Toward thermal autarky for large-scale biogas plants: Dynamic energy modeling for energy efficiency in anaerobic digesters with enhanced multimembrane gasholders
•A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a large biogas plant.•Changing from a single- to triple-membrane system reduced digester heat input by 52%.•Digestate heat recovery reduced heat in...
Saved in:
Published in | Fuel (Guildford) Vol. 339; p. 126978 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a large biogas plant.•Changing from a single- to triple-membrane system reduced digester heat input by 52%.•Digestate heat recovery reduced heat input of triple-membrane digester by 68%.•Thermal reinforcement and recovery resulted in a thermally autonomous biogas plant.
Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions for thermal insulation based on new multimembrane gasholder configurations, loss avoidance, and heat recovery strategies. In this study, a predictive and configuration-dependent dynamics energy model is developed to daily and seasonally assess the thermal efficiency and heating requirements of industrial biogas plants involving wet digesters with upper multimembrane gasholders. The model is validated using experimental data from a full-scale biogas plant in operation over a one-year period.
The energy model involves a set of dynamic energy balances defined for each compartment of the digester and gasholder. All possible heat sources and sinks (ambient air temperature, wind, rain, and solar radiation) and heat exchanges or losses via advection, convection, and conduction, as well as a complete representation of the infrared radiative networks between the surfaces of the digester, are included for each compartment depending on the operating and design parameters. These heat exchanges are subject to fluctuating environmental conditions (e.g., ambient air temperature, wind, rain, and solar radiation).
The results indicate that triple-membrane gasholders with a third insulation membrane made of a suitable material and thickness, together with the involvement of heat recovery from the digestate advective heat, are capable of reducing the overall thermal losses by more than 95 % (e.g., −51 % of the gasholder cover loss and − 81 % of the advective digestate loss) and when the waste heat from biogas purification is also valorized, the biogas plant can become thermally self-sufficient. |
---|---|
AbstractList | •A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a large biogas plant.•Changing from a single- to triple-membrane system reduced digester heat input by 52%.•Digestate heat recovery reduced heat input of triple-membrane digester by 68%.•Thermal reinforcement and recovery resulted in a thermally autonomous biogas plant.
Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions for thermal insulation based on new multimembrane gasholder configurations, loss avoidance, and heat recovery strategies. In this study, a predictive and configuration-dependent dynamics energy model is developed to daily and seasonally assess the thermal efficiency and heating requirements of industrial biogas plants involving wet digesters with upper multimembrane gasholders. The model is validated using experimental data from a full-scale biogas plant in operation over a one-year period.
The energy model involves a set of dynamic energy balances defined for each compartment of the digester and gasholder. All possible heat sources and sinks (ambient air temperature, wind, rain, and solar radiation) and heat exchanges or losses via advection, convection, and conduction, as well as a complete representation of the infrared radiative networks between the surfaces of the digester, are included for each compartment depending on the operating and design parameters. These heat exchanges are subject to fluctuating environmental conditions (e.g., ambient air temperature, wind, rain, and solar radiation).
The results indicate that triple-membrane gasholders with a third insulation membrane made of a suitable material and thickness, together with the involvement of heat recovery from the digestate advective heat, are capable of reducing the overall thermal losses by more than 95 % (e.g., −51 % of the gasholder cover loss and − 81 % of the advective digestate loss) and when the waste heat from biogas purification is also valorized, the biogas plant can become thermally self-sufficient. Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions for thermal insulation based on new multimembrane gasholder configurations, loss avoidance, and heat recovery strategies. In this study, a predictive and configuration-dependent dynamics energy model is developed to daily and seasonally assess the thermal efficiency and heating requirements of industrial biogas plants involving wet digesters with upper multimembrane gasholders. The model is validated using experimental data from a full-scale biogas plant in operation over a one-year period.The energy model involves a set of dynamic energy balances defined for each compartment of the digester and gasholder. All possible heat sources and sinks (ambient air temperature, wind, rain, and solar radiation) and heat exchanges or losses via advection, convection, and conduction, as well as a complete representation of the infrared radiative networks between the surfaces of the digester, are included for each compartment depending on the operating and design parameters. These heat exchanges are subject to fluctuating environmental conditions (e.g., ambient air temperature, wind, rain, and solar radiation).The results indicate that triple-membrane gasholders with a third insulation membrane made of a suitable material and thickness, together with the involvement of heat recovery from the digestate advective heat, are capable of reducing the overall thermal losses by more than 95 % (e.g., −51 % of the gasholder cover loss and − 81 % of the advective digestate loss) and when the waste heat from biogas purification is also valorized, the biogas plant can become thermally self-sufficient. |
ArticleNumber | 126978 |
Author | Avila-Lopez, M. Ahmadi, A. Tiruta-Barna, L. Robles-Rodriguez, C. |
Author_xml | – sequence: 1 givenname: M. surname: Avila-Lopez fullname: Avila-Lopez, M. – sequence: 2 givenname: C. surname: Robles-Rodriguez fullname: Robles-Rodriguez, C. – sequence: 3 givenname: L. surname: Tiruta-Barna fullname: Tiruta-Barna, L. – sequence: 4 givenname: A. surname: Ahmadi fullname: Ahmadi, A. email: ahmadi@insa-toulouse.fr |
BackLink | https://hal.science/hal-03974180$$DView record in HAL |
BookMark | eNp9kU1v1DAQhi1UJLaFP8DJVw5Z7DiJvYhLVT6KtBKXcrYmzjjrxbEr29sqP4d_StItFw49jfTqeWakeS_JRYgBCXnP2ZYz3n08bu0J_bZmdb3ldbeT6hXZcCVFJXkrLsiGLVRVi46_IZc5HxljUrXNhvy5i4-QBloOmCbwFE4F0u-Z2piohzRilQ14pL2LI2R67yGU_Il-mQNMzlAMmMaZTnFA78L4pD1naK0zDoOZqQsUAmCK_aIMbsRcMGX66MphoQ8QDA50OvniJpz6BAHpcuwQ_bBgb8lrCz7ju-d5RX59-3p3c1vtf37_cXO9r4yQqlS8VY1o-3poFNpWMtnvWm5ASmuFaJRsjbG8Y03XoYCm46xHZXtouw4E7hQXV-TDee8BvL5PboI06whO317v9ZoxsZMNV-xhZdWZNSnmnNBq4woUF0NJ4LzmTK-16KNea9FrLfpcy6LW_6n_br0ofT5LuDzgwWHS-em1OLiEpughupf0v0ojrC0 |
CitedBy_id | crossref_primary_10_25699_SSSB_2022_46_6_047 crossref_primary_10_1016_j_rser_2024_114430 crossref_primary_10_25699_SSSB_2023_52_6_025 crossref_primary_10_1016_j_renene_2024_121485 |
Cites_doi | 10.1016/j.cherd.2017.01.007 10.1016/j.jclepro.2020.125065 10.1016/0269-7483(89)90121-3 10.2166/wst.2006.246 10.1016/j.rser.2018.06.035 10.1016/j.renene.2015.07.029 10.1016/0017-9310(75)90243-4 10.1016/j.biosystemseng.2017.09.002 10.1111/wej.12130 10.13031/2013.18320 10.1016/j.biortech.2012.08.019 10.1016/j.apenergy.2019.01.243 10.3390/en13112702 10.1016/S0038-092X(00)00130-4 10.1115/1.3450685 10.1016/j.biortech.2019.122264 10.3390/en14164895 10.1016/j.biortech.2008.12.046 10.13031/2013.20482 10.1016/j.agee.2018.03.013 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.fuel.2022.126978 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-7153 |
ExternalDocumentID | oai_HAL_hal_03974180v1 10_1016_j_fuel_2022_126978 S0016236122038029 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SAC SCB SSH VH1 WUQ XPP ZY4 1XC VOOES |
ID | FETCH-LOGICAL-c378t-158435b2d48ef5707b951ca77ff334875ccf160466e3a4610be8fba566a3e9813 |
IEDL.DBID | .~1 |
ISSN | 0016-2361 |
IngestDate | Fri May 09 12:14:43 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Tue Jul 01 03:26:09 EDT 2025 Fri Feb 23 02:35:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic energy modeling Multimembrane gasholder Thermal autarky Large-scale biogas plants Anaerobic digestion |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-158435b2d48ef5707b951ca77ff334875ccf160466e3a4610be8fba566a3e9813 |
ORCID | 0000-0002-2436-3653 0000-0003-1266-8051 |
OpenAccessLink | https://hal.science/hal-03974180 |
ParticipantIDs | hal_primary_oai_HAL_hal_03974180v1 crossref_citationtrail_10_1016_j_fuel_2022_126978 crossref_primary_10_1016_j_fuel_2022_126978 elsevier_sciencedirect_doi_10_1016_j_fuel_2022_126978 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 2023-05-00 2023-05 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | IEA, “World Energy Outlook 2018,” https://www.iea.org/reports/world-energy-outlook-2018, Paris, 2018. McAdams (b0135) 1954 Gebremedhin, Wu, Gooch, Wright, Inglis (b0145) 2005; 48 Churchill, Bernstein (b0160) 1977; 99 B. Wu and B. E. L. , “Development of 3−d anaerobic digester heat transfer model for cold weather applications,” Churchill, Chu (b0140) 1975; 18 ADEME, “Réaliser une unité de méthanisation à la ferme,” Angers, 2019. Walton (b0195) 1983 Oppenheim (b0175) 1956; 78 Scarlat, Fahl, Dallemand, Monforti, Motola (b0025) 2018; 94 Smith, Van Ness, Abbott, Swihart (b0120) 2018 G. Bastide, “Fiche technique méthanisation,” Angers, 2015. Holm-Nielsen, Al Seadi, Oleskowicz-Popiel (b0015) 2009; 100 Kishore (b0185) 1989; 30 ADEME, “Suivi technique, économique, et social de 10 installations de méthanisation. Synthetic report,” Angers, 2020. Li, Chen, Wu (b0060) 2019; 240 S. Aigarni and D. Nutter, “Survey of sky effective temperature models applicable to building envelope radiant heat transfer,” in Brémond, Bertrandias, Jean-Philippe, Berner (b0020) 2021; 287 ADEME, “Méthanisation. Feuille de route stratégique,” Paris, 2017. EN-ISO-13370, Thermal performance of buildings — Heat transfer via the ground — Calculation methods, 2001. Schlünder (b0165) 1983 2015. Axaopoulos, Panagakis, Tsavdaris, Georgakakis (b0080) 2001; 70 NASA, “Prediction of worldwide energy resources, Data acces viewer,” 2022. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/. [Accessed March 2022]. Trame, Aile, Solagro, ADEME, “La méthanisation à la ferme. Guide partique : pour les projets de puissance électrique inférieure à 500 kWe,” Saint-Herblain, 2011. Iowa State University, “Iowa Environmental Mesonet (IEM),” 2022. [Online]. Available: https://mesonet.agron.iastate.edu/request/download.phtml. [Accessed March 2022]. Vilms Pedersen, Martí-Herrero, Singh, Sommer, Hafner (b0115) 2020; 296 Lindorfer, Braun, Kirchayr (b0210) 2006; 53 Rennie, Gordon, Smith, VanderZaag (b0190) 2018; 260 REN21, “Renewables 2021 Global Status Report,” Paris, 2021. Hreiz, Adouani, Jannot, Pons (b0110) 2017; 119 ADEME, “La méthanisation en 10 questions,” Angers, 2021. Calise, Cappiello, D'Accadia, Infante, Vicidomini (b0085) 2020; 13 The SciPy community, “SciPy documentation,” 2008. [Online]. Available: https://docs.scipy.org/doc/scipy/. [Accessed 2022]. Perrigault, Weatherford, Martí-Herrero, Poggio (b0090) 2012; 124 Liu, Che, Li, Wang, Wang (b0095) 2017; 163 vol. 14, p. 4895, 2021. Siciliano, Stillitano, De Rosa (b0055) 2016; 85 Rohsenow, Hartnett (b0180) 1973 Fuentes (b0205) 1987 vol. 49, no. 3, pp. 749-757, 2006. Incropera (b0170) 2011 Angelonidi, Smith (b0035) 2015; 29 Hillel (b0155) 2003 F. Calise, F. L. Cappiello, L. Cimmino, M. D. d’Accadia and M. Vicidomini, “A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies,” I. H. Bell, J. Wronski, S. Quoilin and V. Lemort, “http://www.coolprop.org/,” 2010. [Online]. Available: http://www.coolprop.org/. [Accessed 2022]. D. Robb, “PyPI,” 2020. [Online]. Available: https://pypi.org/project/freshwater/. [Accessed 2022]. Rynkowski (b0100) 2018 Holm-Nielsen (10.1016/j.fuel.2022.126978_b0015) 2009; 100 Schlünder (10.1016/j.fuel.2022.126978_b0165) 1983 Gebremedhin (10.1016/j.fuel.2022.126978_b0145) 2005; 48 Brémond (10.1016/j.fuel.2022.126978_b0020) 2021; 287 10.1016/j.fuel.2022.126978_b0045 Hillel (10.1016/j.fuel.2022.126978_b0155) 2003 Siciliano (10.1016/j.fuel.2022.126978_b0055) 2016; 85 10.1016/j.fuel.2022.126978_b0220 Rohsenow (10.1016/j.fuel.2022.126978_b0180) 1973 Rynkowski (10.1016/j.fuel.2022.126978_b0100) 2018 10.1016/j.fuel.2022.126978_b0200 10.1016/j.fuel.2022.126978_b0005 10.1016/j.fuel.2022.126978_b0225 Scarlat (10.1016/j.fuel.2022.126978_b0025) 2018; 94 10.1016/j.fuel.2022.126978_b0125 Angelonidi (10.1016/j.fuel.2022.126978_b0035) 2015; 29 Churchill (10.1016/j.fuel.2022.126978_b0140) 1975; 18 10.1016/j.fuel.2022.126978_b0105 10.1016/j.fuel.2022.126978_b0070 Vilms Pedersen (10.1016/j.fuel.2022.126978_b0115) 2020; 296 10.1016/j.fuel.2022.126978_b0050 10.1016/j.fuel.2022.126978_b0030 Churchill (10.1016/j.fuel.2022.126978_b0160) 1977; 99 10.1016/j.fuel.2022.126978_b0150 Kishore (10.1016/j.fuel.2022.126978_b0185) 1989; 30 10.1016/j.fuel.2022.126978_b0010 10.1016/j.fuel.2022.126978_b0075 10.1016/j.fuel.2022.126978_b0130 Fuentes (10.1016/j.fuel.2022.126978_b0205) 1987 Li (10.1016/j.fuel.2022.126978_b0060) 2019; 240 Hreiz (10.1016/j.fuel.2022.126978_b0110) 2017; 119 Smith (10.1016/j.fuel.2022.126978_b0120) 2018 Axaopoulos (10.1016/j.fuel.2022.126978_b0080) 2001; 70 McAdams (10.1016/j.fuel.2022.126978_b0135) 1954 Perrigault (10.1016/j.fuel.2022.126978_b0090) 2012; 124 Incropera (10.1016/j.fuel.2022.126978_b0170) 2011 Liu (10.1016/j.fuel.2022.126978_b0095) 2017; 163 10.1016/j.fuel.2022.126978_b0215 Lindorfer (10.1016/j.fuel.2022.126978_b0210) 2006; 53 Walton (10.1016/j.fuel.2022.126978_b0195) 1983 10.1016/j.fuel.2022.126978_b0040 10.1016/j.fuel.2022.126978_b0065 Calise (10.1016/j.fuel.2022.126978_b0085) 2020; 13 Rennie (10.1016/j.fuel.2022.126978_b0190) 2018; 260 Oppenheim (10.1016/j.fuel.2022.126978_b0175) 1956; 78 |
References_xml | – volume: 94 start-page: 915 year: 2018 end-page: 930 ident: b0025 article-title: A spatial analysis of biogas potential from manure in Europe publication-title: Renew Sustain Energy Rev – volume: 124 start-page: 259 year: 2012 end-page: 268 ident: b0090 article-title: Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model publication-title: Bioresour Technol – volume: 99 start-page: 300 year: 1977 end-page: 306 ident: b0160 article-title: A correlation equation for forced convection from gases and liquids to a circular cylinder in crossflow publication-title: J Heat Transfer – reference: EN-ISO-13370, Thermal performance of buildings — Heat transfer via the ground — Calculation methods, 2001. – year: 1983 ident: b0165 article-title: Heat Exchanger Desing Handbook – year: 1973 ident: b0180 article-title: Handbook of Heat Transfer – year: 1954 ident: b0135 article-title: Heat Transmission – reference: F. Calise, F. L. Cappiello, L. Cimmino, M. D. d’Accadia and M. Vicidomini, “A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies,” – reference: REN21, “Renewables 2021 Global Status Report,” Paris, 2021. – reference: S. Aigarni and D. Nutter, “Survey of sky effective temperature models applicable to building envelope radiant heat transfer,” in – reference: Trame, Aile, Solagro, ADEME, “La méthanisation à la ferme. Guide partique : pour les projets de puissance électrique inférieure à 500 kWe,” Saint-Herblain, 2011. – reference: ADEME, “La méthanisation en 10 questions,” Angers, 2021. – volume: 296 year: 2020 ident: b0115 article-title: Management and design of biogas digesters: A non-calibrated heat transfer model publication-title: Bioresour Technol – reference: B. Wu and B. E. L. , “Development of 3−d anaerobic digester heat transfer model for cold weather applications,” – volume: 13 start-page: 2702 year: 2020 ident: b0085 article-title: Modeling of the anaerobic digestion of organic wastes: Integration of heat transfer and biochemical aspects publication-title: Energies – volume: 48 start-page: 777 year: 2005 end-page: 785 ident: b0145 article-title: Heat transfer model for plug-flow anaerobic digesters publication-title: American Society of Agricultural Engineers – reference: , 2015. – reference: vol. 14, p. 4895, 2021. – volume: 163 start-page: 116 year: 2017 end-page: 133 ident: b0095 article-title: Investigation on the heat loss characteristic of underground household biogas digester using dynamic simulations and experiments publication-title: Biosyst Eng – volume: 100 start-page: 5478 year: 2009 end-page: 5484 ident: b0015 article-title: The future of anaerobic digestion and biogas utilization publication-title: Bioresour Technol – volume: 287 year: 2021 ident: b0020 article-title: A vision of European biogas sector development towards 2030: Trends and challenges publication-title: J Clean Prod – reference: I. H. Bell, J. Wronski, S. Quoilin and V. Lemort, “http://www.coolprop.org/,” 2010. [Online]. Available: http://www.coolprop.org/. [Accessed 2022]. – year: 2018 ident: b0120 article-title: Introduction to chemical engineering thermodynamics – volume: 53 start-page: 159 year: 2006 end-page: 166 ident: b0210 article-title: Self-heating of anaerobic digesters using energy crops publication-title: Water Sci Technol – reference: Iowa State University, “Iowa Environmental Mesonet (IEM),” 2022. [Online]. Available: https://mesonet.agron.iastate.edu/request/download.phtml. [Accessed March 2022]. – volume: 85 start-page: 903 year: 2016 end-page: 916 ident: b0055 article-title: Biogas production from wet olive mill wastes pretreated with hydrogen peroxide in alkaline conditions publication-title: Renew Energy – volume: 30 start-page: 199 year: 1989 end-page: 215 ident: b0185 article-title: A heat-transfer analysis of fixed-dome biogas plants publication-title: Biol Wastes – reference: NASA, “Prediction of worldwide energy resources, Data acces viewer,” 2022. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/. [Accessed March 2022]. – year: 1983 ident: b0195 article-title: Thermal Analysis Research Program Reference Manual – year: 1987 ident: b0205 article-title: A simplified thermal model for flat plate photovoltaic arrays – volume: 70 start-page: 155 year: 2001 end-page: 164 ident: b0080 article-title: Simulation and experimental performance of a solar-heated anaerobic digester publication-title: Sol Energy – volume: 78 start-page: 725 year: 1956 end-page: 735 ident: b0175 article-title: Radiation Analysis by the Network Method publication-title: Transactions ASME – reference: ADEME, “Suivi technique, économique, et social de 10 installations de méthanisation. Synthetic report,” Angers, 2020. – year: 2018 ident: b0100 article-title: Heat loss analysis in the semi-buried anaerobic digester in Northeast Poland – reference: D. Robb, “PyPI,” 2020. [Online]. Available: https://pypi.org/project/freshwater/. [Accessed 2022]. – reference: IEA, “World Energy Outlook 2018,” https://www.iea.org/reports/world-energy-outlook-2018, Paris, 2018. – reference: ADEME, “Réaliser une unité de méthanisation à la ferme,” Angers, 2019. – reference: G. Bastide, “Fiche technique méthanisation,” Angers, 2015. – reference: vol. 49, no. 3, pp. 749-757, 2006. – year: 2003 ident: b0155 article-title: Introduction to Environmental Soil Physics – reference: ADEME, “Méthanisation. Feuille de route stratégique,” Paris, 2017. – volume: 240 start-page: 120 year: 2019 end-page: 137 ident: b0060 article-title: Enhancement of methane production in anaerobic digestion process: A review publication-title: Appl Energy – volume: 119 start-page: 101 year: 2017 end-page: 116 ident: b0110 article-title: Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester publication-title: Chem Eng Res Des – reference: The SciPy community, “SciPy documentation,” 2008. [Online]. Available: https://docs.scipy.org/doc/scipy/. [Accessed 2022]. – year: 2011 ident: b0170 article-title: Fundamentals of heat and mass transfer – volume: 18 start-page: 1323 year: 1975 end-page: 1329 ident: b0140 article-title: Correlating equations for laminar and turbulent free convection from a vertical plate publication-title: Int J Heat Mass Transf – volume: 260 start-page: 47 year: 2018 end-page: 57 ident: b0190 article-title: Liquid manure storage temperature is affected by storage design and management practices - A modelling assessment publication-title: Agr Ecosyst Environ – volume: 29 start-page: 549 year: 2015 end-page: 557 ident: b0035 article-title: A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste publication-title: Water and Environment Journal – ident: 10.1016/j.fuel.2022.126978_b0040 – year: 2003 ident: 10.1016/j.fuel.2022.126978_b0155 – volume: 119 start-page: 101 year: 2017 ident: 10.1016/j.fuel.2022.126978_b0110 article-title: Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2017.01.007 – ident: 10.1016/j.fuel.2022.126978_b0225 – year: 1973 ident: 10.1016/j.fuel.2022.126978_b0180 – volume: 287 year: 2021 ident: 10.1016/j.fuel.2022.126978_b0020 article-title: A vision of European biogas sector development towards 2030: Trends and challenges publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125065 – volume: 30 start-page: 199 issue: 3 year: 1989 ident: 10.1016/j.fuel.2022.126978_b0185 article-title: A heat-transfer analysis of fixed-dome biogas plants publication-title: Biol Wastes doi: 10.1016/0269-7483(89)90121-3 – volume: 78 start-page: 725 year: 1956 ident: 10.1016/j.fuel.2022.126978_b0175 article-title: Radiation Analysis by the Network Method publication-title: Transactions ASME – ident: 10.1016/j.fuel.2022.126978_b0200 – volume: 53 start-page: 159 issue: 8 year: 2006 ident: 10.1016/j.fuel.2022.126978_b0210 article-title: Self-heating of anaerobic digesters using energy crops publication-title: Water Sci Technol doi: 10.2166/wst.2006.246 – ident: 10.1016/j.fuel.2022.126978_b0075 – year: 1987 ident: 10.1016/j.fuel.2022.126978_b0205 – volume: 94 start-page: 915 year: 2018 ident: 10.1016/j.fuel.2022.126978_b0025 article-title: A spatial analysis of biogas potential from manure in Europe publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.06.035 – volume: 85 start-page: 903 year: 2016 ident: 10.1016/j.fuel.2022.126978_b0055 article-title: Biogas production from wet olive mill wastes pretreated with hydrogen peroxide in alkaline conditions publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.029 – ident: 10.1016/j.fuel.2022.126978_b0030 – ident: 10.1016/j.fuel.2022.126978_b0130 – volume: 18 start-page: 1323 year: 1975 ident: 10.1016/j.fuel.2022.126978_b0140 article-title: Correlating equations for laminar and turbulent free convection from a vertical plate publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(75)90243-4 – volume: 163 start-page: 116 year: 2017 ident: 10.1016/j.fuel.2022.126978_b0095 article-title: Investigation on the heat loss characteristic of underground household biogas digester using dynamic simulations and experiments publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2017.09.002 – volume: 29 start-page: 549 year: 2015 ident: 10.1016/j.fuel.2022.126978_b0035 article-title: A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste publication-title: Water and Environment Journal doi: 10.1111/wej.12130 – year: 1954 ident: 10.1016/j.fuel.2022.126978_b0135 – year: 1983 ident: 10.1016/j.fuel.2022.126978_b0195 – year: 2011 ident: 10.1016/j.fuel.2022.126978_b0170 – ident: 10.1016/j.fuel.2022.126978_b0065 – volume: 48 start-page: 777 issue: 2 year: 2005 ident: 10.1016/j.fuel.2022.126978_b0145 article-title: Heat transfer model for plug-flow anaerobic digesters publication-title: American Society of Agricultural Engineers doi: 10.13031/2013.18320 – ident: 10.1016/j.fuel.2022.126978_b0125 – ident: 10.1016/j.fuel.2022.126978_b0150 – volume: 124 start-page: 259 year: 2012 ident: 10.1016/j.fuel.2022.126978_b0090 article-title: Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.08.019 – volume: 240 start-page: 120 year: 2019 ident: 10.1016/j.fuel.2022.126978_b0060 article-title: Enhancement of methane production in anaerobic digestion process: A review publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.243 – volume: 13 start-page: 2702 issue: 11 year: 2020 ident: 10.1016/j.fuel.2022.126978_b0085 article-title: Modeling of the anaerobic digestion of organic wastes: Integration of heat transfer and biochemical aspects publication-title: Energies doi: 10.3390/en13112702 – ident: 10.1016/j.fuel.2022.126978_b0070 – volume: 70 start-page: 155 issue: 2 year: 2001 ident: 10.1016/j.fuel.2022.126978_b0080 article-title: Simulation and experimental performance of a solar-heated anaerobic digester publication-title: Sol Energy doi: 10.1016/S0038-092X(00)00130-4 – volume: 99 start-page: 300 year: 1977 ident: 10.1016/j.fuel.2022.126978_b0160 article-title: A correlation equation for forced convection from gases and liquids to a circular cylinder in crossflow publication-title: J Heat Transfer doi: 10.1115/1.3450685 – volume: 296 year: 2020 ident: 10.1016/j.fuel.2022.126978_b0115 article-title: Management and design of biogas digesters: A non-calibrated heat transfer model publication-title: Bioresour Technol doi: 10.1016/j.biortech.2019.122264 – ident: 10.1016/j.fuel.2022.126978_b0010 doi: 10.3390/en14164895 – ident: 10.1016/j.fuel.2022.126978_b0220 – volume: 100 start-page: 5478 year: 2009 ident: 10.1016/j.fuel.2022.126978_b0015 article-title: The future of anaerobic digestion and biogas utilization publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.12.046 – year: 2018 ident: 10.1016/j.fuel.2022.126978_b0120 – ident: 10.1016/j.fuel.2022.126978_b0050 – ident: 10.1016/j.fuel.2022.126978_b0105 doi: 10.13031/2013.20482 – year: 1983 ident: 10.1016/j.fuel.2022.126978_b0165 – ident: 10.1016/j.fuel.2022.126978_b0215 – ident: 10.1016/j.fuel.2022.126978_b0005 – year: 2018 ident: 10.1016/j.fuel.2022.126978_b0100 article-title: Heat loss analysis in the semi-buried anaerobic digester in Northeast Poland – volume: 260 start-page: 47 year: 2018 ident: 10.1016/j.fuel.2022.126978_b0190 article-title: Liquid manure storage temperature is affected by storage design and management practices - A modelling assessment publication-title: Agr Ecosyst Environ doi: 10.1016/j.agee.2018.03.013 – ident: 10.1016/j.fuel.2022.126978_b0045 |
SSID | ssj0007854 |
Score | 2.436548 |
Snippet | •A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a... Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 126978 |
SubjectTerms | Anaerobic digestion Dynamic energy modeling Engineering Sciences Large-scale biogas plants Multimembrane gasholder Physics Thermal autarky |
Title | Toward thermal autarky for large-scale biogas plants: Dynamic energy modeling for energy efficiency in anaerobic digesters with enhanced multimembrane gasholders |
URI | https://dx.doi.org/10.1016/j.fuel.2022.126978 https://hal.science/hal-03974180 |
Volume | 339 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELV4bGCBeAq4gCzEDhliJ45TdhUPlecKJHaR7U6g0IYK2ivdzf0X_pQZJ-EhIRZsrbEdZSzPsX3mDGM7hYcEUX8iuohVBeJbKxxGSRGpwrmWMlKGLP7Lq7Rzk5zd6tsJdtjkwhCtst77qz097NZ1y379N_eHvR7l-MqUpEOUiuIsUpTElySGVvne_w-ah8l0pcQsU0HWdeJMxfEqxkDPD0rtSZWGUmvfB6fJ--aaNYSdk3k2V-NF3q4-aYFNQLnIZj-pCC6x1-tAfeUE5QZoa8cj-_z4jyMc5X0ieosXdARw13u6sy982CfqywE_qmrRcwjZfzyUxMHxQre6DYK-BCVn8l7JbWmBVJs874ZXKQSOnK5x0fo-8Ah4YCcOYIAn8BI4TkZvW2i2zG5Ojq8PO6KuvCB8bLKRkAhLYu1UN8mg0CYyDoGYt8YUBWXuGu19IVM8WqcQW1Jsd5AVziI0tDG0MhmvsKnyqYRVxqkyfZS2nE5bGAg9bhcWSBBGxhq8VnqNyeaX576WJafqGP284Z895OSmnNyUV25aY7vvfYaVKMeP1rrxZP5laeUYNX7st41uf5-AdLg77Yuc2iJEcYnMor9y_ZeD_2EzVLi-ok5usKnR8xg2Ed6M3FZYv1tsun163rl6Azj1-hY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HFoOiEIrHi21qt6QIXbiPHpDPLTAwmmRuFm2d9LdshtWsIvEhf_CP-2Mk1AqIQ5crbETZZyZL_E33zD2s_SQIOpPRB-xqkB8a4XDLCkiVTpXqEzKUMV_fpF2LpPTK301xw7aWhiiVTaxv47pIVo3I3vN09ybDIdU4ytTkg5RKorzSBXzbDHB15faGOw-_uN5ZLmupZhlKsi8qZypSV7lDOj8QaldqdLQa-317DQ_aP-zhrxzvMKWG8DI9-t7-sTmoFplSy9kBNfYUy9wXzlhuTHa2tnU3l4_cMSjfERMb3GHngDuhje_7R2fjIj78osf1s3oOYTyPx564uB6YVozBkFggqoz-bDitrJAsk2e98OxFCJHTv9x0XoQiAQ80BPHMMZP8Ao4XowOt9DsM7s8PuoddETTekH4OMunQiIuibVT_SSHUmdR5hCJeZtlZUmlu5n2vpQpflunEFuSbHeQl84iNrQxFLmMv7CF6qaCdcapNX2UFk6nBWZCj_HCAinCyFiD10pvMNk-cuMbXXJqjzEyLQHtjyE3GXKTqd20wXae50xqVY43rXXrSfPf3jKYNt6c9wPd_nwBEuLu7HcNjUUI4xKZR_dy852Lf2cfOr3zrumeXJxtsY_Uxb7mUX5lC9PbGXxDrDN122Ev_wXno_uk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+thermal+autarky+for+large-scale+biogas+plants%3A+Dynamic+energy+modeling+for+energy+efficiency+in+anaerobic+digesters+with+enhanced+multimembrane+gasholders&rft.jtitle=Fuel+%28Guildford%29&rft.au=Avila-Lopez%2C+M.&rft.au=Robles-Rodriguez%2C+C.&rft.au=Tiruta-Barna%2C+L.&rft.au=Ahmadi%2C+A.&rft.date=2023-05-01&rft.issn=0016-2361&rft.volume=339&rft.spage=126978&rft_id=info:doi/10.1016%2Fj.fuel.2022.126978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2022_126978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |