Multitask learning for large-scale semantic change detection
Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled...
Saved in:
Published in | Computer vision and image understanding Vol. 187; p. 102783 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled datasets which are openly available are still very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale very high resolution semantic change detection dataset, which enables the usage of deep supervised learning methods for semantic change detection with very high resolution images. The dataset contains coregistered RGB image pairs, pixel-wise change information and land cover information. We then propose several supervised learning methods using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network architecture that performs change detection and land cover mapping simultaneously, while using the predicted land cover information to help to predict changes. We also describe a sequential training scheme that allows this network to be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results.
[Display omitted]
•A large scale very high resolution semantic change detection dataset has been created.•FCNNs have been successfully used for semantic change detection.•A network for integrated change detection and land cover mapping is described.•A training scheme that avoids using hyperparameters for balancing loss functions. |
---|---|
AbstractList | Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled datasets which are openly available are still very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale very high resolution semantic change detection dataset, which enables the usage of deep supervised learning methods for semantic change detection with very high resolution images. The dataset contains coregistered RGB image pairs, pixel-wise change information and land cover information. We then propose several supervised learning methods using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network architecture that performs change detection and land cover mapping simultaneously, while using the predicted land cover information to help to predict changes. We also describe a sequential training scheme that allows this network to be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results.
[Display omitted]
•A large scale very high resolution semantic change detection dataset has been created.•FCNNs have been successfully used for semantic change detection.•A network for integrated change detection and land cover mapping is described.•A training scheme that avoids using hyperparameters for balancing loss functions. Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available. Most of the recently proposed change detection methods bring deep learning to this context, but change detection labelled datasets which are openly available are still very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale very high resolution semantic change detection dataset, which enables the usage of deep supervised learning methods for semantic change detection with very high resolution images. The dataset contains coregistered RGB image pairs, pixel-wise change information and land cover information. We then propose several supervised learning methods using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network architecture that performs change detection and land cover mapping simultaneously, while using the predicted land cover information to help to predict changes. We also describe a sequential training scheme that allows this network to be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results. |
ArticleNumber | 102783 |
Author | Gousseau, Yann Boulch, Alexandre Le Saux, Bertrand Caye Daudt, Rodrigo |
Author_xml | – sequence: 1 givenname: Rodrigo surname: Caye Daudt fullname: Caye Daudt, Rodrigo email: rodrigo.daudt@onera.fr organization: DTIS, ONERA, Université Paris-Saclay, FR-91123 Palaiseau, France – sequence: 2 givenname: Bertrand surname: Le Saux fullname: Le Saux, Bertrand organization: DTIS, ONERA, Université Paris-Saclay, FR-91123 Palaiseau, France – sequence: 3 givenname: Alexandre surname: Boulch fullname: Boulch, Alexandre organization: DTIS, ONERA, Université Paris-Saclay, FR-91123 Palaiseau, France – sequence: 4 givenname: Yann surname: Gousseau fullname: Gousseau, Yann organization: LTCI, Télécom ParisTech, FR-75013 Paris, France |
BackLink | https://hal.science/hal-02407789$$DView record in HAL |
BookMark | eNp9kD1PwzAQQC1UJNrCH2DKypBwduI4lrpUFVCkIhaQ2CzXubQuqYPstBL_HkeFhaHTnU737uNNyMh1Dgm5pZBRoOX9LjNHe8gYUJmByADyCzKmICFlOf8YDbkQaU4LdkUmIewAKC0kHZPZy6Htba_DZ9Ki9s66TdJ0Pmm132AajG4xCbjXrrcmMVvtNpjU2KPpbeeuyWWj24A3v3FK3h8f3hbLdPX69LyYr1KTi6pPaV2WFIXUsEZeC9bUqGtWrSUWkhccSo5Gcl0VvKi4xsaYnLKS542QRjAD-ZTcneZudau-vN1r_606bdVyvlJDDVgR_6vkkcbe6tRrfBeCx0aZ-N5wbe-1bRUFNRhTOzUYU4MxBUJFYxFl_9C_XWeh2QnCKOBo0atgLDqDtfXRkqo7ew7_ATJ9hto |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3410389 crossref_primary_10_1109_TGRS_2025_3546808 crossref_primary_10_1109_TGRS_2024_3484178 crossref_primary_10_1080_13658816_2022_2087223 crossref_primary_10_3390_rs14235911 crossref_primary_10_1109_TGRS_2023_3297850 crossref_primary_10_3390_rs15061682 crossref_primary_10_1007_s44267_023_00004_z crossref_primary_10_1007_s10994_020_05943_y crossref_primary_10_1007_s11042_024_18766_z crossref_primary_10_1002_int_22821 crossref_primary_10_1007_s11263_024_02141_4 crossref_primary_10_1109_JSTARS_2024_3402431 crossref_primary_10_3390_rs13163336 crossref_primary_10_1007_s11042_024_20015_2 crossref_primary_10_1109_TGRS_2022_3160097 crossref_primary_10_1109_TGRS_2024_3407884 crossref_primary_10_1007_s40808_024_02068_2 crossref_primary_10_1109_JPROC_2022_3219376 crossref_primary_10_3390_rs14153687 crossref_primary_10_1109_LGRS_2024_3358402 crossref_primary_10_3390_rs16050804 crossref_primary_10_7780_kjrs_2024_40_6_3_6 crossref_primary_10_1080_01431161_2023_2243021 crossref_primary_10_1109_JSTARS_2024_3514926 crossref_primary_10_1080_10095020_2023_2244005 crossref_primary_10_1109_JSTARS_2023_3260006 crossref_primary_10_1109_TGRS_2022_3154390 crossref_primary_10_1109_TGRS_2024_3386334 crossref_primary_10_3390_electronics10040377 crossref_primary_10_3390_technologies12090160 crossref_primary_10_1080_10095020_2022_2162980 crossref_primary_10_1109_TGRS_2024_3401775 crossref_primary_10_1080_17538947_2024_2398051 crossref_primary_10_1109_TGRS_2024_3376384 crossref_primary_10_1111_tgis_13133 crossref_primary_10_1109_TGRS_2022_3203897 crossref_primary_10_3390_rs15092464 crossref_primary_10_1109_LGRS_2022_3159545 crossref_primary_10_3390_rs14184478 crossref_primary_10_1109_JSTARS_2024_3418632 crossref_primary_10_1038_s41598_025_94544_7 crossref_primary_10_1109_ACCESS_2024_3520428 crossref_primary_10_1109_TGRS_2024_3514893 crossref_primary_10_3390_land12071268 crossref_primary_10_1109_TGRS_2024_3350573 crossref_primary_10_1080_07038992_2021_1922880 crossref_primary_10_1109_JSTARS_2024_3487137 crossref_primary_10_3390_s21134486 crossref_primary_10_3390_rs15143566 crossref_primary_10_3390_rs15215135 crossref_primary_10_1109_TGRS_2024_3362795 crossref_primary_10_3390_rs16214020 crossref_primary_10_1007_s11432_022_3691_4 crossref_primary_10_1109_TGRS_2024_3497983 crossref_primary_10_1016_j_isprsjprs_2022_05_001 crossref_primary_10_1109_TGRS_2022_3168331 crossref_primary_10_1109_LGRS_2024_3507292 crossref_primary_10_1109_JSTARS_2023_3270498 crossref_primary_10_1109_TGRS_2024_3365825 crossref_primary_10_3390_rs15082092 crossref_primary_10_1016_j_isprsjprs_2023_09_013 crossref_primary_10_1109_JSTARS_2024_3409072 crossref_primary_10_1016_j_rse_2021_112589 crossref_primary_10_3390_rs14153548 crossref_primary_10_1016_j_isprsjprs_2024_04_013 crossref_primary_10_1109_TGRS_2024_3408274 crossref_primary_10_1109_LGRS_2024_3398768 crossref_primary_10_3390_rs14194972 crossref_primary_10_1109_TGRS_2023_3290817 crossref_primary_10_1007_s41064_023_00258_8 crossref_primary_10_1109_JSTARS_2023_3348572 crossref_primary_10_1109_TGRS_2021_3089453 crossref_primary_10_3390_rs16132436 crossref_primary_10_1080_17538947_2024_2398070 crossref_primary_10_1109_TGRS_2024_3362728 crossref_primary_10_1111_phor_12462 crossref_primary_10_3390_rs15164095 crossref_primary_10_1145_3721135 crossref_primary_10_1109_TGRS_2024_3428551 crossref_primary_10_1016_j_isprsjprs_2021_10_015 crossref_primary_10_3390_s24051509 crossref_primary_10_1080_01431161_2023_2288946 crossref_primary_10_3390_rs15174285 crossref_primary_10_32604_jai_2022_034931 crossref_primary_10_1109_TGRS_2024_3500790 crossref_primary_10_1109_JSTARS_2024_3508692 crossref_primary_10_1109_JSTARS_2024_3511597 crossref_primary_10_1109_TIP_2024_3349868 crossref_primary_10_1007_s10994_021_06008_4 crossref_primary_10_1109_JSTARS_2024_3522910 crossref_primary_10_1016_j_jag_2024_103839 crossref_primary_10_1109_MGRS_2021_3063465 crossref_primary_10_1111_tgis_70020 crossref_primary_10_1117_1_JRS_18_048502 crossref_primary_10_1109_TGRS_2024_3493886 crossref_primary_10_1109_JSTARS_2024_3522350 crossref_primary_10_1016_j_jag_2021_102582 crossref_primary_10_1109_JSTARS_2024_3390427 crossref_primary_10_3390_rs16203852 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_3390_rs12071186 crossref_primary_10_1109_JSTARS_2024_3493945 crossref_primary_10_1109_TGRS_2024_3486787 crossref_primary_10_1109_ACCESS_2022_3161978 crossref_primary_10_1016_j_jag_2021_102465 crossref_primary_10_1080_01431161_2024_2343139 crossref_primary_10_1109_JSTARS_2022_3184298 crossref_primary_10_3390_rs15040949 crossref_primary_10_1109_TGRS_2022_3171067 crossref_primary_10_1080_17538947_2022_2111470 crossref_primary_10_1080_10095020_2022_2128902 crossref_primary_10_1080_10095020_2022_2157762 crossref_primary_10_1016_j_isprsjprs_2023_07_001 crossref_primary_10_3390_rs15071860 crossref_primary_10_1109_LGRS_2023_3310676 crossref_primary_10_1109_TGRS_2022_3200985 crossref_primary_10_1007_s00521_022_06999_8 crossref_primary_10_61186_jgst_13_1_55 crossref_primary_10_1016_j_iswa_2025_200505 crossref_primary_10_1007_s11432_022_3588_0 crossref_primary_10_1109_TGRS_2024_3523128 crossref_primary_10_1007_s41064_024_00299_7 crossref_primary_10_1080_01431161_2024_2380544 crossref_primary_10_1109_TGRS_2022_3160007 crossref_primary_10_1109_TGRS_2021_3134691 crossref_primary_10_1109_TGRS_2024_3424532 crossref_primary_10_1109_JSTARS_2024_3522066 crossref_primary_10_1109_TGRS_2023_3317413 crossref_primary_10_3390_rs15245631 crossref_primary_10_3390_rs15225425 crossref_primary_10_1109_TGRS_2024_3421654 crossref_primary_10_3390_rs15184555 crossref_primary_10_3390_app15063061 crossref_primary_10_1080_01431161_2021_1941390 crossref_primary_10_1109_TGRS_2024_3433373 crossref_primary_10_3390_rs13183707 crossref_primary_10_3390_rs13214302 crossref_primary_10_1109_JSTARS_2022_3177235 crossref_primary_10_3390_rs13214387 crossref_primary_10_1109_JSTARS_2024_3422901 crossref_primary_10_1109_TGRS_2023_3272006 crossref_primary_10_1109_ACCESS_2020_3008036 crossref_primary_10_1109_LGRS_2024_3385404 crossref_primary_10_1016_j_isprsjprs_2022_02_021 crossref_primary_10_1080_01431161_2024_2398225 crossref_primary_10_1109_TGRS_2024_3395135 crossref_primary_10_1080_01431161_2023_2225712 crossref_primary_10_1080_17538947_2020_1842524 crossref_primary_10_1109_LGRS_2022_3232763 crossref_primary_10_1016_j_jag_2023_103294 crossref_primary_10_1109_JSTARS_2022_3159528 crossref_primary_10_3390_rs15215106 crossref_primary_10_1016_j_cviu_2024_104253 crossref_primary_10_1109_JSTARS_2024_3394571 crossref_primary_10_3390_rs12101688 crossref_primary_10_3390_rs16132355 crossref_primary_10_1080_17538947_2023_2246445 crossref_primary_10_1109_JSTARS_2022_3231915 crossref_primary_10_3390_rs13245152 crossref_primary_10_1109_JSTARS_2024_3464117 crossref_primary_10_1007_s12559_021_09968_w crossref_primary_10_1109_TGRS_2023_3241257 crossref_primary_10_1109_TGRS_2024_3434451 crossref_primary_10_1109_TGRS_2021_3113912 crossref_primary_10_1016_j_rsase_2024_101167 |
Cites_doi | 10.1109/TGRS.2018.2863224 10.1109/36.843009 10.1109/CVPRW.2018.00031 10.1109/JPROC.2012.2197169 10.1038/nature14539 10.1109/36.485117 10.1016/j.rse.2007.07.023 10.1016/j.isprsjprs.2013.03.006 10.1109/LGRS.2017.2738149 10.1109/TGRS.2004.842441 10.1080/0143116031000101675 10.1016/S0167-8655(03)00060-6 10.1109/LGRS.2009.2025059 10.1109/TNNLS.2016.2636227 10.1109/TGRS.2009.2022633 10.1016/j.rse.2007.08.025 10.1080/01431168908903939 10.1109/TGRS.2006.885408 10.1016/0034-4257(94)90144-9 10.1109/TGRS.2016.2616585 10.1016/j.jag.2011.10.013 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.cviu.2019.07.003 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1090-235X |
ExternalDocumentID | oai_HAL_hal_02407789v1 10_1016_j_cviu_2019_07_003 S1077314219300992 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SST 1XC VOOES |
ID | FETCH-LOGICAL-c378t-1d661e79a0be5d72fdead28b9e49545065ec95a845485aefcc312653f79c72c03 |
IEDL.DBID | .~1 |
ISSN | 1077-3142 |
IngestDate | Fri May 09 12:24:11 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Tue Jul 01 04:32:06 EDT 2025 Fri Feb 23 02:26:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multitask learning Fully convolutional networks 41A10 65D05 High resolution Earth observation 65D17 Semantic change detection 41A05 Remote sensing SEMANTIC CHANGE DETECTION HIGH RESOLUTION EARTH OBSERVATION REMOTE SENSING FULLY CONVOLUTIONAL NETWORKS MULTITASK LEARNING |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-1d661e79a0be5d72fdead28b9e49545065ec95a845485aefcc312653f79c72c03 |
ORCID | 0000-0002-4196-9665 0000-0001-5249-0847 |
OpenAccessLink | https://hal.science/hal-02407789 |
ParticipantIDs | hal_primary_oai_HAL_hal_02407789v1 crossref_citationtrail_10_1016_j_cviu_2019_07_003 crossref_primary_10_1016_j_cviu_2019_07_003 elsevier_sciencedirect_doi_10_1016_j_cviu_2019_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 2019-10 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Stent, Gherardi, Stenger, Cipolla (b41) 2015 He, Zhang, Ren, Sun (b22) 2016 Zhao, Gong, Liu, Jiao (b48) 2014 Bertinetto, Valmadre, Henriques, Vedaldi, Torr (b4) 2016 Maggiolo, Marcos, Moser, Tuia (b31) 2018 Mou, Bruzzone, Zhu (b34) 2019; 57 Volpi, Tuia (b43) 2017; 55 Le Saux, Randrianarivo (b26) 2013 Bruzzone, Bovolo (b8) 2013; 101 El Amin, Liu, Wang (b20) 2017 Vakalopoulou, Karantzalos, Komodakis, Paragios (b42) 2015 Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raskar, R., 2018. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. CoRR abs/1805.06561. URL Chopra, Hadsell, LeCun (b13) 2005 Audebert, Le Saux, Lefèvre (b1) 2016 Daudt, Le Saux, Boulch, Gousseau (b17) 2018 Mnih, Hinton (b33) 2010 El Amin, Liu, Wang (b19) 2016 Liu, Gousseau, Tupin (b29) 2019 Simonyan, Zisserman (b39) 2015 Maggiori, Tarabalka, Charpiat, Alliez (b32) 2017 Rolnick, D., Veit, A., Belongie, S.J., Shavit, N., 2017. Deep Learning is Robust to Massive Label Noise. CoRR abs/1705.10694. URL Huang, Song, Kim, Townshend, Davis, Masek, Goward (b23) 2008; 112 . Zhan, Fu, Yan, Sun, Wang, Qiu (b47) 2017; 14 Celik (b10) 2009; 6 Daudt, Le Saux, Boulch (b16) 2018 Sesnie, Gessler, Finegan, Thessler (b38) 2008; 112 Zagoruyko, Komodakis (b46) 2015 Rosin, Ioannidis (b37) 2003; 24 Liu, Gong, Qin, Zhang (b28) 2016; 29 Bazi, Bruzzone, Melgani (b2) 2005; 43 Chen, Ouyang, Agam (b11) 2018 Singh (b40) 1989; 10 Coppin, Jonckheere, Nackaerts, Muys, Lambin (b14) 2004; 25 Volpi, Tuia, Bovolo, Kanevski, Bruzzone (b44) 2013; 20 Benedek, Szirányi (b3) 2009; 47 Bovolo, Bruzzone (b7) 2007; 45 Bovolo, Bruzzone (b6) 2005 Hussain, Chen, Cheng, Wei, Stanley (b24) 2013; 80 LeCun, Bengio, Hinton (b27) 2015; 521 Volpi, Tuia, Kanevski, Bovolo, Bruzzone (b45) 2009 Chen, Weinmann, Sun, Yan, Hinz, Jutzi, Weinmann (b12) 2018; 4 Bourdis, Denis, Sahbi (b5) 2011 Ronneberger, Fischer, Brox (b36) 2015 Long, Shelhamer, Darrell (b30) 2015 Bruzzone, Prieto (b9) 2000; 38 Lambin, Strahlers (b25) 1994; 48 Dai, Khorram (b15) 1999; 65 Gopal, Woodcock (b21) 1996; 34 Volpi (10.1016/j.cviu.2019.07.003_b44) 2013; 20 Vakalopoulou (10.1016/j.cviu.2019.07.003_b42) 2015 Maggiolo (10.1016/j.cviu.2019.07.003_b31) 2018 Bruzzone (10.1016/j.cviu.2019.07.003_b8) 2013; 101 He (10.1016/j.cviu.2019.07.003_b22) 2016 Huang (10.1016/j.cviu.2019.07.003_b23) 2008; 112 Bruzzone (10.1016/j.cviu.2019.07.003_b9) 2000; 38 Chen (10.1016/j.cviu.2019.07.003_b11) 2018 Mnih (10.1016/j.cviu.2019.07.003_b33) 2010 Bourdis (10.1016/j.cviu.2019.07.003_b5) 2011 Simonyan (10.1016/j.cviu.2019.07.003_b39) 2015 Stent (10.1016/j.cviu.2019.07.003_b41) 2015 Zagoruyko (10.1016/j.cviu.2019.07.003_b46) 2015 Volpi (10.1016/j.cviu.2019.07.003_b43) 2017; 55 Gopal (10.1016/j.cviu.2019.07.003_b21) 1996; 34 Sesnie (10.1016/j.cviu.2019.07.003_b38) 2008; 112 Chopra (10.1016/j.cviu.2019.07.003_b13) 2005 El Amin (10.1016/j.cviu.2019.07.003_b19) 2016 Bertinetto (10.1016/j.cviu.2019.07.003_b4) 2016 Singh (10.1016/j.cviu.2019.07.003_b40) 1989; 10 Zhan (10.1016/j.cviu.2019.07.003_b47) 2017; 14 Dai (10.1016/j.cviu.2019.07.003_b15) 1999; 65 El Amin (10.1016/j.cviu.2019.07.003_b20) 2017 Daudt (10.1016/j.cviu.2019.07.003_b16) 2018 Hussain (10.1016/j.cviu.2019.07.003_b24) 2013; 80 Bovolo (10.1016/j.cviu.2019.07.003_b7) 2007; 45 Liu (10.1016/j.cviu.2019.07.003_b28) 2016; 29 Long (10.1016/j.cviu.2019.07.003_b30) 2015 Lambin (10.1016/j.cviu.2019.07.003_b25) 1994; 48 Rosin (10.1016/j.cviu.2019.07.003_b37) 2003; 24 Liu (10.1016/j.cviu.2019.07.003_b29) 2019 Celik (10.1016/j.cviu.2019.07.003_b10) 2009; 6 Benedek (10.1016/j.cviu.2019.07.003_b3) 2009; 47 Bovolo (10.1016/j.cviu.2019.07.003_b6) 2005 Zhao (10.1016/j.cviu.2019.07.003_b48) 2014 Audebert (10.1016/j.cviu.2019.07.003_b1) 2016 Mou (10.1016/j.cviu.2019.07.003_b34) 2019; 57 Volpi (10.1016/j.cviu.2019.07.003_b45) 2009 Bazi (10.1016/j.cviu.2019.07.003_b2) 2005; 43 Maggiori (10.1016/j.cviu.2019.07.003_b32) 2017 Ronneberger (10.1016/j.cviu.2019.07.003_b36) 2015 10.1016/j.cviu.2019.07.003_b35 Chen (10.1016/j.cviu.2019.07.003_b12) 2018; 4 10.1016/j.cviu.2019.07.003_b18 LeCun (10.1016/j.cviu.2019.07.003_b27) 2015; 521 Le Saux (10.1016/j.cviu.2019.07.003_b26) 2013 Daudt (10.1016/j.cviu.2019.07.003_b17) 2018 Coppin (10.1016/j.cviu.2019.07.003_b14) 2004; 25 |
References_xml | – volume: 20 start-page: 77 year: 2013 end-page: 85 ident: b44 article-title: Supervised change detection in VHR images using contextual information and support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 127.1 year: 2015 end-page: 127.12 ident: b41 article-title: Detecting change for multi-view, long-term surface inspection publication-title: British Machine Vision Conference – volume: 14 start-page: 1845 year: 2017 end-page: 1849 ident: b47 article-title: Change detection based on deep siamese convolutional network for optical aerial images publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 2119 year: 2018 end-page: 2122 ident: b17 article-title: Urban change detection for multispectral earth observation using convolutional neural networks publication-title: International Geoscience and Remote Sensing Symposium – volume: 43 start-page: 874 year: 2005 end-page: 887 ident: b2 article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 521 start-page: 436 year: 2015 ident: b27 article-title: Deep learning publication-title: Nature – volume: 34 start-page: 398 year: 1996 end-page: 404 ident: b21 article-title: Remote sensing of forest change using artificial neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 210 year: 2010 end-page: 223 ident: b33 article-title: Learning to detect roads in high-resolution aerial images publication-title: European Conference on Computer Vision – year: 2015 ident: b39 article-title: Very deep convolutional networks for large-scale image recognition publication-title: International Conference on Learning Representations – start-page: 100110W year: 2016 ident: b19 article-title: Convolutional neural network features based change detection in satellite images publication-title: First International Workshop on Pattern Recognition – volume: 24 start-page: 2345 year: 2003 end-page: 2356 ident: b37 article-title: Evaluation of global image thresholding for change detection publication-title: Pattern Recognit. Lett. – start-page: 1 year: 2009 end-page: 6 ident: b45 article-title: Supervised change detection in VHR images: a comparative analysis publication-title: 2009 IEEE International Workshop on Machine Learning for Signal Processing – start-page: 539 year: 2005 end-page: 546 ident: b13 article-title: Learning a similarity metric discriminatively, with application to face verification publication-title: IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1 – start-page: 3990 year: 2013 end-page: 3993 ident: b26 article-title: Urban change detection in SAR images by interactive learning publication-title: International Geoscience and Remote Sensing Symposium – start-page: 5157 year: 2017 end-page: 5160 ident: b32 article-title: High-resolution image classification with convolutional networks publication-title: International Geoscience and Remote Sensing Symposium – start-page: 4008 year: 2018 end-page: 4012 ident: b11 article-title: Mfcnet: End-to-end approach for change detection in images publication-title: IEEE International Conference on Image Processing – start-page: 180 year: 2016 end-page: 196 ident: b1 article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks publication-title: Asian Conference on Computer Vision – reference: Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raskar, R., 2018. DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images. CoRR abs/1805.06561. URL – volume: 55 start-page: 881 year: 2017 end-page: 893 ident: b43 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 year: 2018 ident: b12 article-title: Semantic segmentation of aerial imagery via multi-scale shuffling convolutional neural networks with deep supervision publication-title: ISPRS Ann. Photogramm. Remote Sensing Spat. Inf. Sci. – volume: 25 start-page: 1565 year: 2004 end-page: 1596 ident: b14 article-title: Digital change detection methods in ecosystem monitoring: A review publication-title: Int. J. Remote Sens. – start-page: 411 year: 2014 end-page: 417 ident: b48 article-title: Deep learning to classify difference image for image change detection publication-title: International Joint Conference on Neural Networks – start-page: 3431 year: 2015 end-page: 3440 ident: b30 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 47 start-page: 3416 year: 2009 end-page: 3430 ident: b3 article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 4063 year: 2018 end-page: 4067 ident: b16 article-title: Fully convolutional siamese networks for change detection publication-title: International Conference on Image Processing – year: 2019 ident: b29 article-title: A contrario comparison of local descriptors for change detection in very high spatial resolution satellite images of urban areas publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 770 year: 2016 end-page: 778 ident: b22 article-title: Deep residual learning for image recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 61 year: 2015 end-page: 69 ident: b42 article-title: Simultaneous registration and change detection in multitemporal, very high resolution remote sensing data publication-title: IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 45 start-page: 218 year: 2007 end-page: 236 ident: b7 article-title: A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 989 year: 1989 end-page: 1003 ident: b40 article-title: Review article digital change detection techniques using remotely-sensed data publication-title: Int. J. Remote Sens. – volume: 29 start-page: 545 year: 2016 end-page: 559 ident: b28 article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 6 start-page: 772 year: 2009 end-page: 776 ident: b10 article-title: Unsupervised change detection in satellite images using principal component analysis and publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 80 start-page: 91 year: 2013 end-page: 106 ident: b24 article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 85 year: 2005 end-page: 89 ident: b6 article-title: A wavelet-based change-detection technique for multitemporal sar images publication-title: International Workshop on the Analysis of Multi-Temporal Remote Sensing Images – volume: 112 start-page: 970 year: 2008 end-page: 985 ident: b23 article-title: Use of a dark object concept and support vector machines to automate forest cover change analysis publication-title: Remote Sens. Environ. – start-page: 2103 year: 2018 ident: b31 article-title: Improving maps from cnns trained with sparse, scribbled ground truths using fully connected crfs publication-title: International Geoscience and Remote Sensing Symposium – start-page: 234 year: 2015 end-page: 241 ident: b36 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 38 start-page: 1171 year: 2000 end-page: 1182 ident: b9 article-title: Automatic analysis of the difference image for unsupervised change detection publication-title: IEEE Trans. Geosci. Remote Sens. – reference: . – start-page: 4353 year: 2015 end-page: 4361 ident: b46 article-title: Learning to compare image patches via convolutional neural networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 112 start-page: 2145 year: 2008 end-page: 2159 ident: b38 article-title: Integrating landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments publication-title: Remote Sens. Environ. – volume: 101 start-page: 609 year: 2013 end-page: 630 ident: b8 article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images publication-title: Proc. IEEE – start-page: 812 year: 2017 end-page: 817 ident: b20 article-title: Zoom out CNNs features for optical remote sensing change detection publication-title: Int. Conference on Image, Vision and Computing – reference: Rolnick, D., Veit, A., Belongie, S.J., Shavit, N., 2017. Deep Learning is Robust to Massive Label Noise. CoRR abs/1705.10694. URL – volume: 65 start-page: 1187 year: 1999 end-page: 1194 ident: b15 article-title: Remotely sensed change detection based on artificial neural networks publication-title: Photogramm. Eng. Remote Sensing – volume: 57 start-page: 924 year: 2019 end-page: 935 ident: b34 article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 850 year: 2016 end-page: 865 ident: b4 article-title: Fully-convolutional siamese networks for object tracking publication-title: European Conference on Computer Vision – volume: 48 start-page: 231 year: 1994 end-page: 244 ident: b25 article-title: Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data publication-title: Remote Sens. Environ. – start-page: 4176 year: 2011 end-page: 4179 ident: b5 article-title: Constrained optical flow for aerial image change detection publication-title: International Geoscience and Remote Sensing Symposium – start-page: 5157 year: 2017 ident: 10.1016/j.cviu.2019.07.003_b32 article-title: High-resolution image classification with convolutional networks – volume: 57 start-page: 924 issue: 2 year: 2019 ident: 10.1016/j.cviu.2019.07.003_b34 article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2863224 – start-page: 3990 year: 2013 ident: 10.1016/j.cviu.2019.07.003_b26 article-title: Urban change detection in SAR images by interactive learning – start-page: 127.1 year: 2015 ident: 10.1016/j.cviu.2019.07.003_b41 article-title: Detecting change for multi-view, long-term surface inspection – volume: 38 start-page: 1171 issue: 3 year: 2000 ident: 10.1016/j.cviu.2019.07.003_b9 article-title: Automatic analysis of the difference image for unsupervised change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.843009 – start-page: 539 year: 2005 ident: 10.1016/j.cviu.2019.07.003_b13 article-title: Learning a similarity metric discriminatively, with application to face verification – start-page: 2119 year: 2018 ident: 10.1016/j.cviu.2019.07.003_b17 article-title: Urban change detection for multispectral earth observation using convolutional neural networks – ident: 10.1016/j.cviu.2019.07.003_b18 doi: 10.1109/CVPRW.2018.00031 – volume: 101 start-page: 609 issue: 3 year: 2013 ident: 10.1016/j.cviu.2019.07.003_b8 article-title: A novel framework for the design of change-detection systems for very-high-resolution remote sensing images publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2197169 – start-page: 61 year: 2015 ident: 10.1016/j.cviu.2019.07.003_b42 article-title: Simultaneous registration and change detection in multitemporal, very high resolution remote sensing data – start-page: 812 year: 2017 ident: 10.1016/j.cviu.2019.07.003_b20 article-title: Zoom out CNNs features for optical remote sensing change detection – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.cviu.2019.07.003_b27 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 3431 year: 2015 ident: 10.1016/j.cviu.2019.07.003_b30 article-title: Fully convolutional networks for semantic segmentation – volume: 34 start-page: 398 issue: 2 year: 1996 ident: 10.1016/j.cviu.2019.07.003_b21 article-title: Remote sensing of forest change using artificial neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.485117 – start-page: 4063 year: 2018 ident: 10.1016/j.cviu.2019.07.003_b16 article-title: Fully convolutional siamese networks for change detection – start-page: 234 year: 2015 ident: 10.1016/j.cviu.2019.07.003_b36 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 112 start-page: 970 issue: 3 year: 2008 ident: 10.1016/j.cviu.2019.07.003_b23 article-title: Use of a dark object concept and support vector machines to automate forest cover change analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.023 – volume: 80 start-page: 91 year: 2013 ident: 10.1016/j.cviu.2019.07.003_b24 article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.03.006 – volume: 14 start-page: 1845 issue: 10 year: 2017 ident: 10.1016/j.cviu.2019.07.003_b47 article-title: Change detection based on deep siamese convolutional network for optical aerial images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2738149 – volume: 4 issue: 1 year: 2018 ident: 10.1016/j.cviu.2019.07.003_b12 article-title: Semantic segmentation of aerial imagery via multi-scale shuffling convolutional neural networks with deep supervision publication-title: ISPRS Ann. Photogramm. Remote Sensing Spat. Inf. Sci. – start-page: 180 year: 2016 ident: 10.1016/j.cviu.2019.07.003_b1 article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks – volume: 43 start-page: 874 issue: 4 year: 2005 ident: 10.1016/j.cviu.2019.07.003_b2 article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.842441 – volume: 65 start-page: 1187 year: 1999 ident: 10.1016/j.cviu.2019.07.003_b15 article-title: Remotely sensed change detection based on artificial neural networks publication-title: Photogramm. Eng. Remote Sensing – start-page: 411 year: 2014 ident: 10.1016/j.cviu.2019.07.003_b48 article-title: Deep learning to classify difference image for image change detection – volume: 25 start-page: 1565 issue: 9 year: 2004 ident: 10.1016/j.cviu.2019.07.003_b14 article-title: Digital change detection methods in ecosystem monitoring: A review publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000101675 – volume: 24 start-page: 2345 issue: 14 year: 2003 ident: 10.1016/j.cviu.2019.07.003_b37 article-title: Evaluation of global image thresholding for change detection publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(03)00060-6 – volume: 6 start-page: 772 issue: 4 year: 2009 ident: 10.1016/j.cviu.2019.07.003_b10 article-title: Unsupervised change detection in satellite images using principal component analysis and k-means clustering publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2025059 – start-page: 4176 year: 2011 ident: 10.1016/j.cviu.2019.07.003_b5 article-title: Constrained optical flow for aerial image change detection – start-page: 85 year: 2005 ident: 10.1016/j.cviu.2019.07.003_b6 article-title: A wavelet-based change-detection technique for multitemporal sar images – start-page: 4353 year: 2015 ident: 10.1016/j.cviu.2019.07.003_b46 article-title: Learning to compare image patches via convolutional neural networks – volume: 29 start-page: 545 issue: 3 year: 2016 ident: 10.1016/j.cviu.2019.07.003_b28 article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2636227 – start-page: 1 year: 2009 ident: 10.1016/j.cviu.2019.07.003_b45 article-title: Supervised change detection in VHR images: a comparative analysis – year: 2019 ident: 10.1016/j.cviu.2019.07.003_b29 article-title: A contrario comparison of local descriptors for change detection in very high spatial resolution satellite images of urban areas publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 47 start-page: 3416 issue: 10 year: 2009 ident: 10.1016/j.cviu.2019.07.003_b3 article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2022633 – start-page: 210 year: 2010 ident: 10.1016/j.cviu.2019.07.003_b33 article-title: Learning to detect roads in high-resolution aerial images – ident: 10.1016/j.cviu.2019.07.003_b35 – start-page: 770 year: 2016 ident: 10.1016/j.cviu.2019.07.003_b22 article-title: Deep residual learning for image recognition – volume: 112 start-page: 2145 issue: 5 year: 2008 ident: 10.1016/j.cviu.2019.07.003_b38 article-title: Integrating landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.08.025 – volume: 10 start-page: 989 issue: 6 year: 1989 ident: 10.1016/j.cviu.2019.07.003_b40 article-title: Review article digital change detection techniques using remotely-sensed data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168908903939 – start-page: 850 year: 2016 ident: 10.1016/j.cviu.2019.07.003_b4 article-title: Fully-convolutional siamese networks for object tracking – year: 2015 ident: 10.1016/j.cviu.2019.07.003_b39 article-title: Very deep convolutional networks for large-scale image recognition – volume: 45 start-page: 218 issue: 1 year: 2007 ident: 10.1016/j.cviu.2019.07.003_b7 article-title: A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.885408 – start-page: 2103 year: 2018 ident: 10.1016/j.cviu.2019.07.003_b31 article-title: Improving maps from cnns trained with sparse, scribbled ground truths using fully connected crfs – start-page: 100110W year: 2016 ident: 10.1016/j.cviu.2019.07.003_b19 article-title: Convolutional neural network features based change detection in satellite images – start-page: 4008 year: 2018 ident: 10.1016/j.cviu.2019.07.003_b11 article-title: Mfcnet: End-to-end approach for change detection in images – volume: 48 start-page: 231 issue: 2 year: 1994 ident: 10.1016/j.cviu.2019.07.003_b25 article-title: Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90144-9 – volume: 55 start-page: 881 issue: 2 year: 2017 ident: 10.1016/j.cviu.2019.07.003_b43 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2616585 – volume: 20 start-page: 77 year: 2013 ident: 10.1016/j.cviu.2019.07.003_b44 article-title: Supervised change detection in VHR images using contextual information and support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2011.10.013 |
SSID | ssj0011491 |
Score | 2.653331 |
Snippet | Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 102783 |
SubjectTerms | Computer Science Computer Vision and Pattern Recognition Fully convolutional networks High resolution Earth observation Multitask learning Remote sensing Semantic change detection |
Title | Multitask learning for large-scale semantic change detection |
URI | https://dx.doi.org/10.1016/j.cviu.2019.07.003 https://hal.science/hal-02407789 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GuMCBxwAxHlOEuKGytmmaVeIyTUzjtQtM2q1K0xQKo0ys25Hfjt2mEwhpB4610odsx_6c-kHIufJjpiUHCfAAApTIiSypRAA7Hpw5k1pEMR4NPAz9wci7HfNxjfSqWhhMqzS2v7TphbU2lLbhZnuapu1HCFwEczzYcgxxDtphzxOo5ZdfyzQPgPvF1DxcbOFqUzhT5nipRTrH9K6gaOBZDc7665zWXqpj1sLt9HfIlsGLtFt-0i6p6axBtg12pGZnzoBUjWeoaA2y-aPX4B65Kktt5eyNmkkRzxQAK51gKrg1A1FpOtPvwOhU0bIcmMY6LzK1sn0y6l8_9QaWGZ1gKSY6ueXE4He1CKQdaR4LN4lBY9xOFGgIiDwOuEOrgMuOBwELlzpRijmuz1kiAiVcZbMDUs8-Mn1IaJT4tox55IK0PQAzEpgOjBeJD8aC2XGTOBXPQmX6iuN4i0lYJZC9hsjnEPkc2vi7mzXJxfKeadlVY-VqXoki_KUbIZj9lfedgdyWL8BG2oPufYg07OwmRCdYOEf_fPgx2cCrMq_vhNTzz7k-BXySR61CAVtkvXtzNxh-A1oM4rg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYCBRwFRnhZiQ6FJHMeJxFJVVAHaLrRSN8txHCiUUNHHyG_nnDgVCKkD68V56M53951zD4SupJ8QJShIgIYQoMRObAnJQtB4cOZEKBYn-mig2_OjgfcwpMMKapW1MDqt0tj-wqbn1tpQGoabjclo1HiCwIURxwOVIxrngB1e90B99RiDm69lngfg_Xxsnl5t6eWmcqZI8pKL0Vznd4V5B89yctZf77T2Up6z5n6nvYu2DWDEzeKb9lBFZTW0Y8AjNqo5BVI5n6Gk1dDWj2aD--i2qLUV0zdsRkU8Y0CseKxzwa0pyErhqXoHTo8kLuqBcaJmeapWdoAG7bt-K7LM7ARLEhbMLCcBx6tYKOxY0YS5aQJbxg3iUEFE5FEAHkqGVAQeRCxUqFRK4rg-JSkLJXOlTQ5RNfvI1BHCcerbIqGxC-L2AM0I4DpwnqU-WAtiJ3XklDzj0jQW1_MtxrzMIHvlms9c85nb-n83qaPr5T2Toq3GytW0FAX_tTk42P2V912C3JYv0J20o2aHa5pu7cZYEC6c438-_AJtRP1uh3fue48naFNfKZL8TlF19jlXZwBWZvF5vhm_AZ9y5EY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitask+learning+for+large-scale+semantic+change+detection&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Caye+Daudt%2C+Rodrigo&rft.au=Le+Saux%2C+Bertrand&rft.au=Boulch%2C+Alexandre&rft.au=Gousseau%2C+Yann&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=187&rft_id=info:doi/10.1016%2Fj.cviu.2019.07.003&rft.externalDocID=S1077314219300992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |