Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model
•We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The approach is tested on the chaotic 40-variables Lorenz 96 model.•The output of the algorithm is a data-driven surrogate numerical model.•The...
Saved in:
Published in | Journal of computational science Vol. 44; p. 101171 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The approach is tested on the chaotic 40-variables Lorenz 96 model.•The output of the algorithm is a data-driven surrogate numerical model.•The surrogate model is validated on both forecast skill and long-term properties.
A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics. |
---|---|
AbstractList | •We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The approach is tested on the chaotic 40-variables Lorenz 96 model.•The output of the algorithm is a data-driven surrogate numerical model.•The surrogate model is validated on both forecast skill and long-term properties.
A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics. A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics. |
ArticleNumber | 101171 |
Author | Brajard, Julien Carrassi, Alberto Bocquet, Marc Bertino, Laurent |
Author_xml | – sequence: 1 givenname: Julien orcidid: 0000-0003-0634-1482 surname: Brajard fullname: Brajard, Julien email: julien.brajard@nersc.no, julien.brajard@sorbonne-universite.fr organization: Nansen Center, Thormøhlensgate 47, 5006 Bergen, Norway – sequence: 2 givenname: Alberto orcidid: 0000-0003-0722-5600 surname: Carrassi fullname: Carrassi, Alberto organization: Departement of Meteorology, University of Reading and NCEO, United Kingdom – sequence: 3 givenname: Marc orcidid: 0000-0003-2675-0347 surname: Bocquet fullname: Bocquet, Marc organization: CEREA, joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France – sequence: 4 givenname: Laurent orcidid: 0000-0002-1220-7207 surname: Bertino fullname: Bertino, Laurent organization: Nansen Center, Thormøhlensgate 47, 5006 Bergen, Norway |
BackLink | https://hal.science/hal-03147335$$DView record in HAL |
BookMark | eNp9kb9u2zAQxokiBZqmeYFOt2awQ4r6QwVdDKNNAhjokp04kaeahkQGJOPCfZG-bmWpzdAht9zh-P0-4vB9ZBc-eGLss-BrwUV9e1gfgknrghfzQjTiHbsUqmlWTSXExevM5Qd2ndKBTyWVaoW8ZL-3Yeycd_4HWMwImJIb3YDZBQ_oLYxo9s4TDIRxluUANL5MCgIEe_I4OoMDjMHSAH0MI6RnjIlm2geXThC6RPE4e6Y72IDB6TnlF3uCny7vIe8JdiGS_wVtvTh9Yu97HBJd_-1X7Onb16ftw2r3_f5xu9mtjGxUXhWmU6IupbKdKQiLujKq5F3f9rKpSmWmQZmq41VtjWllU3dSigZ5aVuBppNX7Gax3eOgn6MbMZ50QKcfNjt93nEpykbK6igmrVq0JoaUIvXauDwflSO6QQuuz3Hogz7Hoc9x6CWOCS3-Q__99Sb0ZYFouv_oKOpkHHlD1kUyWdvg3sL_AMWep48 |
CitedBy_id | crossref_primary_10_1063_5_0048050 crossref_primary_10_5194_gmd_16_2607_2023 crossref_primary_10_1103_PhysRevE_107_034215 crossref_primary_10_1016_j_jocs_2022_101722 crossref_primary_10_1016_j_jocs_2024_102421 crossref_primary_10_1016_j_scs_2022_104050 crossref_primary_10_1063_5_0159479 crossref_primary_10_1016_j_jocs_2023_102024 crossref_primary_10_1016_j_agwat_2023_108646 crossref_primary_10_1038_s43588_021_00023_0 crossref_primary_10_1088_1748_9326_ac0eb0 crossref_primary_10_1016_j_jocs_2023_101977 crossref_primary_10_1016_j_cpc_2024_109302 crossref_primary_10_1029_2023MS003687 crossref_primary_10_1063_5_0112658 crossref_primary_10_3390_rs14051159 crossref_primary_10_1016_j_jcp_2021_110412 crossref_primary_10_1016_j_physd_2021_132911 crossref_primary_10_1016_j_egyr_2022_04_073 crossref_primary_10_1016_j_jocs_2023_102151 crossref_primary_10_3390_jmse12010108 crossref_primary_10_1016_j_agwat_2022_107827 crossref_primary_10_1186_s40562_024_00347_5 crossref_primary_10_3389_fams_2023_1133226 crossref_primary_10_1029_2022MS003016 crossref_primary_10_1038_s41612_024_00776_1 crossref_primary_10_5194_tc_17_2965_2023 crossref_primary_10_1109_ACCESS_2021_3120482 crossref_primary_10_3934_fods_2021019 crossref_primary_10_1140_epjp_s13360_020_00814_w crossref_primary_10_3389_feart_2022_1012165 crossref_primary_10_1016_j_physd_2023_133970 crossref_primary_10_1002_qj_4934 crossref_primary_10_1038_s41598_024_59387_8 crossref_primary_10_1002_qj_4790 crossref_primary_10_1002_qj_4153 crossref_primary_10_1016_j_jocs_2021_101507 crossref_primary_10_1111_1752_1688_13093 crossref_primary_10_12677_nst_2024_123014 crossref_primary_10_5194_npg_29_77_2022 crossref_primary_10_3390_rs16091562 crossref_primary_10_1016_j_jocs_2021_101468 crossref_primary_10_1016_j_ocemod_2023_102286 crossref_primary_10_1038_s42256_021_00374_3 crossref_primary_10_1016_j_microc_2025_112815 crossref_primary_10_1002_hyp_14565 crossref_primary_10_1016_j_agrformet_2024_110264 crossref_primary_10_1002_qj_4708 crossref_primary_10_1029_2020MS002232 crossref_primary_10_1007_s10915_022_02059_4 crossref_primary_10_3390_rs16183394 crossref_primary_10_1063_5_0066066 crossref_primary_10_1016_j_buildenv_2023_111063 crossref_primary_10_1016_j_ifacol_2021_11_037 crossref_primary_10_5194_gmd_15_3433_2022 crossref_primary_10_1016_j_jhydrol_2023_130380 crossref_primary_10_1016_j_rse_2023_113880 crossref_primary_10_3934_fods_2020015 crossref_primary_10_5194_tc_19_731_2025 crossref_primary_10_1109_TGRS_2023_3334612 crossref_primary_10_1016_j_jocs_2024_102231 crossref_primary_10_1360_N072024_0008 crossref_primary_10_1103_PhysRevFluids_6_050501 crossref_primary_10_1515_geo_2020_0312 crossref_primary_10_1029_2022MS003474 crossref_primary_10_1029_2021MS002843 crossref_primary_10_1002_qj_4450 crossref_primary_10_1002_qj_4297 crossref_primary_10_2166_hydro_2025_289 crossref_primary_10_1146_annurev_conmatphys_043024_114758 crossref_primary_10_1016_j_jocs_2021_101405 crossref_primary_10_1017_jfm_2024_1052 crossref_primary_10_1063_5_0091282 crossref_primary_10_5194_npg_30_129_2023 crossref_primary_10_5194_gmd_14_7659_2021 crossref_primary_10_5194_gmd_14_5623_2021 crossref_primary_10_1109_JAS_2023_123537 crossref_primary_10_1063_5_0066080 crossref_primary_10_5194_npg_29_171_2022 crossref_primary_10_5194_hess_27_1583_2023 crossref_primary_10_1016_j_physa_2024_129783 crossref_primary_10_1080_01431161_2024_2399336 crossref_primary_10_1016_j_pce_2024_103561 crossref_primary_10_1137_21M1434477 crossref_primary_10_3799_dqkx_2022_865 crossref_primary_10_1063_5_0061577 crossref_primary_10_1063_5_0062028 crossref_primary_10_1007_s11430_024_1395_7 crossref_primary_10_1002_mcda_1737 crossref_primary_10_1016_j_cpc_2024_109359 crossref_primary_10_2151_jmsj_2022_027 crossref_primary_10_1016_j_csite_2022_102288 crossref_primary_10_1029_2023MS004080 crossref_primary_10_1002_qj_4235 crossref_primary_10_1029_2022MS003170 crossref_primary_10_1109_JOE_2023_3288970 crossref_primary_10_1016_j_fuel_2023_129102 crossref_primary_10_1007_s11430_023_1229_7 crossref_primary_10_1016_j_chaos_2021_111570 crossref_primary_10_1063_5_0230837 crossref_primary_10_1103_PhysRevE_107_054209 crossref_primary_10_1175_AIES_D_21_0002_1 crossref_primary_10_1029_2023MS003821 crossref_primary_10_5194_hess_27_2661_2023 crossref_primary_10_1029_2022MS003164 crossref_primary_10_1002_qj_4743 crossref_primary_10_1016_j_sasc_2023_200049 crossref_primary_10_1016_j_cma_2023_116502 crossref_primary_10_1360_N072023_0080 crossref_primary_10_1002_qj_4482 crossref_primary_10_5194_gmd_15_2221_2022 crossref_primary_10_1029_2023GL106776 crossref_primary_10_1029_2024JC021663 crossref_primary_10_5194_npg_28_111_2021 crossref_primary_10_1098_rsta_2020_0086 crossref_primary_10_3389_fphys_2021_734178 crossref_primary_10_1007_s13137_021_00185_z crossref_primary_10_1029_2023MS003774 crossref_primary_10_1140_epjs_s11734_021_00175_0 crossref_primary_10_1002_qj_4116 crossref_primary_10_1007_s41365_024_01494_2 crossref_primary_10_1088_1361_6420_acff14 crossref_primary_10_1090_cams_10 crossref_primary_10_1002_qj_4913 |
Cites_doi | 10.1007/s10236-003-0036-9 10.1063/1.5010300 10.1002/qj.762 10.5194/npg-22-645-2015 10.1162/neco_a_01094 10.1002/qj.961 10.2151/jmsj.2013-201 10.1063/1.4979665 10.1038/nature14539 10.1098/rspa.2018.0305 10.1080/16000870.2018.1442099 10.1038/s41586-019-0912-1 10.1007/s40304-017-0103-z 10.1002/qj.3386 10.5194/npg-18-735-2011 10.1109/TAU.1967.1161901 10.1256/qj.05.224 10.1103/PhysRevLett.120.024102 10.1038/s41467-017-00030-8 10.1137/16M1068712 10.1002/qj.3213 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2 10.1080/01431161.2014.964349 10.5194/npg-26-143-2019 10.1175/MWR-D-14-00375.1 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Attribution - NonCommercial |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.jocs.2020.101171 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business Physics |
