40 key-10.3934/math.2023267-41 key-10.3934/math.2023267-20 key-10.3934/math.2023267-21 key-10.3934/math.2023267-22 key-10.3934/math.2023267-23 key-10.3934/math.2023267-24 key-10.3934/math.2023267-25 key-10.3934/math.2023267-26 key-10.3934/math.2023267-27 key-10.3934/math.2023267-28 key-10.3934/math.2023267-29 key-10.3934/math.2023267-19 key-10.3934/math.2023267-8 key-10.3934/math.2023267-9 |
References_xml | – ident: key-10.3934/math.2023267-9 doi: 10.1016/j.physleta.2006.06.024 – ident: key-10.3934/math.2023267-35 doi: 10.1016/j.chaos.2020.109619 – ident: key-10.3934/math.2023267-26 doi: 10.1016/j.rinp.2020.103667 – ident: key-10.3934/math.2023267-40 doi: 10.1016/j.physa.2020.125150 – ident: key-10.3934/math.2023267-28 doi: 10.1016/j.rinp.2015.01.008 – ident: key-10.3934/math.2023267-11 doi: 10.1142/p614 – ident: key-10.3934/math.2023267-7 doi: 10.1109/TMTT.1970.1127270 – ident: key-10.3934/math.2023267-23 doi: 10.5373/JARAM.1447.051912 – ident: key-10.3934/math.2023267-32 doi: 10.3390/sym14010050 – ident: key-10.3934/math.2023267-41 doi: 10.1016/j.apm.2015.10.021 – ident: key-10.3934/math.2023267-15 – ident: key-10.3934/math.2023267-12 doi: 10.1016/j.cam.2014.01.002 – ident: key-10.3934/math.2023267-31 doi: 10.3390/sym12060925 – ident: key-10.3934/math.2023267-27 doi: 10.1515/nleng-2021-0022 – ident: key-10.3934/math.2023267-13 doi: 10.17512/jamcm.2020.1.05 – ident: key-10.3934/math.2023267-19 – ident: key-10.3934/math.2023267-1 – ident: key-10.3934/math.2023267-8 doi: 10.1186/1687-1847-2013-18 – ident: key-10.3934/math.2023267-38 doi: 10.3390/axioms12020111 – ident: key-10.3934/math.2023267-4 doi: 10.3390/fractalfract6080419 – ident: key-10.3934/math.2023267-18 doi: 10.1007/s11071-017-3820-7 – ident: key-10.3934/math.2023267-16 doi: 10.1016/j.amc.2015.01.034 – ident: key-10.3934/math.2023267-17 doi: 10.3390/e15125305 – ident: key-10.3934/math.2023267-33 doi: 10.3390/axioms10040332 – ident: key-10.3934/math.2023267-30 doi: 10.1016/j.nahs.2009.10.006 – ident: key-10.3934/math.2023267-5 doi: 10.1007/978-981-15-8498-5_2 – ident: key-10.3934/math.2023267-25 doi: 10.5899/2016/cna-00235 – ident: key-10.3934/math.2023267-14 doi: 10.1016/j.cnsns.2010.07.016 – ident: key-10.3934/math.2023267-39 doi: 10.1002/mma.5842 – ident: key-10.3934/math.2023267-3 doi: 10.1201/9780203489659 – ident: key-10.3934/math.2023267-34 doi: 10.3390/fractalfract6090490 – ident: key-10.3934/math.2023267-6 doi: 10.1016/S0096-3003(01)00312-5 – ident: key-10.3934/math.2023267-20 doi: 10.1002/num.22683 – ident: key-10.3934/math.2023267-10 – ident: key-10.3934/math.2023267-24 doi: 10.1016/j.aej.2020.03.044 – ident: key-10.3934/math.2023267-21 doi: 10.22436/jnsa.009.11.10 – ident: key-10.3934/math.2023267-2 – ident: key-10.3934/math.2023267-29 doi: 10.1016/j.aej.2022.07.022 – ident: key-10.3934/math.2023267-37 doi: 10.1016/j.aej.2020.03.029 – ident: key-10.3934/math.2023267-22 doi: 10.3233/FI-2019-1795 – ident: key-10.3934/math.2023267-36 doi: 10.1016/j.micromeso.2013.02.054 |
SSID | ssj0002124274 |
Score | 2.32039 |
Snippet | In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 5318 |
SubjectTerms | analytical solution fractional differential equations power series time fractional partial differential equations |
Title | Solving fractional partial differential equations via a new scheme |
URI | https://doaj.org/article/490ef9305e184585ad4e07fd23fecc74 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATiprUjh2PFFFVSGWBSt0iP84SUmlLW_j9nO20dEEsTFGiU-LcnXzf5zjfEXJTGg7cKJMBiDzjVa4yUyqbOcSuzvLCQJTMHz6LwYg_jcvxVquvsCcsyQMnx3W4ysErzEpALoLYVjsOufSuyzw-XUYlUKx5W2QqzME4IXPkW2mnO1OMdxD_hW8PCCBiS_mfGrQl1R9rSv-A7DdgkN6nQRySHZgekb3hRkl1eUx6L7NJ4PzUL9IvCGg_D6PG47q5STyBjyTavaRfb5pqinCZInOFdzgho_7j68Mga_oeZJbJapV1wQmL0MY7KUBUpQLLKqc5iMJ3meHWCI9AjykvPSYCM5XmxhUAqnTM6YKdktZ0NoUzQsEqAfjGVhqkQsZpJQqhrCqtROAkija5W3uito0oeOhNMamRHAS_1cFvdeO3NrndWM-TGMYvdr3g1I1NkLCOFzCwdRPY-q_Anv_HTS7IbhhTWjO5JK3V4hOuEEWszHVMmG8_A8cW |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+fractional+partial+differential+equations+via+a+new+scheme&rft.jtitle=AIMS+mathematics&rft.au=Ahmad+Qazza&rft.au=Rania+Saadeh&rft.au=Emad+Salah&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=3&rft.spage=5318&rft.epage=5337&rft_id=info:doi/10.3934%2Fmath.2023267&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_490ef9305e184585ad4e07fd23fecc74 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |