Progressive collapse analysis of RC frame building based on Pseudo-Dynamic (PsD) testing with sub-structuring

Accidental loading coming from either natural or anthropic hazards can have serious consequences on civil engineering structures capacity and can lead to progressive collapse (PC). In the case of frame buildings, PC is a subject of interest to assess the residual risk of exposure to death for people...

Full description

Saved in:
Bibliographic Details
Published inJournal of Building Engineering Vol. 52; p. 104420
Main Authors Bertrand, D., Grange, S., Charrié, J-.B.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accidental loading coming from either natural or anthropic hazards can have serious consequences on civil engineering structures capacity and can lead to progressive collapse (PC). In the case of frame buildings, PC is a subject of interest to assess the residual risk of exposure to death for people inside. PC analysis on large structures is rather performed from a numerical point of view. Experimental tests are often expensive and complicate to setup (dynamic response, removal of the load-bearing element, size of the experiment, etc.). In this paper, the use of Pseudo-Dynamic (PsD) testing combined with sub-structuring technique is proposed. It allows to account for the dynamic response of the entire structure by only testing (quasi-statically) the critical part of the building. In order to demonstrate the applicability of the method to PC, a classic central column removal scenario is considered and applied on a Reinforced Concrete (RC) structure. The latter is a two-bay and three story frame building. The bending response of the RC beam directly connected to the removed load-bearing member is investigated. Only this part (the RC beam) is experimentally tested while the rest of the structure is simulated by finite element analysis within a dynamic framework. The quasi-static response of the beam is measured and interacts with the integration scheme (α Operator Splitting type) to calculate, inter alias, the inertial forces contributions and the displacement fields within both numerical and experimental domains. To validate the approach, a finite element model based on multifiber beam theory is used. The results comparison underlines a very good agreement between both PsD tests and numerical simulations in all configurations considered, in particular the ability of the PsD approach to account for inertial effects within the structural response. It demonstrates the interest to use such a method within the context of PC analysis. More specifically, the method could prove particularly effective to assess Dynamic Amplification Factors (DAF), used for structural design by accounting for PC potential effect (at least within American guidelines). •Pseudo dynamic testing with sub-structuring applied to progressive collapse.•Dynamic response of RC frame structures subjected to central column removal scenario.•Nonlinear multifiber beam finite element modeling.•Time evolution of crack pattern within concrete measured by Digital Image Correlation (DIC).
AbstractList Accidental loading coming from either natural or anthropic hazards can have serious consequences on civil engineering structures capacity and can lead to progressive collapse (PC). In the case of frame buildings, PC is a subject of interest to assess the residual risk of exposure to death for people inside. PC analysis on large structures is rather performed from a numerical point of view. Experimental tests are often expensive and complicate to setup (dynamic response, removal of the load-bearing element, size of the experiment, etc.). In this paper, the use of Pseudo-Dynamic (PsD) testing combined with sub-structuring technique is proposed. It allows to account for the dynamic response of the entire structure by only testing (quasi-statically) the critical part of the building. In order to demonstrate the applicability of the method to PC, a classic central column removal scenario is considered and applied on a Reinforced Concrete (RC) structure. The latter is a two-bay and three story frame building. The bending response of the RC beam directly connected to the removed load-bearing member is investigated. Only this part (the RC beam) is experimentally tested while the rest of the structure is simulated by finite element analysis within a dynamic framework. The quasi-static response of the beam is measured and interacts with the integration scheme (α Operator Splitting type) to calculate, inter alias, the inertial forces contributions and the displacement fields within both numerical and experimental domains. To validate the approach, a finite element model based on multifiber beam theory is used. The results comparison underlines a very good agreement between both PsD tests and numerical simulations in all configurations considered, in particular the ability of the PsD approach to account for inertial effects within the structural response. It demonstrates the interest to use such a method within the context of PC analysis. More specifically, the method could prove particularly effective to assess Dynamic Amplification Factors (DAF), used for structural design by accounting for PC potential effect (at least within American guidelines). •Pseudo dynamic testing with sub-structuring applied to progressive collapse.•Dynamic response of RC frame structures subjected to central column removal scenario.•Nonlinear multifiber beam finite element modeling.•Time evolution of crack pattern within concrete measured by Digital Image Correlation (DIC).
ArticleNumber 104420
Author Charrié, J-.B.
Bertrand, D.
Grange, S.
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0000-0002-4839-8893
  surname: Bertrand
  fullname: Bertrand, D.
  email: david.bertrand@insa-lyon.fr
– sequence: 2
  givenname: S.
  surname: Grange
  fullname: Grange, S.
– sequence: 3
  givenname: J-.B.
  surname: Charrié
  fullname: Charrié, J-.B.
BackLink https://hal.science/hal-03638912$$DView record in HAL
BookMark eNp9kE1rGzEQhkVIIKnjP9CTjvFhXUmrlXehl-A0H2CICelZaKVRIrNeGY3Wwf--XtxC6CGnGV7eZwaeb-S8jz0Q8p2zOWdc_djMN7GFuWBCHAMpBTsjV6KsRLHgTJx_2i_JFHHDGBNNVdZKXpHtOsW3BIhhD9TGrjM7BGp60x0wII2eviypT2YLtB1C50L_RluD4Gjs6RphcLG4O_RmGyy9WePdjGbAPLY-Qn6nOLQF5jTYPKRjeE0uvOkQpn_nhPy-__W6fCxWzw9Py9tVYctFnQshvTJOebmoapA1tE1rWuGE5YpXpWl94xsOkllZNlJVjWOeK2UWzjLpXcPLCZmd7r6bTu9S2Jp00NEE_Xi70mPGSlXWDRf7sVufujZFxARe25BNDrHPyYROc6ZHy3qjR8t6tKxPlo-o-A_99-tL6OcJgqOAfYCk0QboLbiQwGbtYvgK_wMIbJgn
CitedBy_id crossref_primary_10_1080_19648189_2025_2452214
crossref_primary_10_1080_15732479_2024_2446723
crossref_primary_10_1142_S0219455425500397
Cites_doi 10.12989/cac.2015.16.5.683
10.1016/j.engstruct.2018.06.082
10.1061/(ASCE)ST.1943-541X.0000422
10.1016/j.engstruct.2009.01.007
10.1061/(ASCE)ST.1943-541X.0001329
10.1016/j.engstruct.2017.02.002
10.1061/(ASCE)0733-9445(2008)134:3(478)
10.1002/1096-9845(200007)29:7<905::AID-EQE941>3.0.CO;2-P
10.1016/j.istruc.2020.03.018
10.1016/j.jcsr.2021.107051
10.1061/(ASCE)ST.1943-541X.0000630
10.12989/sem.2009.32.6.771
10.1016/j.finel.2021.103604
10.1016/j.engstruct.2012.04.016
10.1061/(ASCE)CF.1943-5509.0000464
10.1061/(ASCE)0733-9399(2002)128:1(2)
10.1016/j.soildyn.2020.106370
10.1080/13632460509350543
10.1002/tal.375
10.2174/1874149501408010183
10.1016/j.engstruct.2015.12.010
10.1016/j.engstruct.2006.11.025
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Attribution - NonCommercial
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jobe.2022.104420
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-7102
ExternalDocumentID oai_HAL_hal_03638912v1
10_1016_j_jobe_2022_104420
S2352710222004338
GroupedDBID --M
0R~
457
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSL
SST
SSZ
T5K
~G-
4.4
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SSH
1XC
VOOES
ID FETCH-LOGICAL-c378t-24f6ad6f4758e48eb9bab2d2c16153abf9f91e40c4394659d0f166a7dc04fd913
IEDL.DBID AIKHN
ISSN 2352-7102
IngestDate Fri May 09 12:24:46 EDT 2025
Tue Jul 01 04:03:33 EDT 2025
Thu Apr 24 23:09:49 EDT 2025
Fri Feb 23 02:40:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-24f6ad6f4758e48eb9bab2d2c16153abf9f91e40c4394659d0f166a7dc04fd913
ORCID 0000-0002-4839-8893
0000-0002-7766-0483
OpenAccessLink https://hal.science/hal-03638912
ParticipantIDs hal_primary_oai_HAL_hal_03638912v1
crossref_citationtrail_10_1016_j_jobe_2022_104420
crossref_primary_10_1016_j_jobe_2022_104420
elsevier_sciencedirect_doi_10_1016_j_jobe_2022_104420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of Building Engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yi, He, Xiao, Kunnath (bib20) 2008; 105
Kiakojouria, DeBiagi, Chiaia, Sheidaiia (bib6) 2020; 206
Wang, Chen, Zhao, Zhang (bib18) 2016
Orton, Kirby (bib26) 2014; 28
Souid, Delaplace, Ragueneau, Desmorat (bib34) 2009; 31
Song, Sezen, Giriunas (bib17) 2010
Newmark (bib44) 1959
Lew, Bao, Sadek, Main, Pujol, Sozen (bib21) 2011
Sadek, Main, Lew, Bao (bib22) 2011; 137
Liu, Fung, Tan (bib27) 2016; 142
Kai, Li (bib23) 2012; 42
Kotronis, Mazars (bib39) 2005; 9
EuropeanStd (bib31) 2014
Meng, Li, Zhong, Tan, Du (bib8) 2022; 188
Byfield, Mudalige, Morison, Stoddart (bib12) 2014; 167
Kai, Li (bib24) 2013; 139
Scalvenzi, Gargiulo, Freddi, Parisi (bib29) 2022
Mazars, Grange (bib41) 2015; 16
Bazant, Zhou (bib4) 2002; 128
Combescure, Pegon (bib37) 1997
Krauthammer, Hall, Woodson, Baylot, Hayes, Sohn (bib1) 2003
Kai, Li (bib25) 2015; 29
Nakashima, Kato (bib36) 1987
AmericanStd (bib14) 2009
Pham, Tan (bib28) 2017; 139
Capdevielle (bib40) 2016
ElHajjDiaba, Orcesi, Desprez, Bleyer (bib13) 2021; 241
Shan, Li, Xu, Xie (bib19) 2016; 111
Menegotto, Pinto (bib43) 1973
Yi, Yi, Zhou (bib10) 2021; 15
Alshaikh, Bakar, Alwesabi, Akil (bib11) 2020; 25
Zienkiewicz, Taylor (bib45) 1967
Grange, Bertrand (bib46) 2021; 196
Hilbert, Hughes, Taylor (bib35) 1977
LaBorderie (bib42) 1991
Adam, Parisi, Sagaseta, Lu (bib5) 2018; 173
Sasani, Kropelnicki (bib2) 2008; 17
Tian, Lin, Lu, Zhang, Li, Guan (bib7) 2020; 139
AmericanStd (bib15) 2016
Wang, Zhang, Li, Yan (bib32) 2014; 8
Pegon, Pinto (bib33) 2000; 29
AmericanStd (bib30) 2016
S. Grange. Atl4s Plateform (A Tool and Language for Simplified Structural Solution Strategy). Technical report, INSA Lyon, 2009-2021.
Yagob, Galal (bib3) 2009; 32
Starossek (bib9) 2007; 29
Sasani, Sagiroglu (bib16) 2008; 134
Song (10.1016/j.jobe.2022.104420_bib17) 2010
Kai (10.1016/j.jobe.2022.104420_bib24) 2013; 139
Kotronis (10.1016/j.jobe.2022.104420_bib39) 2005; 9
Orton (10.1016/j.jobe.2022.104420_bib26) 2014; 28
Wang (10.1016/j.jobe.2022.104420_bib32) 2014; 8
Meng (10.1016/j.jobe.2022.104420_bib8) 2022; 188
Sasani (10.1016/j.jobe.2022.104420_bib16) 2008; 134
Mazars (10.1016/j.jobe.2022.104420_bib41) 2015; 16
Sadek (10.1016/j.jobe.2022.104420_bib22) 2011; 137
Adam (10.1016/j.jobe.2022.104420_bib5) 2018; 173
Yagob (10.1016/j.jobe.2022.104420_bib3) 2009; 32
ElHajjDiaba (10.1016/j.jobe.2022.104420_bib13) 2021; 241
AmericanStd (10.1016/j.jobe.2022.104420_bib15) 2016
Liu (10.1016/j.jobe.2022.104420_bib27) 2016; 142
Scalvenzi (10.1016/j.jobe.2022.104420_bib29) 2022
Capdevielle (10.1016/j.jobe.2022.104420_bib40) 2016
AmericanStd (10.1016/j.jobe.2022.104420_bib14) 2009
AmericanStd (10.1016/j.jobe.2022.104420_bib30) 2016
Menegotto (10.1016/j.jobe.2022.104420_bib43) 1973
Lew (10.1016/j.jobe.2022.104420_bib21) 2011
Wang (10.1016/j.jobe.2022.104420_bib18) 2016
Newmark (10.1016/j.jobe.2022.104420_bib44) 1959
Nakashima (10.1016/j.jobe.2022.104420_bib36) 1987
Yi (10.1016/j.jobe.2022.104420_bib10) 2021; 15
Krauthammer (10.1016/j.jobe.2022.104420_bib1) 2003
Byfield (10.1016/j.jobe.2022.104420_bib12) 2014; 167
Pham (10.1016/j.jobe.2022.104420_bib28) 2017; 139
10.1016/j.jobe.2022.104420_bib38
Grange (10.1016/j.jobe.2022.104420_bib46) 2021; 196
Kiakojouria (10.1016/j.jobe.2022.104420_bib6) 2020; 206
Sasani (10.1016/j.jobe.2022.104420_bib2) 2008; 17
Shan (10.1016/j.jobe.2022.104420_bib19) 2016; 111
Zienkiewicz (10.1016/j.jobe.2022.104420_bib45) 1967
Souid (10.1016/j.jobe.2022.104420_bib34) 2009; 31
Alshaikh (10.1016/j.jobe.2022.104420_bib11) 2020; 25
Kai (10.1016/j.jobe.2022.104420_bib23) 2012; 42
Bazant (10.1016/j.jobe.2022.104420_bib4) 2002; 128
Starossek (10.1016/j.jobe.2022.104420_bib9) 2007; 29
Pegon (10.1016/j.jobe.2022.104420_bib33) 2000; 29
Hilbert (10.1016/j.jobe.2022.104420_bib35) 1977
Kai (10.1016/j.jobe.2022.104420_bib25) 2015; 29
EuropeanStd (10.1016/j.jobe.2022.104420_bib31) 2014
LaBorderie (10.1016/j.jobe.2022.104420_bib42) 1991
Tian (10.1016/j.jobe.2022.104420_bib7) 2020; 139
Yi (10.1016/j.jobe.2022.104420_bib20) 2008; 105
Combescure (10.1016/j.jobe.2022.104420_bib37) 1997
References_xml – volume: 173
  start-page: 122
  year: 2018
  end-page: 149
  ident: bib5
  article-title: Research and practice on progressive collapse and robustness of building structures in the 21st century
  publication-title: Eng. Struct.
– year: 1987
  ident: bib36
  article-title: Experimental Error Growth Behavior and Error Growth Control in On-Line Computer Test Control Method. Bri-Report no.123, Ministry of Construction
– year: 1997
  ident: bib37
  article-title: -Operator Splitting Time Integration Technique for Pseudodynamic Testing : Error Propagation Analysis
– volume: 167
  start-page: 447
  year: 2014
  end-page: 456
  ident: bib12
  article-title: A review of progressive collapse research and regulations
  publication-title: Structures and Buildings
– year: 2016
  ident: bib15
  article-title: Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance
– volume: 142
  year: 2016
  ident: bib27
  article-title: Dynamic performance of flush end-plate beam-column connections and design applications in progressive collapse
  publication-title: J. Struct. Eng.
– volume: 8
  start-page: 183
  year: 2014
  end-page: 192
  ident: bib32
  article-title: A review on progressive collapse of building structures
  publication-title: Open Civ. Eng. J.
– volume: 9
  start-page: 285
  year: 2005
  end-page: 306
  ident: bib39
  article-title: Simplified modelling strategies to simulate the dynamic behaviour of rc walls
  publication-title: J. Earthq. Eng.
– volume: 25
  start-page: 881
  year: 2020
  end-page: 900
  ident: bib11
  article-title: Experimental investigation of the progressive collapse of reinforced concrete structures: an overview
  publication-title: Structures
– volume: 128
  year: 2002
  ident: bib4
  article-title: Why did the world trade center collapse?—simple analysis
  publication-title: J. Eng. Mech.
– year: 1967
  ident: bib45
  article-title: The Finite Element Method for Solid and Structural Mechanics
– volume: 105
  start-page: 433
  year: 2008
  end-page: 439
  ident: bib20
  article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct. J.
– volume: 196
  year: 2021
  ident: bib46
  article-title: Implicit coupling of heterogeneous and asynchronous time-schemes using a primal approach based on velocity continuity at the subdomain interface
  publication-title: Finite Elem. Anal. Des.
– volume: 28
  year: 2014
  ident: bib26
  article-title: Dynamic response of a rc frame under column removal
  publication-title: J. Perform. Constr. Facil.
– year: 1973
  ident: bib43
  article-title: Method of Analysis of Cyclically Loaded Rc Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Normal Force and Bending
– volume: 17
  start-page: 757
  year: 2008
  end-page: 771
  ident: bib2
  article-title: Progressive collapse analysis of an rc strcuture
  publication-title: Struct. Des. Tall Special Build.
– year: 2016
  ident: bib40
  article-title: Introduction du gauchissement dans les elements finis multifibres pour la modélisation des structures en béton armé
– volume: 29
  start-page: 905
  year: 2000
  end-page: 925
  ident: bib33
  article-title: Pseudo-dynamic testing with substructuring at the elsa laboratory
  publication-title: Earthq. Eng. Struct. Dynam.
– volume: 139
  year: 2020
  ident: bib7
  article-title: Experimental and theoretical study of seismic and progressive collapse resilient composite frames
  publication-title: Soil Dynam. Earthq. Eng.
– year: 2014
  ident: bib31
  article-title: Nf en 1991-1-7 (février 2007) : Eurocode 1 - actions sur les structures - partie 1-7 : Actions générales - actions accidentelles + amendement a1 (août 2014) (indice de classement : P06-117)
– volume: 42
  start-page: 154
  year: 2012
  end-page: 167
  ident: bib23
  article-title: Dynamic performance of rc beam-column substructures under the scenario of the loss of a corner column—experimental results
  publication-title: Eng. Struct.
– volume: 241
  year: 2021
  ident: bib13
  article-title: A progressive collapse modelling strategy coupling the yield design theory with non-linear analysis
  publication-title: Eng. Struct.
– year: 1977
  ident: bib35
  article-title: Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
– volume: 134
  year: 2008
  ident: bib16
  article-title: Progressive collapse resistance of hotel san diego
  publication-title: J. Struct. Eng.
– volume: 32
  start-page: 771
  year: 2009
  end-page: 786
  ident: bib3
  article-title: Progressive collapse of reinforced concrete structures
  publication-title: Struct. Eng. Mech.
– volume: 31
  start-page: 1102
  year: 2009
  end-page: 1110
  ident: bib34
  article-title: Pseudodynamic testing and nonlinear substructuring of damaging structures under earthquake loading
  publication-title: Eng. Struct.
– volume: 188
  year: 2022
  ident: bib8
  article-title: Improving anti-progressive collapse capacity of welded connection based on energy dissipation cover-plates
  publication-title: J. Constr. Steel Res.
– reference: S. Grange. Atl4s Plateform (A Tool and Language for Simplified Structural Solution Strategy). Technical report, INSA Lyon, 2009-2021.
– volume: 137
  start-page: 881
  year: 2011
  end-page: 892
  ident: bib22
  article-title: Testing and analysis of steel and concrete beam-column assemblies under a column removal scenario
  publication-title: J. Struct. Eng.
– volume: 139
  start-page: 31
  year: 2017
  end-page: 45
  ident: bib28
  article-title: Experimental study on dynamic responses of reinforced concrete frames under sudden column removal applying concentrated loading
  publication-title: Eng. Struct.
– volume: 139
  start-page: 584
  year: 2013
  end-page: 594
  ident: bib24
  article-title: Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario
  publication-title: J. Struct. Eng.
– volume: 206
  year: 2020
  ident: bib6
  article-title: Progressive collapse of framed building structures: current knowledge and future prospects
  publication-title: Eng. Struct.
– volume: 15
  start-page: 23
  year: 2021
  ident: bib10
  article-title: Experimental studies on progressive collapse behavior of rc frame structures: advances and future needs
  publication-title: Int. J. Concr.Struct. Mater.
– year: 1959
  ident: bib44
  article-title: A Method of Computation for Strcutural Dynamics
– year: 2016
  ident: bib30
  article-title: Design of Structures to Resist Progressive Collapse (Rev. 3)
– year: 2022
  ident: bib29
  article-title: Impact of Seismic Retrofitting on Progressive Collapse Resistance of Rc Frame Structures
– volume: 29
  start-page: 2302
  year: 2007
  end-page: 2307
  ident: bib9
  article-title: Typology of progressive collapse
  publication-title: Eng. Struct.
– year: 2009
  ident: bib14
  article-title: Unified Facilities Criteria, Design of Buildings to Resist Progressive Collapse
– volume: 111
  start-page: 80
  year: 2016
  end-page: 92
  ident: bib19
  article-title: Experimental study on the progressive collapse performance of rc frames with infill walls
  publication-title: Eng. Struct.
– volume: 29
  year: 2015
  ident: bib25
  article-title: Research advances in design of structures to resist progressive collapse
  publication-title: J. Perform. Constr. Facil.
– year: 1991
  ident: bib42
  article-title: Phenomenes unilateriaux dans un materiau endommageable modélisation et application á l’analyse de structures en béton
– year: 2003
  ident: bib1
  article-title: Development of progressive collapse analysis procedure and condition assessment for structures
  publication-title: DC Multihazard Mitigation Council of the National Institute of Building Sciences: Washington, Editor,
– year: 2010
  ident: bib17
  article-title: Experimental and analytical assessment on progressive collapse potential of two actual steel frame buildings
  publication-title: Structures Congress
– year: 2011
  ident: bib21
  article-title: An Experimental and Computational Study of Reinforced Concrete Assemblies under a Column Removal Scenario
– start-page: 13
  year: 2016
  ident: bib18
  article-title: Experimental study on progressive collapse performance of frame with specially shaped columns subjected to middle column removal
  publication-title: Shock Vib.
– volume: 16
  start-page: 683
  year: 2015
  end-page: 701
  ident: bib41
  article-title: Modeling of reinforced concrete structural members for engineering purposes
  publication-title: Comput. Concr.
– year: 1987
  ident: 10.1016/j.jobe.2022.104420_bib36
– year: 2003
  ident: 10.1016/j.jobe.2022.104420_bib1
  article-title: Development of progressive collapse analysis procedure and condition assessment for structures
– year: 2011
  ident: 10.1016/j.jobe.2022.104420_bib21
– volume: 16
  start-page: 683
  issue: 5
  year: 2015
  ident: 10.1016/j.jobe.2022.104420_bib41
  article-title: Modeling of reinforced concrete structural members for engineering purposes
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2015.16.5.683
– volume: 173
  start-page: 122
  year: 2018
  ident: 10.1016/j.jobe.2022.104420_bib5
  article-title: Research and practice on progressive collapse and robustness of building structures in the 21st century
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.06.082
– year: 2009
  ident: 10.1016/j.jobe.2022.104420_bib14
– volume: 137
  start-page: 881
  issue: 9
  year: 2011
  ident: 10.1016/j.jobe.2022.104420_bib22
  article-title: Testing and analysis of steel and concrete beam-column assemblies under a column removal scenario
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000422
– volume: 31
  start-page: 1102
  year: 2009
  ident: 10.1016/j.jobe.2022.104420_bib34
  article-title: Pseudodynamic testing and nonlinear substructuring of damaging structures under earthquake loading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2009.01.007
– year: 2022
  ident: 10.1016/j.jobe.2022.104420_bib29
– volume: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.jobe.2022.104420_bib27
  article-title: Dynamic performance of flush end-plate beam-column connections and design applications in progressive collapse
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001329
– volume: 167
  start-page: 447
  year: 2014
  ident: 10.1016/j.jobe.2022.104420_bib12
  article-title: A review of progressive collapse research and regulations
  publication-title: Structures and Buildings
– volume: 139
  start-page: 31
  year: 2017
  ident: 10.1016/j.jobe.2022.104420_bib28
  article-title: Experimental study on dynamic responses of reinforced concrete frames under sudden column removal applying concentrated loading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.02.002
– year: 2014
  ident: 10.1016/j.jobe.2022.104420_bib31
– volume: 134
  issue: 3
  year: 2008
  ident: 10.1016/j.jobe.2022.104420_bib16
  article-title: Progressive collapse resistance of hotel san diego
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(2008)134:3(478)
– volume: 29
  start-page: 905
  year: 2000
  ident: 10.1016/j.jobe.2022.104420_bib33
  article-title: Pseudo-dynamic testing with substructuring at the elsa laboratory
  publication-title: Earthq. Eng. Struct. Dynam.
  doi: 10.1002/1096-9845(200007)29:7<905::AID-EQE941>3.0.CO;2-P
– volume: 25
  start-page: 881
  year: 2020
  ident: 10.1016/j.jobe.2022.104420_bib11
  article-title: Experimental investigation of the progressive collapse of reinforced concrete structures: an overview
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.03.018
– volume: 241
  year: 2021
  ident: 10.1016/j.jobe.2022.104420_bib13
  article-title: A progressive collapse modelling strategy coupling the yield design theory with non-linear analysis
  publication-title: Eng. Struct.
– volume: 188
  year: 2022
  ident: 10.1016/j.jobe.2022.104420_bib8
  article-title: Improving anti-progressive collapse capacity of welded connection based on energy dissipation cover-plates
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2021.107051
– start-page: 13
  year: 2016
  ident: 10.1016/j.jobe.2022.104420_bib18
  article-title: Experimental study on progressive collapse performance of frame with specially shaped columns subjected to middle column removal
  publication-title: Shock Vib.
– volume: 29
  issue: 5
  year: 2015
  ident: 10.1016/j.jobe.2022.104420_bib25
  article-title: Research advances in design of structures to resist progressive collapse
  publication-title: J. Perform. Constr. Facil.
– volume: 139
  start-page: 584
  issue: 4
  year: 2013
  ident: 10.1016/j.jobe.2022.104420_bib24
  article-title: Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000630
– year: 1997
  ident: 10.1016/j.jobe.2022.104420_bib37
– volume: 15
  start-page: 23
  issue: 31
  year: 2021
  ident: 10.1016/j.jobe.2022.104420_bib10
  article-title: Experimental studies on progressive collapse behavior of rc frame structures: advances and future needs
  publication-title: Int. J. Concr.Struct. Mater.
– year: 1977
  ident: 10.1016/j.jobe.2022.104420_bib35
– volume: 32
  start-page: 771
  issue: 6
  year: 2009
  ident: 10.1016/j.jobe.2022.104420_bib3
  article-title: Progressive collapse of reinforced concrete structures
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2009.32.6.771
– volume: 206
  year: 2020
  ident: 10.1016/j.jobe.2022.104420_bib6
  article-title: Progressive collapse of framed building structures: current knowledge and future prospects
  publication-title: Eng. Struct.
– volume: 196
  year: 2021
  ident: 10.1016/j.jobe.2022.104420_bib46
  article-title: Implicit coupling of heterogeneous and asynchronous time-schemes using a primal approach based on velocity continuity at the subdomain interface
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2021.103604
– year: 2016
  ident: 10.1016/j.jobe.2022.104420_bib30
– volume: 42
  start-page: 154
  year: 2012
  ident: 10.1016/j.jobe.2022.104420_bib23
  article-title: Dynamic performance of rc beam-column substructures under the scenario of the loss of a corner column—experimental results
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2012.04.016
– volume: 28
  year: 2014
  ident: 10.1016/j.jobe.2022.104420_bib26
  article-title: Dynamic response of a rc frame under column removal
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000464
– year: 1959
  ident: 10.1016/j.jobe.2022.104420_bib44
– year: 2010
  ident: 10.1016/j.jobe.2022.104420_bib17
  article-title: Experimental and analytical assessment on progressive collapse potential of two actual steel frame buildings
– volume: 128
  issue: 1
  year: 2002
  ident: 10.1016/j.jobe.2022.104420_bib4
  article-title: Why did the world trade center collapse?—simple analysis
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2002)128:1(2)
– year: 1991
  ident: 10.1016/j.jobe.2022.104420_bib42
– volume: 139
  year: 2020
  ident: 10.1016/j.jobe.2022.104420_bib7
  article-title: Experimental and theoretical study of seismic and progressive collapse resilient composite frames
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2020.106370
– volume: 9
  start-page: 285
  issue: 2
  year: 2005
  ident: 10.1016/j.jobe.2022.104420_bib39
  article-title: Simplified modelling strategies to simulate the dynamic behaviour of rc walls
  publication-title: J. Earthq. Eng.
  doi: 10.1080/13632460509350543
– volume: 17
  start-page: 757
  year: 2008
  ident: 10.1016/j.jobe.2022.104420_bib2
  article-title: Progressive collapse analysis of an rc strcuture
  publication-title: Struct. Des. Tall Special Build.
  doi: 10.1002/tal.375
– year: 2016
  ident: 10.1016/j.jobe.2022.104420_bib15
– volume: 105
  start-page: 433
  issue: 4
  year: 2008
  ident: 10.1016/j.jobe.2022.104420_bib20
  article-title: Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct. J.
– year: 1973
  ident: 10.1016/j.jobe.2022.104420_bib43
– volume: 8
  start-page: 183
  year: 2014
  ident: 10.1016/j.jobe.2022.104420_bib32
  article-title: A review on progressive collapse of building structures
  publication-title: Open Civ. Eng. J.
  doi: 10.2174/1874149501408010183
– year: 1967
  ident: 10.1016/j.jobe.2022.104420_bib45
– year: 2016
  ident: 10.1016/j.jobe.2022.104420_bib40
– volume: 111
  start-page: 80
  year: 2016
  ident: 10.1016/j.jobe.2022.104420_bib19
  article-title: Experimental study on the progressive collapse performance of rc frames with infill walls
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.12.010
– volume: 29
  start-page: 2302
  year: 2007
  ident: 10.1016/j.jobe.2022.104420_bib9
  article-title: Typology of progressive collapse
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2006.11.025
– ident: 10.1016/j.jobe.2022.104420_bib38
SSID ssj0002953864
Score 2.2614245
Snippet Accidental loading coming from either natural or anthropic hazards can have serious consequences on civil engineering structures capacity and can lead to...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104420
SubjectTerms Civil Engineering
Dynamique, vibrations
Engineering Sciences
Risques
Structures
Title Progressive collapse analysis of RC frame building based on Pseudo-Dynamic (PsD) testing with sub-structuring
URI https://dx.doi.org/10.1016/j.jobe.2022.104420
https://hal.science/hal-03638912
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA59XLyIomJ9EcSDIks32ewjx9Ja6qsUtdDbsnlhi3YLffx-M7vZgiA9eFnYkGTDTHZmMpn5BqEbqwM1kSTxmFT2YbjwBNOxJwMTMxaoTHLId34dRoMxe5qEkxrqVrkwEFbpZH8p0wtp7VrajprtxXTafqfWdoiLAwtcZwVJHTWp1a5-AzU7j8-D4dbVQrn9qwsgKRgC0YfUpc-UkV4zyLuhdiK48GRQ-ftvFVX_rJythfLpH6B9ZzXiTrmwQ1TT8yP0PYLYKghj3Whc8HOx1DhzKCM4N_itiw0EX2Hhil9jUFoK53M8Wuq1yr1eWZAe346WvTu8AsgN2wucs3i5Fl6JLltkMh6jcf_hozvwXPUES-c4WXmUmShTkWH2RKBZogUXmaCKysLGy4ThhhPNfAm5sVHIlW9IFGWxkj4zipPgBDXm-VyfIpz4JmRGyAzg8kQQiswEIrJyFPIvFSUtRCqCpdJBi0OFi6-0iiGbpUDkFIiclkRuofvtmEUJrLGzd1jxIf21PVIr-XeOu7ZM234AsLQHnZcU2uAGO-GEbsjZPyc_R3vwBp5eEl6ghmWJvrQmykpcuS34A5VO4yM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA62HvQiiopvg3hQZGmTzT5yLK1lq7UUH9Bb2Lywom2htb_fzG62IEgPXvaQTbJhJjszmcx8g9C104GGKJIGTGn3sFwGkpkkUKFNGAt1rjjkOz8N4uyNPYyi0QZqV7kwEFbpZX8p0wtp7VsanpqN2XjceKHOdkiKAwtcZ4VpDW0COpXb5put3mM2WLlaKHd_dQEkBUMg-pD69Jky0usD8m6omwguPBlU_v5bRdXeK2droXy6u2jHW424VS5sD22YyT76GkJsFYSxLg0u-DmbG5x7lBE8tfi5jS0EX2Hpi19jUFoaTyd4ODffehp0yoL0-GY479ziBUBuuF7gnMXzbxmU6LJFJuMBeuvev7azwFdPcHRO0kVAmY1zHVvmTgSGpUZymUuqqSpsvFxabjkxrKkgNzaOuG5aEsd5olWTWc1JeIjqk-nEHCGcNm3ErFQ5wOXJMJK5DWXs5CjkX2pKjhGpCCaUhxaHChefoooh-xBAZAFEFiWRj9HdasysBNZY2zuq-CB-bQ_hJP_acVeOaasPAJZ21uoLaIMb7JQTuiQn_5z8Em1lr0990e8NHk_RNrwBry-JzlDdscecO3NlIS_8dvwBaEnmEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+collapse+analysis+of+RC+frame+building+based+on+Pseudo-Dynamic+%28PsD%29+testing+with+sub-structuring&rft.jtitle=Journal+of+Building+Engineering&rft.au=Bertrand%2C+D.&rft.au=Grange%2C+S.&rft.au=Charri%C3%A9%2C+J-.B.&rft.date=2022-07-15&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=52&rft.spage=104420&rft_id=info:doi/10.1016%2Fj.jobe.2022.104420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2022_104420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon