Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model

•We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The approach is tested on the chaotic 40-variables Lorenz 96 model.•The output of the algorithm is a data-driven surrogate numerical model.•The...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 44; p. 101171
Main Authors Brajard, Julien, Carrassi, Alberto, Bocquet, Marc, Bertino, Laurent
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The approach is tested on the chaotic 40-variables Lorenz 96 model.•The output of the algorithm is a data-driven surrogate numerical model.•The surrogate model is validated on both forecast skill and long-term properties. A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics.
AbstractList •We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The approach is tested on the chaotic 40-variables Lorenz 96 model.•The output of the algorithm is a data-driven surrogate numerical model.•The surrogate model is validated on both forecast skill and long-term properties. A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics.
A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics.
ArticleNumber 101171
Author Brajard, Julien
Carrassi, Alberto
Bocquet, Marc
Bertino, Laurent
Author_xml – sequence: 1
  givenname: Julien
  orcidid: 0000-0003-0634-1482
  surname: Brajard
  fullname: Brajard, Julien
  email: julien.brajard@nersc.no, julien.brajard@sorbonne-universite.fr
  organization: Nansen Center, Thormøhlensgate 47, 5006 Bergen, Norway
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0003-0722-5600
  surname: Carrassi
  fullname: Carrassi, Alberto
  organization: Departement of Meteorology, University of Reading and NCEO, United Kingdom
– sequence: 3
  givenname: Marc
  orcidid: 0000-0003-2675-0347
  surname: Bocquet
  fullname: Bocquet, Marc
  organization: CEREA, joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France
– sequence: 4
  givenname: Laurent
  orcidid: 0000-0002-1220-7207
  surname: Bertino
  fullname: Bertino, Laurent
  organization: Nansen Center, Thormøhlensgate 47, 5006 Bergen, Norway
BackLink https://hal.science/hal-03147335$$DView record in HAL
BookMark eNp9kb9u2zAQxokiBZqmeYFOt2awQ4r6QwVdDKNNAhjokp04kaeahkQGJOPCfZG-bmWpzdAht9zh-P0-4vB9ZBc-eGLss-BrwUV9e1gfgknrghfzQjTiHbsUqmlWTSXExevM5Qd2ndKBTyWVaoW8ZL-3Yeycd_4HWMwImJIb3YDZBQ_oLYxo9s4TDIRxluUANL5MCgIEe_I4OoMDjMHSAH0MI6RnjIlm2geXThC6RPE4e6Y72IDB6TnlF3uCny7vIe8JdiGS_wVtvTh9Yu97HBJd_-1X7Onb16ftw2r3_f5xu9mtjGxUXhWmU6IupbKdKQiLujKq5F3f9rKpSmWmQZmq41VtjWllU3dSigZ5aVuBppNX7Gax3eOgn6MbMZ50QKcfNjt93nEpykbK6igmrVq0JoaUIvXauDwflSO6QQuuz3Hogz7Hoc9x6CWOCS3-Q__99Sb0ZYFouv_oKOpkHHlD1kUyWdvg3sL_AMWep48
CitedBy_id crossref_primary_10_1063_5_0048050
crossref_primary_10_5194_gmd_16_2607_2023
crossref_primary_10_1103_PhysRevE_107_034215
crossref_primary_10_1016_j_jocs_2022_101722
crossref_primary_10_1016_j_jocs_2024_102421
crossref_primary_10_1016_j_scs_2022_104050
crossref_primary_10_1063_5_0159479
crossref_primary_10_1016_j_jocs_2023_102024
crossref_primary_10_1016_j_agwat_2023_108646
crossref_primary_10_1038_s43588_021_00023_0
crossref_primary_10_1088_1748_9326_ac0eb0
crossref_primary_10_1016_j_jocs_2023_101977
crossref_primary_10_1016_j_cpc_2024_109302
crossref_primary_10_1029_2023MS003687
crossref_primary_10_1063_5_0112658
crossref_primary_10_3390_rs14051159
crossref_primary_10_1016_j_jcp_2021_110412
crossref_primary_10_1016_j_physd_2021_132911
crossref_primary_10_1016_j_egyr_2022_04_073
crossref_primary_10_1016_j_jocs_2023_102151
crossref_primary_10_3390_jmse12010108
crossref_primary_10_1016_j_agwat_2022_107827
crossref_primary_10_1186_s40562_024_00347_5
crossref_primary_10_3389_fams_2023_1133226
crossref_primary_10_1029_2022MS003016
crossref_primary_10_1038_s41612_024_00776_1
crossref_primary_10_5194_tc_17_2965_2023
crossref_primary_10_1109_ACCESS_2021_3120482
crossref_primary_10_3934_fods_2021019
crossref_primary_10_1140_epjp_s13360_020_00814_w
crossref_primary_10_3389_feart_2022_1012165
crossref_primary_10_1016_j_physd_2023_133970
crossref_primary_10_1002_qj_4934
crossref_primary_10_1038_s41598_024_59387_8
crossref_primary_10_1002_qj_4790
crossref_primary_10_1002_qj_4153
crossref_primary_10_1016_j_jocs_2021_101507
crossref_primary_10_1111_1752_1688_13093
crossref_primary_10_12677_nst_2024_123014
crossref_primary_10_5194_npg_29_77_2022
crossref_primary_10_3390_rs16091562
crossref_primary_10_1016_j_jocs_2021_101468
crossref_primary_10_1016_j_ocemod_2023_102286
crossref_primary_10_1038_s42256_021_00374_3
crossref_primary_10_1016_j_microc_2025_112815
crossref_primary_10_1002_hyp_14565
crossref_primary_10_1016_j_agrformet_2024_110264
crossref_primary_10_1002_qj_4708
crossref_primary_10_1029_2020MS002232
crossref_primary_10_1007_s10915_022_02059_4
crossref_primary_10_3390_rs16183394
crossref_primary_10_1063_5_0066066
crossref_primary_10_1016_j_buildenv_2023_111063
crossref_primary_10_1016_j_ifacol_2021_11_037
crossref_primary_10_5194_gmd_15_3433_2022
crossref_primary_10_1016_j_jhydrol_2023_130380
crossref_primary_10_1016_j_rse_2023_113880
crossref_primary_10_3934_fods_2020015
crossref_primary_10_5194_tc_19_731_2025
crossref_primary_10_1109_TGRS_2023_3334612
crossref_primary_10_1016_j_jocs_2024_102231
crossref_primary_10_1360_N072024_0008
crossref_primary_10_1103_PhysRevFluids_6_050501
crossref_primary_10_1515_geo_2020_0312
crossref_primary_10_1029_2022MS003474
crossref_primary_10_1029_2021MS002843
crossref_primary_10_1002_qj_4450
crossref_primary_10_1002_qj_4297
crossref_primary_10_2166_hydro_2025_289
crossref_primary_10_1146_annurev_conmatphys_043024_114758
crossref_primary_10_1016_j_jocs_2021_101405
crossref_primary_10_1017_jfm_2024_1052
crossref_primary_10_1063_5_0091282
crossref_primary_10_5194_npg_30_129_2023
crossref_primary_10_5194_gmd_14_7659_2021
crossref_primary_10_5194_gmd_14_5623_2021
crossref_primary_10_1109_JAS_2023_123537
crossref_primary_10_1063_5_0066080
crossref_primary_10_5194_npg_29_171_2022
crossref_primary_10_5194_hess_27_1583_2023
crossref_primary_10_1016_j_physa_2024_129783
crossref_primary_10_1080_01431161_2024_2399336
crossref_primary_10_1016_j_pce_2024_103561
crossref_primary_10_1137_21M1434477
crossref_primary_10_3799_dqkx_2022_865
crossref_primary_10_1063_5_0061577
crossref_primary_10_1063_5_0062028
crossref_primary_10_1007_s11430_024_1395_7
crossref_primary_10_1002_mcda_1737
crossref_primary_10_1016_j_cpc_2024_109359
crossref_primary_10_2151_jmsj_2022_027
crossref_primary_10_1016_j_csite_2022_102288
crossref_primary_10_1029_2023MS004080
crossref_primary_10_1002_qj_4235
crossref_primary_10_1029_2022MS003170
crossref_primary_10_1109_JOE_2023_3288970
crossref_primary_10_1016_j_fuel_2023_129102
crossref_primary_10_1007_s11430_023_1229_7
crossref_primary_10_1016_j_chaos_2021_111570
crossref_primary_10_1063_5_0230837
crossref_primary_10_1103_PhysRevE_107_054209
crossref_primary_10_1175_AIES_D_21_0002_1
crossref_primary_10_1029_2023MS003821
crossref_primary_10_5194_hess_27_2661_2023
crossref_primary_10_1029_2022MS003164
crossref_primary_10_1002_qj_4743
crossref_primary_10_1016_j_sasc_2023_200049
crossref_primary_10_1016_j_cma_2023_116502
crossref_primary_10_1360_N072023_0080
crossref_primary_10_1002_qj_4482
crossref_primary_10_5194_gmd_15_2221_2022
crossref_primary_10_1029_2023GL106776
crossref_primary_10_1029_2024JC021663
crossref_primary_10_5194_npg_28_111_2021
crossref_primary_10_1098_rsta_2020_0086
crossref_primary_10_3389_fphys_2021_734178
crossref_primary_10_1007_s13137_021_00185_z
crossref_primary_10_1029_2023MS003774
crossref_primary_10_1140_epjs_s11734_021_00175_0
crossref_primary_10_1002_qj_4116
crossref_primary_10_1007_s41365_024_01494_2
crossref_primary_10_1088_1361_6420_acff14
crossref_primary_10_1090_cams_10
crossref_primary_10_1002_qj_4913
Cites_doi 10.1007/s10236-003-0036-9
10.1063/1.5010300
10.1002/qj.762
10.5194/npg-22-645-2015
10.1162/neco_a_01094
10.1002/qj.961
10.2151/jmsj.2013-201
10.1063/1.4979665
10.1038/nature14539
10.1098/rspa.2018.0305
10.1080/16000870.2018.1442099
10.1038/s41586-019-0912-1
10.1007/s40304-017-0103-z
10.1002/qj.3386
10.5194/npg-18-735-2011
10.1109/TAU.1967.1161901
10.1256/qj.05.224
10.1103/PhysRevLett.120.024102
10.1038/s41467-017-00030-8
10.1137/16M1068712
10.1002/qj.3213
10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
10.1080/01431161.2014.964349
10.5194/npg-26-143-2019
10.1175/MWR-D-14-00375.1
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Attribution - NonCommercial
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jocs.2020.101171
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
Physics
EISSN 1877-7511
ExternalDocumentID oai_HAL_hal_03147335v1
10_1016_j_jocs_2020_101171
S1877750320304725
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
EFKBS
VOOES
ID FETCH-LOGICAL-c378t-2cb816438dbc2ea265c840bf9f37548cf9f8c5b056dcc9376b3317a04d91acb3
IEDL.DBID .~1
ISSN 1877-7503
IngestDate Fri Aug 15 06:20:36 EDT 2025
Thu Apr 24 22:58:58 EDT 2025
Tue Jul 01 03:46:09 EDT 2025
Fri Feb 23 02:47:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamical model
Emulator
Observations
Machine learning
Data assimilation
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-2cb816438dbc2ea265c840bf9f37548cf9f8c5b056dcc9376b3317a04d91acb3
ORCID 0000-0003-0634-1482
0000-0002-1220-7207
0000-0003-0722-5600
0000-0003-2675-0347
OpenAccessLink https://hal.science/hal-03147335
ParticipantIDs hal_primary_oai_HAL_hal_03147335v1
crossref_citationtrail_10_1016_j_jocs_2020_101171
crossref_primary_10_1016_j_jocs_2020_101171
elsevier_sciencedirect_doi_10_1016_j_jocs_2020_101171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
2020-07
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Nguyen, Ouala, Drumetz, Fablet (bib0105) 2019
Welch (bib0205) 1967; 15
Pathak, Hunt, Girvan, Lu, Ott (bib0045) 2018; 120
Shi, Gao, Lausen, Wang, Yeung, Wong, Woo (bib0075) 2017
Ruiz, Pulido, Miyoshi (bib0135) 2013; 91
Metref, Hannart, Ruiz, Bocquet, Carrassi, Ghil (bib0010) 2019
Park (bib0060) 2010
Lu, Pathak, Hunt, Girvan, Brockett, Ott (bib0100) 2017; 27
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib0035) 2019; 566
Bocquet, Brajard, Carrassi, Bertino (bib0090) 2019; 26
Chang, Meng, Haber, Tung, Begert (bib0175) 2017
Park, Zhu (bib0055) 2002
Shi, Chen, Wang, Yeung, Wong, Woo (bib0070) 2015
Raanes, Carrassi, Bertino (bib0140) 2015; 143
Zhang, Lin (bib0085) 2018; 474
Harlim (bib0110) 2017
Carrassi, Bocquet, Bertino, Evensen (bib0015) 2018; 9
Aster, Borchers, Thurber (bib0115) 2005
Goodfellow, Bengio, Courville (bib0160) 2016
Tran, Bourdev, Fergus, Torresani, Paluri (bib0030) 2015
Brunton, Brunton, Proctor, Kaiser, Kutz (bib0080) 2017; 8
Legras, Vautard (bib0200) 1996
Sakov, Haussaire, Bocquet (bib0145) 2018; 144
Randall, Wood, Bony, Colman, Fichefet, Fyfe, Kattsov, Pitman, Shukla, Srinivasan, Stouffer, Sumi, Taylor, Manzini, Matsuno, McAvaney, Wood, Bony, Colman, Fichefet, Fyfe, Kattsov, Pitman, Shukla, Srinivasan, Stouffer, Sumi, Taylor (bib0005) 2007
Fablet, Ouala, Herzet (bib0050) 2018
Abarbanel, Rozdeba, Shirman (bib0150) 2018; 30
Duchi, Hazan, Singer (bib0215) 2011; 12
Lecun, Bengio, Hinton (bib0025) 2015; 521
Kuenzer, Ottinger, Wegmann, Guo, Wang, Zhang, Dech, Wikelski (bib0020) 2014; 35
Raanes, Bocquet, Carrassi (bib0230) 2019; 145
He, Zhang, Ren, Sun (bib0155) 2016
Lorenz, Emanuel (bib0190) 1998; 55
Ayed, de Bézenac, Pajot, Brajard, Gallinari (bib0195) 2019
de Bezenac, Pajot, Gallinari (bib0065) 2017
Bocquet, Raanes, Hannart (bib0185) 2015; 22
Lguensat, Sun, Fablet, Tandeo, Mason, Chen (bib0095) 2018
Bocquet (bib0125) 2012; 138
Bocquet, Gurumoorthy, Apte, Carrassi, Grudzien, Jones (bib0220) 2017; 5
Ioffe, Szegedy (bib0210) 2015
Bocquet (bib0180) 2011; 18
Evensen (bib0165) 2003; 53
E (bib0170) 2017; 5
Pathak, Lu, Hunt, Girvan, Ott (bib0040) 2017; 27
Carrassi, Vannitsem (bib0120) 2011; 137
Trémolet (bib0130) 2006; 132
Pulido, Tandeo, Bocquet, Carrassi, Lucini (bib0225) 2018; 70
Raanes (10.1016/j.jocs.2020.101171_bib0140) 2015; 143
Randall (10.1016/j.jocs.2020.101171_bib0005) 2007
Fablet (10.1016/j.jocs.2020.101171_bib0050) 2018
Metref (10.1016/j.jocs.2020.101171_bib0010) 2019
Goodfellow (10.1016/j.jocs.2020.101171_bib0160) 2016
Bocquet (10.1016/j.jocs.2020.101171_bib0185) 2015; 22
Reichstein (10.1016/j.jocs.2020.101171_bib0035) 2019; 566
Trémolet (10.1016/j.jocs.2020.101171_bib0130) 2006; 132
Brunton (10.1016/j.jocs.2020.101171_bib0080) 2017; 8
Chang (10.1016/j.jocs.2020.101171_bib0175) 2017
Harlim (10.1016/j.jocs.2020.101171_bib0110) 2017
Pulido (10.1016/j.jocs.2020.101171_bib0225) 2018; 70
Park (10.1016/j.jocs.2020.101171_bib0060) 2010
Shi (10.1016/j.jocs.2020.101171_bib0075) 2017
Zhang (10.1016/j.jocs.2020.101171_bib0085) 2018; 474
Bocquet (10.1016/j.jocs.2020.101171_bib0180) 2011; 18
de Bezenac (10.1016/j.jocs.2020.101171_bib0065) 2017
E (10.1016/j.jocs.2020.101171_bib0170) 2017; 5
Lorenz (10.1016/j.jocs.2020.101171_bib0190) 1998; 55
Legras (10.1016/j.jocs.2020.101171_bib0200) 1996
Ioffe (10.1016/j.jocs.2020.101171_bib0210) 2015
Lu (10.1016/j.jocs.2020.101171_bib0100) 2017; 27
Sakov (10.1016/j.jocs.2020.101171_bib0145) 2018; 144
Park (10.1016/j.jocs.2020.101171_bib0055) 2002
Bocquet (10.1016/j.jocs.2020.101171_bib0125) 2012; 138
Ruiz (10.1016/j.jocs.2020.101171_bib0135) 2013; 91
Ayed (10.1016/j.jocs.2020.101171_bib0195) 2019
Bocquet (10.1016/j.jocs.2020.101171_bib0220) 2017; 5
Pathak (10.1016/j.jocs.2020.101171_bib0040) 2017; 27
Tran (10.1016/j.jocs.2020.101171_bib0030) 2015
Shi (10.1016/j.jocs.2020.101171_bib0070) 2015
Nguyen (10.1016/j.jocs.2020.101171_bib0105) 2019
He (10.1016/j.jocs.2020.101171_bib0155) 2016
Aster (10.1016/j.jocs.2020.101171_bib0115) 2005
Pathak (10.1016/j.jocs.2020.101171_bib0045) 2018; 120
Welch (10.1016/j.jocs.2020.101171_bib0205) 1967; 15
Raanes (10.1016/j.jocs.2020.101171_bib0230) 2019; 145
Evensen (10.1016/j.jocs.2020.101171_bib0165) 2003; 53
Abarbanel (10.1016/j.jocs.2020.101171_bib0150) 2018; 30
Lecun (10.1016/j.jocs.2020.101171_bib0025) 2015; 521
Carrassi (10.1016/j.jocs.2020.101171_bib0015) 2018; 9
Duchi (10.1016/j.jocs.2020.101171_bib0215) 2011; 12
Kuenzer (10.1016/j.jocs.2020.101171_bib0020) 2014; 35
Bocquet (10.1016/j.jocs.2020.101171_bib0090) 2019; 26
Lguensat (10.1016/j.jocs.2020.101171_bib0095) 2018
Carrassi (10.1016/j.jocs.2020.101171_bib0120) 2011; 137
References_xml – volume: 27
  start-page: 121102
  year: 2017
  ident: bib0040
  article-title: Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
  publication-title: Chaos
– volume: 15
  start-page: 70
  year: 1967
  end-page: 73
  ident: bib0205
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
– volume: 132
  start-page: 2483
  year: 2006
  end-page: 2504
  ident: bib0130
  article-title: Accounting for an imperfect model in 4D-Var
  publication-title: Q. J. R. Meteorol. Soc.
– year: 2015
  ident: bib0210
  article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
– year: 2017
  ident: bib0065
  article-title: Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge
– volume: 91
  start-page: 79
  year: 2013
  end-page: 99
  ident: bib0135
  article-title: Estimating model parameters with ensemble-based data assimilation: a review
  publication-title: J. Meteorol. Soc. Japan. Ser. II
– start-page: 276
  year: 2017
  end-page: 317
  ident: bib0110
  article-title: Model error in data assimilation
  publication-title: Nonlinear and Stochastic Climate Dynamics
– start-page: 5617
  year: 2017
  end-page: 5627
  ident: bib0075
  article-title: Deep learning for precipitation nowcasting: a benchmark and a new model
  publication-title: Advances in Neural Information Processing Systems
– year: 2005
  ident: bib0115
  article-title: Parameter Estimation and Inverse Problems (International Geophysics)
– start-page: 1
  year: 2019
  end-page: 18
  ident: bib0010
  article-title: Estimating model evidence using ensemble-based data assimilation with localization – the model selection problem
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 30
  start-page: 2025
  year: 2018
  end-page: 2055
  ident: bib0150
  article-title: Machine learning: deepest learning as statistical data assimilation problems
  publication-title: Neural Comput.
– volume: 521
  start-page: 436
  year: 2015
  ident: bib0025
  article-title: Deep learning
  publication-title: Nature
– volume: 566
  start-page: 195
  year: 2019
  ident: bib0035
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– year: 2019
  ident: bib0195
  article-title: Learning Dynamical Systems from Partial Observations
– volume: 143
  start-page: 3857
  year: 2015
  end-page: 3873
  ident: bib0140
  article-title: Extending the square root method to account for additive forecast noise in ensemble methods
  publication-title: Mon. Weather Rev.
– start-page: 1764
  year: 2018
  end-page: 1767
  ident: bib0095
  article-title: Eddynet: a deep neural network for pixel-wise classification of oceanic eddies
  publication-title: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium
– volume: 5
  start-page: 304
  year: 2017
  end-page: 333
  ident: bib0220
  article-title: Degenerate Kalman filter error covariances and their convergence onto the unstable subspace
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– year: 2019
  ident: bib0105
  article-title: EM-like Learning Chaotic Dynamics from Noisy and Partial Observations
– volume: 70
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib0225
  article-title: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods
  publication-title: Tellus: Dyn. Meteorol. Oceanogr.
– year: 2016
  ident: bib0160
  article-title: Deep Learning
– volume: 26
  start-page: 143
  year: 2019
  end-page: 162
  ident: bib0090
  article-title: Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models
  publication-title: Nonlinear Process. Geophys.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0155
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 9
  year: 2018
  ident: bib0015
  article-title: Data assimilation in the geosciences: an overview of methods, issues, and perspectives
  publication-title: Wiley Interdiscip. Rev.: Climate Change
– volume: 145
  start-page: 53
  year: 2019
  end-page: 75
  ident: bib0230
  article-title: Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 137
  start-page: 435
  year: 2011
  end-page: 451
  ident: bib0120
  article-title: State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 144
  start-page: 1297
  year: 2018
  end-page: 1309
  ident: bib0145
  article-title: An iterative ensemble Kalman filter in the presence of additive model error
  publication-title: Q. J. R. Meteorol. Soc.
– start-page: 589
  year: 2007
  end-page: 662
  ident: bib0005
  article-title: Climate models and their evaluation, in: Climate change 2007: the physical science basis
  publication-title: Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR)
– volume: 474
  start-page: 20180305
  year: 2018
  ident: bib0085
  article-title: Robust data-driven discovery of governing physical laws with error bars
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 138
  start-page: 664
  year: 2012
  end-page: 681
  ident: bib0125
  article-title: Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var
  publication-title: Q. J. R. Meteorol. Soc.
– start-page: 4489
  year: 2015
  end-page: 4497
  ident: bib0030
  article-title: Learning spatiotemporal features with 3d convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: bib0215
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 120
  start-page: 024102
  year: 2018
  ident: bib0045
  article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 645
  year: 2015
  end-page: 662
  ident: bib0185
  article-title: Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation
  publication-title: Nonlinear Process. Geophys.
– start-page: 1
  year: 2010
  end-page: 7
  ident: bib0060
  article-title: A time series data prediction scheme using bilinear recurrent neural network
  publication-title: 2010 International Conference on Information Science and Applications, ICISA 2010
– start-page: 143
  year: 1996
  end-page: 156
  ident: bib0200
  article-title: A guide to liapunov vectors
  publication-title: Proceedings 1995 ECMWF Seminar on Predictability
– volume: 35
  start-page: 6599
  year: 2014
  end-page: 6647
  ident: bib0020
  article-title: Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks
  publication-title: Int. J. Remote Sens.
– start-page: 1459
  year: 2002
  end-page: 1464
  ident: bib0055
  article-title: Bilinear recurrent neural network
  publication-title: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94)
– year: 2017
  ident: bib0175
  article-title: Multi-level Residual Networks from Dynamical Systems View
– volume: 5
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0170
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib0050
  article-title: Bilinear residual neural network for the identification and forecasting of dynamical systems
  publication-title: EUSIPCO 2018, European Signal Processing Conference
– start-page: 802
  year: 2015
  end-page: 810
  ident: bib0070
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems 28
– volume: 27
  start-page: 041102
  year: 2017
  ident: bib0100
  article-title: Reservoir observers: model-free inference of unmeasured variables in chaotic systems
  publication-title: Chaos: Interdiscip. J. Nonlinear Sci.
– volume: 8
  start-page: 19
  year: 2017
  ident: bib0080
  article-title: Chaos as an intermittently forced linear system
  publication-title: Nat. Commun.
– volume: 18
  start-page: 735
  year: 2011
  end-page: 750
  ident: bib0180
  article-title: Ensemble Kalman filtering without the intrinsic need for inflation
  publication-title: Nonlinear Process. Geophys.
– volume: 53
  start-page: 343
  year: 2003
  end-page: 367
  ident: bib0165
  article-title: The ensemble kalman filter: theoretical formulation and practical implementation
  publication-title: Ocean Dyn.
– volume: 55
  start-page: 399
  year: 1998
  end-page: 414
  ident: bib0190
  article-title: Optimal sites for supplementary weather observations: simulation with a small model
  publication-title: J. Atmos. Sci.
– year: 2016
  ident: 10.1016/j.jocs.2020.101171_bib0160
– volume: 53
  start-page: 343
  year: 2003
  ident: 10.1016/j.jocs.2020.101171_bib0165
  article-title: The ensemble kalman filter: theoretical formulation and practical implementation
  publication-title: Ocean Dyn.
  doi: 10.1007/s10236-003-0036-9
– year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0175
– start-page: 4489
  year: 2015
  ident: 10.1016/j.jocs.2020.101171_bib0030
  article-title: Learning spatiotemporal features with 3d convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 1
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0050
  article-title: Bilinear residual neural network for the identification and forecasting of dynamical systems
– volume: 27
  start-page: 121102
  year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0040
  article-title: Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
  publication-title: Chaos
  doi: 10.1063/1.5010300
– volume: 137
  start-page: 435
  year: 2011
  ident: 10.1016/j.jocs.2020.101171_bib0120
  article-title: State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.762
– volume: 22
  start-page: 645
  year: 2015
  ident: 10.1016/j.jocs.2020.101171_bib0185
  article-title: Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-22-645-2015
– volume: 30
  start-page: 2025
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0150
  article-title: Machine learning: deepest learning as statistical data assimilation problems
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01094
– volume: 138
  start-page: 664
  year: 2012
  ident: 10.1016/j.jocs.2020.101171_bib0125
  article-title: Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.961
– volume: 91
  start-page: 79
  year: 2013
  ident: 10.1016/j.jocs.2020.101171_bib0135
  article-title: Estimating model parameters with ensemble-based data assimilation: a review
  publication-title: J. Meteorol. Soc. Japan. Ser. II
  doi: 10.2151/jmsj.2013-201
– volume: 27
  start-page: 041102
  year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0100
  article-title: Reservoir observers: model-free inference of unmeasured variables in chaotic systems
  publication-title: Chaos: Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4979665
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jocs.2020.101171_bib0025
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 474
  start-page: 20180305
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0085
  article-title: Robust data-driven discovery of governing physical laws with error bars
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2018.0305
– start-page: 143
  year: 1996
  ident: 10.1016/j.jocs.2020.101171_bib0200
  article-title: A guide to liapunov vectors
  publication-title: Proceedings 1995 ECMWF Seminar on Predictability
– volume: 70
  start-page: 1
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0225
  article-title: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods
  publication-title: Tellus: Dyn. Meteorol. Oceanogr.
  doi: 10.1080/16000870.2018.1442099
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.jocs.2020.101171_bib0035
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– start-page: 276
  year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0110
  article-title: Model error in data assimilation
– start-page: 1459
  year: 2002
  ident: 10.1016/j.jocs.2020.101171_bib0055
  article-title: Bilinear recurrent neural network
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0170
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0103-z
– start-page: 770
  year: 2016
  ident: 10.1016/j.jocs.2020.101171_bib0155
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 145
  start-page: 53
  year: 2019
  ident: 10.1016/j.jocs.2020.101171_bib0230
  article-title: Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3386
– volume: 9
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0015
  article-title: Data assimilation in the geosciences: an overview of methods, issues, and perspectives
  publication-title: Wiley Interdiscip. Rev.: Climate Change
– year: 2005
  ident: 10.1016/j.jocs.2020.101171_bib0115
– volume: 18
  start-page: 735
  year: 2011
  ident: 10.1016/j.jocs.2020.101171_bib0180
  article-title: Ensemble Kalman filtering without the intrinsic need for inflation
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-18-735-2011
– volume: 15
  start-page: 70
  year: 1967
  ident: 10.1016/j.jocs.2020.101171_bib0205
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
– year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0065
– year: 2015
  ident: 10.1016/j.jocs.2020.101171_bib0210
– volume: 132
  start-page: 2483
  year: 2006
  ident: 10.1016/j.jocs.2020.101171_bib0130
  article-title: Accounting for an imperfect model in 4D-Var
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/qj.05.224
– year: 2019
  ident: 10.1016/j.jocs.2020.101171_bib0195
– volume: 120
  start-page: 024102
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0045
  article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.024102
– start-page: 1
  year: 2010
  ident: 10.1016/j.jocs.2020.101171_bib0060
  article-title: A time series data prediction scheme using bilinear recurrent neural network
– volume: 8
  start-page: 19
  year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0080
  article-title: Chaos as an intermittently forced linear system
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00030-8
– volume: 5
  start-page: 304
  year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0220
  article-title: Degenerate Kalman filter error covariances and their convergence onto the unstable subspace
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/16M1068712
– volume: 144
  start-page: 1297
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0145
  article-title: An iterative ensemble Kalman filter in the presence of additive model error
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3213
– volume: 12
  start-page: 2121
  year: 2011
  ident: 10.1016/j.jocs.2020.101171_bib0215
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 55
  start-page: 399
  year: 1998
  ident: 10.1016/j.jocs.2020.101171_bib0190
  article-title: Optimal sites for supplementary weather observations: simulation with a small model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
– start-page: 589
  year: 2007
  ident: 10.1016/j.jocs.2020.101171_bib0005
  article-title: Climate models and their evaluation, in: Climate change 2007: the physical science basis
  publication-title: Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR)
– volume: 35
  start-page: 6599
  year: 2014
  ident: 10.1016/j.jocs.2020.101171_bib0020
  article-title: Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.964349
– volume: 26
  start-page: 143
  year: 2019
  ident: 10.1016/j.jocs.2020.101171_bib0090
  article-title: Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-26-143-2019
– start-page: 1
  year: 2019
  ident: 10.1016/j.jocs.2020.101171_bib0010
  article-title: Estimating model evidence using ensemble-based data assimilation with localization – the model selection problem
  publication-title: Q. J. R. Meteorol. Soc.
– start-page: 1764
  year: 2018
  ident: 10.1016/j.jocs.2020.101171_bib0095
  article-title: Eddynet: a deep neural network for pixel-wise classification of oceanic eddies
– start-page: 802
  year: 2015
  ident: 10.1016/j.jocs.2020.101171_bib0070
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
– volume: 143
  start-page: 3857
  year: 2015
  ident: 10.1016/j.jocs.2020.101171_bib0140
  article-title: Extending the square root method to account for additive forecast noise in ensemble methods
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-14-00375.1
– year: 2019
  ident: 10.1016/j.jocs.2020.101171_bib0105
– start-page: 5617
  year: 2017
  ident: 10.1016/j.jocs.2020.101171_bib0075
  article-title: Deep learning for precipitation nowcasting: a benchmark and a new model
  publication-title: Advances in Neural Information Processing Systems
SSID ssj0000388913
Score 2.589027
Snippet •We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The...
A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i)...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101171
SubjectTerms Data assimilation
Dynamical model
Emulator
Geophysics
Machine learning
Observations
Physics
Title Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model
URI https://dx.doi.org/10.1016/j.jocs.2020.101171
https://hal.science/hal-03147335
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbaIlW9oE4BUZbqCfVQhNIZJ3EWbqMRo4EuF4o0t8hbSiomqWYGJDj0b_Tv9j3bGYkDPXBLLC-Rn5fPznvfx9ixMFaWpR1FnMs8SmueRaoweSSUkFqlVmgXC3Nxmc2-pV_mYr7FJn0sDLlVhrXfr-lutQ4pw9Cbw9umGX7lRGUnSACcfh3FFGiepjmN8tM7vrlnIbaT0qkkU_6ICoTYGe_mddNpYu2OXQLP-b_2p-3v_U2r23mm--xpgIww9l81YFu2PWC7vcf6ARuE-bmCk0Ai_f4Zu8eJrpz4A5ATKCBGbhaNd3wD2RpYOC9KC0E24hrWHdgFiXlZkGC8UD0266RygKJQABef5cq60m3XrH5DpzZ3uquPMAaNWyI4wlqg-11AcAnn3dK2f6DMfE3P2dX009VkFgURhkgnebGOYq0KPFIlhVE6tjLOhMYzoarLmsRzC40PhRYKcZTRGrFOphKEJHKUmpKjtZMXbKftWvuSQSmlyWpSN7GIC4wsYl0jgEi0yUe1yOUh433PVzoQlJNOxo-q90S7qchaFVmr8tY6ZB82ZW49PcejuUVv0OqvQVbh_vFouXdo_U0DxMg9G59XlEbs_3mSiF_81X9W_prt0Zt3AX7DdtbLn_YtAp21OnIj-Yg9GX8-m10-APJE_QA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgEXRAuIltcIgQRC6a6TOA8kDiug2tJtLyxSb5ZfgVTdpNpdQMuBv8H_4Bcy4zgrcaAHpN4iJ3YcTzIzdj5_H2PPhHWqLN0w4lzlUVrxLNKFzSOhhTI6dcL4vTDHJ9n4U_rhVJxusN_9XhiCVQbf3_l0761DySCM5uCirgcfOVHZCRIAp19HcY-sPHKr7zhvW7w5fIdGfh7HB--nb8dRkBaITJIXyyg2usCJQlJYbWKn4kwYnOnoqqxIErYweFAYoTE7sMZgBM90goFWDVNbcnyGBJvdZNdS9BakmrD_k6_XdYhdpfSqzNS_iDoY9up0sLKz1hBLeOwLeM7_FQ83v_Qruz7SHdxmt0KKCqNuFLbZhmt22PUeIb_DtoM_WMCLQFr98g77hY5Fe7EJINApYE5ez-oOaAeqsTDzqE0HQabiMyxbcDMSD3OgwK4a5YkLwEvzAO16AXR284XztZu2Xqyg1es15MVrGIHBEAyeIBdoPRkwmYVJO3fNDyizrqW7bHoVlrnHtpq2cfcZlErZrCI1FYd5iFVFbCpMWBJj82ElcrXLeD_y0gRCdNLlOJc98u1MkrUkWUt21tplr9Z1Ljo6kEuvFr1B5V8vtcR4dWm9p2j99Q2IAXw8mkgqI7WBPEnEN773n40_YTfG0-OJnByeHD1gN-lMBz9-yLaW86_uESZZS_3Yv9XA5BV_RX8A9CE4fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+data+assimilation+and+machine+learning+to+emulate+a+dynamical+model+from+sparse+and+noisy+observations%3A+A+case+study+with+the+Lorenz+96+model&rft.jtitle=Journal+of+computational+science&rft.au=Brajard%2C+Julien&rft.au=Carrassi%2C+Alberto&rft.au=Bocquet%2C+Marc&rft.au=Bertino%2C+Laurent&rft.date=2020-07-01&rft.issn=1877-7503&rft.volume=44&rft.spage=101171&rft_id=info:doi/10.1016%2Fj.jocs.2020.101171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2020_101171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon