The radius of unit graphs of rings
Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 11508 - 11515 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021667 |
Cover
Loading…
Abstract | Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered. |
---|---|
AbstractList | Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered. Let R be a ring with nonzero identity. The unit graph of R is a simple graph whose vertex set is R itself and two distinct vertices are adjacent if and only if their sum is a unit of R. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring R such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, ∞. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered. |
Author | Li, Zhiqun Su, Huadong |
Author_xml | – sequence: 1 givenname: Zhiqun surname: Li fullname: Li, Zhiqun – sequence: 2 givenname: Huadong surname: Su fullname: Su, Huadong |
BookMark | eNptkMlLAzEYxYNUsNbe_AMGz07NMpPlKMWlUPBSz-GbLG1KOylJevC_t5sg4ulbeO_x-N2iQR97h9A9wROmWPO0hbKaUEwJ5-IKDWkjWM2VlINf-w0a57zG-KCiDRXNED0sVq5KYMM-V9FX-z6UaplgtzqdKfTLfIeuPWyyG1_mCH2-viym7_X84202fZ7XhglZatpJ4iUXmHLcYm6FY9YbzMC5zjaSGKGYwcCdssZZ1yniPGAHlhIlherYCM3OuTbCWu9S2EL60hGCPj1iWmpIJZiN09AJ7KXpOLa2aaUEDkoQ3loqFdiWHrLoOcukmHNyXptQoITYlwRhownWR2j6CE1foB1Mj39MPyX-lX8D-7lveA |
CitedBy_id | crossref_primary_10_3390_math11173643 |
Cites_doi | 10.1006/jabr.1998.7840 10.1080/00927870903095574 10.1017/S0004972700039289 10.1090/S0002-9947-1965-0174592-8 10.1016/0021-8693(88)90202-5 10.1007/s10474-012-0224-5 10.1142/S0219498813500825 10.1016/j.jpaa.2006.10.007 10.1016/j.dam.2012.01.011 10.1142/S100538671500070X 10.11650/tjm/180602 10.1016/j.jalgebra.2006.01.019 10.5486/PMD.2015.6096 10.1007/s10474-012-0250-3 10.1142/S0219498815500024 10.2140/pjm.2011.249.419 10.1007/s40065-013-0067-0 10.1017/S0004972700035310 10.2140/involve.2012.5.51 10.1093/qmath/hah046 10.1142/S0219498807002181 10.1007/BF02638379 |
ContentType | Journal Article |
CorporateAuthor | School of Sciences, Beibu Gulf University, Qinzhou 535011, China |
CorporateAuthor_xml | – name: School of Sciences, Beibu Gulf University, Qinzhou 535011, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021667 |
DatabaseName | CrossRef DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 11515 |
ExternalDocumentID | oai_doaj_org_article_ab70f8cb60dd4588a6a97165d289ad52 10_3934_math_2021667 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-2b81f8670260506d7e3dfc03aeebd481c793c0a6e9dcedeb91efa0ead219879b3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:30:57 EDT 2025 Thu Apr 24 23:14:57 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-2b81f8670260506d7e3dfc03aeebd481c793c0a6e9dcedeb91efa0ead219879b3 |
OpenAccessLink | https://doaj.org/article/ab70f8cb60dd4588a6a97165d289ad52 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab70f8cb60dd4588a6a97165d289ad52 crossref_citationtrail_10_3934_math_2021667 crossref_primary_10_3934_math_2021667 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021667-16 key-10.3934/math.2021667-15 key-10.3934/math.2021667-14 key-10.3934/math.2021667-13 key-10.3934/math.2021667-24 key-10.3934/math.2021667-12 key-10.3934/math.2021667-23 key-10.3934/math.2021667-11 key-10.3934/math.2021667-22 key-10.3934/math.2021667-10 key-10.3934/math.2021667-21 key-10.3934/math.2021667-20 key-10.3934/math.2021667-7 key-10.3934/math.2021667-6 key-10.3934/math.2021667-9 key-10.3934/math.2021667-8 key-10.3934/math.2021667-3 key-10.3934/math.2021667-2 key-10.3934/math.2021667-19 key-10.3934/math.2021667-5 key-10.3934/math.2021667-18 key-10.3934/math.2021667-4 key-10.3934/math.2021667-17 key-10.3934/math.2021667-1 |
References_xml | – ident: key-10.3934/math.2021667-4 doi: 10.1006/jabr.1998.7840 – ident: key-10.3934/math.2021667-8 doi: 10.1080/00927870903095574 – ident: key-10.3934/math.2021667-14 doi: 10.1017/S0004972700039289 – ident: key-10.3934/math.2021667-23 doi: 10.1090/S0002-9947-1965-0174592-8 – ident: key-10.3934/math.2021667-1 – ident: key-10.3934/math.2021667-9 doi: 10.1016/0021-8693(88)90202-5 – ident: key-10.3934/math.2021667-13 doi: 10.1007/s10474-012-0224-5 – ident: key-10.3934/math.2021667-21 doi: 10.1142/S0219498813500825 – ident: key-10.3934/math.2021667-6 doi: 10.1016/j.jpaa.2006.10.007 – ident: key-10.3934/math.2021667-10 – ident: key-10.3934/math.2021667-2 doi: 10.1016/j.dam.2012.01.011 – ident: key-10.3934/math.2021667-3 doi: 10.1142/S100538671500070X – ident: key-10.3934/math.2021667-22 doi: 10.11650/tjm/180602 – ident: key-10.3934/math.2021667-16 doi: 10.1016/j.jalgebra.2006.01.019 – ident: key-10.3934/math.2021667-20 doi: 10.5486/PMD.2015.6096 – ident: key-10.3934/math.2021667-11 doi: 10.1007/s10474-012-0250-3 – ident: key-10.3934/math.2021667-19 doi: 10.1142/S0219498815500024 – ident: key-10.3934/math.2021667-18 doi: 10.2140/pjm.2011.249.419 – ident: key-10.3934/math.2021667-5 doi: 10.1007/s40065-013-0067-0 – ident: key-10.3934/math.2021667-17 doi: 10.1017/S0004972700035310 – ident: key-10.3934/math.2021667-7 doi: 10.2140/involve.2012.5.51 – ident: key-10.3934/math.2021667-24 doi: 10.1093/qmath/hah046 – ident: key-10.3934/math.2021667-15 doi: 10.1142/S0219498807002181 – ident: key-10.3934/math.2021667-12 doi: 10.1007/BF02638379 |
SSID | ssj0002124274 |
Score | 2.1460931 |
Snippet | Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if... Let R be a ring with nonzero identity. The unit graph of R is a simple graph whose vertex set is R itself and two distinct vertices are adjacent if and only if... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 11508 |
SubjectTerms | radius ring extension self-injective ring unit graph unit sum number |
Title | The radius of unit graphs of rings |
URI | https://doaj.org/article/ab70f8cb60dd4588a6a97165d289ad52 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA7Skx7EFevGIHqS0Ey2SY4qliLUk4XehmwDgrTS5f_7XmasvYgXjxMeIfO95G2T-R4ht9GGCllQqNapoTIpTY0UggZeKR5gB8RMkjR-1aOJfJmq6VarL7wT1tIDt8ANnK9YY4LXLEb8q9Jph6xHKkKm4KLK1hd83lYyhTYYDLKEfKu96S6skAOI__DbAy91bin_44O2qPqzTxkekP0uGCwe2kUckp00OyJ74w2T6vKY3IAei4WL7-tlMW-KNZzAIpNM50csyi1PyGT4_PY0ol1fAxpEZVaUe1M2RldI56WYjlUSsQlMuJR8lKYMcGYCczrZGFJM3papcQxUzrFCYL04Jb3ZfJbOSAGYCBEDuB-rpdEgq4Q3ViXGHTcq9cn995vWoSP9xt4THzUE_4hLjbjUHS59creR_mzJLn6Re0TQNjJIUZ0HQHF1p7j6L8Wd_8ckF2QX19TWRC5Jb7VYpyuIElb-Om-IL8K-uS0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+radius+of+unit+graphs+of+rings&rft.jtitle=AIMS+mathematics&rft.au=Li%2C+Zhiqun&rft.au=Su%2C+Huadong&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=11508&rft.epage=11515&rft_id=info:doi/10.3934%2Fmath.2021667&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |