An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method
In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The ef...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 4; pp. 8661 - 8688 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The efficiency, accuracy, and simplicity of the employed methodology were tested by solving eight different cases involving four examples of the single solitary wave with different parameter values, interactions between two solitary waves, interactions between three solitary waves, and evolution of solitons with Gaussian and undular bore initial conditions. The error norms were evaluated for the motion of the single solitary wave. The conservation properties of the GR–KDV–RLW equation were studied by computing the momentum and energy. Additionally, the numerical results were compared with the previous studies in the literature. |
---|---|
AbstractList | In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier spectral collection method to discretize the space variable, while the central finite difference method was utilized for the time dependency. The efficiency, accuracy, and simplicity of the employed methodology were tested by solving eight different cases involving four examples of the single solitary wave with different parameter values, interactions between two solitary waves, interactions between three solitary waves, and evolution of solitons with Gaussian and undular bore initial conditions. The error norms were evaluated for the motion of the single solitary wave. The conservation properties of the GR–KDV–RLW equation were studied by computing the momentum and energy. Additionally, the numerical results were compared with the previous studies in the literature. |
Author | Alrawajeh, Fatimah A. Hassan, Hany N. Alrzqi, Shumoua F. |
Author_xml | – sequence: 1 givenname: Shumoua F. surname: Alrzqi fullname: Alrzqi, Shumoua F. organization: Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia – sequence: 2 givenname: Fatimah A. surname: Alrawajeh fullname: Alrawajeh, Fatimah A. organization: Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia – sequence: 3 givenname: Hany N. surname: Hassan fullname: Hassan, Hany N. organization: Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, Saudi Arabia |
BookMark | eNptkU1OHDEQha2ISAHCLgfwATLgdtvd7iWa8KeMFAnlZ9mqtsszHvXYg-1GIqssuAE35CQ0M0OEEJuqUum9b_HeAdnzwSMhXwp2XDalOFlBXhxzxoXg7APZ56IuJ1Wj1N6r-xM5SmnJGOMFF7wW--T-1FO01mmHPlM_rDA6DT3NqBfe3QxIbYjU-VtM2c0hOz-neYF0jh4j9O4vGnodEnoYHv89fP_2e5zXsz8Ub4ZRHDzt7uiQXlznYYgOI01r1Hm00xXmRTCfyUcLfcKj3T4kv87Pfk4vJ7MfF1fT09lEl7XKkwKaWhgpWAWy6gQKqTVwBEChoJK6qnVXStnVndUF1FXRKFmA1MZ2493U5SG52nJNgGW7jm4F8a4N4NrNI8R5CzE73WMrteqMsWA6ywRjSiFDVRquKhRNo2Fkfd2ydAwpRbT_eQVrnwtpnwtpd4WMcv5Grl3eJDTm4Pr3TU-S4JaU |
CitedBy_id | crossref_primary_10_3390_math13071036 crossref_primary_10_3934_math_2025257 crossref_primary_10_3934_math_2025307 crossref_primary_10_1007_s12190_024_02349_0 crossref_primary_10_3934_math_2025080 |
Cites_doi | 10.1016/j.cam.2017.09.009 10.1007/s40819-021-01095-2 10.25092/baunfbed.475968 10.3329/ganit.v40i1.48193 10.12816/0006177 10.1186/s13661-019-1273-2 10.1515/zna-2010-0402 10.3390/math8091601 10.1016/j.amc.2009.06.011 10.1143/PTP.79.1028 10.1186/s13660-023-03012-1 10.1103/PhysRevE.66.046623 10.4208/jms.v55n1.22.01 10.1080/14786449508620739 10.24200/sci.2018.50490.1721 10.48129/kjs.v48i1.8610 10.4172/2090-0902.1000240 10.1155/2021/9934858 10.1002/num.22925 10.1016/j.jaubas.2016.10.002 10.1515/zna-2010-0407 10.1016/j.camwa.2017.11.017 10.1002/num.22387 10.1140/epjp/i2016-16356-3 10.1088/0951-7715/20/2/006 10.4236/jamp.2016.46110 10.1016/j.cam.2019.01.041 10.1016/j.amc.2014.07.075 10.1515/math-2020-0036 10.1002/num.22208 10.1155/2013/423718 10.1088/0031-8949/34/6B/020 10.1016/j.aml.2018.12.018 10.1016/j.jcp.2016.10.022 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2024420 |
DatabaseName | CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 8688 |
ExternalDocumentID | oai_doaj_org_article_5c8bddfadbf040088e0e83d286e499ca 10_3934_math_2024420 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-1a974d5406a56b4e45cca2eaae48a65c67cb355b7bfc1a7619851a5cdfb619973 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:22:00 EDT 2025 Tue Jul 01 03:57:11 EDT 2025 Thu Apr 24 22:58:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-1a974d5406a56b4e45cca2eaae48a65c67cb355b7bfc1a7619851a5cdfb619973 |
OpenAccessLink | https://doaj.org/article/5c8bddfadbf040088e0e83d286e499ca |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c8bddfadbf040088e0e83d286e499ca crossref_primary_10_3934_math_2024420 crossref_citationtrail_10_3934_math_2024420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2024420-28 key-10.3934/math.2024420-29 key-10.3934/math.2024420-7 key-10.3934/math.2024420-6 key-10.3934/math.2024420-9 key-10.3934/math.2024420-8 key-10.3934/math.2024420-30 key-10.3934/math.2024420-3 key-10.3934/math.2024420-2 key-10.3934/math.2024420-5 key-10.3934/math.2024420-4 key-10.3934/math.2024420-13 key-10.3934/math.2024420-35 key-10.3934/math.2024420-14 key-10.3934/math.2024420-36 key-10.3934/math.2024420-1 key-10.3934/math.2024420-15 key-10.3934/math.2024420-37 key-10.3934/math.2024420-16 key-10.3934/math.2024420-38 key-10.3934/math.2024420-31 key-10.3934/math.2024420-10 key-10.3934/math.2024420-32 key-10.3934/math.2024420-11 key-10.3934/math.2024420-33 key-10.3934/math.2024420-12 key-10.3934/math.2024420-34 key-10.3934/math.2024420-17 key-10.3934/math.2024420-39 key-10.3934/math.2024420-18 key-10.3934/math.2024420-19 key-10.3934/math.2024420-24 key-10.3934/math.2024420-25 key-10.3934/math.2024420-26 key-10.3934/math.2024420-27 key-10.3934/math.2024420-20 key-10.3934/math.2024420-21 key-10.3934/math.2024420-22 key-10.3934/math.2024420-23 |
References_xml | – ident: key-10.3934/math.2024420-23 doi: 10.1016/j.cam.2017.09.009 – ident: key-10.3934/math.2024420-18 doi: 10.1007/s40819-021-01095-2 – ident: key-10.3934/math.2024420-22 doi: 10.25092/baunfbed.475968 – ident: key-10.3934/math.2024420-25 doi: 10.3329/ganit.v40i1.48193 – ident: key-10.3934/math.2024420-36 doi: 10.12816/0006177 – ident: key-10.3934/math.2024420-20 doi: 10.1186/s13661-019-1273-2 – ident: key-10.3934/math.2024420-32 doi: 10.1515/zna-2010-0402 – ident: key-10.3934/math.2024420-10 doi: 10.3390/math8091601 – ident: key-10.3934/math.2024420-7 doi: 10.1016/j.amc.2009.06.011 – ident: key-10.3934/math.2024420-5 doi: 10.1143/PTP.79.1028 – ident: key-10.3934/math.2024420-12 – ident: key-10.3934/math.2024420-14 doi: 10.1186/s13660-023-03012-1 – ident: key-10.3934/math.2024420-1 doi: 10.1103/PhysRevE.66.046623 – ident: key-10.3934/math.2024420-15 doi: 10.4208/jms.v55n1.22.01 – ident: key-10.3934/math.2024420-2 doi: 10.1080/14786449508620739 – ident: key-10.3934/math.2024420-19 doi: 10.24200/sci.2018.50490.1721 – ident: key-10.3934/math.2024420-37 – ident: key-10.3934/math.2024420-16 doi: 10.48129/kjs.v48i1.8610 – ident: key-10.3934/math.2024420-35 doi: 10.4172/2090-0902.1000240 – ident: key-10.3934/math.2024420-26 doi: 10.1155/2021/9934858 – ident: key-10.3934/math.2024420-13 doi: 10.1002/num.22925 – ident: key-10.3934/math.2024420-28 doi: 10.1016/j.jaubas.2016.10.002 – ident: key-10.3934/math.2024420-31 doi: 10.1515/zna-2010-0407 – ident: key-10.3934/math.2024420-30 doi: 10.1016/j.camwa.2017.11.017 – ident: key-10.3934/math.2024420-21 doi: 10.1002/num.22387 – ident: key-10.3934/math.2024420-4 doi: 10.1140/epjp/i2016-16356-3 – ident: key-10.3934/math.2024420-3 doi: 10.1088/0951-7715/20/2/006 – ident: key-10.3934/math.2024420-29 – ident: key-10.3934/math.2024420-33 doi: 10.4236/jamp.2016.46110 – ident: key-10.3934/math.2024420-38 doi: 10.1016/j.cam.2019.01.041 – ident: key-10.3934/math.2024420-39 doi: 10.1016/j.amc.2014.07.075 – ident: key-10.3934/math.2024420-9 doi: 10.1515/math-2020-0036 – ident: key-10.3934/math.2024420-17 doi: 10.3390/math8091601 – ident: key-10.3934/math.2024420-11 doi: 10.1002/num.22208 – ident: key-10.3934/math.2024420-8 doi: 10.1155/2013/423718 – ident: key-10.3934/math.2024420-34 – ident: key-10.3934/math.2024420-6 doi: 10.1088/0031-8949/34/6B/020 – ident: key-10.3934/math.2024420-27 doi: 10.1016/j.aml.2018.12.018 – ident: key-10.3934/math.2024420-24 doi: 10.1016/j.jcp.2016.10.022 |
SSID | ssj0002124274 |
Score | 2.283353 |
Snippet | In this article, the generalized Rosenau-Korteweg-de Vries-regularized long wave (GR–KDV–RLW) equation was numerically studied by employing the Fourier... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 8661 |
SubjectTerms | fast fourier transform finite difference fourier spectral method gr–kdv–rlw equation solitary waves |
Title | An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method |
URI | https://doaj.org/article/5c8bddfadbf040088e0e83d286e499ca |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATitrUjpOO5VFVQBkQhW6Rz7GrSlV4tQNMDPwD_iG_hLs4lCyIhSVDdBdZ54vvO_v8HWMHQrkYYYcOAINhgH-iCzSACiC0JtbCiLBF9537V6o3kOfDaFhp9UU1YZ4e2BuuEZkEsszpDBz5W5LYpk1E1kqURbBuCmiEMa-STNEajAuyxHzLV7qLtpANxH909oDRjFp7V2JQhaq_iCndFbZcgkHe8YNYZQs2X2NL_TmT6vM6e-_k3BY0DxgdeD7zBywTPude5Yg6-fiHLSMfcVTnI08nPX61Gafuibmefb59XJze4vP68o7bR8_xzeGFU-271-r6Dna8uH-J6tw3mN5gg-7ZzUkvKDsnBEbEyTQINaYJGYIxpSMF0soIJ6pltbYy0SoyKjaAQANicCbUtJOBwEtHJnOgqPJEbLJafp_bLcaFbkvljItRUxqNeA9C0wwNAs0IrIY6O_q2ZWpKWnHqbjFJMb0gy6dk-bS0fJ0dzqUfPJ3GL3LHNC1zGSLBLl6ga6Sla6R_ucb2f3xkhy3SmPyuyy6rTZ9mdg9xyBT2C5f7Ap8o4uc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+numerical+technique+for+investigating+the+generalized+Rosenau%E2%80%93KDV%E2%80%93RLW+equation+by+using+the+Fourier+spectral+method&rft.jtitle=AIMS+mathematics&rft.au=Shumoua+F.+Alrzqi&rft.au=Fatimah+A.+Alrawajeh&rft.au=Hany+N.+Hassan&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=4&rft.spage=8661&rft.epage=8688&rft_id=info:doi/10.3934%2Fmath.2024420&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c8bddfadbf040088e0e83d286e499ca |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |