Microstructure evolution and grain refinement mechanism of 316LN steel

The hot compression behavior of 316LN stainless steel for the supporting system in a magnet confinement fusion reactor was isothermally compressed at 1,050℃ and 0.1 s . Electron backscatter diffraction was used to study the microstructure and texture evolution during the deformation process. The res...

Full description

Saved in:
Bibliographic Details
Published inHigh temperature materials and processes Vol. 43; no. 1; pp. id. 44 - 38
Main Authors Zhang, Li, Ren, Jie, Zheng, Zhichao, Guan, Lanfang, Liu, Chengzhi, Liu, Yanlian, Cheng, Shengwei, Su, Zexing, Yang, Fei
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2191-0324
0334-6455
2191-0324
DOI10.1515/htmp-2024-0038

Cover

Loading…
Abstract The hot compression behavior of 316LN stainless steel for the supporting system in a magnet confinement fusion reactor was isothermally compressed at 1,050℃ and 0.1 s . Electron backscatter diffraction was used to study the microstructure and texture evolution during the deformation process. The results showed that the necklace structure is eventually formed by increasing compression strain due to dynamic recrystallization (DRX). The proportion of low-angle grain boundaries first increases and then decreases. The dominant DRX mechanism of 316LN is discontinuous DRX, which is characterized by the grain boundary bulging. Besides, twinning is found to be induced to accommodate the plastic strain, helping the development of DRX.
AbstractList The hot compression behavior of 316LN stainless steel for the supporting system in a magnet confinement fusion reactor was isothermally compressed at 1,050℃ and 0.1 s −1 . Electron backscatter diffraction was used to study the microstructure and texture evolution during the deformation process. The results showed that the necklace structure is eventually formed by increasing compression strain due to dynamic recrystallization (DRX). The proportion of low-angle grain boundaries first increases and then decreases. The dominant DRX mechanism of 316LN is discontinuous DRX, which is characterized by the grain boundary bulging. Besides, twinning is found to be induced to accommodate the plastic strain, helping the development of DRX.
The hot compression behavior of 316LN stainless steel for the supporting system in a magnet confinement fusion reactor was isothermally compressed at 1,050℃ and 0.1 s−1. Electron backscatter diffraction was used to study the microstructure and texture evolution during the deformation process. The results showed that the necklace structure is eventually formed by increasing compression strain due to dynamic recrystallization (DRX). The proportion of low-angle grain boundaries first increases and then decreases. The dominant DRX mechanism of 316LN is discontinuous DRX, which is characterized by the grain boundary bulging. Besides, twinning is found to be induced to accommodate the plastic strain, helping the development of DRX.
The hot compression behavior of 316LN stainless steel for the supporting system in a magnet confinement fusion reactor was isothermally compressed at 1,050℃ and 0.1 s . Electron backscatter diffraction was used to study the microstructure and texture evolution during the deformation process. The results showed that the necklace structure is eventually formed by increasing compression strain due to dynamic recrystallization (DRX). The proportion of low-angle grain boundaries first increases and then decreases. The dominant DRX mechanism of 316LN is discontinuous DRX, which is characterized by the grain boundary bulging. Besides, twinning is found to be induced to accommodate the plastic strain, helping the development of DRX.
Author Ren, Jie
Liu, Yanlian
Su, Zexing
Zhang, Li
Zheng, Zhichao
Guan, Lanfang
Liu, Chengzhi
Yang, Fei
Cheng, Shengwei
Author_xml – sequence: 1
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: zhli2020@nuc.edu.cn
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 2
  givenname: Jie
  surname: Ren
  fullname: Ren, Jie
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 3
  givenname: Zhichao
  surname: Zheng
  fullname: Zheng, Zhichao
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 4
  givenname: Lanfang
  surname: Guan
  fullname: Guan, Lanfang
  email: guanlanfang@126.com
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 5
  givenname: Chengzhi
  surname: Liu
  fullname: Liu, Chengzhi
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 6
  givenname: Yanlian
  surname: Liu
  fullname: Liu, Yanlian
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 7
  givenname: Shengwei
  surname: Cheng
  fullname: Cheng, Shengwei
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 8
  givenname: Zexing
  surname: Su
  fullname: Su, Zexing
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
– sequence: 9
  givenname: Fei
  surname: Yang
  fullname: Yang, Fei
  organization: School of Mechanical Engineering, North University of China, Taiyuan, 030051, P.R. China
BookMark eNptkE1v2zAMhoWhA5p1ufZsoGd3-rZ0HIKmLZBtl94FfdCJA1vKZHlD_n3tZWh3GC8kCL4vyecTuoopAkK3BN8TQcSXQxlONcWU1xgz9QGtKNGkxozyq3_qa7QexyOeg2siGrJC22-dz2ksefJlylDBr9RPpUuxsjFU-2y7WGVouwgDxFIN4A82duNQpbZiRO6-V2MB6D-jj63tR1j_zTfoZfvwsnmqdz8enzdfd7VnjSo1VUIy7jUhVHHpnJYNU9i1uAGqpJNtEEEQcBIEVcFSJ33LAqdBS-8bx27Q88U2JHs0p9wNNp9Nsp3500h5b2wune_BYGdbq1rseADOQCiuiHfKNwwa4TSeve4uXqecfk4wFnNMU47z9WZ-TAstOJbz1P1laqE0ziTethJsFvJmIW8W8mYhPwv0RfDb9gVygH2eznPx7v5_IWeEvQJA_or3
Cites_doi 10.1016/j.fusengdes.2009.05.002
10.1016/j.jallcom.2017.11.303
10.1016/j.matchar.2022.112362
10.1016/j.jallcom.2021.163515
10.1016/j.jallcom.2015.04.008
10.1016/j.actamat.2017.06.046
10.3389/fmats.2019.00209
10.1007/s11661-019-05620-3
10.1016/j.vacuum.2018.07.010
10.1016/j.jnucmat.2008.12.242
10.1016/j.heliyon.2020.e03609
10.1016/j.msea.2021.142109
ContentType Journal Article
Copyright This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1515/htmp-2024-0038
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-0324
EndPage 38
ExternalDocumentID oai_doaj_org_article_0bafa8f0b4de43e58481cb8c73e75b90
10_1515_htmp_2024_0038
10_1515_htmp_2024_0038431
GroupedDBID -~X
0R~
0~D
4.4
5GY
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACIWK
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
M48
O9-
OK1
P2P
QD8
RDG
SA.
SLJYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c378t-285634c9112846bb967380bf07e286b6fd5d51eb6e528da2b6cf3d42d96cc7b3
IEDL.DBID DOA
ISSN 2191-0324
0334-6455
IngestDate Wed Aug 27 01:29:32 EDT 2025
Mon Jun 30 09:59:16 EDT 2025
Tue Jul 01 00:44:35 EDT 2025
Sat Sep 06 16:58:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-285634c9112846bb967380bf07e286b6fd5d51eb6e528da2b6cf3d42d96cc7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/0bafa8f0b4de43e58481cb8c73e75b90
PQID 3169595406
PQPubID 2030061
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_0bafa8f0b4de43e58481cb8c73e75b90
proquest_journals_3169595406
crossref_primary_10_1515_htmp_2024_0038
walterdegruyter_journals_10_1515_htmp_2024_0038431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle High temperature materials and processes
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024110512160754308_j_htmp-2024-0038_ref_011
2024110512160754308_j_htmp-2024-0038_ref_010
2024110512160754308_j_htmp-2024-0038_ref_004
2024110512160754308_j_htmp-2024-0038_ref_003
2024110512160754308_j_htmp-2024-0038_ref_014
2024110512160754308_j_htmp-2024-0038_ref_002
2024110512160754308_j_htmp-2024-0038_ref_013
2024110512160754308_j_htmp-2024-0038_ref_001
2024110512160754308_j_htmp-2024-0038_ref_012
2024110512160754308_j_htmp-2024-0038_ref_008
2024110512160754308_j_htmp-2024-0038_ref_007
2024110512160754308_j_htmp-2024-0038_ref_006
2024110512160754308_j_htmp-2024-0038_ref_005
2024110512160754308_j_htmp-2024-0038_ref_009
References_xml – ident: 2024110512160754308_j_htmp-2024-0038_ref_003
  doi: 10.1016/j.fusengdes.2009.05.002
– ident: 2024110512160754308_j_htmp-2024-0038_ref_012
  doi: 10.1016/j.jallcom.2017.11.303
– ident: 2024110512160754308_j_htmp-2024-0038_ref_014
  doi: 10.1016/j.matchar.2022.112362
– ident: 2024110512160754308_j_htmp-2024-0038_ref_009
  doi: 10.1016/j.jallcom.2021.163515
– ident: 2024110512160754308_j_htmp-2024-0038_ref_011
  doi: 10.1016/j.jallcom.2015.04.008
– ident: 2024110512160754308_j_htmp-2024-0038_ref_008
– ident: 2024110512160754308_j_htmp-2024-0038_ref_001
– ident: 2024110512160754308_j_htmp-2024-0038_ref_013
  doi: 10.1016/j.actamat.2017.06.046
– ident: 2024110512160754308_j_htmp-2024-0038_ref_006
  doi: 10.3389/fmats.2019.00209
– ident: 2024110512160754308_j_htmp-2024-0038_ref_005
  doi: 10.1007/s11661-019-05620-3
– ident: 2024110512160754308_j_htmp-2024-0038_ref_007
  doi: 10.1016/j.vacuum.2018.07.010
– ident: 2024110512160754308_j_htmp-2024-0038_ref_004
  doi: 10.1016/j.jnucmat.2008.12.242
– ident: 2024110512160754308_j_htmp-2024-0038_ref_002
  doi: 10.1016/j.heliyon.2020.e03609
– ident: 2024110512160754308_j_htmp-2024-0038_ref_010
  doi: 10.1016/j.msea.2021.142109
SSID ssj0000491571
Score 2.285098
Snippet The hot compression behavior of 316LN stainless steel for the supporting system in a magnet confinement fusion reactor was isothermally compressed at 1,050℃...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage id. 44
SubjectTerms Austenitic stainless steels
Dynamic recrystallization
Electron back scatter
Fusion reactors
Grain boundaries
Grain refinement
hot compression
Hot pressing
Microstructure
Plastic deformation
texture evolution
twinning
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELba7YUeVlCouuUhHyr1FEgcP5IDQoBYIcTuaZG4RbE93rbaF8tS2H_PTJItz2OvkS1b34wz3_jxDWM_kjRALkSIRKJdJC3oKDfeRs7YEsOb1Ymnh8K9vj6_khfX6vrp_lMD4O27qR3Vk7qaj_YfbpZHuOAPq-o9iTr4tRjP0NpCRnTO9ZF9wqikKRHrNVT_T82EE2WSRrfxbbcXcamS73_BOdv31em1h-H8brlYnZZWQai7ztoNe-THtbk32AeYfGGfn2kKbrJuj67Y1bKwd3Pg8LdxLl5OPB9SRQiOo2MH2hfkY6Cnv79vx3waeJroyz5Hu8Noiw26Z4PT86gplhC51GSLSGRKp9LhvwsDjrY2p3KesQ2xAZFpq4NXXiVgNSiR-VJY7ULqpfC5dmiY9CtrTaYT-Ma4FA7TbQEK45YMMXYxFhMpzLoVPbs1HfZzhVQxqyUxCkolENOCMC0IU9IczTrshID814qkrKsP0_mwaFZGEdsylFmIrfQgU1Ck7-9s5kwKRtk87rCdlRmKlXsUiEeucmSbusPEK9M8tXp_VkiZvv-PiW2ztdp7aD9mh7XQsLCLDGVh9yrXewRhd-Xs
  priority: 102
  providerName: Scholars Portal
Title Microstructure evolution and grain refinement mechanism of 316LN steel
URI https://www.degruyter.com/doi/10.1515/htmp-2024-0038
https://www.proquest.com/docview/3169595406
https://doaj.org/article/0bafa8f0b4de43e58481cb8c73e75b90
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ-LT1xf5CB4KtumebRHFRcR19MKeytNMlkV94Guiv_embaruyJ48dJDSWj4vklnJo9vGDtJ0gC5ECESiXaRtKCj3HgbOWNLdG9WJ54uCvdu9dWdvB6owUKpLzoTVssD18B1YluGMguxlR5kCork353NnEnBKJtX2XqcxwvJ1GMd9ybKJI1KI_rszv1sNEWTEDKizbAlL1SJ9S9FmK33aq_aw_D59WM23xutXE53g7WaWJGf1WPcZCsw3mLrCwqC26zbowN1tQjs6zNweGtMiZdjz4dU_4Hj17EDrQLyEdBF34eXEZ8Enib65pYjy_C0w_rdy_7FVdSURohcarJZJDKlU-nwT4XuRVubU_HO2IbYgMi01cErrxKwGpTIfCmsdiH1UvhcO6Qh3WWr48kY9hiXwmFyLUChl5Ihxi7GYtqEObaiS7amzU7nSBXTWgCjoMQBMS0I04IwJYXRrM3OCcivViRcXb1AOouGzuIvOtvscE5D0cymlwLxyFWOsaVuM_GDmu9Wv48KA6T9_xjYAVurrYdWXw7ZKhILRxiPzOxxZXr47MnsE3ql36o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB1B9wAcVnyKwgI-IHGKNnH8kRwXRCnQlgNF2psV2-OCtG1X3ZbV_ntmmmzpAieOiTKKM8_OvLE9zwCvizJhLWXKZGFCpjyarLbRZ8H6hsKbN0XkQuHxxAy_qU-n-nSvFoa3VUacrTZX61Yh9Tguw4YnynZaAxSBj7-v5-cEsFQZL23x5dltODDE_mUPDk6GH75-2c20EAcutC06xca_rW9EpK1w_w22eXi5XbfeNWov_Azuw2HHG8VJC_QDuIWLh3BvT03wEQzGvLmuFYTdrFDgz65biWYRxYzPghD0djLgDxVz5KLfHxdzsUyiLMxoIghxPHsM08H76bth1h2TkIXSVutMVtqUKtBfi0KN8b7mgzxzn3KLsjLepKijLtAb1LKKjfQmpDIqGWsTCJLyCfQWywU-BaFkoERboqaIpVJOJtZTCkX5tuaCW9uHN9eecuetGIbjJIJ86tinjn3KaqNVH96yI3dPsYj19sZyNXPdmHC5b1JTpdyriKpEzcr-wVfBlmi1r_M-HF3D4LqRdeHIH7WuiWeaPsg_oPn91L9bRWTp2f8YvYI7w-l45EYfJ5-fw9225_AszBH0CFR8Qbxk7V92He8XKvng8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5BV0LsYcVTdFnAByROURPHj-S4PEqB3YLEInGzYntckOhDfYD498w0adkFTlwjj-LMZ2ceHn8D8LQoE9ZSpkwWJmTKo8lqG30WrG_IvHlTRL4ofD42o0_q7We9qyZcdWWVESfLzc91y5A6iPOw4UTZnmuALPDgy3q6IIClyvhoa7CI6TocGFPLqgcHp6PXH9_vEy3kAhfaFh1h49_CVwzSlrf_irN59GN7bL2f0yXrM7wFR53bKE5bnG_DNZzdgcNLZIJ3YXjOtXUtH-xmiQK_d6tKNLMoJtwKQtDbSYC_U0yR7_x-XU3FPImyMGdjQYDjt3twMXx18WKUdV0SslDaap3JSptSBfppkaUx3tfcxzP3KbcoK-NNijrqAr1BLavYSG9CKqOSsTaBECnvQ282n-EDEEoGirMlajJYKuUkYj1FUBRua75va_vwbKcpt2i5MBzHEKRTxzp1rFMmG6368JwVuR_FHNbbB_PlxHVbwuW-SU2Vcq8iqhI1E_sHXwVbotW-zvtwsoPBdRtr5Ugfta7JzTR9kH9A83vUv2dFvtLx_wg9gRsfXg7d2Zvxu4dws104nIM5gR5hio_IK1n7x926-wX4lOAf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+evolution+and+grain+refinement+mechanism+of+316LN+steel&rft.jtitle=High+temperature+materials+and+processes&rft.au=Zhang+Li&rft.au=Ren+Jie&rft.au=Zheng+Zhichao&rft.au=Guan+Lanfang&rft.date=2024-01-01&rft.pub=De+Gruyter&rft.eissn=2191-0324&rft.volume=43&rft.issue=1&rft.spage=id.+44&rft.epage=38&rft_id=info:doi/10.1515%2Fhtmp-2024-0038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0bafa8f0b4de43e58481cb8c73e75b90
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-0324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-0324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-0324&client=summon