EISSN | 1877-7511 |
ExternalDocumentID | oai_HAL_hal_03147335v1 10_1016_j_jocs_2020_101171 S1877750320304725 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC EFKBS VOOES |
ID | FETCH-LOGICAL-c378t-2cb816438dbc2ea265c840bf9f37548cf9f8c5b056dcc9376b3317a04d91acb3 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Fri Aug 15 06:20:36 EDT 2025 Thu Apr 24 22:58:58 EDT 2025 Tue Jul 01 03:46:09 EDT 2025 Fri Feb 23 02:47:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamical model Emulator Observations Machine learning Data assimilation |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-2cb816438dbc2ea265c840bf9f37548cf9f8c5b056dcc9376b3317a04d91acb3 |
ORCID | 0000-0003-0634-1482 0000-0002-1220-7207 0000-0003-0722-5600 0000-0003-2675-0347 |
OpenAccessLink | https://hal.science/hal-03147335 |
ParticipantIDs | hal_primary_oai_HAL_hal_03147335v1 crossref_citationtrail_10_1016_j_jocs_2020_101171 crossref_primary_10_1016_j_jocs_2020_101171 elsevier_sciencedirect_doi_10_1016_j_jocs_2020_101171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 2020-07 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational science |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Nguyen, Ouala, Drumetz, Fablet (bib0105) 2019 Welch (bib0205) 1967; 15 Pathak, Hunt, Girvan, Lu, Ott (bib0045) 2018; 120 Shi, Gao, Lausen, Wang, Yeung, Wong, Woo (bib0075) 2017 Ruiz, Pulido, Miyoshi (bib0135) 2013; 91 Metref, Hannart, Ruiz, Bocquet, Carrassi, Ghil (bib0010) 2019 Park (bib0060) 2010 Lu, Pathak, Hunt, Girvan, Brockett, Ott (bib0100) 2017; 27 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (bib0035) 2019; 566 Bocquet, Brajard, Carrassi, Bertino (bib0090) 2019; 26 Chang, Meng, Haber, Tung, Begert (bib0175) 2017 Park, Zhu (bib0055) 2002 Shi, Chen, Wang, Yeung, Wong, Woo (bib0070) 2015 Raanes, Carrassi, Bertino (bib0140) 2015; 143 Zhang, Lin (bib0085) 2018; 474 Harlim (bib0110) 2017 Carrassi, Bocquet, Bertino, Evensen (bib0015) 2018; 9 Aster, Borchers, Thurber (bib0115) 2005 Goodfellow, Bengio, Courville (bib0160) 2016 Tran, Bourdev, Fergus, Torresani, Paluri (bib0030) 2015 Brunton, Brunton, Proctor, Kaiser, Kutz (bib0080) 2017; 8 Legras, Vautard (bib0200) 1996 Sakov, Haussaire, Bocquet (bib0145) 2018; 144 Randall, Wood, Bony, Colman, Fichefet, Fyfe, Kattsov, Pitman, Shukla, Srinivasan, Stouffer, Sumi, Taylor, Manzini, Matsuno, McAvaney, Wood, Bony, Colman, Fichefet, Fyfe, Kattsov, Pitman, Shukla, Srinivasan, Stouffer, Sumi, Taylor (bib0005) 2007 Fablet, Ouala, Herzet (bib0050) 2018 Abarbanel, Rozdeba, Shirman (bib0150) 2018; 30 Duchi, Hazan, Singer (bib0215) 2011; 12 Lecun, Bengio, Hinton (bib0025) 2015; 521 Kuenzer, Ottinger, Wegmann, Guo, Wang, Zhang, Dech, Wikelski (bib0020) 2014; 35 Raanes, Bocquet, Carrassi (bib0230) 2019; 145 He, Zhang, Ren, Sun (bib0155) 2016 Lorenz, Emanuel (bib0190) 1998; 55 Ayed, de Bézenac, Pajot, Brajard, Gallinari (bib0195) 2019 de Bezenac, Pajot, Gallinari (bib0065) 2017 Bocquet, Raanes, Hannart (bib0185) 2015; 22 Lguensat, Sun, Fablet, Tandeo, Mason, Chen (bib0095) 2018 Bocquet (bib0125) 2012; 138 Bocquet, Gurumoorthy, Apte, Carrassi, Grudzien, Jones (bib0220) 2017; 5 Ioffe, Szegedy (bib0210) 2015 Bocquet (bib0180) 2011; 18 Evensen (bib0165) 2003; 53 E (bib0170) 2017; 5 Pathak, Lu, Hunt, Girvan, Ott (bib0040) 2017; 27 Carrassi, Vannitsem (bib0120) 2011; 137 Trémolet (bib0130) 2006; 132 Pulido, Tandeo, Bocquet, Carrassi, Lucini (bib0225) 2018; 70 Raanes (10.1016/j.jocs.2020.101171_bib0140) 2015; 143 Randall (10.1016/j.jocs.2020.101171_bib0005) 2007 Fablet (10.1016/j.jocs.2020.101171_bib0050) 2018 Metref (10.1016/j.jocs.2020.101171_bib0010) 2019 Goodfellow (10.1016/j.jocs.2020.101171_bib0160) 2016 Bocquet (10.1016/j.jocs.2020.101171_bib0185) 2015; 22 Reichstein (10.1016/j.jocs.2020.101171_bib0035) 2019; 566 Trémolet (10.1016/j.jocs.2020.101171_bib0130) 2006; 132 Brunton (10.1016/j.jocs.2020.101171_bib0080) 2017; 8 Chang (10.1016/j.jocs.2020.101171_bib0175) 2017 Harlim (10.1016/j.jocs.2020.101171_bib0110) 2017 Pulido (10.1016/j.jocs.2020.101171_bib0225) 2018; 70 Park (10.1016/j.jocs.2020.101171_bib0060) 2010 Shi (10.1016/j.jocs.2020.101171_bib0075) 2017 Zhang (10.1016/j.jocs.2020.101171_bib0085) 2018; 474 Bocquet (10.1016/j.jocs.2020.101171_bib0180) 2011; 18 de Bezenac (10.1016/j.jocs.2020.101171_bib0065) 2017 E (10.1016/j.jocs.2020.101171_bib0170) 2017; 5 Lorenz (10.1016/j.jocs.2020.101171_bib0190) 1998; 55 Legras (10.1016/j.jocs.2020.101171_bib0200) 1996 Ioffe (10.1016/j.jocs.2020.101171_bib0210) 2015 Lu (10.1016/j.jocs.2020.101171_bib0100) 2017; 27 Sakov (10.1016/j.jocs.2020.101171_bib0145) 2018; 144 Park (10.1016/j.jocs.2020.101171_bib0055) 2002 Bocquet (10.1016/j.jocs.2020.101171_bib0125) 2012; 138 Ruiz (10.1016/j.jocs.2020.101171_bib0135) 2013; 91 Ayed (10.1016/j.jocs.2020.101171_bib0195) 2019 Bocquet (10.1016/j.jocs.2020.101171_bib0220) 2017; 5 Pathak (10.1016/j.jocs.2020.101171_bib0040) 2017; 27 Tran (10.1016/j.jocs.2020.101171_bib0030) 2015 Shi (10.1016/j.jocs.2020.101171_bib0070) 2015 Nguyen (10.1016/j.jocs.2020.101171_bib0105) 2019 He (10.1016/j.jocs.2020.101171_bib0155) 2016 Aster (10.1016/j.jocs.2020.101171_bib0115) 2005 Pathak (10.1016/j.jocs.2020.101171_bib0045) 2018; 120 Welch (10.1016/j.jocs.2020.101171_bib0205) 1967; 15 Raanes (10.1016/j.jocs.2020.101171_bib0230) 2019; 145 Evensen (10.1016/j.jocs.2020.101171_bib0165) 2003; 53 Abarbanel (10.1016/j.jocs.2020.101171_bib0150) 2018; 30 Lecun (10.1016/j.jocs.2020.101171_bib0025) 2015; 521 Carrassi (10.1016/j.jocs.2020.101171_bib0015) 2018; 9 Duchi (10.1016/j.jocs.2020.101171_bib0215) 2011; 12 Kuenzer (10.1016/j.jocs.2020.101171_bib0020) 2014; 35 Bocquet (10.1016/j.jocs.2020.101171_bib0090) 2019; 26 Lguensat (10.1016/j.jocs.2020.101171_bib0095) 2018 Carrassi (10.1016/j.jocs.2020.101171_bib0120) 2011; 137 |
References_xml | – volume: 27 start-page: 121102 year: 2017 ident: bib0040 article-title: Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data publication-title: Chaos – volume: 15 start-page: 70 year: 1967 end-page: 73 ident: bib0205 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. – volume: 132 start-page: 2483 year: 2006 end-page: 2504 ident: bib0130 article-title: Accounting for an imperfect model in 4D-Var publication-title: Q. J. R. Meteorol. Soc. – year: 2015 ident: bib0210 article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift – year: 2017 ident: bib0065 article-title: Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge – volume: 91 start-page: 79 year: 2013 end-page: 99 ident: bib0135 article-title: Estimating model parameters with ensemble-based data assimilation: a review publication-title: J. Meteorol. Soc. Japan. Ser. II – start-page: 276 year: 2017 end-page: 317 ident: bib0110 article-title: Model error in data assimilation publication-title: Nonlinear and Stochastic Climate Dynamics – start-page: 5617 year: 2017 end-page: 5627 ident: bib0075 article-title: Deep learning for precipitation nowcasting: a benchmark and a new model publication-title: Advances in Neural Information Processing Systems – year: 2005 ident: bib0115 article-title: Parameter Estimation and Inverse Problems (International Geophysics) – start-page: 1 year: 2019 end-page: 18 ident: bib0010 article-title: Estimating model evidence using ensemble-based data assimilation with localization – the model selection problem publication-title: Q. J. R. Meteorol. Soc. – volume: 30 start-page: 2025 year: 2018 end-page: 2055 ident: bib0150 article-title: Machine learning: deepest learning as statistical data assimilation problems publication-title: Neural Comput. – volume: 521 start-page: 436 year: 2015 ident: bib0025 article-title: Deep learning publication-title: Nature – volume: 566 start-page: 195 year: 2019 ident: bib0035 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – year: 2019 ident: bib0195 article-title: Learning Dynamical Systems from Partial Observations – volume: 143 start-page: 3857 year: 2015 end-page: 3873 ident: bib0140 article-title: Extending the square root method to account for additive forecast noise in ensemble methods publication-title: Mon. Weather Rev. – start-page: 1764 year: 2018 end-page: 1767 ident: bib0095 article-title: Eddynet: a deep neural network for pixel-wise classification of oceanic eddies publication-title: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium – volume: 5 start-page: 304 year: 2017 end-page: 333 ident: bib0220 article-title: Degenerate Kalman filter error covariances and their convergence onto the unstable subspace publication-title: SIAM/ASA J. Uncertain. Quantif. – year: 2019 ident: bib0105 article-title: EM-like Learning Chaotic Dynamics from Noisy and Partial Observations – volume: 70 start-page: 1 year: 2018 end-page: 17 ident: bib0225 article-title: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods publication-title: Tellus: Dyn. Meteorol. Oceanogr. – year: 2016 ident: bib0160 article-title: Deep Learning – volume: 26 start-page: 143 year: 2019 end-page: 162 ident: bib0090 article-title: Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models publication-title: Nonlinear Process. Geophys. – start-page: 770 year: 2016 end-page: 778 ident: bib0155 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 9 year: 2018 ident: bib0015 article-title: Data assimilation in the geosciences: an overview of methods, issues, and perspectives publication-title: Wiley Interdiscip. Rev.: Climate Change – volume: 145 start-page: 53 year: 2019 end-page: 75 ident: bib0230 article-title: Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures publication-title: Q. J. R. Meteorol. Soc. – volume: 137 start-page: 435 year: 2011 end-page: 451 ident: bib0120 article-title: State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics publication-title: Q. J. R. Meteorol. Soc. – volume: 144 start-page: 1297 year: 2018 end-page: 1309 ident: bib0145 article-title: An iterative ensemble Kalman filter in the presence of additive model error publication-title: Q. J. R. Meteorol. Soc. – start-page: 589 year: 2007 end-page: 662 ident: bib0005 article-title: Climate models and their evaluation, in: Climate change 2007: the physical science basis publication-title: Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR) – volume: 474 start-page: 20180305 year: 2018 ident: bib0085 article-title: Robust data-driven discovery of governing physical laws with error bars publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. – volume: 138 start-page: 664 year: 2012 end-page: 681 ident: bib0125 article-title: Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var publication-title: Q. J. R. Meteorol. Soc. – start-page: 4489 year: 2015 end-page: 4497 ident: bib0030 article-title: Learning spatiotemporal features with 3d convolutional networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: bib0215 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 120 start-page: 024102 year: 2018 ident: bib0045 article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach publication-title: Phys. Rev. Lett. – volume: 22 start-page: 645 year: 2015 end-page: 662 ident: bib0185 article-title: Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation publication-title: Nonlinear Process. Geophys. – start-page: 1 year: 2010 end-page: 7 ident: bib0060 article-title: A time series data prediction scheme using bilinear recurrent neural network publication-title: 2010 International Conference on Information Science and Applications, ICISA 2010 – start-page: 143 year: 1996 end-page: 156 ident: bib0200 article-title: A guide to liapunov vectors publication-title: Proceedings 1995 ECMWF Seminar on Predictability – volume: 35 start-page: 6599 year: 2014 end-page: 6647 ident: bib0020 article-title: Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks publication-title: Int. J. Remote Sens. – start-page: 1459 year: 2002 end-page: 1464 ident: bib0055 article-title: Bilinear recurrent neural network publication-title: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94) – year: 2017 ident: bib0175 article-title: Multi-level Residual Networks from Dynamical Systems View – volume: 5 start-page: 1 year: 2017 end-page: 11 ident: bib0170 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. – start-page: 1 year: 2018 end-page: 5 ident: bib0050 article-title: Bilinear residual neural network for the identification and forecasting of dynamical systems publication-title: EUSIPCO 2018, European Signal Processing Conference – start-page: 802 year: 2015 end-page: 810 ident: bib0070 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems 28 – volume: 27 start-page: 041102 year: 2017 ident: bib0100 article-title: Reservoir observers: model-free inference of unmeasured variables in chaotic systems publication-title: Chaos: Interdiscip. J. Nonlinear Sci. – volume: 8 start-page: 19 year: 2017 ident: bib0080 article-title: Chaos as an intermittently forced linear system publication-title: Nat. Commun. – volume: 18 start-page: 735 year: 2011 end-page: 750 ident: bib0180 article-title: Ensemble Kalman filtering without the intrinsic need for inflation publication-title: Nonlinear Process. Geophys. – volume: 53 start-page: 343 year: 2003 end-page: 367 ident: bib0165 article-title: The ensemble kalman filter: theoretical formulation and practical implementation publication-title: Ocean Dyn. – volume: 55 start-page: 399 year: 1998 end-page: 414 ident: bib0190 article-title: Optimal sites for supplementary weather observations: simulation with a small model publication-title: J. Atmos. Sci. – year: 2016 ident: 10.1016/j.jocs.2020.101171_bib0160 – volume: 53 start-page: 343 year: 2003 ident: 10.1016/j.jocs.2020.101171_bib0165 article-title: The ensemble kalman filter: theoretical formulation and practical implementation publication-title: Ocean Dyn. doi: 10.1007/s10236-003-0036-9 – year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0175 – start-page: 4489 year: 2015 ident: 10.1016/j.jocs.2020.101171_bib0030 article-title: Learning spatiotemporal features with 3d convolutional networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 1 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0050 article-title: Bilinear residual neural network for the identification and forecasting of dynamical systems – volume: 27 start-page: 121102 year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0040 article-title: Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data publication-title: Chaos doi: 10.1063/1.5010300 – volume: 137 start-page: 435 year: 2011 ident: 10.1016/j.jocs.2020.101171_bib0120 article-title: State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.762 – volume: 22 start-page: 645 year: 2015 ident: 10.1016/j.jocs.2020.101171_bib0185 article-title: Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-22-645-2015 – volume: 30 start-page: 2025 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0150 article-title: Machine learning: deepest learning as statistical data assimilation problems publication-title: Neural Comput. doi: 10.1162/neco_a_01094 – volume: 138 start-page: 664 year: 2012 ident: 10.1016/j.jocs.2020.101171_bib0125 article-title: Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.961 – volume: 91 start-page: 79 year: 2013 ident: 10.1016/j.jocs.2020.101171_bib0135 article-title: Estimating model parameters with ensemble-based data assimilation: a review publication-title: J. Meteorol. Soc. Japan. Ser. II doi: 10.2151/jmsj.2013-201 – volume: 27 start-page: 041102 year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0100 article-title: Reservoir observers: model-free inference of unmeasured variables in chaotic systems publication-title: Chaos: Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4979665 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.jocs.2020.101171_bib0025 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 474 start-page: 20180305 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0085 article-title: Robust data-driven discovery of governing physical laws with error bars publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.2018.0305 – start-page: 143 year: 1996 ident: 10.1016/j.jocs.2020.101171_bib0200 article-title: A guide to liapunov vectors publication-title: Proceedings 1995 ECMWF Seminar on Predictability – volume: 70 start-page: 1 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0225 article-title: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods publication-title: Tellus: Dyn. Meteorol. Oceanogr. doi: 10.1080/16000870.2018.1442099 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.jocs.2020.101171_bib0035 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – start-page: 276 year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0110 article-title: Model error in data assimilation – start-page: 1459 year: 2002 ident: 10.1016/j.jocs.2020.101171_bib0055 article-title: Bilinear recurrent neural network – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0170 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-017-0103-z – start-page: 770 year: 2016 ident: 10.1016/j.jocs.2020.101171_bib0155 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 145 start-page: 53 year: 2019 ident: 10.1016/j.jocs.2020.101171_bib0230 article-title: Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3386 – volume: 9 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0015 article-title: Data assimilation in the geosciences: an overview of methods, issues, and perspectives publication-title: Wiley Interdiscip. Rev.: Climate Change – year: 2005 ident: 10.1016/j.jocs.2020.101171_bib0115 – volume: 18 start-page: 735 year: 2011 ident: 10.1016/j.jocs.2020.101171_bib0180 article-title: Ensemble Kalman filtering without the intrinsic need for inflation publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-18-735-2011 – volume: 15 start-page: 70 year: 1967 ident: 10.1016/j.jocs.2020.101171_bib0205 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0065 – year: 2015 ident: 10.1016/j.jocs.2020.101171_bib0210 – volume: 132 start-page: 2483 year: 2006 ident: 10.1016/j.jocs.2020.101171_bib0130 article-title: Accounting for an imperfect model in 4D-Var publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.05.224 – year: 2019 ident: 10.1016/j.jocs.2020.101171_bib0195 – volume: 120 start-page: 024102 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0045 article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.024102 – start-page: 1 year: 2010 ident: 10.1016/j.jocs.2020.101171_bib0060 article-title: A time series data prediction scheme using bilinear recurrent neural network – volume: 8 start-page: 19 year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0080 article-title: Chaos as an intermittently forced linear system publication-title: Nat. Commun. doi: 10.1038/s41467-017-00030-8 – volume: 5 start-page: 304 year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0220 article-title: Degenerate Kalman filter error covariances and their convergence onto the unstable subspace publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M1068712 – volume: 144 start-page: 1297 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0145 article-title: An iterative ensemble Kalman filter in the presence of additive model error publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3213 – volume: 12 start-page: 2121 year: 2011 ident: 10.1016/j.jocs.2020.101171_bib0215 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 55 start-page: 399 year: 1998 ident: 10.1016/j.jocs.2020.101171_bib0190 article-title: Optimal sites for supplementary weather observations: simulation with a small model publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2 – start-page: 589 year: 2007 ident: 10.1016/j.jocs.2020.101171_bib0005 article-title: Climate models and their evaluation, in: Climate change 2007: the physical science basis publication-title: Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR) – volume: 35 start-page: 6599 year: 2014 ident: 10.1016/j.jocs.2020.101171_bib0020 article-title: Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.964349 – volume: 26 start-page: 143 year: 2019 ident: 10.1016/j.jocs.2020.101171_bib0090 article-title: Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-26-143-2019 – start-page: 1 year: 2019 ident: 10.1016/j.jocs.2020.101171_bib0010 article-title: Estimating model evidence using ensemble-based data assimilation with localization – the model selection problem publication-title: Q. J. R. Meteorol. Soc. – start-page: 1764 year: 2018 ident: 10.1016/j.jocs.2020.101171_bib0095 article-title: Eddynet: a deep neural network for pixel-wise classification of oceanic eddies – start-page: 802 year: 2015 ident: 10.1016/j.jocs.2020.101171_bib0070 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting – volume: 143 start-page: 3857 year: 2015 ident: 10.1016/j.jocs.2020.101171_bib0140 article-title: Extending the square root method to account for additive forecast noise in ensemble methods publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-14-00375.1 – year: 2019 ident: 10.1016/j.jocs.2020.101171_bib0105 – start-page: 5617 year: 2017 ident: 10.1016/j.jocs.2020.101171_bib0075 article-title: Deep learning for precipitation nowcasting: a benchmark and a new model publication-title: Advances in Neural Information Processing Systems |
SSID | ssj0000388913 |
Score | 2.589027 |
Snippet | •We address the problem of dynamics emulation from sparse and noisy observations.•An algorithm combining data assimilation and machine learning is applied.•The... A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i)... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 101171 |
SubjectTerms | Data assimilation Dynamical model Emulator Geophysics Machine learning Observations Physics |
Title | Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model |
URI | https://dx.doi.org/10.1016/j.jocs.2020.101171 https://hal.science/hal-03147335 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbaIlW9oE4BUZbqCfVQhNIZJ3EWbqMRo4EuF4o0t8hbSiomqWYGJDj0b_Tv9j3bGYkDPXBLLC-Rn5fPznvfx9ixMFaWpR1FnMs8SmueRaoweSSUkFqlVmgXC3Nxmc2-pV_mYr7FJn0sDLlVhrXfr-lutQ4pw9Cbw9umGX7lRGUnSACcfh3FFGiepjmN8tM7vrlnIbaT0qkkU_6ICoTYGe_mddNpYu2OXQLP-b_2p-3v_U2r23mm--xpgIww9l81YFu2PWC7vcf6ARuE-bmCk0Ai_f4Zu8eJrpz4A5ATKCBGbhaNd3wD2RpYOC9KC0E24hrWHdgFiXlZkGC8UD0266RygKJQABef5cq60m3XrH5DpzZ3uquPMAaNWyI4wlqg-11AcAnn3dK2f6DMfE3P2dX009VkFgURhkgnebGOYq0KPFIlhVE6tjLOhMYzoarLmsRzC40PhRYKcZTRGrFOphKEJHKUmpKjtZMXbKftWvuSQSmlyWpSN7GIC4wsYl0jgEi0yUe1yOUh433PVzoQlJNOxo-q90S7qchaFVmr8tY6ZB82ZW49PcejuUVv0OqvQVbh_vFouXdo_U0DxMg9G59XlEbs_3mSiF_81X9W_prt0Zt3AX7DdtbLn_YtAp21OnIj-Yg9GX8-m10-APJE_QA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgEXRAuIltcIgQRC6a6TOA8kDiug2tJtLyxSb5ZfgVTdpNpdQMuBv8H_4Bcy4zgrcaAHpN4iJ3YcTzIzdj5_H2PPhHWqLN0w4lzlUVrxLNKFzSOhhTI6dcL4vTDHJ9n4U_rhVJxusN_9XhiCVQbf3_l0761DySCM5uCirgcfOVHZCRIAp19HcY-sPHKr7zhvW7w5fIdGfh7HB--nb8dRkBaITJIXyyg2usCJQlJYbWKn4kwYnOnoqqxIErYweFAYoTE7sMZgBM90goFWDVNbcnyGBJvdZNdS9BakmrD_k6_XdYhdpfSqzNS_iDoY9up0sLKz1hBLeOwLeM7_FQ83v_Qruz7SHdxmt0KKCqNuFLbZhmt22PUeIb_DtoM_WMCLQFr98g77hY5Fe7EJINApYE5ez-oOaAeqsTDzqE0HQabiMyxbcDMSD3OgwK4a5YkLwEvzAO16AXR284XztZu2Xqyg1es15MVrGIHBEAyeIBdoPRkwmYVJO3fNDyizrqW7bHoVlrnHtpq2cfcZlErZrCI1FYd5iFVFbCpMWBJj82ElcrXLeD_y0gRCdNLlOJc98u1MkrUkWUt21tplr9Z1Ljo6kEuvFr1B5V8vtcR4dWm9p2j99Q2IAXw8mkgqI7WBPEnEN773n40_YTfG0-OJnByeHD1gN-lMBz9-yLaW86_uESZZS_3Yv9XA5BV_RX8A9CE4fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+data+assimilation+and+machine+learning+to+emulate+a+dynamical+model+from+sparse+and+noisy+observations%3A+A+case+study+with+the+Lorenz+96+model&rft.jtitle=Journal+of+computational+science&rft.au=Brajard%2C+Julien&rft.au=Carrassi%2C+Alberto&rft.au=Bocquet%2C+Marc&rft.au=Bertino%2C+Laurent&rft.date=2020-07-01&rft.issn=1877-7503&rft.volume=44&rft.spage=101171&rft_id=info:doi/10.1016%2Fj.jocs.2020.101171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2020_101171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |