The radius of unit graphs of rings

Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 10; pp. 11508 - 11515
Main Authors Li, Zhiqun, Su, Huadong
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021667

Cover

Loading…
Abstract Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.
AbstractList Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.
Let R be a ring with nonzero identity. The unit graph of R is a simple graph whose vertex set is R itself and two distinct vertices are adjacent if and only if their sum is a unit of R. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring R such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, ∞. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.
Author Li, Zhiqun
Su, Huadong
Author_xml – sequence: 1
  givenname: Zhiqun
  surname: Li
  fullname: Li, Zhiqun
– sequence: 2
  givenname: Huadong
  surname: Su
  fullname: Su, Huadong
BookMark eNptkMlLAzEYxYNUsNbe_AMGz07NMpPlKMWlUPBSz-GbLG1KOylJevC_t5sg4ulbeO_x-N2iQR97h9A9wROmWPO0hbKaUEwJ5-IKDWkjWM2VlINf-w0a57zG-KCiDRXNED0sVq5KYMM-V9FX-z6UaplgtzqdKfTLfIeuPWyyG1_mCH2-viym7_X84202fZ7XhglZatpJ4iUXmHLcYm6FY9YbzMC5zjaSGKGYwcCdssZZ1yniPGAHlhIlherYCM3OuTbCWu9S2EL60hGCPj1iWmpIJZiN09AJ7KXpOLa2aaUEDkoQ3loqFdiWHrLoOcukmHNyXptQoITYlwRhownWR2j6CE1foB1Mj39MPyX-lX8D-7lveA
CitedBy_id crossref_primary_10_3390_math11173643
Cites_doi 10.1006/jabr.1998.7840
10.1080/00927870903095574
10.1017/S0004972700039289
10.1090/S0002-9947-1965-0174592-8
10.1016/0021-8693(88)90202-5
10.1007/s10474-012-0224-5
10.1142/S0219498813500825
10.1016/j.jpaa.2006.10.007
10.1016/j.dam.2012.01.011
10.1142/S100538671500070X
10.11650/tjm/180602
10.1016/j.jalgebra.2006.01.019
10.5486/PMD.2015.6096
10.1007/s10474-012-0250-3
10.1142/S0219498815500024
10.2140/pjm.2011.249.419
10.1007/s40065-013-0067-0
10.1017/S0004972700035310
10.2140/involve.2012.5.51
10.1093/qmath/hah046
10.1142/S0219498807002181
10.1007/BF02638379
ContentType Journal Article
CorporateAuthor School of Sciences, Beibu Gulf University, Qinzhou 535011, China
CorporateAuthor_xml – name: School of Sciences, Beibu Gulf University, Qinzhou 535011, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021667
DatabaseName CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 11515
ExternalDocumentID oai_doaj_org_article_ab70f8cb60dd4588a6a97165d289ad52
10_3934_math_2021667
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-2b81f8670260506d7e3dfc03aeebd481c793c0a6e9dcedeb91efa0ead219879b3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:30:57 EDT 2025
Thu Apr 24 23:14:57 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-2b81f8670260506d7e3dfc03aeebd481c793c0a6e9dcedeb91efa0ead219879b3
OpenAccessLink https://doaj.org/article/ab70f8cb60dd4588a6a97165d289ad52
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_ab70f8cb60dd4588a6a97165d289ad52
crossref_citationtrail_10_3934_math_2021667
crossref_primary_10_3934_math_2021667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021667-16
key-10.3934/math.2021667-15
key-10.3934/math.2021667-14
key-10.3934/math.2021667-13
key-10.3934/math.2021667-24
key-10.3934/math.2021667-12
key-10.3934/math.2021667-23
key-10.3934/math.2021667-11
key-10.3934/math.2021667-22
key-10.3934/math.2021667-10
key-10.3934/math.2021667-21
key-10.3934/math.2021667-20
key-10.3934/math.2021667-7
key-10.3934/math.2021667-6
key-10.3934/math.2021667-9
key-10.3934/math.2021667-8
key-10.3934/math.2021667-3
key-10.3934/math.2021667-2
key-10.3934/math.2021667-19
key-10.3934/math.2021667-5
key-10.3934/math.2021667-18
key-10.3934/math.2021667-4
key-10.3934/math.2021667-17
key-10.3934/math.2021667-1
References_xml – ident: key-10.3934/math.2021667-4
  doi: 10.1006/jabr.1998.7840
– ident: key-10.3934/math.2021667-8
  doi: 10.1080/00927870903095574
– ident: key-10.3934/math.2021667-14
  doi: 10.1017/S0004972700039289
– ident: key-10.3934/math.2021667-23
  doi: 10.1090/S0002-9947-1965-0174592-8
– ident: key-10.3934/math.2021667-1
– ident: key-10.3934/math.2021667-9
  doi: 10.1016/0021-8693(88)90202-5
– ident: key-10.3934/math.2021667-13
  doi: 10.1007/s10474-012-0224-5
– ident: key-10.3934/math.2021667-21
  doi: 10.1142/S0219498813500825
– ident: key-10.3934/math.2021667-6
  doi: 10.1016/j.jpaa.2006.10.007
– ident: key-10.3934/math.2021667-10
– ident: key-10.3934/math.2021667-2
  doi: 10.1016/j.dam.2012.01.011
– ident: key-10.3934/math.2021667-3
  doi: 10.1142/S100538671500070X
– ident: key-10.3934/math.2021667-22
  doi: 10.11650/tjm/180602
– ident: key-10.3934/math.2021667-16
  doi: 10.1016/j.jalgebra.2006.01.019
– ident: key-10.3934/math.2021667-20
  doi: 10.5486/PMD.2015.6096
– ident: key-10.3934/math.2021667-11
  doi: 10.1007/s10474-012-0250-3
– ident: key-10.3934/math.2021667-19
  doi: 10.1142/S0219498815500024
– ident: key-10.3934/math.2021667-18
  doi: 10.2140/pjm.2011.249.419
– ident: key-10.3934/math.2021667-5
  doi: 10.1007/s40065-013-0067-0
– ident: key-10.3934/math.2021667-17
  doi: 10.1017/S0004972700035310
– ident: key-10.3934/math.2021667-7
  doi: 10.2140/involve.2012.5.51
– ident: key-10.3934/math.2021667-24
  doi: 10.1093/qmath/hah046
– ident: key-10.3934/math.2021667-15
  doi: 10.1142/S0219498807002181
– ident: key-10.3934/math.2021667-12
  doi: 10.1007/BF02638379
SSID ssj0002124274
Score 2.1460931
Snippet Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if...
Let R be a ring with nonzero identity. The unit graph of R is a simple graph whose vertex set is R itself and two distinct vertices are adjacent if and only if...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 11508
SubjectTerms radius
ring extension
self-injective ring
unit graph
unit sum number
Title The radius of unit graphs of rings
URI https://doaj.org/article/ab70f8cb60dd4588a6a97165d289ad52
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA7Skx7EFevGIHqS0Ey2SY4qliLUk4XehmwDgrTS5f_7XmasvYgXjxMeIfO95G2T-R4ht9GGCllQqNapoTIpTY0UggZeKR5gB8RMkjR-1aOJfJmq6VarL7wT1tIDt8ANnK9YY4LXLEb8q9Jph6xHKkKm4KLK1hd83lYyhTYYDLKEfKu96S6skAOI__DbAy91bin_44O2qPqzTxkekP0uGCwe2kUckp00OyJ74w2T6vKY3IAei4WL7-tlMW-KNZzAIpNM50csyi1PyGT4_PY0ol1fAxpEZVaUe1M2RldI56WYjlUSsQlMuJR8lKYMcGYCczrZGFJM3papcQxUzrFCYL04Jb3ZfJbOSAGYCBEDuB-rpdEgq4Q3ViXGHTcq9cn995vWoSP9xt4THzUE_4hLjbjUHS59creR_mzJLn6Re0TQNjJIUZ0HQHF1p7j6L8Wd_8ckF2QX19TWRC5Jb7VYpyuIElb-Om-IL8K-uS0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+radius+of+unit+graphs+of+rings&rft.jtitle=AIMS+mathematics&rft.au=Li%2C+Zhiqun&rft.au=Su%2C+Huadong&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=11508&rft.epage=11515&rft_id=info:doi/10.3934%2Fmath.2021667&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon