An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method

In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The ef...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 4; pp. 8661 - 8688
Main Authors Alrzqi, Shumoua F., Alrawajeh, Fatimah A., Hassan, Hany N.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The efficiency, accuracy, and simplicity of the employed methodology were tested by solving eight different cases involving four examples of the single solitary wave with different parameter values, interactions between two solitary waves, interactions between three solitary waves, and evolution of solitons with Gaussian and undular bore initial conditions. The error norms were evaluated for the motion of the single solitary wave. The conservation properties of the GR–KDV–RLW equation were studied by computing the momentum and energy. Additionally, the numerical results were compared with the previous studies in the literature.
AbstractList In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The efficiency, accuracy, and simplicity of the employed methodology were tested by solving eight different cases involving four examples of the single solitary wave with different parameter values, interactions between two solitary waves, interactions between three solitary waves, and evolution of solitons with Gaussian and undular bore initial conditions. The error norms were evaluated for the motion of the single solitary wave. The conservation properties of the GR–KDV–RLW equation were studied by computing the momentum and energy. Additionally, the numerical results were compared with the previous studies in the literature.
Author Alrawajeh, Fatimah A.
Hassan, Hany N.
Alrzqi, Shumoua F.
Author_xml – sequence: 1
  givenname: Shumoua F.
  surname: Alrzqi
  fullname: Alrzqi, Shumoua F.
  organization: Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
– sequence: 2
  givenname: Fatimah A.
  surname: Alrawajeh
  fullname: Alrawajeh, Fatimah A.
  organization: Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
– sequence: 3
  givenname: Hany N.
  surname: Hassan
  fullname: Hassan, Hany N.
  organization: Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, Saudi Arabia
BookMark eNptkU1OHDEQha2ISAHCLgfwATLgdtvd7iWa8KeMFAnlZ9mqtsszHvXYg-1GIqssuAE35CQ0M0OEEJuqUum9b_HeAdnzwSMhXwp2XDalOFlBXhxzxoXg7APZ56IuJ1Wj1N6r-xM5SmnJGOMFF7wW--T-1FO01mmHPlM_rDA6DT3NqBfe3QxIbYjU-VtM2c0hOz-neYF0jh4j9O4vGnodEnoYHv89fP_2e5zXsz8Ub4ZRHDzt7uiQXlznYYgOI01r1Hm00xXmRTCfyUcLfcKj3T4kv87Pfk4vJ7MfF1fT09lEl7XKkwKaWhgpWAWy6gQKqTVwBEChoJK6qnVXStnVndUF1FXRKFmA1MZ2493U5SG52nJNgGW7jm4F8a4N4NrNI8R5CzE73WMrteqMsWA6ywRjSiFDVRquKhRNo2Fkfd2ydAwpRbT_eQVrnwtpnwtpd4WMcv5Grl3eJDTm4Pr3TU-S4JaU
CitedBy_id crossref_primary_10_3390_math13071036
crossref_primary_10_3934_math_2025257
crossref_primary_10_3934_math_2025307
crossref_primary_10_1007_s12190_024_02349_0
crossref_primary_10_3934_math_2025080
Cites_doi 10.1016/j.cam.2017.09.009
10.1007/s40819-021-01095-2
10.25092/baunfbed.475968
10.3329/ganit.v40i1.48193
10.12816/0006177
10.1186/s13661-019-1273-2
10.1515/zna-2010-0402
10.3390/math8091601
10.1016/j.amc.2009.06.011
10.1143/PTP.79.1028
10.1186/s13660-023-03012-1
10.1103/PhysRevE.66.046623
10.4208/jms.v55n1.22.01
10.1080/14786449508620739
10.24200/sci.2018.50490.1721
10.48129/kjs.v48i1.8610
10.4172/2090-0902.1000240
10.1155/2021/9934858
10.1002/num.22925
10.1016/j.jaubas.2016.10.002
10.1515/zna-2010-0407
10.1016/j.camwa.2017.11.017
10.1002/num.22387
10.1140/epjp/i2016-16356-3
10.1088/0951-7715/20/2/006
10.4236/jamp.2016.46110
10.1016/j.cam.2019.01.041
10.1016/j.amc.2014.07.075
10.1515/math-2020-0036
10.1002/num.22208
10.1155/2013/423718
10.1088/0031-8949/34/6B/020
10.1016/j.aml.2018.12.018
10.1016/j.jcp.2016.10.022
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024420
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 8688
ExternalDocumentID oai_doaj_org_article_5c8bddfadbf040088e0e83d286e499ca
10_3934_math_2024420
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-1a974d5406a56b4e45cca2eaae48a65c67cb355b7bfc1a7619851a5cdfb619973
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:22:00 EDT 2025
Tue Jul 01 03:57:11 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-1a974d5406a56b4e45cca2eaae48a65c67cb355b7bfc1a7619851a5cdfb619973
OpenAccessLink https://doaj.org/article/5c8bddfadbf040088e0e83d286e499ca
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_5c8bddfadbf040088e0e83d286e499ca
crossref_primary_10_3934_math_2024420
crossref_citationtrail_10_3934_math_2024420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024420-28
key-10.3934/math.2024420-29
key-10.3934/math.2024420-7
key-10.3934/math.2024420-6
key-10.3934/math.2024420-9
key-10.3934/math.2024420-8
key-10.3934/math.2024420-30
key-10.3934/math.2024420-3
key-10.3934/math.2024420-2
key-10.3934/math.2024420-5
key-10.3934/math.2024420-4
key-10.3934/math.2024420-13
key-10.3934/math.2024420-35
key-10.3934/math.2024420-14
key-10.3934/math.2024420-36
key-10.3934/math.2024420-1
key-10.3934/math.2024420-15
key-10.3934/math.2024420-37
key-10.3934/math.2024420-16
key-10.3934/math.2024420-38
key-10.3934/math.2024420-31
key-10.3934/math.2024420-10
key-10.3934/math.2024420-32
key-10.3934/math.2024420-11
key-10.3934/math.2024420-33
key-10.3934/math.2024420-12
key-10.3934/math.2024420-34
key-10.3934/math.2024420-17
key-10.3934/math.2024420-39
key-10.3934/math.2024420-18
key-10.3934/math.2024420-19
key-10.3934/math.2024420-24
key-10.3934/math.2024420-25
key-10.3934/math.2024420-26
key-10.3934/math.2024420-27
key-10.3934/math.2024420-20
key-10.3934/math.2024420-21
key-10.3934/math.2024420-22
key-10.3934/math.2024420-23
References_xml – ident: key-10.3934/math.2024420-23
  doi: 10.1016/j.cam.2017.09.009
– ident: key-10.3934/math.2024420-18
  doi: 10.1007/s40819-021-01095-2
– ident: key-10.3934/math.2024420-22
  doi: 10.25092/baunfbed.475968
– ident: key-10.3934/math.2024420-25
  doi: 10.3329/ganit.v40i1.48193
– ident: key-10.3934/math.2024420-36
  doi: 10.12816/0006177
– ident: key-10.3934/math.2024420-20
  doi: 10.1186/s13661-019-1273-2
– ident: key-10.3934/math.2024420-32
  doi: 10.1515/zna-2010-0402
– ident: key-10.3934/math.2024420-10
  doi: 10.3390/math8091601
– ident: key-10.3934/math.2024420-7
  doi: 10.1016/j.amc.2009.06.011
– ident: key-10.3934/math.2024420-5
  doi: 10.1143/PTP.79.1028
– ident: key-10.3934/math.2024420-12
– ident: key-10.3934/math.2024420-14
  doi: 10.1186/s13660-023-03012-1
– ident: key-10.3934/math.2024420-1
  doi: 10.1103/PhysRevE.66.046623
– ident: key-10.3934/math.2024420-15
  doi: 10.4208/jms.v55n1.22.01
– ident: key-10.3934/math.2024420-2
  doi: 10.1080/14786449508620739
– ident: key-10.3934/math.2024420-19
  doi: 10.24200/sci.2018.50490.1721
– ident: key-10.3934/math.2024420-37
– ident: key-10.3934/math.2024420-16
  doi: 10.48129/kjs.v48i1.8610
– ident: key-10.3934/math.2024420-35
  doi: 10.4172/2090-0902.1000240
– ident: key-10.3934/math.2024420-26
  doi: 10.1155/2021/9934858
– ident: key-10.3934/math.2024420-13
  doi: 10.1002/num.22925
– ident: key-10.3934/math.2024420-28
  doi: 10.1016/j.jaubas.2016.10.002
– ident: key-10.3934/math.2024420-31
  doi: 10.1515/zna-2010-0407
– ident: key-10.3934/math.2024420-30
  doi: 10.1016/j.camwa.2017.11.017
– ident: key-10.3934/math.2024420-21
  doi: 10.1002/num.22387
– ident: key-10.3934/math.2024420-4
  doi: 10.1140/epjp/i2016-16356-3
– ident: key-10.3934/math.2024420-3
  doi: 10.1088/0951-7715/20/2/006
– ident: key-10.3934/math.2024420-29
– ident: key-10.3934/math.2024420-33
  doi: 10.4236/jamp.2016.46110
– ident: key-10.3934/math.2024420-38
  doi: 10.1016/j.cam.2019.01.041
– ident: key-10.3934/math.2024420-39
  doi: 10.1016/j.amc.2014.07.075
– ident: key-10.3934/math.2024420-9
  doi: 10.1515/math-2020-0036
– ident: key-10.3934/math.2024420-17
  doi: 10.3390/math8091601
– ident: key-10.3934/math.2024420-11
  doi: 10.1002/num.22208
– ident: key-10.3934/math.2024420-8
  doi: 10.1155/2013/423718
– ident: key-10.3934/math.2024420-34
– ident: key-10.3934/math.2024420-6
  doi: 10.1088/0031-8949/34/6B/020
– ident: key-10.3934/math.2024420-27
  doi: 10.1016/j.aml.2018.12.018
– ident: key-10.3934/math.2024420-24
  doi: 10.1016/j.jcp.2016.10.022
SSID ssj0002124274
Score 2.283353
Snippet In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 8661
SubjectTerms fast fourier transform
finite difference
fourier spectral method
gr–kdv–rlw equation
solitary waves
Title An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method
URI https://doaj.org/article/5c8bddfadbf040088e0e83d286e499ca
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATitrUjpOO5VFVQBkQhW6Rz7GrSlV4tQNMDPwD_iG_hLs4lCyIhSVDdBdZ54vvO_v8HWMHQrkYYYcOAINhgH-iCzSACiC0JtbCiLBF9537V6o3kOfDaFhp9UU1YZ4e2BuuEZkEsszpDBz5W5LYpk1E1kqURbBuCmiEMa-STNEajAuyxHzLV7qLtpANxH909oDRjFp7V2JQhaq_iCndFbZcgkHe8YNYZQs2X2NL_TmT6vM6e-_k3BY0DxgdeD7zBywTPude5Yg6-fiHLSMfcVTnI08nPX61Gafuibmefb59XJze4vP68o7bR8_xzeGFU-271-r6Dna8uH-J6tw3mN5gg-7ZzUkvKDsnBEbEyTQINaYJGYIxpSMF0soIJ6pltbYy0SoyKjaAQANicCbUtJOBwEtHJnOgqPJEbLJafp_bLcaFbkvljItRUxqNeA9C0wwNAs0IrIY6O_q2ZWpKWnHqbjFJMb0gy6dk-bS0fJ0dzqUfPJ3GL3LHNC1zGSLBLl6ga6Sla6R_ucb2f3xkhy3SmPyuyy6rTZ9mdg9xyBT2C5f7Ap8o4uc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+numerical+technique+for+investigating+the+generalized+Rosenau%E2%80%93KDV%E2%80%93RLW+equation+by+using+the+Fourier+spectral+method&rft.jtitle=AIMS+mathematics&rft.au=Shumoua+F.+Alrzqi&rft.au=Fatimah+A.+Alrawajeh&rft.au=Hany+N.+Hassan&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=4&rft.spage=8661&rft.epage=8688&rft_id=info:doi/10.3934%2Fmath.2024420&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c8bddfadbf040088e0e83d286e499ca
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon