Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning
The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of t...
Saved in:
Published in | Ceramics international Vol. 45; no. 3; pp. 3313 - 3324 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of the NFs were researched over the frequency range of 2.0–18.0 GHz. Both the impedance matching and EM wave absorption properties of the Ni-C NFs were improved by changing the carbonization temperature. The effect of graphitization degree on reflection loss (RL) and the possible loss mechanisms were directly displayed in the comparative study of each sample. The optimal RL value of − 44.9 dB and an effective frequency bandwidth of 3.0 GHz under a thickness of 3.0 mm can be reached by a sample calcined at 650 °C. These lightweight Ni-C NFs composites can be promising candidates for EM wave absorbers due to the combination of multiple loss mechanisms, nano-size effect and good impedance matching between Ni nanoparticles and CNFs. |
---|---|
AbstractList | The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of the NFs were researched over the frequency range of 2.0–18.0 GHz. Both the impedance matching and EM wave absorption properties of the Ni-C NFs were improved by changing the carbonization temperature. The effect of graphitization degree on reflection loss (RL) and the possible loss mechanisms were directly displayed in the comparative study of each sample. The optimal RL value of − 44.9 dB and an effective frequency bandwidth of 3.0 GHz under a thickness of 3.0 mm can be reached by a sample calcined at 650 °C. These lightweight Ni-C NFs composites can be promising candidates for EM wave absorbers due to the combination of multiple loss mechanisms, nano-size effect and good impedance matching between Ni nanoparticles and CNFs. |
Author | Ma, Jiqiang Shao, Wenjie Wei, Yupeng Huang, Guowei Shen, Yongqian Yan, Pengze Du, Xueyan Li, Qinglin Li, Jian |
Author_xml | – sequence: 1 givenname: Yongqian orcidid: 0000-0001-6056-7218 surname: Shen fullname: Shen, Yongqian organization: State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China – sequence: 2 givenname: Yupeng surname: Wei fullname: Wei, Yupeng organization: Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, PR China – sequence: 3 givenname: Jiqiang surname: Ma fullname: Ma, Jiqiang organization: State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China – sequence: 4 givenname: Qinglin surname: Li fullname: Li, Qinglin organization: State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China – sequence: 5 givenname: Jian surname: Li fullname: Li, Jian organization: College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China – sequence: 6 givenname: Wenjie surname: Shao fullname: Shao, Wenjie organization: State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China – sequence: 7 givenname: Pengze surname: Yan fullname: Yan, Pengze organization: State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China – sequence: 8 givenname: Guowei surname: Huang fullname: Huang, Guowei organization: State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China – sequence: 9 givenname: Xueyan surname: Du fullname: Du, Xueyan email: duxy@lut.cn organization: State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Key Laboratory of Nonferrous Metal alloys and Processing, Ministry of Education, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
BookMark | eNqFkNtKAzEQhoMo2FZfQfYFds1hDyl4oRRPUPCmXofZZFZSt8mSrJW-vVmqN970amBmvh--f07OnXdIyA2jBaOsvt0WGgPsrBsLTplMy4KX_IzMmGxELpZVfU5mlDc8l7Lkl2Qe45YmcFnSGVGbLwdtj9nO6uC_YY8ZtNGHYbTeZUPwA4bRYsx8lzmrP7HPNYQ23Rw439kWQ0xvOEBAk7WHDHvUY_BxsM5Z93FFLjroI17_zgV5f3rcrF7y9dvz6-phnWvRyDFnsl1CJbqaojAIEpaylgYq2nJKG6ZFabiQHKpkVouybEomRG1qbDqGpkGxIPUxN1nEGLBTQ7A7CAfFqJpqUlv1V5Oaapr2KSyBd_9AbUeY7McAtj-N3x9xTHJ7i0FFbdFpNDakIpTx9lTED-rYjQI |
CitedBy_id | crossref_primary_10_1039_D2NR02745C crossref_primary_10_1016_j_jcis_2020_10_109 crossref_primary_10_1016_j_jmat_2024_04_007 crossref_primary_10_1016_j_cej_2020_126985 crossref_primary_10_1016_j_ijbiomac_2021_12_154 crossref_primary_10_1016_j_ceramint_2023_12_257 crossref_primary_10_1016_j_matchemphys_2020_124169 crossref_primary_10_2139_ssrn_4064411 crossref_primary_10_1007_s10854_018_00610_4 crossref_primary_10_1016_j_jcis_2022_12_158 crossref_primary_10_1016_j_apsusc_2019_05_038 crossref_primary_10_1016_j_ceramint_2020_02_121 crossref_primary_10_1039_D2DT02076A crossref_primary_10_1016_j_ceramint_2024_10_097 crossref_primary_10_1016_j_jmst_2023_07_053 crossref_primary_10_1021_acsami_9b23310 crossref_primary_10_1016_j_ceramint_2022_09_235 crossref_primary_10_1021_acsami_4c08107 crossref_primary_10_1016_j_ceramint_2020_01_171 crossref_primary_10_3389_fmats_2020_00123 crossref_primary_10_1007_s10854_021_07363_7 crossref_primary_10_1016_j_ceramint_2023_11_061 crossref_primary_10_1016_j_jtice_2022_104350 crossref_primary_10_1016_j_carbon_2022_06_001 crossref_primary_10_1016_j_jmst_2022_12_022 crossref_primary_10_1016_j_compositesb_2021_109161 crossref_primary_10_1016_j_coco_2021_101007 crossref_primary_10_1016_j_carbon_2024_119817 crossref_primary_10_1021_acsanm_1c00111 crossref_primary_10_1021_acsanm_1c02532 crossref_primary_10_1016_j_ceramint_2020_07_193 crossref_primary_10_1016_j_seppur_2022_121509 crossref_primary_10_1039_D1DT01915E crossref_primary_10_1016_j_ceramint_2024_05_400 crossref_primary_10_1021_acsami_1c21272 crossref_primary_10_1021_acsanm_0c01855 crossref_primary_10_3390_ma13092162 crossref_primary_10_1007_s10854_020_04209_6 crossref_primary_10_1007_s10854_023_10194_3 crossref_primary_10_1016_j_ijbiomac_2023_125574 crossref_primary_10_1016_j_jallcom_2022_163971 crossref_primary_10_1016_j_jallcom_2022_167458 crossref_primary_10_1039_D2TC00107A crossref_primary_10_3390_polym16172539 crossref_primary_10_1016_j_coco_2025_102366 crossref_primary_10_1016_j_ceramint_2024_02_076 crossref_primary_10_1016_j_carbon_2022_04_035 crossref_primary_10_1016_j_ceramint_2020_08_018 crossref_primary_10_3390_nano15050406 crossref_primary_10_1016_j_ceramint_2021_03_224 crossref_primary_10_1016_j_coco_2022_101196 crossref_primary_10_2139_ssrn_4057187 crossref_primary_10_1016_j_apsusc_2022_152964 crossref_primary_10_1016_j_jallcom_2021_161903 crossref_primary_10_1016_j_micromeso_2024_113323 crossref_primary_10_1016_j_jallcom_2024_175071 crossref_primary_10_1039_D4RA03367A crossref_primary_10_1016_j_compositesb_2022_109800 crossref_primary_10_1016_j_jallcom_2021_160132 crossref_primary_10_1007_s12274_023_5483_7 crossref_primary_10_1016_j_ceramint_2020_12_043 crossref_primary_10_1016_j_jcis_2021_01_013 crossref_primary_10_1039_D0TA08372K crossref_primary_10_1016_j_ceramint_2025_01_136 crossref_primary_10_1016_j_jcis_2023_09_009 crossref_primary_10_1016_j_ceramint_2024_08_163 crossref_primary_10_1016_j_matchemphys_2021_125127 crossref_primary_10_1016_j_jmat_2023_04_010 crossref_primary_10_3390_mi10100644 crossref_primary_10_1007_s10853_024_09630_4 crossref_primary_10_1007_s10854_019_02462_y crossref_primary_10_1016_j_est_2020_101539 crossref_primary_10_1016_j_carbon_2022_04_042 crossref_primary_10_1016_j_ceramint_2022_07_335 crossref_primary_10_1002_smll_202001686 crossref_primary_10_1016_j_jallcom_2019_151806 crossref_primary_10_1039_D1CE01525G crossref_primary_10_1088_1361_6463_ac196d crossref_primary_10_1016_j_carbon_2025_120120 crossref_primary_10_4028_www_scientific_net_MSF_975_133 crossref_primary_10_1007_s10854_023_11878_6 crossref_primary_10_1016_j_ceramint_2024_01_121 crossref_primary_10_1016_j_jallcom_2023_173193 crossref_primary_10_1016_j_jece_2021_106969 crossref_primary_10_1007_s10853_024_09553_0 crossref_primary_10_1016_j_ijbiomac_2023_125032 crossref_primary_10_1016_j_jallcom_2020_153980 crossref_primary_10_1016_j_colsurfa_2023_132814 crossref_primary_10_1016_j_cej_2025_160372 crossref_primary_10_1016_j_ijbiomac_2021_11_107 crossref_primary_10_1016_j_jallcom_2023_171450 |
Cites_doi | 10.1016/j.ceramint.2016.09.072 10.1016/j.matchemphys.2013.07.003 10.1039/C4CP05229C 10.1016/j.jallcom.2016.09.181 10.1063/1.2236965 10.1021/acsami.6b00388 10.1021/acsami.6b10886 10.1007/s10854-015-3087-z 10.1016/j.jconrel.2014.04.018 10.1016/j.jallcom.2016.06.168 10.1021/acsami.5b05259 10.1016/j.tca.2005.11.006 10.1021/acsami.6b00978 10.1016/j.powtec.2014.10.001 10.1021/nn304630h 10.1103/PhysRevE.78.026608 10.1021/acsami.6b00264 10.1039/C4RA08095E 10.1007/s12274-012-0221-6 10.30919/es8d735 10.1021/acsami.5b02716 10.1039/C5TC02063H 10.1021/jp100697x 10.1021/acsami.5b06107 10.1007/s00339-013-7584-8 10.1039/C5TC03874J 10.1039/C4TA05718J 10.1007/s12274-016-1295-3 10.1021/acsami.7b13796 10.1021/jp805692r 10.1016/j.scriptamat.2008.03.038 10.1063/1.4825378 10.1021/acsami.6b15721 10.1007/s10853-017-0866-3 10.1016/j.compositesa.2016.10.033 10.1039/C7CE01439B 10.1016/j.jmmm.2015.01.053 10.1063/1.2949752 10.1021/am502910d 10.1039/C7CE00235A 10.1021/acs.nanolett.6b00942 10.1039/C5TC00313J 10.1016/j.jallcom.2013.10.063 10.1039/C5DT02715B 10.1039/C6TC00248J 10.1039/C4CP05031B 10.1016/j.ceramint.2018.06.167 10.1016/j.carbon.2016.10.059 10.1016/j.polymer.2013.12.042 10.1016/j.jmmm.2016.11.093 10.1016/j.materresbull.2016.08.036 10.1016/j.jallcom.2015.12.076 10.1021/acsnano.6b06512 10.1016/j.jallcom.2007.02.124 10.1016/j.matchar.2014.08.019 10.1038/s41598-017-01529-2 10.1016/j.bios.2009.04.032 10.1063/1.347502 10.1002/adma.201503149 10.1039/C7QI00120G 10.1021/jp908839r 10.1002/adma.201204196 10.1126/science.aan8782 10.1007/s10854-018-9848-8 10.1038/srep37972 10.1088/1361-6528/aa5d6f 10.1007/s10854-014-2064-2 10.1039/C4NR07243J 10.1103/PhysRevB.57.2915 10.1039/C7CP00629B 10.1016/j.cej.2016.12.117 10.1021/acsami.6b05480 10.1021/acsami.5b06509 10.1021/nl103962a 10.1016/j.carbon.2018.03.081 10.1021/acsami.5b05482 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2018 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2018.10.242 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 3324 |
ExternalDocumentID | 10_1016_j_ceramint_2018_10_242 S027288421833061X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RNS SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c378t-18b9a53f60e3dea8a9868da50b20071c34d2382a52426344741336d6e7f1ed7e3 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Thu Apr 24 23:12:28 EDT 2025 Tue Jul 01 03:38:16 EDT 2025 Fri Feb 23 02:48:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Electrospinning Microwave absorption Nickel-carbon nanofiber Electromagnetic characterization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-18b9a53f60e3dea8a9868da50b20071c34d2382a52426344741336d6e7f1ed7e3 |
ORCID | 0000-0001-6056-7218 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_ceramint_2018_10_242 crossref_citationtrail_10_1016_j_ceramint_2018_10_242 elsevier_sciencedirect_doi_10_1016_j_ceramint_2018_10_242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-15 |
PublicationDateYYYYMMDD | 2019-02-15 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Ceramics international |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Aharoni (bib64) 1991; 69 Patera, Bianchini, Africh, Dri, Soldano, Mariscal, Peressi, Comelli (bib51) 2018; 359 Lan, Li, Zong, Li, Sun, Tan, Feng, Ren, Zheng (bib67) 2016; 42 Li, Feng, Du, Bai, Fan, Zhang, Peng, Li (bib33) 2015; 3 Jian, Wu, Wei, Dou, Wang, He, Mahmood (bib61) 2016; 8 Zhao, Zhao, Shao, Fan, Zhang (bib69) 2015; 7 Zheng, Feng, Zong, Miao, Hu, Bai, Li (bib66) 2015; 3 Liu, Zhang, Yu, Jiao, Chen (bib40) 2016; 16 Liu, Cao, Bi, Liang, Yuan, She, Yang, Che (bib5) 2016; 28 Wang, Zou, Ding, Wu, Wang, Jin, Bi (bib31) 2013; 142 Pan, Liu, Han, Chi, Wang (bib27) 2013; 113 Zhang, Ji, Liu, Zhang, Gao, Li, Du (bib68) 2016; 4 Zhao, Shao, Fan, Zhao, Zhang, Guan, Zhang (bib14) 2015; 3 Wang, Gao, Tang, Chen, Duan, Zhao, Lin, Feng, Zhou, Qin (bib34) 2012; 6 Liu, Cao, Luo, Shi, Wang, Yuan (bib26) 2016; 8 Zhao, Shao, Fan, Sun, Guan, Zhang (bib28) 2014; 25 Chen, Xu, Ma, Ren, Cheng (bib2) 2013; 25 Qi, Hu, Cai, Xie, Bai, Jiang, Qin, Zhong, Du (bib32) 2016; 6 Shi, Lv, Cheng, Wang, Li (bib75) 2018; 29 Liu, Shao, Ji, Liang, Cheng, Quan, Du (bib20) 2017; 313 Barakat, Kim, Kim (bib52) 2009; 113 Zhao, Liu, Guo, Zhao, Liang, Ma, Zhang (bib73) 2017; 19 Sun, Guo, Xu, Du, Duan, Chen, Li, Liu (bib36) 2017; 92 Tian, Du, Cui, Deng, Xue, Xu, Qiang, Wang, Han (bib18) 2017; 52 Zhao, Shao, Fan, Wang, Xie, Zhang (bib8) 2015; 270 Zhao, Guo, Zhao, Deng, Fan, Shao, Bai, Zhang (bib11) 2016; 10 Zhao, Zhao, Shao, Fan, Zhang (bib12) 2015; 44 Maglione, Subramanian (bib58) 2008; 93 Wang, Han, Xu, Wang, Du, Wang, Qin, Zhang (bib29) 2010; 114 Sun, Liu, Feng, Fan, Lv, Wang, Li (bib39) 2014; 586 Li, Yu, Cheng, Deng, Wang, Wang (bib46) 2015; 7 Zhao, Deng, Zhang, Liang, Fan, Bai, Shao, Park (bib25) 2018 Markel (bib57) 2008; 78 Zhao, Fan, Shao, Zhao, Zhang (bib70) 2015; 7 Zhao, Guo, Zhao, Deng, Shao, Fan, Bai, Zhang (bib71) 2016; 8 Fernandes, Hechenleitner, Pineda (bib53) 2006; 441 Liu, Fu, Dai, Yan, Liu, Zhao, Zhang, Liu (bib50) 2011; 11 Feng, Wang, Hou, Li (bib6) 2017; 4 Liu, Zhou, Chen, Zhang, Fu, Zhao, Ma, Pan, Zhang, Han, Xie (bib45) 2015; 7 Qiao, Lei, Ma, Tian, Wang, Su, Zhang (bib63) 2017; 693 Wang, Xiang, Wei, An, He, Gong, Hou (bib35) 2017; 9 Gong, Zhang, Zhang, Yu, Zhang, Wu, Zhang (bib30) 2010; 114 Zhang, Dong, Huang, Liu, Wang, Zhu, Lv, Lei, Lee (bib37) 2006; 89 Zhang, Gao, Xie, Dai, Fu, Gao, Chen, Liu, Liu (bib48) 2012; 5 Zhao, Shao, Fan, Zhao, Xie, Zhang (bib13) 2014; 4 Li, Xiong, Liu, Bo, Zhang, Han, Guo (bib42) 2015; 7 Löffler, Meier, Doudin, Ansermet, Wagner (bib54) 1998; 57 Ding, Wang, Li, Qiang, Xu, Chu, Han, Du (bib21) 2017; 111 Zhang, Zhang, Quan, Ji, Liang, Liu, Du (bib38) 2017; 28 Kim, Jung, Yoon, Youn, Park, Kim (bib43) 2016; 10 Zhao, Shao, Fan, Zhao, Zhang (bib56) 2015; 26 Zhao, Shao, Fan, Guo, Xie, Zhang (bib10) 2015; 382 Pang, Xie, Li, Chou, Liu (bib23) 2017; 426 Zhao, Guo, Zhou, Su, Ma, Zhang (bib16) 2017; 19 Wang, Zhang, Zhang, Yu, Cui, Cao, Liu (bib3) 2017; 7 Zhao, Liang, Deng, Bai, Liu, Guo, Gao, Guo, Zhang (bib72) 2017; 19 Liu, Teng, Hou, You (bib41) 2009; 24 Su, Tao, Xiang, Zhang, Su, Wen (bib76) 2016; 84 She, Bi, Wen, Liu, Zhao, Zhang, Che (bib4) 2016; 8 Tian, Du, Xu, Qiang, Wang, Ding, Xue, Ma, Zhao, Han (bib17) 2015; 7 Huang, Zhang, Rao, Sang, Song, Wong (bib22) 2016; 662 Zhao, Shao, Fan, Zhao, Zhang (bib15) 2015; 17 Hu, Liu, Zhou, Huang, Xie, Jing (bib47) 2014; 185 Wang, Shao, Liu, Zhang (bib44) 2008; 59 Liu, Xie, Pang, Kobayashi (bib49) 2016; 4 Wang, Sun, Li, Zhong, Wu, Zuo, Yan, Zhuo, Feng, Yan (bib59) 2018; 134 Hou, Zhang, Kong, Fang, Li, Zhou, Jin, Cao (bib60) 2013; 103 Du, Liu, Qiang, Wang, Han, Ma, Xu (bib7) 2014; 6 Zhao, Shao, Fan, Zhao, Zhang (bib9) 2015; 17 Wu, Wu, Wu, Wang (bib74) 2014; 97 Gong, Wang, Liu, Yang, Zong (bib55) 2008; 457 Hou, Cheng, Zhang, Yang, Deng, Yang, Chen, Wang, Zheng (bib19) 2017; 9 Wu, Liu, Zeng, Cui, Zhao, Li, Tong (bib62) 2016; 8 Bayat, Yang, Ko, Michelson, Mei (bib1) 2014; 55 Kuang, Jiang, Ran, Cao (bib65) 2016; 687 Sui, Fu, Sun, Cui, Lv, Gu (bib24) 2018; 44 Liu (10.1016/j.ceramint.2018.10.242_bib20) 2017; 313 Du (10.1016/j.ceramint.2018.10.242_bib7) 2014; 6 Zhao (10.1016/j.ceramint.2018.10.242_bib10) 2015; 382 Zhao (10.1016/j.ceramint.2018.10.242_bib13) 2014; 4 Zhao (10.1016/j.ceramint.2018.10.242_bib72) 2017; 19 Liu (10.1016/j.ceramint.2018.10.242_bib41) 2009; 24 Bayat (10.1016/j.ceramint.2018.10.242_bib1) 2014; 55 Patera (10.1016/j.ceramint.2018.10.242_bib51) 2018; 359 Feng (10.1016/j.ceramint.2018.10.242_bib6) 2017; 4 Huang (10.1016/j.ceramint.2018.10.242_bib22) 2016; 662 Zhao (10.1016/j.ceramint.2018.10.242_bib70) 2015; 7 Pang (10.1016/j.ceramint.2018.10.242_bib23) 2017; 426 Maglione (10.1016/j.ceramint.2018.10.242_bib58) 2008; 93 Wu (10.1016/j.ceramint.2018.10.242_bib74) 2014; 97 Hou (10.1016/j.ceramint.2018.10.242_bib19) 2017; 9 Zhang (10.1016/j.ceramint.2018.10.242_bib37) 2006; 89 Hu (10.1016/j.ceramint.2018.10.242_bib47) 2014; 185 Zhao (10.1016/j.ceramint.2018.10.242_bib28) 2014; 25 Wang (10.1016/j.ceramint.2018.10.242_bib34) 2012; 6 Kuang (10.1016/j.ceramint.2018.10.242_bib65) 2016; 687 Liu (10.1016/j.ceramint.2018.10.242_bib5) 2016; 28 Wang (10.1016/j.ceramint.2018.10.242_bib44) 2008; 59 Zhao (10.1016/j.ceramint.2018.10.242_bib12) 2015; 44 Aharoni (10.1016/j.ceramint.2018.10.242_bib64) 1991; 69 Zhang (10.1016/j.ceramint.2018.10.242_bib68) 2016; 4 Tian (10.1016/j.ceramint.2018.10.242_bib18) 2017; 52 Jian (10.1016/j.ceramint.2018.10.242_bib61) 2016; 8 Wu (10.1016/j.ceramint.2018.10.242_bib62) 2016; 8 Zhao (10.1016/j.ceramint.2018.10.242_bib15) 2015; 17 Zhao (10.1016/j.ceramint.2018.10.242_bib8) 2015; 270 Löffler (10.1016/j.ceramint.2018.10.242_bib54) 1998; 57 Zheng (10.1016/j.ceramint.2018.10.242_bib66) 2015; 3 Li (10.1016/j.ceramint.2018.10.242_bib46) 2015; 7 Markel (10.1016/j.ceramint.2018.10.242_bib57) 2008; 78 Zhao (10.1016/j.ceramint.2018.10.242_bib11) 2016; 10 Liu (10.1016/j.ceramint.2018.10.242_bib50) 2011; 11 Kim (10.1016/j.ceramint.2018.10.242_bib43) 2016; 10 Wang (10.1016/j.ceramint.2018.10.242_bib29) 2010; 114 Pan (10.1016/j.ceramint.2018.10.242_bib27) 2013; 113 Qiao (10.1016/j.ceramint.2018.10.242_bib63) 2017; 693 Wang (10.1016/j.ceramint.2018.10.242_bib59) 2018; 134 Li (10.1016/j.ceramint.2018.10.242_bib42) 2015; 7 Liu (10.1016/j.ceramint.2018.10.242_bib49) 2016; 4 Chen (10.1016/j.ceramint.2018.10.242_bib2) 2013; 25 Zhao (10.1016/j.ceramint.2018.10.242_bib14) 2015; 3 Sun (10.1016/j.ceramint.2018.10.242_bib39) 2014; 586 Ding (10.1016/j.ceramint.2018.10.242_bib21) 2017; 111 Zhao (10.1016/j.ceramint.2018.10.242_bib69) 2015; 7 Gong (10.1016/j.ceramint.2018.10.242_bib55) 2008; 457 Li (10.1016/j.ceramint.2018.10.242_bib33) 2015; 3 Sui (10.1016/j.ceramint.2018.10.242_bib24) 2018; 44 Zhao (10.1016/j.ceramint.2018.10.242_bib56) 2015; 26 Barakat (10.1016/j.ceramint.2018.10.242_bib52) 2009; 113 Tian (10.1016/j.ceramint.2018.10.242_bib17) 2015; 7 Hou (10.1016/j.ceramint.2018.10.242_bib60) 2013; 103 Zhao (10.1016/j.ceramint.2018.10.242_bib71) 2016; 8 Wang (10.1016/j.ceramint.2018.10.242_bib3) 2017; 7 Wang (10.1016/j.ceramint.2018.10.242_bib35) 2017; 9 Liu (10.1016/j.ceramint.2018.10.242_bib40) 2016; 16 Zhao (10.1016/j.ceramint.2018.10.242_bib73) 2017; 19 Zhao (10.1016/j.ceramint.2018.10.242_bib16) 2017; 19 Wang (10.1016/j.ceramint.2018.10.242_bib31) 2013; 142 Lan (10.1016/j.ceramint.2018.10.242_bib67) 2016; 42 She (10.1016/j.ceramint.2018.10.242_bib4) 2016; 8 Zhao (10.1016/j.ceramint.2018.10.242_bib25) 2018 Shi (10.1016/j.ceramint.2018.10.242_bib75) 2018; 29 Zhang (10.1016/j.ceramint.2018.10.242_bib38) 2017; 28 Zhang (10.1016/j.ceramint.2018.10.242_bib48) 2012; 5 Liu (10.1016/j.ceramint.2018.10.242_bib45) 2015; 7 Su (10.1016/j.ceramint.2018.10.242_bib76) 2016; 84 Zhao (10.1016/j.ceramint.2018.10.242_bib9) 2015; 17 Qi (10.1016/j.ceramint.2018.10.242_bib32) 2016; 6 Liu (10.1016/j.ceramint.2018.10.242_bib26) 2016; 8 Fernandes (10.1016/j.ceramint.2018.10.242_bib53) 2006; 441 Gong (10.1016/j.ceramint.2018.10.242_bib30) 2010; 114 Sun (10.1016/j.ceramint.2018.10.242_bib36) 2017; 92 |
References_xml | – volume: 29 start-page: 17483 year: 2018 end-page: 17492 ident: bib75 article-title: Enhanced microwave absorption properties of modified Ni@C nanocapsules with accreted N doped C shell on surface publication-title: J. Mater. Sci. -Mater. Electron. – volume: 441 start-page: 101 year: 2006 end-page: 109 ident: bib53 article-title: Kinetic study of the thermal decomposition of poly(vinyl alcohol)/kraft lignin derivative blends publication-title: Thermochim. Acta – volume: 7 start-page: 21919 year: 2015 end-page: 21930 ident: bib46 article-title: Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation publication-title: ACS Appl. Mater. Interfaces – volume: 359 start-page: 1243 year: 2018 end-page: 1246 ident: bib51 article-title: Real-time imaging of adatom-promoted graphene growth on nickel publication-title: Science – volume: 78 year: 2008 ident: bib57 article-title: Can the imaginary part of permeability be negative? publication-title: Phys. Rev. E – volume: 26 start-page: 5393 year: 2015 end-page: 5399 ident: bib56 article-title: Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO publication-title: J. Mater. Sci. -Mater. Electron. – volume: 69 start-page: 7762 year: 1991 end-page: 7764 ident: bib64 article-title: Exchange resonance modes in a ferromagnetic sphere publication-title: J. Appl. Phys. – volume: 10 start-page: 11317 year: 2016 end-page: 11326 ident: bib43 article-title: A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO publication-title: ACS Nano – volume: 270 start-page: 20 year: 2015 end-page: 26 ident: bib8 article-title: Preparation and enhanced microwave absorption properties of Ni microspheres coated with Sn publication-title: Powder Technol. – year: 2018 ident: bib25 article-title: Recent advances on the electromagnetic wave absorption properties of Ni based materials publication-title: Eng. Sci. – volume: 44 start-page: 17138 year: 2018 end-page: 17146 ident: bib24 article-title: Unary and binary doping effect of M publication-title: Ceram. Int. – volume: 6 start-page: 11009 year: 2012 end-page: 11017 ident: bib34 article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition publication-title: ACS Nano – volume: 7 start-page: 8920 year: 2015 end-page: 8930 ident: bib42 article-title: Facile synthesis of electrospun MFe publication-title: Nanoscale – volume: 57 start-page: 2915 year: 1998 end-page: 2924 ident: bib54 article-title: Random and exchange anisotropy in consolidated nanostructured Fe and Ni: role of grain size and trace oxides on the magnetic properties publication-title: Phys. Rev. B – volume: 25 start-page: 3614 year: 2014 end-page: 3621 ident: bib28 article-title: Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method publication-title: J. Mater. Sci. -Mater. Electron. – volume: 3 start-page: 4452 year: 2015 end-page: 4463 ident: bib66 article-title: Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe publication-title: J. Mater. Chem. C – volume: 52 start-page: 6349 year: 2017 end-page: 6361 ident: bib18 article-title: Synthesis and microwave absorption enhancement of yolk–shell Fe publication-title: J. Mater. Sci. – volume: 111 start-page: 722 year: 2017 end-page: 732 ident: bib21 article-title: Rational design of core-shell Co@C microspheres for high-performance microwave absorption publication-title: Carbon – volume: 3 start-page: 5535 year: 2015 end-page: 5546 ident: bib33 article-title: One-pot synthesis of CoFe publication-title: J. Mater. Chem. A – volume: 8 start-page: 6101 year: 2016 end-page: 6109 ident: bib61 article-title: Facile synthesis of Fe publication-title: ACS Appl. Mater. Interfaces – volume: 662 start-page: 409 year: 2016 end-page: 414 ident: bib22 article-title: Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites publication-title: J. Alloy. Compd. – volume: 4 start-page: 61219 year: 2014 end-page: 61225 ident: bib13 article-title: ZnS nanowall coated Ni composites: facile preparation and enhanced electromagnetic wave absorption publication-title: RSC Adv. – volume: 113 start-page: 755 year: 2013 end-page: 761 ident: bib27 article-title: Microwave absorption properties of the Ni nanofibers fabricated by electrospinning publication-title: Appl. Phys. A – volume: 687 start-page: 227 year: 2016 end-page: 231 ident: bib65 article-title: Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers publication-title: J. Alloy. Compd. – volume: 4 start-page: 1860 year: 2016 end-page: 1870 ident: bib68 article-title: A novel Co/TiO publication-title: J. Mater. Chem. C – volume: 586 start-page: 688 year: 2014 end-page: 692 ident: bib39 article-title: A facile synthesis of FeNi publication-title: J. Alloy. Compd. – volume: 7 start-page: 23515 year: 2015 end-page: 23520 ident: bib45 article-title: Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 313 start-page: 734 year: 2017 end-page: 744 ident: bib20 article-title: Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber publication-title: Chem. Eng. J. – volume: 19 start-page: 9128 year: 2017 end-page: 9136 ident: bib73 article-title: Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability publication-title: Phys. Chem. Chem. Phys. – volume: 114 start-page: 3196 year: 2010 end-page: 3203 ident: bib29 article-title: Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties publication-title: J. Phys. Chem. C – volume: 28 start-page: 486 year: 2016 end-page: 490 ident: bib5 article-title: CoNi@SiO publication-title: Adv. Mater. – volume: 19 start-page: 2178 year: 2017 end-page: 2186 ident: bib16 article-title: Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers publication-title: Crystengcomm – volume: 113 start-page: 531 year: 2009 end-page: 536 ident: bib52 article-title: Production of smooth and pure nickel metal nanofibers by the electrospinning technique: nanofibers possess splendid magnetic properties publication-title: J. Phys. Chem. C – volume: 142 start-page: 119 year: 2013 end-page: 123 ident: bib31 article-title: Magnetic and microwave absorption properties of Ni microcrystals with hierarchical branch-like and flowers-like shapes publication-title: Mater. Chem. Phys. – volume: 84 start-page: 445 year: 2016 end-page: 448 ident: bib76 article-title: Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres publication-title: Mater. Res. Bull. – volume: 6 start-page: 37972 year: 2016 ident: bib32 article-title: Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties publication-title: Sci. Rep. – volume: 3 start-page: 10862 year: 2015 end-page: 10869 ident: bib14 article-title: In situ synthesis of novel urchin-like ZnS/Ni publication-title: J. Mater. Chem. C – volume: 59 start-page: 332 year: 2008 end-page: 335 ident: bib44 article-title: Photocatalytic properties BiOCl and Bi publication-title: Scr. Mater. – volume: 103 year: 2013 ident: bib60 article-title: Microwave permittivity and permeability experiments in high-loss dielectrics: caution with implicit Fabry-Perot resonance for negative imaginary permeability publication-title: Appl. Phys. Lett. – volume: 89 start-page: 053115 year: 2006 ident: bib37 article-title: Microwave absorption properties of the carbon-coated nickel nanocapsules publication-title: Appl. Phys. Lett. – volume: 25 start-page: 1296 year: 2013 end-page: 1300 ident: bib2 article-title: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding publication-title: Adv. Mater. – volume: 6 start-page: 12997 year: 2014 end-page: 13006 ident: bib7 article-title: Shell thickness-dependent microwave absorption of core-shell Fe publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 3329 year: 2009 end-page: 3334 ident: bib41 article-title: Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode publication-title: Biosens. Bioelectron. – volume: 8 start-page: 9782 year: 2016 end-page: 9789 ident: bib4 article-title: Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@alpha-MnO publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 28917 year: 2016 end-page: 28925 ident: bib71 article-title: Yolk–shell Ni@SnO publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 936 year: 2014 end-page: 943 ident: bib1 article-title: Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe publication-title: Polymer – volume: 7 start-page: 12951 year: 2015 end-page: 12960 ident: bib69 article-title: Morphology-control synthesis of a core–shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities publication-title: ACS Appl. Mater. Interfaces – volume: 426 start-page: 211 year: 2017 end-page: 216 ident: bib23 article-title: Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al publication-title: J. Magn. Magn. Mater. – volume: 17 start-page: 2531 year: 2015 end-page: 2539 ident: bib9 article-title: Investigation of the electromagnetic absorption properties of Ni@TiO publication-title: Phys. Chem. Chem. Phys. – volume: 93 year: 2008 ident: bib58 article-title: Dielectric and polarization experiments in high loss dielectrics: a word of caution publication-title: Appl. Phys. Lett. – volume: 4 start-page: 1727 year: 2016 end-page: 1735 ident: bib49 article-title: Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material publication-title: J. Mater. Chem. C – volume: 382 start-page: 78 year: 2015 end-page: 83 ident: bib10 article-title: Facile synthesis of Ni/ZnO composite: morphology control and microwave absorption properties publication-title: J. Magn. Magn. Mater. – volume: 44 start-page: 15984 year: 2015 end-page: 15993 ident: bib12 article-title: Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO publication-title: Dalton Trans. – volume: 42 start-page: 19110 year: 2016 end-page: 19118 ident: bib67 article-title: In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber publication-title: Ceram. Int. – volume: 8 start-page: 22615 year: 2016 end-page: 22622 ident: bib26 article-title: Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 6579 year: 2017 end-page: 6587 ident: bib72 article-title: 1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties publication-title: CrystEngComm – volume: 8 start-page: 7370 year: 2016 end-page: 7380 ident: bib62 article-title: Facile hydrothermal synthesis of Fe publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 7265 year: 2017 end-page: 7271 ident: bib19 article-title: Electrospinning of Fe/SiC Hybrid Fibers for Highly Efficient Microwave Absorption publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 3321 year: 2016 end-page: 3328 ident: bib40 article-title: MnFe publication-title: Nano Lett. – volume: 7 start-page: 20090 year: 2015 end-page: 20099 ident: bib17 article-title: Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 264 year: 2018 end-page: 273 ident: bib59 article-title: Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning publication-title: Carbon – volume: 185 start-page: 12 year: 2014 end-page: 21 ident: bib47 article-title: Electrospinning of polymeric nanofibers for drug delivery applications publication-title: J. Control. Release – volume: 7 start-page: 18815 year: 2015 end-page: 18823 ident: bib70 article-title: Facile synthesis of novel Heterostructure based on SnO publication-title: ACS Appl. Mater. Interfaces – volume: 457 start-page: 6 year: 2008 end-page: 9 ident: bib55 article-title: Structural and magnetic properties of hcp and fcc Ni nanoparticles publication-title: J. Alloy. Compd. – volume: 7 start-page: 1584 year: 2017 ident: bib3 article-title: Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance publication-title: Sci. Rep. – volume: 114 start-page: 10101 year: 2010 end-page: 10107 ident: bib30 article-title: Strategy for ultrafine Ni fibers and investigation of the electromagnetic characteristics publication-title: J. Phys. Chem. C – volume: 4 start-page: 935 year: 2017 end-page: 945 ident: bib6 article-title: Tunable design of yolk–shell ZnFe publication-title: Inorg. Chem. Front. – volume: 693 start-page: 432 year: 2017 end-page: 439 ident: bib63 article-title: Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe publication-title: J. Alloy. Compd. – volume: 92 start-page: 33 year: 2017 end-page: 41 ident: bib36 article-title: In situ preparation of carbon/Fe publication-title: Compos. Part A: Appl. Sci. Manuf. – volume: 10 start-page: 331 year: 2016 end-page: 343 ident: bib11 article-title: Facile synthesis of yolk–shell Ni@void@SnO publication-title: Nano Res. – volume: 28 start-page: 115704 year: 2017 ident: bib38 article-title: A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption publication-title: Nanotechnology – volume: 97 start-page: 18 year: 2014 end-page: 26 ident: bib74 article-title: Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere publication-title: Mater. Charact. – volume: 5 start-page: 402 year: 2012 end-page: 411 ident: bib48 article-title: Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: a scanning tunneling microscopy study publication-title: Nano Res. – volume: 11 start-page: 297 year: 2011 end-page: 303 ident: bib50 article-title: Universal segregation growth approach to wafer-size graphene from non-noble metals publication-title: Nano Lett. – volume: 17 start-page: 6044 year: 2015 end-page: 6052 ident: bib15 article-title: Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 42102 year: 2017 end-page: 42110 ident: bib35 article-title: Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 19110 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib67 article-title: In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.09.072 – volume: 142 start-page: 119 year: 2013 ident: 10.1016/j.ceramint.2018.10.242_bib31 article-title: Magnetic and microwave absorption properties of Ni microcrystals with hierarchical branch-like and flowers-like shapes publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.07.003 – volume: 17 start-page: 6044 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib15 article-title: Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05229C – volume: 693 start-page: 432 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib63 article-title: Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.09.181 – volume: 89 start-page: 053115 year: 2006 ident: 10.1016/j.ceramint.2018.10.242_bib37 article-title: Microwave absorption properties of the carbon-coated nickel nanocapsules publication-title: Appl. Phys. Lett. doi: 10.1063/1.2236965 – volume: 8 start-page: 6101 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib61 article-title: Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00388 – volume: 8 start-page: 28917 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib71 article-title: Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10886 – volume: 26 start-page: 5393 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib56 article-title: Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles publication-title: J. Mater. Sci. -Mater. Electron. doi: 10.1007/s10854-015-3087-z – volume: 185 start-page: 12 year: 2014 ident: 10.1016/j.ceramint.2018.10.242_bib47 article-title: Electrospinning of polymeric nanofibers for drug delivery applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.04.018 – volume: 687 start-page: 227 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib65 article-title: Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.06.168 – volume: 7 start-page: 20090 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib17 article-title: Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05259 – volume: 441 start-page: 101 year: 2006 ident: 10.1016/j.ceramint.2018.10.242_bib53 article-title: Kinetic study of the thermal decomposition of poly(vinyl alcohol)/kraft lignin derivative blends publication-title: Thermochim. Acta doi: 10.1016/j.tca.2005.11.006 – volume: 8 start-page: 9782 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib4 article-title: Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@alpha-MnO2 microspindles studied by electron holography publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00978 – volume: 270 start-page: 20 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib8 article-title: Preparation and enhanced microwave absorption properties of Ni microspheres coated with Sn6O4(OH)4 nanoshells publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.10.001 – volume: 6 start-page: 11009 year: 2012 ident: 10.1016/j.ceramint.2018.10.242_bib34 article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition publication-title: ACS Nano doi: 10.1021/nn304630h – volume: 78 year: 2008 ident: 10.1016/j.ceramint.2018.10.242_bib57 article-title: Can the imaginary part of permeability be negative? publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.026608 – volume: 8 start-page: 7370 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib62 article-title: Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00264 – volume: 4 start-page: 61219 year: 2014 ident: 10.1016/j.ceramint.2018.10.242_bib13 article-title: ZnS nanowall coated Ni composites: facile preparation and enhanced electromagnetic wave absorption publication-title: RSC Adv. doi: 10.1039/C4RA08095E – volume: 5 start-page: 402 year: 2012 ident: 10.1016/j.ceramint.2018.10.242_bib48 article-title: Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: a scanning tunneling microscopy study publication-title: Nano Res. doi: 10.1007/s12274-012-0221-6 – year: 2018 ident: 10.1016/j.ceramint.2018.10.242_bib25 article-title: Recent advances on the electromagnetic wave absorption properties of Ni based materials publication-title: Eng. Sci. doi: 10.30919/es8d735 – volume: 7 start-page: 12951 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib69 article-title: Morphology-control synthesis of a core–shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02716 – volume: 3 start-page: 10862 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib14 article-title: In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core-shell structure for efficient electromagnetic absorption publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02063H – volume: 114 start-page: 10101 year: 2010 ident: 10.1016/j.ceramint.2018.10.242_bib30 article-title: Strategy for ultrafine Ni fibers and investigation of the electromagnetic characteristics publication-title: J. Phys. Chem. C doi: 10.1021/jp100697x – volume: 7 start-page: 23515 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib45 article-title: Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06107 – volume: 113 start-page: 755 year: 2013 ident: 10.1016/j.ceramint.2018.10.242_bib27 article-title: Microwave absorption properties of the Ni nanofibers fabricated by electrospinning publication-title: Appl. Phys. A doi: 10.1007/s00339-013-7584-8 – volume: 4 start-page: 1727 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib49 article-title: Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material publication-title: J. Mater. Chem. C doi: 10.1039/C5TC03874J – volume: 3 start-page: 5535 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib33 article-title: One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05718J – volume: 10 start-page: 331 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib11 article-title: Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties publication-title: Nano Res. doi: 10.1007/s12274-016-1295-3 – volume: 9 start-page: 42102 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib35 article-title: Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13796 – volume: 113 start-page: 531 year: 2009 ident: 10.1016/j.ceramint.2018.10.242_bib52 article-title: Production of smooth and pure nickel metal nanofibers by the electrospinning technique: nanofibers possess splendid magnetic properties publication-title: J. Phys. Chem. C doi: 10.1021/jp805692r – volume: 59 start-page: 332 year: 2008 ident: 10.1016/j.ceramint.2018.10.242_bib44 article-title: Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2008.03.038 – volume: 103 year: 2013 ident: 10.1016/j.ceramint.2018.10.242_bib60 article-title: Microwave permittivity and permeability experiments in high-loss dielectrics: caution with implicit Fabry-Perot resonance for negative imaginary permeability publication-title: Appl. Phys. Lett. doi: 10.1063/1.4825378 – volume: 9 start-page: 7265 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib19 article-title: Electrospinning of Fe/SiC Hybrid Fibers for Highly Efficient Microwave Absorption publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15721 – volume: 52 start-page: 6349 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib18 article-title: Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-0866-3 – volume: 92 start-page: 33 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib36 article-title: In situ preparation of carbon/Fe3C composite nanofibers with excellent electromagnetic wave absorption properties publication-title: Compos. Part A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.10.033 – volume: 19 start-page: 6579 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib72 article-title: 1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties publication-title: CrystEngComm doi: 10.1039/C7CE01439B – volume: 382 start-page: 78 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib10 article-title: Facile synthesis of Ni/ZnO composite: morphology control and microwave absorption properties publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.01.053 – volume: 93 year: 2008 ident: 10.1016/j.ceramint.2018.10.242_bib58 article-title: Dielectric and polarization experiments in high loss dielectrics: a word of caution publication-title: Appl. Phys. Lett. doi: 10.1063/1.2949752 – volume: 6 start-page: 12997 year: 2014 ident: 10.1016/j.ceramint.2018.10.242_bib7 article-title: Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502910d – volume: 19 start-page: 2178 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib16 article-title: Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers publication-title: Crystengcomm doi: 10.1039/C7CE00235A – volume: 16 start-page: 3321 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib40 article-title: MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00942 – volume: 3 start-page: 4452 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib66 article-title: Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00313J – volume: 586 start-page: 688 year: 2014 ident: 10.1016/j.ceramint.2018.10.242_bib39 article-title: A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2013.10.063 – volume: 44 start-page: 15984 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib12 article-title: Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids publication-title: Dalton Trans. doi: 10.1039/C5DT02715B – volume: 4 start-page: 1860 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib68 article-title: A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption publication-title: J. Mater. Chem. C doi: 10.1039/C6TC00248J – volume: 17 start-page: 2531 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib9 article-title: Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05031B – volume: 44 start-page: 17138 year: 2018 ident: 10.1016/j.ceramint.2018.10.242_bib24 article-title: Unary and binary doping effect of M2+ (M=Mn, Co, Ni, Zn) substituted hollow Fe3O4 approach for enhancing microwave attenuation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.06.167 – volume: 111 start-page: 722 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib21 article-title: Rational design of core-shell Co@C microspheres for high-performance microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2016.10.059 – volume: 55 start-page: 936 year: 2014 ident: 10.1016/j.ceramint.2018.10.242_bib1 article-title: Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite publication-title: Polymer doi: 10.1016/j.polymer.2013.12.042 – volume: 426 start-page: 211 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib23 article-title: Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al3Ni2@Al nanoparticles as a high microwave absorption material publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.11.093 – volume: 84 start-page: 445 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib76 article-title: Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.08.036 – volume: 662 start-page: 409 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib22 article-title: Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.12.076 – volume: 10 start-page: 11317 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib43 article-title: A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes publication-title: ACS Nano doi: 10.1021/acsnano.6b06512 – volume: 457 start-page: 6 year: 2008 ident: 10.1016/j.ceramint.2018.10.242_bib55 article-title: Structural and magnetic properties of hcp and fcc Ni nanoparticles publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2007.02.124 – volume: 97 start-page: 18 year: 2014 ident: 10.1016/j.ceramint.2018.10.242_bib74 article-title: Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere publication-title: Mater. Charact. doi: 10.1016/j.matchar.2014.08.019 – volume: 7 start-page: 1584 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib3 article-title: Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance publication-title: Sci. Rep. doi: 10.1038/s41598-017-01529-2 – volume: 24 start-page: 3329 year: 2009 ident: 10.1016/j.ceramint.2018.10.242_bib41 article-title: Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.04.032 – volume: 69 start-page: 7762 year: 1991 ident: 10.1016/j.ceramint.2018.10.242_bib64 article-title: Exchange resonance modes in a ferromagnetic sphere publication-title: J. Appl. Phys. doi: 10.1063/1.347502 – volume: 28 start-page: 486 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib5 article-title: CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption publication-title: Adv. Mater. doi: 10.1002/adma.201503149 – volume: 4 start-page: 935 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib6 article-title: Tunable design of yolk–shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00120G – volume: 114 start-page: 3196 year: 2010 ident: 10.1016/j.ceramint.2018.10.242_bib29 article-title: Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties publication-title: J. Phys. Chem. C doi: 10.1021/jp908839r – volume: 25 start-page: 1296 year: 2013 ident: 10.1016/j.ceramint.2018.10.242_bib2 article-title: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding publication-title: Adv. Mater. doi: 10.1002/adma.201204196 – volume: 359 start-page: 1243 year: 2018 ident: 10.1016/j.ceramint.2018.10.242_bib51 article-title: Real-time imaging of adatom-promoted graphene growth on nickel publication-title: Science doi: 10.1126/science.aan8782 – volume: 29 start-page: 17483 year: 2018 ident: 10.1016/j.ceramint.2018.10.242_bib75 article-title: Enhanced microwave absorption properties of modified Ni@C nanocapsules with accreted N doped C shell on surface publication-title: J. Mater. Sci. -Mater. Electron. doi: 10.1007/s10854-018-9848-8 – volume: 6 start-page: 37972 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib32 article-title: Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties publication-title: Sci. Rep. doi: 10.1038/srep37972 – volume: 28 start-page: 115704 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib38 article-title: A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption publication-title: Nanotechnology doi: 10.1088/1361-6528/aa5d6f – volume: 25 start-page: 3614 year: 2014 ident: 10.1016/j.ceramint.2018.10.242_bib28 article-title: Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method publication-title: J. Mater. Sci. -Mater. Electron. doi: 10.1007/s10854-014-2064-2 – volume: 7 start-page: 8920 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib42 article-title: Facile synthesis of electrospun MFe2O4 (M=Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction publication-title: Nanoscale doi: 10.1039/C4NR07243J – volume: 57 start-page: 2915 year: 1998 ident: 10.1016/j.ceramint.2018.10.242_bib54 article-title: Random and exchange anisotropy in consolidated nanostructured Fe and Ni: role of grain size and trace oxides on the magnetic properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.2915 – volume: 19 start-page: 9128 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib73 article-title: Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00629B – volume: 313 start-page: 734 year: 2017 ident: 10.1016/j.ceramint.2018.10.242_bib20 article-title: Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.117 – volume: 8 start-page: 22615 year: 2016 ident: 10.1016/j.ceramint.2018.10.242_bib26 article-title: Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05480 – volume: 7 start-page: 21919 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib46 article-title: Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06509 – volume: 11 start-page: 297 year: 2011 ident: 10.1016/j.ceramint.2018.10.242_bib50 article-title: Universal segregation growth approach to wafer-size graphene from non-noble metals publication-title: Nano Lett. doi: 10.1021/nl103962a – volume: 134 start-page: 264 year: 2018 ident: 10.1016/j.ceramint.2018.10.242_bib59 article-title: Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning publication-title: Carbon doi: 10.1016/j.carbon.2018.03.081 – volume: 7 start-page: 18815 year: 2015 ident: 10.1016/j.ceramint.2018.10.242_bib70 article-title: Facile synthesis of novel Heterostructure based on SnO2 nanorods grown on submicron Ni walnut with tunable electromagnetic wave absorption capabilities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05482 |
SSID | ssj0016940 |
Score | 2.5211039 |
Snippet | The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3313 |
SubjectTerms | Electromagnetic characterization Electrospinning Microwave absorption Nickel-carbon nanofiber |
Title | Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning |
URI | https://dx.doi.org/10.1016/j.ceramint.2018.10.242 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8MwDDalu2yHsSfrHsWHXdM0ieM4x1JWuo31shZ6C7ajQEqblrTd2GW_fXIepYNBDzv6IRJkWZLFJ4mQR1cmislQWMB1aLEkDi3paHyqgHABvESL2AT030Z8OGEvU3_aIP06F8bAKivdX-r0QltXM3bFTXuVpvY7PqhcIZix8ej3OlOTwc4CI-Wd7x3Mw-EhK-MsAd583L2XJTzraMjlIs0MptIRHQOLZu7fBmrP6AzOyGnlLdJe-UPnpAHZBTnZqyF4SaLxtkh_ogsDrfuUH0ClWi_zQhXQlYm156ZoKl0mNEvxzs4tLXOFa5nMULIU-n-4DQokOlVftGqMs16lRTejKzIZPI37Q6vqmmBpLxAbyxEqlL6X8C54MUiBB8FFLP2uMmFJR3ssRjPtSr-o1Y4cQzPm8ZhDkDgQB-Bdk2a2zOCGUAi0r10Ra-4Ck6bSnAY3AHTqEs5UqFrEr1kV6aqkuOlsMY9q7NgsqlkcGRabefxsi9g7ulVZVOMgRVifRPRLPCLU_Adob_9Be0eOcRQamLbj35PmJt_CA3ohG9UuxKxNjnrPr8PRDz5j4BE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIAD4ine5MC1jLZpmh4RYhqP7cIm7VYlqSsVsW7qNhD_HqePaUhIHLgmtVo5ju24Xz4DXHsq1VxF0kFhIoenSeQo19BRBaWH6KdGJrag3-uL7pA_jYLRGtw3d2EsrLL2_ZVPL711PdKutdmeZln7lQ5UnpTcxnjKe93ROmxYdqqgBRt3j8_d_vJngoh4VWoJafOTwMpF4bcbg4UaZ7mFVbryxiKjufd7jFqJO51d2KkTRnZXfdMerGG-D9srNIIHEA8W5Q0oNrbouk_1gUzp2aQovQGb2nJ7YXlT2SRleUbb9t0xqtA0l6ucjEtTCkiPYQlGZ_qL1b1xZtOsbGh0CMPOw-C-69SNExzjh3LuuFJHKvBTcYt-gkrSWgiZqOBW28qka3yeUKT2VFDStXNOWYXvi0RgmLqYhOgfQSuf5HgMDEMTGE8mRnjIlSWbM-iFSHldKriO9AkEjapiU7OK2-YW73EDH3uLGxXHVsV2nF57Au2l3LTi1fhTImpWIv5hITE5_z9kT_8hewWb3UHvJX557D-fwRbNRBa17Qbn0JoXC7ygpGSuL2uj-wbvGeLC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+microwave+absorption+properties+of+nickel-carbon+nanofibers+prepared+by+electrospinning&rft.jtitle=Ceramics+international&rft.au=Shen%2C+Yongqian&rft.au=Wei%2C+Yupeng&rft.au=Ma%2C+Jiqiang&rft.au=Li%2C+Qinglin&rft.date=2019-02-15&rft.issn=0272-8842&rft.volume=45&rft.issue=3&rft.spage=3313&rft.epage=3324&rft_id=info:doi/10.1016%2Fj.ceramint.2018.10.242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ceramint_2018_10_242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |