Solving fractional partial differential equations via a new scheme

In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of ti...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 3; pp. 5318 - 5337
Main Authors Qazza, Ahmad, Saadeh, Rania, Salah, Emad
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023267

Cover

Loading…
Abstract In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of time-fractional partial problems. We introduce a new theorem to explain the required substitutions of the proposed method. In addition, convergence analysis conditions of the method are given. Furthermore, some different illustrative examples of time-fractional partial differential equations and systems are discussed to show the applicability and simplicity of the new approach.
AbstractList In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of time-fractional partial problems. We introduce a new theorem to explain the required substitutions of the proposed method. In addition, convergence analysis conditions of the method are given. Furthermore, some different illustrative examples of time-fractional partial differential equations and systems are discussed to show the applicability and simplicity of the new approach.
Author Saadeh, Rania
Qazza, Ahmad
Salah, Emad
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Qazza
  fullname: Qazza, Ahmad
– sequence: 2
  givenname: Rania
  surname: Saadeh
  fullname: Saadeh, Rania
– sequence: 3
  givenname: Emad
  surname: Salah
  fullname: Salah, Emad
BookMark eNptkN1OwkAQhTcGExG58wH6ABb3r93tpRJFEhIv1OvNdHcWlpQWtxXj20uBGGO8OvNz5svkXJJB3dRIyDWjE1EIebuBbjXhlAueqzMy5FKJNC-0HvyqL8i4bdeUUs645EoOyf1LU-1CvUx8BNuFpoYq2ULswl5d8B4j1ocG3z-g37fJLkACSY2fSWtXuMErcu6hanF80hF5e3x4nT6li-fZfHq3SK1Quks5utyyTHqncsx1VqAV2oHEnHkuSmnL3FNNReGVR3Ci1CBLxxCLzAkHTIzI_Mh1DazNNoYNxC_TQDCHQROXpn_cVmhkQdEXgmbItMx0Bk4iVd5x4dFaJfesmyPLxqZtI_ofHqOmj9P0cZpTnHs7_2O3oTvE0UUI1f9H3zx4fGk
CitedBy_id crossref_primary_10_3390_sym15112076
crossref_primary_10_1016_j_heliyon_2023_e15891
crossref_primary_10_1155_2023_6229486
crossref_primary_10_1515_math_2024_0036
crossref_primary_10_37394_23206_2023_22_36
crossref_primary_10_32604_cmes_2024_051588
crossref_primary_10_1016_j_padiff_2023_100533
crossref_primary_10_1155_2023_6973734
crossref_primary_10_3934_math_20241588
crossref_primary_10_3934_math_2023754
crossref_primary_10_37394_232013_2022_17_22
crossref_primary_10_3390_fractalfract7040332
crossref_primary_10_1155_2023_8453459
crossref_primary_10_33889_IJMEMS_2023_8_5_052
crossref_primary_10_3390_fractalfract7100763
crossref_primary_10_3934_math_2024472
crossref_primary_10_3389_fphy_2024_1294506
crossref_primary_10_4236_jamp_2024_1210206
crossref_primary_10_3390_fractalfract8120711
Cites_doi 10.1016/j.physleta.2006.06.024
10.1016/j.chaos.2020.109619
10.1016/j.rinp.2020.103667
10.1016/j.physa.2020.125150
10.1016/j.rinp.2015.01.008
10.1142/p614
10.1109/TMTT.1970.1127270
10.5373/JARAM.1447.051912
10.3390/sym14010050
10.1016/j.apm.2015.10.021
10.1016/j.cam.2014.01.002
10.3390/sym12060925
10.1515/nleng-2021-0022
10.17512/jamcm.2020.1.05
10.1186/1687-1847-2013-18
10.3390/axioms12020111
10.3390/fractalfract6080419
10.1007/s11071-017-3820-7
10.1016/j.amc.2015.01.034
10.3390/e15125305
10.3390/axioms10040332
10.1016/j.nahs.2009.10.006
10.1007/978-981-15-8498-5_2
10.5899/2016/cna-00235
10.1016/j.cnsns.2010.07.016
10.1002/mma.5842
10.1201/9780203489659
10.3390/fractalfract6090490
10.1016/S0096-3003(01)00312-5
10.1002/num.22683
10.1016/j.aej.2020.03.044
10.22436/jnsa.009.11.10
10.1016/j.aej.2022.07.022
10.1016/j.aej.2020.03.029
10.3233/FI-2019-1795
10.1016/j.micromeso.2013.02.054
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023267
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 5337
ExternalDocumentID oai_doaj_org_article_490ef9305e184585ad4e07fd23fecc74
10_3934_math_2023267
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-2ed6c154fd76e6859ec38da4e61f23b4cb6f08039f7fead3b8a4bd1ee95d3da13
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:20:43 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-2ed6c154fd76e6859ec38da4e61f23b4cb6f08039f7fead3b8a4bd1ee95d3da13
OpenAccessLink https://doaj.org/article/490ef9305e184585ad4e07fd23fecc74
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_490ef9305e184585ad4e07fd23fecc74
crossref_primary_10_3934_math_2023267
crossref_citationtrail_10_3934_math_2023267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023267-6
key-10.3934/math.2023267-7
key-10.3934/math.2023267-4
key-10.3934/math.2023267-5
key-10.3934/math.2023267-2
key-10.3934/math.2023267-3
key-10.3934/math.2023267-30
key-10.3934/math.2023267-31
key-10.3934/math.2023267-1
key-10.3934/math.2023267-10
key-10.3934/math.2023267-32
key-10.3934/math.2023267-11
key-10.3934/math.2023267-33
key-10.3934/math.2023267-12
key-10.3934/math.2023267-34
key-10.3934/math.2023267-13
key-10.3934/math.2023267-35
key-10.3934/math.2023267-14
key-10.3934/math.2023267-36
key-10.3934/math.2023267-15
key-10.3934/math.2023267-37
key-10.3934/math.2023267-16
key-10.3934/math.2023267-38
key-10.3934/math.2023267-17
key-10.3934/math.2023267-39
key-10.3934/math.2023267-18
key-10.3934/math.2023267-40
key-10.3934/math.2023267-41
key-10.3934/math.2023267-20
key-10.3934/math.2023267-21
key-10.3934/math.2023267-22
key-10.3934/math.2023267-23
key-10.3934/math.2023267-24
key-10.3934/math.2023267-25
key-10.3934/math.2023267-26
key-10.3934/math.2023267-27
key-10.3934/math.2023267-28
key-10.3934/math.2023267-29
key-10.3934/math.2023267-19
key-10.3934/math.2023267-8
key-10.3934/math.2023267-9
References_xml – ident: key-10.3934/math.2023267-9
  doi: 10.1016/j.physleta.2006.06.024
– ident: key-10.3934/math.2023267-35
  doi: 10.1016/j.chaos.2020.109619
– ident: key-10.3934/math.2023267-26
  doi: 10.1016/j.rinp.2020.103667
– ident: key-10.3934/math.2023267-40
  doi: 10.1016/j.physa.2020.125150
– ident: key-10.3934/math.2023267-28
  doi: 10.1016/j.rinp.2015.01.008
– ident: key-10.3934/math.2023267-11
  doi: 10.1142/p614
– ident: key-10.3934/math.2023267-7
  doi: 10.1109/TMTT.1970.1127270
– ident: key-10.3934/math.2023267-23
  doi: 10.5373/JARAM.1447.051912
– ident: key-10.3934/math.2023267-32
  doi: 10.3390/sym14010050
– ident: key-10.3934/math.2023267-41
  doi: 10.1016/j.apm.2015.10.021
– ident: key-10.3934/math.2023267-15
– ident: key-10.3934/math.2023267-12
  doi: 10.1016/j.cam.2014.01.002
– ident: key-10.3934/math.2023267-31
  doi: 10.3390/sym12060925
– ident: key-10.3934/math.2023267-27
  doi: 10.1515/nleng-2021-0022
– ident: key-10.3934/math.2023267-13
  doi: 10.17512/jamcm.2020.1.05
– ident: key-10.3934/math.2023267-19
– ident: key-10.3934/math.2023267-1
– ident: key-10.3934/math.2023267-8
  doi: 10.1186/1687-1847-2013-18
– ident: key-10.3934/math.2023267-38
  doi: 10.3390/axioms12020111
– ident: key-10.3934/math.2023267-4
  doi: 10.3390/fractalfract6080419
– ident: key-10.3934/math.2023267-18
  doi: 10.1007/s11071-017-3820-7
– ident: key-10.3934/math.2023267-16
  doi: 10.1016/j.amc.2015.01.034
– ident: key-10.3934/math.2023267-17
  doi: 10.3390/e15125305
– ident: key-10.3934/math.2023267-33
  doi: 10.3390/axioms10040332
– ident: key-10.3934/math.2023267-30
  doi: 10.1016/j.nahs.2009.10.006
– ident: key-10.3934/math.2023267-5
  doi: 10.1007/978-981-15-8498-5_2
– ident: key-10.3934/math.2023267-25
  doi: 10.5899/2016/cna-00235
– ident: key-10.3934/math.2023267-14
  doi: 10.1016/j.cnsns.2010.07.016
– ident: key-10.3934/math.2023267-39
  doi: 10.1002/mma.5842
– ident: key-10.3934/math.2023267-3
  doi: 10.1201/9780203489659
– ident: key-10.3934/math.2023267-34
  doi: 10.3390/fractalfract6090490
– ident: key-10.3934/math.2023267-6
  doi: 10.1016/S0096-3003(01)00312-5
– ident: key-10.3934/math.2023267-20
  doi: 10.1002/num.22683
– ident: key-10.3934/math.2023267-10
– ident: key-10.3934/math.2023267-24
  doi: 10.1016/j.aej.2020.03.044
– ident: key-10.3934/math.2023267-21
  doi: 10.22436/jnsa.009.11.10
– ident: key-10.3934/math.2023267-2
– ident: key-10.3934/math.2023267-29
  doi: 10.1016/j.aej.2022.07.022
– ident: key-10.3934/math.2023267-37
  doi: 10.1016/j.aej.2020.03.029
– ident: key-10.3934/math.2023267-22
  doi: 10.3233/FI-2019-1795
– ident: key-10.3934/math.2023267-36
  doi: 10.1016/j.micromeso.2013.02.054
SSID ssj0002124274
Score 2.32039
Snippet In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 5318
SubjectTerms analytical solution
fractional differential equations
power series
time fractional partial differential equations
Title Solving fractional partial differential equations via a new scheme
URI https://doaj.org/article/490ef9305e184585ad4e07fd23fecc74
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATiprUjh2PFFFVSGWBSt0iP84SUmlLW_j9nO20dEEsTFGiU-LcnXzf5zjfEXJTGg7cKJMBiDzjVa4yUyqbOcSuzvLCQJTMHz6LwYg_jcvxVquvsCcsyQMnx3W4ysErzEpALoLYVjsOufSuyzw-XUYlUKx5W2QqzME4IXPkW2mnO1OMdxD_hW8PCCBiS_mfGrQl1R9rSv-A7DdgkN6nQRySHZgekb3hRkl1eUx6L7NJ4PzUL9IvCGg_D6PG47q5STyBjyTavaRfb5pqinCZInOFdzgho_7j68Mga_oeZJbJapV1wQmL0MY7KUBUpQLLKqc5iMJ3meHWCI9AjykvPSYCM5XmxhUAqnTM6YKdktZ0NoUzQsEqAfjGVhqkQsZpJQqhrCqtROAkija5W3uito0oeOhNMamRHAS_1cFvdeO3NrndWM-TGMYvdr3g1I1NkLCOFzCwdRPY-q_Anv_HTS7IbhhTWjO5JK3V4hOuEEWszHVMmG8_A8cW
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+fractional+partial+differential+equations+via+a+new+scheme&rft.jtitle=AIMS+mathematics&rft.au=Ahmad+Qazza&rft.au=Rania+Saadeh&rft.au=Emad+Salah&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=3&rft.spage=5318&rft.epage=5337&rft_id=info:doi/10.3934%2Fmath.2023267&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_490ef9305e184585ad4e07fd23fecc74
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon