Multitask learning for large-scale semantic change detection

Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 187; p. 102783
Main Authors Caye Daudt, Rodrigo, Le Saux, Bertrand, Boulch, Alexandre, Gousseau, Yann
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled datasets which are openly available are still very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale very high resolution semantic change detection dataset, which enables the usage of deep supervised learning methods for semantic change detection with very high resolution images. The dataset contains coregistered RGB image pairs, pixel-wise change information and land cover information. We then propose several supervised learning methods using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network architecture that performs change detection and land cover mapping simultaneously, while using the predicted land cover information to help to predict changes. We also describe a sequential training scheme that allows this network to be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results. [Display omitted] •A large scale very high resolution semantic change detection dataset has been created.•FCNNs have been successfully used for semantic change detection.•A network for integrated change detection and land cover mapping is described.•A training scheme that avoids using hyperparameters for balancing loss functions.
AbstractList Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled datasets which are openly available are still very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale very high resolution semantic change detection dataset, which enables the usage of deep supervised learning methods for semantic change detection with very high resolution images. The dataset contains coregistered RGB image pairs, pixel-wise change information and land cover information. We then propose several supervised learning methods using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network architecture that performs change detection and land cover mapping simultaneously, while using the predicted land cover information to help to predict changes. We also describe a sequential training scheme that allows this network to be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results. [Display omitted] •A large scale very high resolution semantic change detection dataset has been created.•FCNNs have been successfully used for semantic change detection.•A network for integrated change detection and land cover mapping is described.•A training scheme that avoids using hyperparameters for balancing loss functions.
Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled datasets which are openly available are still very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale very high resolution semantic change detection dataset, which enables the usage of deep supervised learning methods for semantic change detection with very high resolution images. The dataset contains coregistered RGB image pairs, pixel-wise change information and land cover information. We then propose several supervised learning methods using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network architecture that performs change detection and land cover mapping simultaneously, while using the predicted land cover information to help to predict changes. We also describe a sequential training scheme that allows this network to be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results.
ArticleNumber 102783
Author Gousseau, Yann
Boulch, Alexandre
Le Saux, Bertrand
Caye Daudt, Rodrigo
Author_xml – sequence: 1
  givenname: Rodrigo
  surname: Caye Daudt
  fullname: Caye Daudt, Rodrigo
  email: rodrigo.daudt@onera.fr
  organization: DTIS, ONERA, Université Paris-Saclay, FR-91123 Palaiseau, France
– sequence: 2
  givenname: Bertrand
  surname: Le Saux
  fullname: Le Saux, Bertrand
  organization: DTIS, ONERA, Université Paris-Saclay, FR-91123 Palaiseau, France
– sequence: 3
  givenname: Alexandre
  surname: Boulch
  fullname: Boulch, Alexandre
  organization: DTIS, ONERA, Université Paris-Saclay, FR-91123 Palaiseau, France
– sequence: 4
  givenname: Yann
  surname: Gousseau
  fullname: Gousseau, Yann
  organization: LTCI, Télécom ParisTech, FR-75013 Paris, France
BackLink https://hal.science/hal-02407789$$DView record in HAL
BookMark eNp9kD1PwzAQQC1UJNrCH2DKypBwduI4lrpUFVCkIhaQ2CzXubQuqYPstBL_HkeFhaHTnU737uNNyMh1Dgm5pZBRoOX9LjNHe8gYUJmByADyCzKmICFlOf8YDbkQaU4LdkUmIewAKC0kHZPZy6Htba_DZ9Ki9s66TdJ0Pmm132AajG4xCbjXrrcmMVvtNpjU2KPpbeeuyWWj24A3v3FK3h8f3hbLdPX69LyYr1KTi6pPaV2WFIXUsEZeC9bUqGtWrSUWkhccSo5Gcl0VvKi4xsaYnLKS542QRjAD-ZTcneZudau-vN1r_606bdVyvlJDDVgR_6vkkcbe6tRrfBeCx0aZ-N5wbe-1bRUFNRhTOzUYU4MxBUJFYxFl_9C_XWeh2QnCKOBo0atgLDqDtfXRkqo7ew7_ATJ9hto
CitedBy_id crossref_primary_10_1109_TGRS_2024_3410389
crossref_primary_10_1109_TGRS_2025_3546808
crossref_primary_10_1109_TGRS_2024_3484178
crossref_primary_10_1080_13658816_2022_2087223
crossref_primary_10_3390_rs14235911
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_3390_rs15061682
crossref_primary_10_1007_s44267_023_00004_z
crossref_primary_10_1007_s10994_020_05943_y
crossref_primary_10_1007_s11042_024_18766_z
crossref_primary_10_1002_int_22821
crossref_primary_10_1007_s11263_024_02141_4
crossref_primary_10_1109_JSTARS_2024_3402431
crossref_primary_10_3390_rs13163336
crossref_primary_10_1007_s11042_024_20015_2
crossref_primary_10_1109_TGRS_2022_3160097
crossref_primary_10_1109_TGRS_2024_3407884
crossref_primary_10_1007_s40808_024_02068_2
crossref_primary_10_1109_JPROC_2022_3219376
crossref_primary_10_3390_rs14153687
crossref_primary_10_1109_LGRS_2024_3358402
crossref_primary_10_3390_rs16050804
crossref_primary_10_7780_kjrs_2024_40_6_3_6
crossref_primary_10_1080_01431161_2023_2243021
crossref_primary_10_1109_JSTARS_2024_3514926
crossref_primary_10_1080_10095020_2023_2244005
crossref_primary_10_1109_JSTARS_2023_3260006
crossref_primary_10_1109_TGRS_2022_3154390
crossref_primary_10_1109_TGRS_2024_3386334
crossref_primary_10_3390_electronics10040377
crossref_primary_10_3390_technologies12090160
crossref_primary_10_1080_10095020_2022_2162980
crossref_primary_10_1109_TGRS_2024_3401775
crossref_primary_10_1080_17538947_2024_2398051
crossref_primary_10_1109_TGRS_2024_3376384
crossref_primary_10_1111_tgis_13133
crossref_primary_10_1109_TGRS_2022_3203897
crossref_primary_10_3390_rs15092464
crossref_primary_10_1109_LGRS_2022_3159545
crossref_primary_10_3390_rs14184478
crossref_primary_10_1109_JSTARS_2024_3418632
crossref_primary_10_1038_s41598_025_94544_7
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_1109_TGRS_2024_3514893
crossref_primary_10_3390_land12071268
crossref_primary_10_1109_TGRS_2024_3350573
crossref_primary_10_1080_07038992_2021_1922880
crossref_primary_10_1109_JSTARS_2024_3487137
crossref_primary_10_3390_s21134486
crossref_primary_10_3390_rs15143566
crossref_primary_10_3390_rs15215135
crossref_primary_10_1109_TGRS_2024_3362795
crossref_primary_10_3390_rs16214020
crossref_primary_10_1007_s11432_022_3691_4
crossref_primary_10_1109_TGRS_2024_3497983
crossref_primary_10_1016_j_isprsjprs_2022_05_001
crossref_primary_10_1109_TGRS_2022_3168331
crossref_primary_10_1109_LGRS_2024_3507292
crossref_primary_10_1109_JSTARS_2023_3270498
crossref_primary_10_1109_TGRS_2024_3365825
crossref_primary_10_3390_rs15082092
crossref_primary_10_1016_j_isprsjprs_2023_09_013
crossref_primary_10_1109_JSTARS_2024_3409072
crossref_primary_10_1016_j_rse_2021_112589
crossref_primary_10_3390_rs14153548
crossref_primary_10_1016_j_isprsjprs_2024_04_013
crossref_primary_10_1109_TGRS_2024_3408274
crossref_primary_10_1109_LGRS_2024_3398768
crossref_primary_10_3390_rs14194972
crossref_primary_10_1109_TGRS_2023_3290817
crossref_primary_10_1007_s41064_023_00258_8
crossref_primary_10_1109_JSTARS_2023_3348572
crossref_primary_10_1109_TGRS_2021_3089453
crossref_primary_10_3390_rs16132436
crossref_primary_10_1080_17538947_2024_2398070
crossref_primary_10_1109_TGRS_2024_3362728
crossref_primary_10_1111_phor_12462
crossref_primary_10_3390_rs15164095
crossref_primary_10_1145_3721135
crossref_primary_10_1109_TGRS_2024_3428551
crossref_primary_10_1016_j_isprsjprs_2021_10_015
crossref_primary_10_3390_s24051509
crossref_primary_10_1080_01431161_2023_2288946
crossref_primary_10_3390_rs15174285
crossref_primary_10_32604_jai_2022_034931
crossref_primary_10_1109_TGRS_2024_3500790
crossref_primary_10_1109_JSTARS_2024_3508692
crossref_primary_10_1109_JSTARS_2024_3511597
crossref_primary_10_1109_TIP_2024_3349868
crossref_primary_10_1007_s10994_021_06008_4
crossref_primary_10_1109_JSTARS_2024_3522910
crossref_primary_10_1016_j_jag_2024_103839
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_1111_tgis_70020
crossref_primary_10_1117_1_JRS_18_048502
crossref_primary_10_1109_TGRS_2024_3493886
crossref_primary_10_1109_JSTARS_2024_3522350
crossref_primary_10_1016_j_jag_2021_102582
crossref_primary_10_1109_JSTARS_2024_3390427
crossref_primary_10_3390_rs16203852
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_3390_rs12071186
crossref_primary_10_1109_JSTARS_2024_3493945
crossref_primary_10_1109_TGRS_2024_3486787
crossref_primary_10_1109_ACCESS_2022_3161978
crossref_primary_10_1016_j_jag_2021_102465
crossref_primary_10_1080_01431161_2024_2343139
crossref_primary_10_1109_JSTARS_2022_3184298
crossref_primary_10_3390_rs15040949
crossref_primary_10_1109_TGRS_2022_3171067
crossref_primary_10_1080_17538947_2022_2111470
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_1080_10095020_2022_2157762
crossref_primary_10_1016_j_isprsjprs_2023_07_001
crossref_primary_10_3390_rs15071860
crossref_primary_10_1109_LGRS_2023_3310676
crossref_primary_10_1109_TGRS_2022_3200985
crossref_primary_10_1007_s00521_022_06999_8
crossref_primary_10_61186_jgst_13_1_55
crossref_primary_10_1016_j_iswa_2025_200505
crossref_primary_10_1007_s11432_022_3588_0
crossref_primary_10_1109_TGRS_2024_3523128
crossref_primary_10_1007_s41064_024_00299_7
crossref_primary_10_1080_01431161_2024_2380544
crossref_primary_10_1109_TGRS_2022_3160007
crossref_primary_10_1109_TGRS_2021_3134691
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1109_JSTARS_2024_3522066
crossref_primary_10_1109_TGRS_2023_3317413
crossref_primary_10_3390_rs15245631
crossref_primary_10_3390_rs15225425
crossref_primary_10_1109_TGRS_2024_3421654
crossref_primary_10_3390_rs15184555
crossref_primary_10_3390_app15063061
crossref_primary_10_1080_01431161_2021_1941390
crossref_primary_10_1109_TGRS_2024_3433373
crossref_primary_10_3390_rs13183707
crossref_primary_10_3390_rs13214302
crossref_primary_10_1109_JSTARS_2022_3177235
crossref_primary_10_3390_rs13214387
crossref_primary_10_1109_JSTARS_2024_3422901
crossref_primary_10_1109_TGRS_2023_3272006
crossref_primary_10_1109_ACCESS_2020_3008036
crossref_primary_10_1109_LGRS_2024_3385404
crossref_primary_10_1016_j_isprsjprs_2022_02_021
crossref_primary_10_1080_01431161_2024_2398225
crossref_primary_10_1109_TGRS_2024_3395135
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_1080_17538947_2020_1842524
crossref_primary_10_1109_LGRS_2022_3232763
crossref_primary_10_1016_j_jag_2023_103294
crossref_primary_10_1109_JSTARS_2022_3159528
crossref_primary_10_3390_rs15215106
crossref_primary_10_1016_j_cviu_2024_104253
crossref_primary_10_1109_JSTARS_2024_3394571
crossref_primary_10_3390_rs12101688
crossref_primary_10_3390_rs16132355
crossref_primary_10_1080_17538947_2023_2246445
crossref_primary_10_1109_JSTARS_2022_3231915
crossref_primary_10_3390_rs13245152
crossref_primary_10_1109_JSTARS_2024_3464117
crossref_primary_10_1007_s12559_021_09968_w
crossref_primary_10_1109_TGRS_2023_3241257
crossref_primary_10_1109_TGRS_2024_3434451
crossref_primary_10_1109_TGRS_2021_3113912
crossref_primary_10_1016_j_rsase_2024_101167
Cites_doi 10.1109/TGRS.2018.2863224
10.1109/36.843009
10.1109/CVPRW.2018.00031
10.1109/JPROC.2012.2197169
10.1038/nature14539
10.1109/36.485117
10.1016/j.rse.2007.07.023
10.1016/j.isprsjprs.2013.03.006
10.1109/LGRS.2017.2738149
10.1109/TGRS.2004.842441
10.1080/0143116031000101675
10.1016/S0167-8655(03)00060-6
10.1109/LGRS.2009.2025059
10.1109/TNNLS.2016.2636227
10.1109/TGRS.2009.2022633
10.1016/j.rse.2007.08.025
10.1080/01431168908903939
10.1109/TGRS.2006.885408
10.1016/0034-4257(94)90144-9
10.1109/TGRS.2016.2616585
10.1016/j.jag.2011.10.013
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cviu.2019.07.003
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
ExternalDocumentID oai_HAL_hal_02407789v1
10_1016_j_cviu_2019_07_003
S1077314219300992
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SST
1XC
VOOES
ID FETCH-LOGICAL-c378t-1d661e79a0be5d72fdead28b9e49545065ec95a845485aefcc312653f79c72c03
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Fri May 09 12:24:11 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Tue Jul 01 04:32:06 EDT 2025
Fri Feb 23 02:26:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multitask learning
Fully convolutional networks
41A10
65D05
High resolution Earth observation
65D17
Semantic change detection
41A05
Remote sensing
SEMANTIC CHANGE DETECTION
HIGH RESOLUTION EARTH OBSERVATION
REMOTE SENSING
FULLY CONVOLUTIONAL NETWORKS
MULTITASK LEARNING
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-1d661e79a0be5d72fdead28b9e49545065ec95a845485aefcc312653f79c72c03
ORCID 0000-0002-4196-9665
0000-0001-5249-0847
OpenAccessLink https://hal.science/hal-02407789
ParticipantIDs hal_primary_oai_HAL_hal_02407789v1
crossref_citationtrail_10_1016_j_cviu_2019_07_003
crossref_primary_10_1016_j_cviu_2019_07_003
elsevier_sciencedirect_doi_10_1016_j_cviu_2019_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
2019-10
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Computer vision and image understanding
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Stent, Gherardi, Stenger, Cipolla (b41) 2015
He, Zhang, Ren, Sun (b22) 2016
Zhao, Gong, Liu, Jiao (b48) 2014
Bertinetto, Valmadre, Henriques, Vedaldi, Torr (b4) 2016
Maggiolo, Marcos, Moser, Tuia (b31) 2018
Mou, Bruzzone, Zhu (b34) 2019; 57
Volpi, Tuia (b43) 2017; 55
Le Saux, Randrianarivo (b26) 2013
Bruzzone, Bovolo (b8) 2013; 101
El Amin, Liu, Wang (b20) 2017
Vakalopoulou, Karantzalos, Komodakis, Paragios (b42) 2015
Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raskar, R., 2018. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. CoRR abs/1805.06561. URL
Chopra, Hadsell, LeCun (b13) 2005
Audebert, Le Saux, Lefèvre (b1) 2016
Daudt, Le Saux, Boulch, Gousseau (b17) 2018
Mnih, Hinton (b33) 2010
El Amin, Liu, Wang (b19) 2016
Liu, Gousseau, Tupin (b29) 2019
Simonyan, Zisserman (b39) 2015
Maggiori, Tarabalka, Charpiat, Alliez (b32) 2017
Rolnick, D., Veit, A., Belongie, S.J., Shavit, N., 2017. Deep Learning is Robust to Massive Label Noise. CoRR abs/1705.10694. URL
Huang, Song, Kim, Townshend, Davis, Masek, Goward (b23) 2008; 112
.
Zhan, Fu, Yan, Sun, Wang, Qiu (b47) 2017; 14
Celik (b10) 2009; 6
Daudt, Le Saux, Boulch (b16) 2018
Sesnie, Gessler, Finegan, Thessler (b38) 2008; 112
Zagoruyko, Komodakis (b46) 2015
Rosin, Ioannidis (b37) 2003; 24
Liu, Gong, Qin, Zhang (b28) 2016; 29
Bazi, Bruzzone, Melgani (b2) 2005; 43
Chen, Ouyang, Agam (b11) 2018
Singh (b40) 1989; 10
Coppin, Jonckheere, Nackaerts, Muys, Lambin (b14) 2004; 25
Volpi, Tuia, Bovolo, Kanevski, Bruzzone (b44) 2013; 20
Benedek, Szirányi (b3) 2009; 47
Bovolo, Bruzzone (b7) 2007; 45
Bovolo, Bruzzone (b6) 2005
Hussain, Chen, Cheng, Wei, Stanley (b24) 2013; 80
LeCun, Bengio, Hinton (b27) 2015; 521
Volpi, Tuia, Kanevski, Bovolo, Bruzzone (b45) 2009
Chen, Weinmann, Sun, Yan, Hinz, Jutzi, Weinmann (b12) 2018; 4
Bourdis, Denis, Sahbi (b5) 2011
Ronneberger, Fischer, Brox (b36) 2015
Long, Shelhamer, Darrell (b30) 2015
Bruzzone, Prieto (b9) 2000; 38
Lambin, Strahlers (b25) 1994; 48
Dai, Khorram (b15) 1999; 65
Gopal, Woodcock (b21) 1996; 34
Volpi (10.1016/j.cviu.2019.07.003_b44) 2013; 20
Vakalopoulou (10.1016/j.cviu.2019.07.003_b42) 2015
Maggiolo (10.1016/j.cviu.2019.07.003_b31) 2018
Bruzzone (10.1016/j.cviu.2019.07.003_b8) 2013; 101
He (10.1016/j.cviu.2019.07.003_b22) 2016
Huang (10.1016/j.cviu.2019.07.003_b23) 2008; 112
Bruzzone (10.1016/j.cviu.2019.07.003_b9) 2000; 38
Chen (10.1016/j.cviu.2019.07.003_b11) 2018
Mnih (10.1016/j.cviu.2019.07.003_b33) 2010
Bourdis (10.1016/j.cviu.2019.07.003_b5) 2011
Simonyan (10.1016/j.cviu.2019.07.003_b39) 2015
Stent (10.1016/j.cviu.2019.07.003_b41) 2015
Zagoruyko (10.1016/j.cviu.2019.07.003_b46) 2015
Volpi (10.1016/j.cviu.2019.07.003_b43) 2017; 55
Gopal (10.1016/j.cviu.2019.07.003_b21) 1996; 34
Sesnie (10.1016/j.cviu.2019.07.003_b38) 2008; 112
Chopra (10.1016/j.cviu.2019.07.003_b13) 2005
El Amin (10.1016/j.cviu.2019.07.003_b19) 2016
Bertinetto (10.1016/j.cviu.2019.07.003_b4) 2016
Singh (10.1016/j.cviu.2019.07.003_b40) 1989; 10
Zhan (10.1016/j.cviu.2019.07.003_b47) 2017; 14
Dai (10.1016/j.cviu.2019.07.003_b15) 1999; 65
El Amin (10.1016/j.cviu.2019.07.003_b20) 2017
Daudt (10.1016/j.cviu.2019.07.003_b16) 2018
Hussain (10.1016/j.cviu.2019.07.003_b24) 2013; 80
Bovolo (10.1016/j.cviu.2019.07.003_b7) 2007; 45
Liu (10.1016/j.cviu.2019.07.003_b28) 2016; 29
Long (10.1016/j.cviu.2019.07.003_b30) 2015
Lambin (10.1016/j.cviu.2019.07.003_b25) 1994; 48
Rosin (10.1016/j.cviu.2019.07.003_b37) 2003; 24
Liu (10.1016/j.cviu.2019.07.003_b29) 2019
Celik (10.1016/j.cviu.2019.07.003_b10) 2009; 6
Benedek (10.1016/j.cviu.2019.07.003_b3) 2009; 47
Bovolo (10.1016/j.cviu.2019.07.003_b6) 2005
Zhao (10.1016/j.cviu.2019.07.003_b48) 2014
Audebert (10.1016/j.cviu.2019.07.003_b1) 2016
Mou (10.1016/j.cviu.2019.07.003_b34) 2019; 57
Volpi (10.1016/j.cviu.2019.07.003_b45) 2009
Bazi (10.1016/j.cviu.2019.07.003_b2) 2005; 43
Maggiori (10.1016/j.cviu.2019.07.003_b32) 2017
Ronneberger (10.1016/j.cviu.2019.07.003_b36) 2015
10.1016/j.cviu.2019.07.003_b35
Chen (10.1016/j.cviu.2019.07.003_b12) 2018; 4
10.1016/j.cviu.2019.07.003_b18
LeCun (10.1016/j.cviu.2019.07.003_b27) 2015; 521
Le Saux (10.1016/j.cviu.2019.07.003_b26) 2013
Daudt (10.1016/j.cviu.2019.07.003_b17) 2018
Coppin (10.1016/j.cviu.2019.07.003_b14) 2004; 25
References_xml – volume: 20
  start-page: 77
  year: 2013
  end-page: 85
  ident: b44
  article-title: Supervised change detection in VHR images using contextual information and support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 127.1
  year: 2015
  end-page: 127.12
  ident: b41
  article-title: Detecting change for multi-view, long-term surface inspection
  publication-title: British Machine Vision Conference
– volume: 14
  start-page: 1845
  year: 2017
  end-page: 1849
  ident: b47
  article-title: Change detection based on deep siamese convolutional network for optical aerial images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 2119
  year: 2018
  end-page: 2122
  ident: b17
  article-title: Urban change detection for multispectral earth observation using convolutional neural networks
  publication-title: International Geoscience and Remote Sensing Symposium
– volume: 43
  start-page: 874
  year: 2005
  end-page: 887
  ident: b2
  article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 521
  start-page: 436
  year: 2015
  ident: b27
  article-title: Deep learning
  publication-title: Nature
– volume: 34
  start-page: 398
  year: 1996
  end-page: 404
  ident: b21
  article-title: Remote sensing of forest change using artificial neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 210
  year: 2010
  end-page: 223
  ident: b33
  article-title: Learning to detect roads in high-resolution aerial images
  publication-title: European Conference on Computer Vision
– year: 2015
  ident: b39
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations
– start-page: 100110W
  year: 2016
  ident: b19
  article-title: Convolutional neural network features based change detection in satellite images
  publication-title: First International Workshop on Pattern Recognition
– volume: 24
  start-page: 2345
  year: 2003
  end-page: 2356
  ident: b37
  article-title: Evaluation of global image thresholding for change detection
  publication-title: Pattern Recognit. Lett.
– start-page: 1
  year: 2009
  end-page: 6
  ident: b45
  article-title: Supervised change detection in VHR images: a comparative analysis
  publication-title: 2009 IEEE International Workshop on Machine Learning for Signal Processing
– start-page: 539
  year: 2005
  end-page: 546
  ident: b13
  article-title: Learning a similarity metric discriminatively, with application to face verification
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1
– start-page: 3990
  year: 2013
  end-page: 3993
  ident: b26
  article-title: Urban change detection in SAR images by interactive learning
  publication-title: International Geoscience and Remote Sensing Symposium
– start-page: 5157
  year: 2017
  end-page: 5160
  ident: b32
  article-title: High-resolution image classification with convolutional networks
  publication-title: International Geoscience and Remote Sensing Symposium
– start-page: 4008
  year: 2018
  end-page: 4012
  ident: b11
  article-title: Mfcnet: End-to-end approach for change detection in images
  publication-title: IEEE International Conference on Image Processing
– start-page: 180
  year: 2016
  end-page: 196
  ident: b1
  article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
  publication-title: Asian Conference on Computer Vision
– reference: Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raskar, R., 2018. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. CoRR abs/1805.06561. URL
– volume: 55
  start-page: 881
  year: 2017
  end-page: 893
  ident: b43
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  year: 2018
  ident: b12
  article-title: Semantic segmentation of aerial imagery via multi-scale shuffling convolutional neural networks with deep supervision
  publication-title: ISPRS Ann. Photogramm. Remote Sensing Spat. Inf. Sci.
– volume: 25
  start-page: 1565
  year: 2004
  end-page: 1596
  ident: b14
  article-title: Digital change detection methods in ecosystem monitoring: A review
  publication-title: Int. J. Remote Sens.
– start-page: 411
  year: 2014
  end-page: 417
  ident: b48
  article-title: Deep learning to classify difference image for image change detection
  publication-title: International Joint Conference on Neural Networks
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b30
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 47
  start-page: 3416
  year: 2009
  end-page: 3430
  ident: b3
  article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 4063
  year: 2018
  end-page: 4067
  ident: b16
  article-title: Fully convolutional siamese networks for change detection
  publication-title: International Conference on Image Processing
– year: 2019
  ident: b29
  article-title: A contrario comparison of local descriptors for change detection in very high spatial resolution satellite images of urban areas
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b22
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 61
  year: 2015
  end-page: 69
  ident: b42
  article-title: Simultaneous registration and change detection in multitemporal, very high resolution remote sensing data
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 45
  start-page: 218
  year: 2007
  end-page: 236
  ident: b7
  article-title: A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 989
  year: 1989
  end-page: 1003
  ident: b40
  article-title: Review article digital change detection techniques using remotely-sensed data
  publication-title: Int. J. Remote Sens.
– volume: 29
  start-page: 545
  year: 2016
  end-page: 559
  ident: b28
  article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 6
  start-page: 772
  year: 2009
  end-page: 776
  ident: b10
  article-title: Unsupervised change detection in satellite images using principal component analysis and
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 80
  start-page: 91
  year: 2013
  end-page: 106
  ident: b24
  article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 85
  year: 2005
  end-page: 89
  ident: b6
  article-title: A wavelet-based change-detection technique for multitemporal sar images
  publication-title: International Workshop on the Analysis of Multi-Temporal Remote Sensing Images
– volume: 112
  start-page: 970
  year: 2008
  end-page: 985
  ident: b23
  article-title: Use of a dark object concept and support vector machines to automate forest cover change analysis
  publication-title: Remote Sens. Environ.
– start-page: 2103
  year: 2018
  ident: b31
  article-title: Improving maps from cnns trained with sparse, scribbled ground truths using fully connected crfs
  publication-title: International Geoscience and Remote Sensing Symposium
– start-page: 234
  year: 2015
  end-page: 241
  ident: b36
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 38
  start-page: 1171
  year: 2000
  end-page: 1182
  ident: b9
  article-title: Automatic analysis of the difference image for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: .
– start-page: 4353
  year: 2015
  end-page: 4361
  ident: b46
  article-title: Learning to compare image patches via convolutional neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 112
  start-page: 2145
  year: 2008
  end-page: 2159
  ident: b38
  article-title: Integrating landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
  publication-title: Remote Sens. Environ.
– volume: 101
  start-page: 609
  year: 2013
  end-page: 630
  ident: b8
  article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images
  publication-title: Proc. IEEE
– start-page: 812
  year: 2017
  end-page: 817
  ident: b20
  article-title: Zoom out CNNs features for optical remote sensing change detection
  publication-title: Int. Conference on Image, Vision and Computing
– reference: Rolnick, D., Veit, A., Belongie, S.J., Shavit, N., 2017. Deep Learning is Robust to Massive Label Noise. CoRR abs/1705.10694. URL
– volume: 65
  start-page: 1187
  year: 1999
  end-page: 1194
  ident: b15
  article-title: Remotely sensed change detection based on artificial neural networks
  publication-title: Photogramm. Eng. Remote Sensing
– volume: 57
  start-page: 924
  year: 2019
  end-page: 935
  ident: b34
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 850
  year: 2016
  end-page: 865
  ident: b4
  article-title: Fully-convolutional siamese networks for object tracking
  publication-title: European Conference on Computer Vision
– volume: 48
  start-page: 231
  year: 1994
  end-page: 244
  ident: b25
  article-title: Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data
  publication-title: Remote Sens. Environ.
– start-page: 4176
  year: 2011
  end-page: 4179
  ident: b5
  article-title: Constrained optical flow for aerial image change detection
  publication-title: International Geoscience and Remote Sensing Symposium
– start-page: 5157
  year: 2017
  ident: 10.1016/j.cviu.2019.07.003_b32
  article-title: High-resolution image classification with convolutional networks
– volume: 57
  start-page: 924
  issue: 2
  year: 2019
  ident: 10.1016/j.cviu.2019.07.003_b34
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2863224
– start-page: 3990
  year: 2013
  ident: 10.1016/j.cviu.2019.07.003_b26
  article-title: Urban change detection in SAR images by interactive learning
– start-page: 127.1
  year: 2015
  ident: 10.1016/j.cviu.2019.07.003_b41
  article-title: Detecting change for multi-view, long-term surface inspection
– volume: 38
  start-page: 1171
  issue: 3
  year: 2000
  ident: 10.1016/j.cviu.2019.07.003_b9
  article-title: Automatic analysis of the difference image for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.843009
– start-page: 539
  year: 2005
  ident: 10.1016/j.cviu.2019.07.003_b13
  article-title: Learning a similarity metric discriminatively, with application to face verification
– start-page: 2119
  year: 2018
  ident: 10.1016/j.cviu.2019.07.003_b17
  article-title: Urban change detection for multispectral earth observation using convolutional neural networks
– ident: 10.1016/j.cviu.2019.07.003_b18
  doi: 10.1109/CVPRW.2018.00031
– volume: 101
  start-page: 609
  issue: 3
  year: 2013
  ident: 10.1016/j.cviu.2019.07.003_b8
  article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197169
– start-page: 61
  year: 2015
  ident: 10.1016/j.cviu.2019.07.003_b42
  article-title: Simultaneous registration and change detection in multitemporal, very high resolution remote sensing data
– start-page: 812
  year: 2017
  ident: 10.1016/j.cviu.2019.07.003_b20
  article-title: Zoom out CNNs features for optical remote sensing change detection
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cviu.2019.07.003_b27
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 3431
  year: 2015
  ident: 10.1016/j.cviu.2019.07.003_b30
  article-title: Fully convolutional networks for semantic segmentation
– volume: 34
  start-page: 398
  issue: 2
  year: 1996
  ident: 10.1016/j.cviu.2019.07.003_b21
  article-title: Remote sensing of forest change using artificial neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.485117
– start-page: 4063
  year: 2018
  ident: 10.1016/j.cviu.2019.07.003_b16
  article-title: Fully convolutional siamese networks for change detection
– start-page: 234
  year: 2015
  ident: 10.1016/j.cviu.2019.07.003_b36
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 112
  start-page: 970
  issue: 3
  year: 2008
  ident: 10.1016/j.cviu.2019.07.003_b23
  article-title: Use of a dark object concept and support vector machines to automate forest cover change analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.023
– volume: 80
  start-page: 91
  year: 2013
  ident: 10.1016/j.cviu.2019.07.003_b24
  article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.03.006
– volume: 14
  start-page: 1845
  issue: 10
  year: 2017
  ident: 10.1016/j.cviu.2019.07.003_b47
  article-title: Change detection based on deep siamese convolutional network for optical aerial images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2738149
– volume: 4
  issue: 1
  year: 2018
  ident: 10.1016/j.cviu.2019.07.003_b12
  article-title: Semantic segmentation of aerial imagery via multi-scale shuffling convolutional neural networks with deep supervision
  publication-title: ISPRS Ann. Photogramm. Remote Sensing Spat. Inf. Sci.
– start-page: 180
  year: 2016
  ident: 10.1016/j.cviu.2019.07.003_b1
  article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
– volume: 43
  start-page: 874
  issue: 4
  year: 2005
  ident: 10.1016/j.cviu.2019.07.003_b2
  article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842441
– volume: 65
  start-page: 1187
  year: 1999
  ident: 10.1016/j.cviu.2019.07.003_b15
  article-title: Remotely sensed change detection based on artificial neural networks
  publication-title: Photogramm. Eng. Remote Sensing
– start-page: 411
  year: 2014
  ident: 10.1016/j.cviu.2019.07.003_b48
  article-title: Deep learning to classify difference image for image change detection
– volume: 25
  start-page: 1565
  issue: 9
  year: 2004
  ident: 10.1016/j.cviu.2019.07.003_b14
  article-title: Digital change detection methods in ecosystem monitoring: A review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000101675
– volume: 24
  start-page: 2345
  issue: 14
  year: 2003
  ident: 10.1016/j.cviu.2019.07.003_b37
  article-title: Evaluation of global image thresholding for change detection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00060-6
– volume: 6
  start-page: 772
  issue: 4
  year: 2009
  ident: 10.1016/j.cviu.2019.07.003_b10
  article-title: Unsupervised change detection in satellite images using principal component analysis and k-means clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
– start-page: 4176
  year: 2011
  ident: 10.1016/j.cviu.2019.07.003_b5
  article-title: Constrained optical flow for aerial image change detection
– start-page: 85
  year: 2005
  ident: 10.1016/j.cviu.2019.07.003_b6
  article-title: A wavelet-based change-detection technique for multitemporal sar images
– start-page: 4353
  year: 2015
  ident: 10.1016/j.cviu.2019.07.003_b46
  article-title: Learning to compare image patches via convolutional neural networks
– volume: 29
  start-page: 545
  issue: 3
  year: 2016
  ident: 10.1016/j.cviu.2019.07.003_b28
  article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2636227
– start-page: 1
  year: 2009
  ident: 10.1016/j.cviu.2019.07.003_b45
  article-title: Supervised change detection in VHR images: a comparative analysis
– year: 2019
  ident: 10.1016/j.cviu.2019.07.003_b29
  article-title: A contrario comparison of local descriptors for change detection in very high spatial resolution satellite images of urban areas
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 47
  start-page: 3416
  issue: 10
  year: 2009
  ident: 10.1016/j.cviu.2019.07.003_b3
  article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2022633
– start-page: 210
  year: 2010
  ident: 10.1016/j.cviu.2019.07.003_b33
  article-title: Learning to detect roads in high-resolution aerial images
– ident: 10.1016/j.cviu.2019.07.003_b35
– start-page: 770
  year: 2016
  ident: 10.1016/j.cviu.2019.07.003_b22
  article-title: Deep residual learning for image recognition
– volume: 112
  start-page: 2145
  issue: 5
  year: 2008
  ident: 10.1016/j.cviu.2019.07.003_b38
  article-title: Integrating landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.08.025
– volume: 10
  start-page: 989
  issue: 6
  year: 1989
  ident: 10.1016/j.cviu.2019.07.003_b40
  article-title: Review article digital change detection techniques using remotely-sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168908903939
– start-page: 850
  year: 2016
  ident: 10.1016/j.cviu.2019.07.003_b4
  article-title: Fully-convolutional siamese networks for object tracking
– year: 2015
  ident: 10.1016/j.cviu.2019.07.003_b39
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 45
  start-page: 218
  issue: 1
  year: 2007
  ident: 10.1016/j.cviu.2019.07.003_b7
  article-title: A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.885408
– start-page: 2103
  year: 2018
  ident: 10.1016/j.cviu.2019.07.003_b31
  article-title: Improving maps from cnns trained with sparse, scribbled ground truths using fully connected crfs
– start-page: 100110W
  year: 2016
  ident: 10.1016/j.cviu.2019.07.003_b19
  article-title: Convolutional neural network features based change detection in satellite images
– start-page: 4008
  year: 2018
  ident: 10.1016/j.cviu.2019.07.003_b11
  article-title: Mfcnet: End-to-end approach for change detection in images
– volume: 48
  start-page: 231
  issue: 2
  year: 1994
  ident: 10.1016/j.cviu.2019.07.003_b25
  article-title: Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90144-9
– volume: 55
  start-page: 881
  issue: 2
  year: 2017
  ident: 10.1016/j.cviu.2019.07.003_b43
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– volume: 20
  start-page: 77
  year: 2013
  ident: 10.1016/j.cviu.2019.07.003_b44
  article-title: Supervised change detection in VHR images using contextual information and support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2011.10.013
SSID ssj0011491
Score 2.653331
Snippet Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 102783
SubjectTerms Computer Science
Computer Vision and Pattern Recognition
Fully convolutional networks
High resolution Earth observation
Multitask learning
Remote sensing
Semantic change detection
Title Multitask learning for large-scale semantic change detection
URI https://dx.doi.org/10.1016/j.cviu.2019.07.003
https://hal.science/hal-02407789
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GuMCBxwAxHlOEuKGytmmaVeIyTUzjtQtM2q1K0xQKo0ys25Hfjt2mEwhpB4610odsx_6c-kHIufJjpiUHCfAAApTIiSypRAA7Hpw5k1pEMR4NPAz9wci7HfNxjfSqWhhMqzS2v7TphbU2lLbhZnuapu1HCFwEczzYcgxxDtphzxOo5ZdfyzQPgPvF1DxcbOFqUzhT5nipRTrH9K6gaOBZDc7665zWXqpj1sLt9HfIlsGLtFt-0i6p6axBtg12pGZnzoBUjWeoaA2y-aPX4B65Kktt5eyNmkkRzxQAK51gKrg1A1FpOtPvwOhU0bIcmMY6LzK1sn0y6l8_9QaWGZ1gKSY6ueXE4He1CKQdaR4LN4lBY9xOFGgIiDwOuEOrgMuOBwELlzpRijmuz1kiAiVcZbMDUs8-Mn1IaJT4tox55IK0PQAzEpgOjBeJD8aC2XGTOBXPQmX6iuN4i0lYJZC9hsjnEPkc2vi7mzXJxfKeadlVY-VqXoki_KUbIZj9lfedgdyWL8BG2oPufYg07OwmRCdYOEf_fPgx2cCrMq_vhNTzz7k-BXySR61CAVtkvXtzNxh-A1oM4rg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYCBRwFRnhZiQ6FJHMeJxFJVVAHaLrRSN8txHCiUUNHHyG_nnDgVCKkD68V56M53951zD4SupJ8QJShIgIYQoMRObAnJQtB4cOZEKBYn-mig2_OjgfcwpMMKapW1MDqt0tj-wqbn1tpQGoabjclo1HiCwIURxwOVIxrngB1e90B99RiDm69lngfg_Xxsnl5t6eWmcqZI8pKL0Vznd4V5B89yctZf77T2Up6z5n6nvYu2DWDEzeKb9lBFZTW0Y8AjNqo5BVI5n6Gk1dDWj2aD--i2qLUV0zdsRkU8Y0CseKxzwa0pyErhqXoHTo8kLuqBcaJmeapWdoAG7bt-K7LM7ARLEhbMLCcBx6tYKOxY0YS5aQJbxg3iUEFE5FEAHkqGVAQeRCxUqFRK4rg-JSkLJXOlTQ5RNfvI1BHCcerbIqGxC-L2AM0I4DpwnqU-WAtiJ3XklDzj0jQW1_MtxrzMIHvlms9c85nb-n83qaPr5T2Toq3GytW0FAX_tTk42P2V912C3JYv0J20o2aHa5pu7cZYEC6c438-_AJtRP1uh3fue48naFNfKZL8TlF19jlXZwBWZvF5vhm_AZ9y5EY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitask+learning+for+large-scale+semantic+change+detection&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Caye+Daudt%2C+Rodrigo&rft.au=Le+Saux%2C+Bertrand&rft.au=Boulch%2C+Alexandre&rft.au=Gousseau%2C+Yann&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=187&rft_id=info:doi/10.1016%2Fj.cviu.2019.07.003&rft.externalDocID=S1077314219300992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon