Computational schemes on the bending fatigue deformation and damage of three-dimensional orthogonal woven composite materials
[Display omitted] •Fatigue behavior of 3D orthogonal woven composites (3DOWC) is studied at microstructure level.•Fatigue damage and degradation were revealed with numerical analyses.•The influences of the microstructure on the fatigue behaviors have been analyzed. This paper reports a computational...
Saved in:
Published in | Computational materials science Vol. 91; pp. 91 - 101 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0927-0256 1879-0801 |
DOI | 10.1016/j.commatsci.2014.04.052 |
Cover
Abstract | [Display omitted]
•Fatigue behavior of 3D orthogonal woven composites (3DOWC) is studied at microstructure level.•Fatigue damage and degradation were revealed with numerical analyses.•The influences of the microstructure on the fatigue behaviors have been analyzed.
This paper reports a computational scheme on three-dimensional orthogonal woven composites (3DOWC) fatigue behavior under three-point low-cycle bending. Based on three-point cyclic bending fatigue tests, a microstructure model was established at yarn level for predicting the fatigue behaviors. The stiffness degradation and damage morphologies of the 3DOWC were obtained from finite element analysis (FEA) and compared with those from experimental. The stress distribution, energy absorption and damage morphologies in the different parts of the 3DOWC sample were obtained to analyze fatigue failure mechanisms. The influences of warp yarns, weft yarns and Z-yarn systems were discussed. It is found that warp yarn system bears the most cyclic load as well as energy absorption. The stress concentration area was located in the central loading area, especially in the warp yarns that is close to the Z-yarns side and its channels. The triangle damage area was gradually generated from up to down in the stress concentration area as the loading cycle increased. |
---|---|
AbstractList | [Display omitted]
•Fatigue behavior of 3D orthogonal woven composites (3DOWC) is studied at microstructure level.•Fatigue damage and degradation were revealed with numerical analyses.•The influences of the microstructure on the fatigue behaviors have been analyzed.
This paper reports a computational scheme on three-dimensional orthogonal woven composites (3DOWC) fatigue behavior under three-point low-cycle bending. Based on three-point cyclic bending fatigue tests, a microstructure model was established at yarn level for predicting the fatigue behaviors. The stiffness degradation and damage morphologies of the 3DOWC were obtained from finite element analysis (FEA) and compared with those from experimental. The stress distribution, energy absorption and damage morphologies in the different parts of the 3DOWC sample were obtained to analyze fatigue failure mechanisms. The influences of warp yarns, weft yarns and Z-yarn systems were discussed. It is found that warp yarn system bears the most cyclic load as well as energy absorption. The stress concentration area was located in the central loading area, especially in the warp yarns that is close to the Z-yarns side and its channels. The triangle damage area was gradually generated from up to down in the stress concentration area as the loading cycle increased. This paper reports a computational scheme on three-dimensional orthogonal woven composites (3DOWC) fatigue behavior under three-point low-cycle bending. Based on three-point cyclic bending fatigue tests, a microstructure model was established at yarn level for predicting the fatigue behaviors. The stiffness degradation and damage morphologies of the 3DOWC were obtained from finite element analysis (FEA) and compared with those from experimental. The stress distribution, energy absorption and damage morphologies in the different parts of the 3DOWC sample were obtained to analyze fatigue failure mechanisms. The influences of warp yarns, weft yarns and Z-yarn systems were discussed. It is found that warp yarn system bears the most cyclic load as well as energy absorption. The stress concentration area was located in the central loading area, especially in the warp yarns that is close to the Z-yarns side and its channels. The triangle damage area was gradually generated from up to down in the stress concentration area as the loading cycle increased. |
Author | Gu, Bohong Sun, Baozhong Fang, Fang Wu, Liwei Wang, Jinhua |
Author_xml | – sequence: 1 givenname: Baozhong surname: Sun fullname: Sun, Baozhong – sequence: 2 givenname: Jinhua surname: Wang fullname: Wang, Jinhua – sequence: 3 givenname: Liwei surname: Wu fullname: Wu, Liwei – sequence: 4 givenname: Fang surname: Fang fullname: Fang, Fang – sequence: 5 givenname: Bohong surname: Gu fullname: Gu, Bohong email: gubh@dhu.edu.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28538854$$DView record in Pascal Francis |
BookMark | eNqNkU1rGzEQhkVJoU6a3xBdCr2sqw9rpT30EEy_INBLchZaadaWWUmuJKf00P9eORty6KWFgRnQ876M5r1EFzFFQOiGkjUltP9wWNsUgqnF-jUjdLMmrQR7hVZUyaEjitALtCIDkx1hon-DLks5kKYcFFuh39sUjqdqqk_RzLjYPQQoOEVc94BHiM7HHZ7a--4E2MGUcniCsYkOOxPMDnCaGp0BOucDxLJYpVz3afc0_kyPEHFb85iKr4CbA2Rv5vIWvZ5ag-vnfoUePn-6337t7r5_-ba9vessl6p2FHrqYHR0cJz21glinBBCDhzsOJIN9JIoztv3RmskJ0pZIoWTTnFGpWH8Cr1ffI85_ThBqTr4YmGeTYR0Kpr2G8Y45aRv6Ltn1BRr5imbaH3Rx-yDyb80U4IrJTaNkwtncyolw_SCUKLPweiDfglGn4PRpJU4L_PxL6X1SwA1Gz__h_520UO72KOHrBsB0YLzGWzVLvl_evwBAJa0bg |
CitedBy_id | crossref_primary_10_1177_0040517520927009 crossref_primary_10_1007_s11595_016_1519_0 crossref_primary_10_1016_j_ijfatigue_2021_106455 crossref_primary_10_1016_j_matdes_2019_108112 crossref_primary_10_1016_j_matdes_2020_109295 crossref_primary_10_1177_1528083720949277 crossref_primary_10_1515_secm_2021_0063 crossref_primary_10_1016_j_compstruct_2018_06_021 crossref_primary_10_1142_S1756973715500092 crossref_primary_10_1007_s11595_017_1669_8 crossref_primary_10_1177_0731684418808093 |
Cites_doi | 10.1002/pen.10060 10.1080/00405000.2012.677569 10.1016/0956-7151(95)00137-K 10.1002/pen.10061 10.1002/pen.20235 10.1016/S1359-835X(99)00034-2 10.1016/j.compositesa.2009.03.012 10.1016/j.ijsolstr.2004.06.021 10.1177/0021998311419540 10.1016/j.compscitech.2011.09.015 10.1016/j.compositesb.2012.06.008 10.1016/j.ijfatigue.2004.03.001 10.1016/S0261-3069(02)00048-1 10.1016/j.mechmat.2013.03.005 10.1177/0021998312443141 10.1177/0731684412450626 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1016/j.commatsci.2014.04.052 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0801 |
EndPage | 101 |
ExternalDocumentID | 28538854 10_1016_j_commatsci_2014_04_052 S0927025614002948 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SC 7SR 8BQ 8FD EFKBS JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c378t-1e61debd19d316cd50ad555793ecbb04e670833025bca73088c075d7d83217a23 |
IEDL.DBID | AIKHN |
ISSN | 0927-0256 |
IngestDate | Fri Sep 05 04:43:48 EDT 2025 Wed Apr 02 07:24:03 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 00:38:00 EDT 2025 Fri Feb 23 02:19:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fatigue 3D woven composite material Finite element analysis (FEA) Damage mechanisms Stress concentration Bending fatigue test Composite material Finite element method Stress distribution Cyclic load Stiffness Woven material Microstructure Fracture mode Damaging |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-1e61debd19d316cd50ad555793ecbb04e670833025bca73088c075d7d83217a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1642231306 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1642231306 pascalfrancis_primary_28538854 crossref_primary_10_1016_j_commatsci_2014_04_052 crossref_citationtrail_10_1016_j_commatsci_2014_04_052 elsevier_sciencedirect_doi_10_1016_j_commatsci_2014_04_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computational materials science |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hu, Xia, Ellyin (b0065) 2003; 43 Xia, Shen, Ellyin (b0075) 2005; 45 Dadkhah, Cox, Morris (b0025) 1995; 43 Sun, Niu, Jin, Zhang, Gu (b0050) 2012; 103 Zhu, Kaneko, Ochi, Ogasawara, Ishikawa (b0030) 2004; 26 Xia, Hu, Ellyin (b0070) 2003; 43 Huang, Zhong (b0020) 2002; 23 Bogdanovich, Karahan, Lomov, Verpoest (b0040) 2013; 62 Lomov, Bogdanovich, Ivanov, Mungalov, Karahan, Verpoest (b0015) 2009; 40 Mouritz, Bannister, Falzon, Leong (b0005) 1999; 30 Jin, Niu, Jin, Sun, Gu (b0060) 2012; 31 Yao, Rong, Shan, Qiu (b0055) 2013; 47 Karahan, Lomov, Bogdanovich, Verpoest (b0035) 2011; 71 Zhang, Xia, Ellyin (b0080) 2005; 42 Mohamed, Bogdanovich, Dickinson, Singletary, Lienhart (b0010) 2001; 37 Avanzini, Donzella, Gallina, Pandini, Petrogalli (b0045) 2013; 45 Naderi, Khonsari (b0085) 2012; 46 Hu (10.1016/j.commatsci.2014.04.052_b0065) 2003; 43 Zhang (10.1016/j.commatsci.2014.04.052_b0080) 2005; 42 Dadkhah (10.1016/j.commatsci.2014.04.052_b0025) 1995; 43 Mouritz (10.1016/j.commatsci.2014.04.052_b0005) 1999; 30 Mohamed (10.1016/j.commatsci.2014.04.052_b0010) 2001; 37 Jin (10.1016/j.commatsci.2014.04.052_b0060) 2012; 31 Naderi (10.1016/j.commatsci.2014.04.052_b0085) 2012; 46 Bogdanovich (10.1016/j.commatsci.2014.04.052_b0040) 2013; 62 Karahan (10.1016/j.commatsci.2014.04.052_b0035) 2011; 71 Sun (10.1016/j.commatsci.2014.04.052_b0050) 2012; 103 Xia (10.1016/j.commatsci.2014.04.052_b0075) 2005; 45 Avanzini (10.1016/j.commatsci.2014.04.052_b0045) 2013; 45 Lomov (10.1016/j.commatsci.2014.04.052_b0015) 2009; 40 Huang (10.1016/j.commatsci.2014.04.052_b0020) 2002; 23 Yao (10.1016/j.commatsci.2014.04.052_b0055) 2013; 47 Xia (10.1016/j.commatsci.2014.04.052_b0070) 2003; 43 Zhu (10.1016/j.commatsci.2014.04.052_b0030) 2004; 26 |
References_xml | – volume: 47 start-page: 569 year: 2013 end-page: 577 ident: b0055 publication-title: J. Compos. Mater. – volume: 45 start-page: 103 year: 2005 end-page: 113 ident: b0075 publication-title: Polym. Eng. Sci. – volume: 43 start-page: 4235 year: 1995 end-page: 4245 ident: b0025 publication-title: Acta Metall. Mater. – volume: 103 start-page: 1312 year: 2012 end-page: 1327 ident: b0050 publication-title: J. Text I – volume: 42 start-page: 591 year: 2005 end-page: 604 ident: b0080 publication-title: Int. J. Solids Struct. – volume: 71 start-page: 1961 year: 2011 end-page: 1972 ident: b0035 publication-title: Compos. Sci Technol. – volume: 40 start-page: 1134 year: 2009 end-page: 1143 ident: b0015 publication-title: Compos. A: Appl. Sci. Manuf. – volume: 45 start-page: 397 year: 2013 end-page: 406 ident: b0045 publication-title: Compos. B: Eng. – volume: 43 start-page: 734 year: 2003 end-page: 748 ident: b0070 publication-title: Polym. Eng. Sci. – volume: 37 start-page: 8 year: 2001 end-page: 17 ident: b0010 publication-title: SAMPE J. – volume: 30 start-page: 1445 year: 1999 end-page: 1461 ident: b0005 publication-title: Compos. A: Appl. Sci. Manuf. – volume: 46 start-page: 437 year: 2012 end-page: 447 ident: b0085 publication-title: J. Compos. Mater. – volume: 26 start-page: 1069 year: 2004 end-page: 1073 ident: b0030 publication-title: Int. J. Fatigue – volume: 23 start-page: 671 year: 2002 end-page: 674 ident: b0020 publication-title: Mater. Design. – volume: 31 start-page: 935 year: 2012 end-page: 945 ident: b0060 publication-title: J. Reinf. Plast. Compos. – volume: 43 start-page: 721 year: 2003 end-page: 733 ident: b0065 publication-title: Polym. Eng. Sci. – volume: 62 start-page: 14 year: 2013 end-page: 31 ident: b0040 publication-title: Mech. Mater. – volume: 43 start-page: 721 issue: 3 year: 2003 ident: 10.1016/j.commatsci.2014.04.052_b0065 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.10060 – volume: 103 start-page: 1312 issue: 12 year: 2012 ident: 10.1016/j.commatsci.2014.04.052_b0050 publication-title: J. Text I doi: 10.1080/00405000.2012.677569 – volume: 43 start-page: 4235 issue: 12 year: 1995 ident: 10.1016/j.commatsci.2014.04.052_b0025 publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(95)00137-K – volume: 37 start-page: 8 issue: 3 year: 2001 ident: 10.1016/j.commatsci.2014.04.052_b0010 publication-title: SAMPE J. – volume: 43 start-page: 734 issue: 3 year: 2003 ident: 10.1016/j.commatsci.2014.04.052_b0070 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.10061 – volume: 45 start-page: 103 issue: 1 year: 2005 ident: 10.1016/j.commatsci.2014.04.052_b0075 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20235 – volume: 30 start-page: 1445 issue: 12 year: 1999 ident: 10.1016/j.commatsci.2014.04.052_b0005 publication-title: Compos. A: Appl. Sci. Manuf. doi: 10.1016/S1359-835X(99)00034-2 – volume: 40 start-page: 1134 issue: 8 year: 2009 ident: 10.1016/j.commatsci.2014.04.052_b0015 publication-title: Compos. A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2009.03.012 – volume: 42 start-page: 591 issue: 2 year: 2005 ident: 10.1016/j.commatsci.2014.04.052_b0080 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2004.06.021 – volume: 46 start-page: 437 issue: 4 year: 2012 ident: 10.1016/j.commatsci.2014.04.052_b0085 publication-title: J. Compos. Mater. doi: 10.1177/0021998311419540 – volume: 71 start-page: 1961 issue: 16 year: 2011 ident: 10.1016/j.commatsci.2014.04.052_b0035 publication-title: Compos. Sci Technol. doi: 10.1016/j.compscitech.2011.09.015 – volume: 45 start-page: 397 issue: 1 year: 2013 ident: 10.1016/j.commatsci.2014.04.052_b0045 publication-title: Compos. B: Eng. doi: 10.1016/j.compositesb.2012.06.008 – volume: 26 start-page: 1069 issue: 10 year: 2004 ident: 10.1016/j.commatsci.2014.04.052_b0030 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2004.03.001 – volume: 23 start-page: 671 issue: 7 year: 2002 ident: 10.1016/j.commatsci.2014.04.052_b0020 publication-title: Mater. Design. doi: 10.1016/S0261-3069(02)00048-1 – volume: 62 start-page: 14 year: 2013 ident: 10.1016/j.commatsci.2014.04.052_b0040 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2013.03.005 – volume: 47 start-page: 569 issue: 5 year: 2013 ident: 10.1016/j.commatsci.2014.04.052_b0055 publication-title: J. Compos. Mater. doi: 10.1177/0021998312443141 – volume: 31 start-page: 935 issue: 14 year: 2012 ident: 10.1016/j.commatsci.2014.04.052_b0060 publication-title: J. Reinf. Plast. Compos. doi: 10.1177/0731684412450626 |
SSID | ssj0016982 |
Score | 2.1490633 |
Snippet | [Display omitted]
•Fatigue behavior of 3D orthogonal woven composites (3DOWC) is studied at microstructure level.•Fatigue damage and degradation were revealed... This paper reports a computational scheme on three-dimensional orthogonal woven composites (3DOWC) fatigue behavior under three-point low-cycle bending. Based... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 91 |
SubjectTerms | 3D woven composite material Bending fatigue Composite materials Computation Damage Damage mechanisms Exact sciences and technology Fatigue Fatigue (materials) Finite element analysis (FEA) Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Morphology Physics Solid mechanics Stress concentration Structural and continuum mechanics Three dimensional Warp yarns |
Title | Computational schemes on the bending fatigue deformation and damage of three-dimensional orthogonal woven composite materials |
URI | https://dx.doi.org/10.1016/j.commatsci.2014.04.052 https://www.proquest.com/docview/1642231306 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wsIIZ5iC6yMxNVsnMROwq2qWi0geoFKvVl2PKmKaLLq7ooT_PbOxMmKFap6QMohD780Y898jucB8L4xpFOrVMmADcqcdrWyMspLFXLtDCH0GDL_65lZnOefL_TFHhyPvjBsVjnI_ijTe2k9vJkP1Jwvr67m35KKfak4kiUfLeXlPhxQt0ZP4ODo05fF2fYwwVR9ziguL7nCjpkXNU_QkDpgM6-8D3uq07uU1KOlWxHpmpjz4h_x3euk0yfweACT4iiO9ynsYfsMHv4VYvA5_I5pG4ZffoL2sniNK9G1gpCf8Ng7tYiGvl9uUBApR2dG4doggrsmeSO6hkrfIMrAuQBiHA_BBz7dZX_7qyORKdg6nU3AUFALcWK_gPPTk-_HCzmkXJB1VpRrqdCogD6oKmTK1EEnLmitaRFj7X2SoykIs2VERV87Eg5lWRPmCEXghEeFS7OXMGm7Fl-BqFymG0JjxviMtlWhSrKKo3s1wSmvmmIKZqSxrYd45JwW46cdDc9-2C1zLDPHJnTpdArJtuIyhuS4v8rHkYl2Z3ZZUhz3V57tsH3baUpQpyx1PoV34zywtDj5xMW12G1WlvaiBL8IJpjD_xnBa3jAT9Hu8A1M1jcbfEtYaO1nsP_hj5oNM_4WvUUMCw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgBUVTzFllKMxNVsnMROwg1VVAu0vdBKvVl2PKla0WTV3RUn-O3MxMmKFUI9IOUQxY9YM5Px5_jzDMC7xtCcWqVKBmxQ5rSqlZVRXqqQa2cIoceQ-SenZnaef7nQF1twOJ6FYVrl4PujT--99fBkOkhzOr-6mn5LKj5LxZEseWspL-_B_VxnBfP63v9a8zyUqfqMUVxbcvUNkhd1TsCQumeSV94HPdXpv6aonblbkOCamPHiL-fdz0hHj2F3gJLiYxztE9jC9ik8-iPA4DP4GZM2DD_8BK1k8QYXomsF4T7hsT_SIhoqv1yhIEGORxmFa4MI7oa8jegaqn2LKANnAohRPARv93SX_e2PjhymYG46E8BQUA_RrJ_D-dGns8OZHBIuyDoryqVUaFRAH1QVMmXqoBMXtNb0CWPtfZKjKQixZSRFXztyDWVZE-IIReB0R4VLsxew3XYtvgRRuUw3hMWM8RktqkKVZBXH9mqCU141xQTMKGNbD9HIOSnGdzvSzq7tWjmWlWMTunQ6gWTdcB4Dctzd5MOoRLthW5amjbsbH2yoff3SlIBOWep8Am9HO7D0afJ-i2uxWy0srUQJfBFIMHv_M4I38GB2dnJsjz-ffn0FD7kkMhD3YXt5u8LXhIqW_qC3-t8LVQzW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+schemes+on+the+bending+fatigue+deformation+and+damage+of+three-dimensional+orthogonal+woven+composite+materials&rft.jtitle=Computational+materials+science&rft.au=BAOZHONG+SUN&rft.au=JINHUA+WANG&rft.au=LIWEI+WU&rft.au=FANG+FANG&rft.date=2014-08-01&rft.pub=Elsevier&rft.issn=0927-0256&rft.volume=91&rft.spage=91&rft.epage=101&rft_id=info:doi/10.1016%2Fj.commatsci.2014.04.052&rft.externalDBID=n%2Fa&rft.externalDocID=28538854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |