Toward thermal autarky for large-scale biogas plants: Dynamic energy modeling for energy efficiency in anaerobic digesters with enhanced multimembrane gasholders

•A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a large biogas plant.•Changing from a single- to triple-membrane system reduced digester heat input by 52%.•Digestate heat recovery reduced heat in...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 339; p. 126978
Main Authors Avila-Lopez, M., Robles-Rodriguez, C., Tiruta-Barna, L., Ahmadi, A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a large biogas plant.•Changing from a single- to triple-membrane system reduced digester heat input by 52%.•Digestate heat recovery reduced heat input of triple-membrane digester by 68%.•Thermal reinforcement and recovery resulted in a thermally autonomous biogas plant. Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions for thermal insulation based on new multimembrane gasholder configurations, loss avoidance, and heat recovery strategies. In this study, a predictive and configuration-dependent dynamics energy model is developed to daily and seasonally assess the thermal efficiency and heating requirements of industrial biogas plants involving wet digesters with upper multimembrane gasholders. The model is validated using experimental data from a full-scale biogas plant in operation over a one-year period. The energy model involves a set of dynamic energy balances defined for each compartment of the digester and gasholder. All possible heat sources and sinks (ambient air temperature, wind, rain, and solar radiation) and heat exchanges or losses via advection, convection, and conduction, as well as a complete representation of the infrared radiative networks between the surfaces of the digester, are included for each compartment depending on the operating and design parameters. These heat exchanges are subject to fluctuating environmental conditions (e.g., ambient air temperature, wind, rain, and solar radiation). The results indicate that triple-membrane gasholders with a third insulation membrane made of a suitable material and thickness, together with the involvement of heat recovery from the digestate advective heat, are capable of reducing the overall thermal losses by more than 95 % (e.g., −51 % of the gasholder cover loss and − 81 % of the advective digestate loss) and when the waste heat from biogas purification is also valorized, the biogas plant can become thermally self-sufficient.
AbstractList •A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a large biogas plant.•Changing from a single- to triple-membrane system reduced digester heat input by 52%.•Digestate heat recovery reduced heat input of triple-membrane digester by 68%.•Thermal reinforcement and recovery resulted in a thermally autonomous biogas plant. Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions for thermal insulation based on new multimembrane gasholder configurations, loss avoidance, and heat recovery strategies. In this study, a predictive and configuration-dependent dynamics energy model is developed to daily and seasonally assess the thermal efficiency and heating requirements of industrial biogas plants involving wet digesters with upper multimembrane gasholders. The model is validated using experimental data from a full-scale biogas plant in operation over a one-year period. The energy model involves a set of dynamic energy balances defined for each compartment of the digester and gasholder. All possible heat sources and sinks (ambient air temperature, wind, rain, and solar radiation) and heat exchanges or losses via advection, convection, and conduction, as well as a complete representation of the infrared radiative networks between the surfaces of the digester, are included for each compartment depending on the operating and design parameters. These heat exchanges are subject to fluctuating environmental conditions (e.g., ambient air temperature, wind, rain, and solar radiation). The results indicate that triple-membrane gasholders with a third insulation membrane made of a suitable material and thickness, together with the involvement of heat recovery from the digestate advective heat, are capable of reducing the overall thermal losses by more than 95 % (e.g., −51 % of the gasholder cover loss and − 81 % of the advective digestate loss) and when the waste heat from biogas purification is also valorized, the biogas plant can become thermally self-sufficient.
Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions for thermal insulation based on new multimembrane gasholder configurations, loss avoidance, and heat recovery strategies. In this study, a predictive and configuration-dependent dynamics energy model is developed to daily and seasonally assess the thermal efficiency and heating requirements of industrial biogas plants involving wet digesters with upper multimembrane gasholders. The model is validated using experimental data from a full-scale biogas plant in operation over a one-year period.The energy model involves a set of dynamic energy balances defined for each compartment of the digester and gasholder. All possible heat sources and sinks (ambient air temperature, wind, rain, and solar radiation) and heat exchanges or losses via advection, convection, and conduction, as well as a complete representation of the infrared radiative networks between the surfaces of the digester, are included for each compartment depending on the operating and design parameters. These heat exchanges are subject to fluctuating environmental conditions (e.g., ambient air temperature, wind, rain, and solar radiation).The results indicate that triple-membrane gasholders with a third insulation membrane made of a suitable material and thickness, together with the involvement of heat recovery from the digestate advective heat, are capable of reducing the overall thermal losses by more than 95 % (e.g., −51 % of the gasholder cover loss and − 81 % of the advective digestate loss) and when the waste heat from biogas purification is also valorized, the biogas plant can become thermally self-sufficient.
ArticleNumber 126978
Author Avila-Lopez, M.
Ahmadi, A.
Tiruta-Barna, L.
Robles-Rodriguez, C.
Author_xml – sequence: 1
  givenname: M.
  surname: Avila-Lopez
  fullname: Avila-Lopez, M.
– sequence: 2
  givenname: C.
  surname: Robles-Rodriguez
  fullname: Robles-Rodriguez, C.
– sequence: 3
  givenname: L.
  surname: Tiruta-Barna
  fullname: Tiruta-Barna, L.
– sequence: 4
  givenname: A.
  surname: Ahmadi
  fullname: Ahmadi, A.
  email: ahmadi@insa-toulouse.fr
BackLink https://hal.science/hal-03974180$$DView record in HAL
BookMark eNp9kU1v1DAQhi1UJLaFP8DJVw5Z7DiJvYhLVT6KtBKXcrYmzjjrxbEr29sqP4d_StItFw49jfTqeWakeS_JRYgBCXnP2ZYz3n08bu0J_bZmdb3ldbeT6hXZcCVFJXkrLsiGLVRVi46_IZc5HxljUrXNhvy5i4-QBloOmCbwFE4F0u-Z2piohzRilQ14pL2LI2R67yGU_Il-mQNMzlAMmMaZTnFA78L4pD1naK0zDoOZqQsUAmCK_aIMbsRcMGX66MphoQ8QDA50OvniJpz6BAHpcuwQ_bBgb8lrCz7ju-d5RX59-3p3c1vtf37_cXO9r4yQqlS8VY1o-3poFNpWMtnvWm5ASmuFaJRsjbG8Y03XoYCm46xHZXtouw4E7hQXV-TDee8BvL5PboI06whO317v9ZoxsZMNV-xhZdWZNSnmnNBq4woUF0NJ4LzmTK-16KNea9FrLfpcy6LW_6n_br0ofT5LuDzgwWHS-em1OLiEpughupf0v0ojrC0
CitedBy_id crossref_primary_10_25699_SSSB_2022_46_6_047
crossref_primary_10_1016_j_rser_2024_114430
crossref_primary_10_25699_SSSB_2023_52_6_025
crossref_primary_10_1016_j_renene_2024_121485
Cites_doi 10.1016/j.cherd.2017.01.007
10.1016/j.jclepro.2020.125065
10.1016/0269-7483(89)90121-3
10.2166/wst.2006.246
10.1016/j.rser.2018.06.035
10.1016/j.renene.2015.07.029
10.1016/0017-9310(75)90243-4
10.1016/j.biosystemseng.2017.09.002
10.1111/wej.12130
10.13031/2013.18320
10.1016/j.biortech.2012.08.019
10.1016/j.apenergy.2019.01.243
10.3390/en13112702
10.1016/S0038-092X(00)00130-4
10.1115/1.3450685
10.1016/j.biortech.2019.122264
10.3390/en14164895
10.1016/j.biortech.2008.12.046
10.13031/2013.20482
10.1016/j.agee.2018.03.013
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.fuel.2022.126978
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-7153
ExternalDocumentID oai_HAL_hal_03974180v1
10_1016_j_fuel_2022_126978
S0016236122038029
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SAC
SCB
SSH
VH1
WUQ
XPP
ZY4
1XC
VOOES
ID FETCH-LOGICAL-c378t-158435b2d48ef5707b951ca77ff334875ccf160466e3a4610be8fba566a3e9813
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Fri May 09 12:14:43 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Tue Jul 01 03:26:09 EDT 2025
Fri Feb 23 02:35:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic energy modeling
Multimembrane gasholder
Thermal autarky
Large-scale biogas plants
Anaerobic digestion
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-158435b2d48ef5707b951ca77ff334875ccf160466e3a4610be8fba566a3e9813
ORCID 0000-0002-2436-3653
0000-0003-1266-8051
OpenAccessLink https://hal.science/hal-03974180
ParticipantIDs hal_primary_oai_HAL_hal_03974180v1
crossref_citationtrail_10_1016_j_fuel_2022_126978
crossref_primary_10_1016_j_fuel_2022_126978
elsevier_sciencedirect_doi_10_1016_j_fuel_2022_126978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
2023-05
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Fuel (Guildford)
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References IEA, “World Energy Outlook 2018,” https://www.iea.org/reports/world-energy-outlook-2018, Paris, 2018.
McAdams (b0135) 1954
Gebremedhin, Wu, Gooch, Wright, Inglis (b0145) 2005; 48
Churchill, Bernstein (b0160) 1977; 99
B. Wu and B. E. L. , “Development of 3−d anaerobic digester heat transfer model for cold weather applications,”
Churchill, Chu (b0140) 1975; 18
ADEME, “Réaliser une unité de méthanisation à la ferme,” Angers, 2019.
Walton (b0195) 1983
Oppenheim (b0175) 1956; 78
Scarlat, Fahl, Dallemand, Monforti, Motola (b0025) 2018; 94
Smith, Van Ness, Abbott, Swihart (b0120) 2018
G. Bastide, “Fiche technique méthanisation,” Angers, 2015.
Holm-Nielsen, Al Seadi, Oleskowicz-Popiel (b0015) 2009; 100
Kishore (b0185) 1989; 30
ADEME, “Suivi technique, économique, et social de 10 installations de méthanisation. Synthetic report,” Angers, 2020.
Li, Chen, Wu (b0060) 2019; 240
S. Aigarni and D. Nutter, “Survey of sky effective temperature models applicable to building envelope radiant heat transfer,” in
Brémond, Bertrandias, Jean-Philippe, Berner (b0020) 2021; 287
ADEME, “Méthanisation. Feuille de route stratégique,” Paris, 2017.
EN-ISO-13370, Thermal performance of buildings — Heat transfer via the ground — Calculation methods, 2001.
Schlünder (b0165) 1983
2015.
Axaopoulos, Panagakis, Tsavdaris, Georgakakis (b0080) 2001; 70
NASA, “Prediction of worldwide energy resources, Data acces viewer,” 2022. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/. [Accessed March 2022].
Trame, Aile, Solagro, ADEME, “La méthanisation à la ferme. Guide partique : pour les projets de puissance électrique inférieure à 500 kWe,” Saint-Herblain, 2011.
Iowa State University, “Iowa Environmental Mesonet (IEM),” 2022. [Online]. Available: https://mesonet.agron.iastate.edu/request/download.phtml. [Accessed March 2022].
Vilms Pedersen, Martí-Herrero, Singh, Sommer, Hafner (b0115) 2020; 296
Lindorfer, Braun, Kirchayr (b0210) 2006; 53
Rennie, Gordon, Smith, VanderZaag (b0190) 2018; 260
REN21, “Renewables 2021 Global Status Report,” Paris, 2021.
Hreiz, Adouani, Jannot, Pons (b0110) 2017; 119
ADEME, “La méthanisation en 10 questions,” Angers, 2021.
Calise, Cappiello, D'Accadia, Infante, Vicidomini (b0085) 2020; 13
The SciPy community, “SciPy documentation,” 2008. [Online]. Available: https://docs.scipy.org/doc/scipy/. [Accessed 2022].
Perrigault, Weatherford, Martí-Herrero, Poggio (b0090) 2012; 124
Liu, Che, Li, Wang, Wang (b0095) 2017; 163
vol. 14, p. 4895, 2021.
Siciliano, Stillitano, De Rosa (b0055) 2016; 85
Rohsenow, Hartnett (b0180) 1973
Fuentes (b0205) 1987
vol. 49, no. 3, pp. 749-757, 2006.
Incropera (b0170) 2011
Angelonidi, Smith (b0035) 2015; 29
Hillel (b0155) 2003
F. Calise, F. L. Cappiello, L. Cimmino, M. D. d’Accadia and M. Vicidomini, “A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies,”
I. H. Bell, J. Wronski, S. Quoilin and V. Lemort, “http://www.coolprop.org/,” 2010. [Online]. Available: http://www.coolprop.org/. [Accessed 2022].
D. Robb, “PyPI,” 2020. [Online]. Available: https://pypi.org/project/freshwater/. [Accessed 2022].
Rynkowski (b0100) 2018
Holm-Nielsen (10.1016/j.fuel.2022.126978_b0015) 2009; 100
Schlünder (10.1016/j.fuel.2022.126978_b0165) 1983
Gebremedhin (10.1016/j.fuel.2022.126978_b0145) 2005; 48
Brémond (10.1016/j.fuel.2022.126978_b0020) 2021; 287
10.1016/j.fuel.2022.126978_b0045
Hillel (10.1016/j.fuel.2022.126978_b0155) 2003
Siciliano (10.1016/j.fuel.2022.126978_b0055) 2016; 85
10.1016/j.fuel.2022.126978_b0220
Rohsenow (10.1016/j.fuel.2022.126978_b0180) 1973
Rynkowski (10.1016/j.fuel.2022.126978_b0100) 2018
10.1016/j.fuel.2022.126978_b0200
10.1016/j.fuel.2022.126978_b0005
10.1016/j.fuel.2022.126978_b0225
Scarlat (10.1016/j.fuel.2022.126978_b0025) 2018; 94
10.1016/j.fuel.2022.126978_b0125
Angelonidi (10.1016/j.fuel.2022.126978_b0035) 2015; 29
Churchill (10.1016/j.fuel.2022.126978_b0140) 1975; 18
10.1016/j.fuel.2022.126978_b0105
10.1016/j.fuel.2022.126978_b0070
Vilms Pedersen (10.1016/j.fuel.2022.126978_b0115) 2020; 296
10.1016/j.fuel.2022.126978_b0050
10.1016/j.fuel.2022.126978_b0030
Churchill (10.1016/j.fuel.2022.126978_b0160) 1977; 99
10.1016/j.fuel.2022.126978_b0150
Kishore (10.1016/j.fuel.2022.126978_b0185) 1989; 30
10.1016/j.fuel.2022.126978_b0010
10.1016/j.fuel.2022.126978_b0075
10.1016/j.fuel.2022.126978_b0130
Fuentes (10.1016/j.fuel.2022.126978_b0205) 1987
Li (10.1016/j.fuel.2022.126978_b0060) 2019; 240
Hreiz (10.1016/j.fuel.2022.126978_b0110) 2017; 119
Smith (10.1016/j.fuel.2022.126978_b0120) 2018
Axaopoulos (10.1016/j.fuel.2022.126978_b0080) 2001; 70
McAdams (10.1016/j.fuel.2022.126978_b0135) 1954
Perrigault (10.1016/j.fuel.2022.126978_b0090) 2012; 124
Incropera (10.1016/j.fuel.2022.126978_b0170) 2011
Liu (10.1016/j.fuel.2022.126978_b0095) 2017; 163
10.1016/j.fuel.2022.126978_b0215
Lindorfer (10.1016/j.fuel.2022.126978_b0210) 2006; 53
Walton (10.1016/j.fuel.2022.126978_b0195) 1983
10.1016/j.fuel.2022.126978_b0040
10.1016/j.fuel.2022.126978_b0065
Calise (10.1016/j.fuel.2022.126978_b0085) 2020; 13
Rennie (10.1016/j.fuel.2022.126978_b0190) 2018; 260
Oppenheim (10.1016/j.fuel.2022.126978_b0175) 1956; 78
References_xml – volume: 94
  start-page: 915
  year: 2018
  end-page: 930
  ident: b0025
  article-title: A spatial analysis of biogas potential from manure in Europe
  publication-title: Renew Sustain Energy Rev
– volume: 124
  start-page: 259
  year: 2012
  end-page: 268
  ident: b0090
  article-title: Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model
  publication-title: Bioresour Technol
– volume: 99
  start-page: 300
  year: 1977
  end-page: 306
  ident: b0160
  article-title: A correlation equation for forced convection from gases and liquids to a circular cylinder in crossflow
  publication-title: J Heat Transfer
– reference: EN-ISO-13370, Thermal performance of buildings — Heat transfer via the ground — Calculation methods, 2001.
– year: 1983
  ident: b0165
  article-title: Heat Exchanger Desing Handbook
– year: 1973
  ident: b0180
  article-title: Handbook of Heat Transfer
– year: 1954
  ident: b0135
  article-title: Heat Transmission
– reference: F. Calise, F. L. Cappiello, L. Cimmino, M. D. d’Accadia and M. Vicidomini, “A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies,”
– reference: REN21, “Renewables 2021 Global Status Report,” Paris, 2021.
– reference: S. Aigarni and D. Nutter, “Survey of sky effective temperature models applicable to building envelope radiant heat transfer,” in
– reference: Trame, Aile, Solagro, ADEME, “La méthanisation à la ferme. Guide partique : pour les projets de puissance électrique inférieure à 500 kWe,” Saint-Herblain, 2011.
– reference: ADEME, “La méthanisation en 10 questions,” Angers, 2021.
– volume: 296
  year: 2020
  ident: b0115
  article-title: Management and design of biogas digesters: A non-calibrated heat transfer model
  publication-title: Bioresour Technol
– reference: B. Wu and B. E. L. , “Development of 3−d anaerobic digester heat transfer model for cold weather applications,”
– volume: 13
  start-page: 2702
  year: 2020
  ident: b0085
  article-title: Modeling of the anaerobic digestion of organic wastes: Integration of heat transfer and biochemical aspects
  publication-title: Energies
– volume: 48
  start-page: 777
  year: 2005
  end-page: 785
  ident: b0145
  article-title: Heat transfer model for plug-flow anaerobic digesters
  publication-title: American Society of Agricultural Engineers
– reference: , 2015.
– reference: vol. 14, p. 4895, 2021.
– volume: 163
  start-page: 116
  year: 2017
  end-page: 133
  ident: b0095
  article-title: Investigation on the heat loss characteristic of underground household biogas digester using dynamic simulations and experiments
  publication-title: Biosyst Eng
– volume: 100
  start-page: 5478
  year: 2009
  end-page: 5484
  ident: b0015
  article-title: The future of anaerobic digestion and biogas utilization
  publication-title: Bioresour Technol
– volume: 287
  year: 2021
  ident: b0020
  article-title: A vision of European biogas sector development towards 2030: Trends and challenges
  publication-title: J Clean Prod
– reference: I. H. Bell, J. Wronski, S. Quoilin and V. Lemort, “http://www.coolprop.org/,” 2010. [Online]. Available: http://www.coolprop.org/. [Accessed 2022].
– year: 2018
  ident: b0120
  article-title: Introduction to chemical engineering thermodynamics
– volume: 53
  start-page: 159
  year: 2006
  end-page: 166
  ident: b0210
  article-title: Self-heating of anaerobic digesters using energy crops
  publication-title: Water Sci Technol
– reference: Iowa State University, “Iowa Environmental Mesonet (IEM),” 2022. [Online]. Available: https://mesonet.agron.iastate.edu/request/download.phtml. [Accessed March 2022].
– volume: 85
  start-page: 903
  year: 2016
  end-page: 916
  ident: b0055
  article-title: Biogas production from wet olive mill wastes pretreated with hydrogen peroxide in alkaline conditions
  publication-title: Renew Energy
– volume: 30
  start-page: 199
  year: 1989
  end-page: 215
  ident: b0185
  article-title: A heat-transfer analysis of fixed-dome biogas plants
  publication-title: Biol Wastes
– reference: NASA, “Prediction of worldwide energy resources, Data acces viewer,” 2022. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/. [Accessed March 2022].
– year: 1983
  ident: b0195
  article-title: Thermal Analysis Research Program Reference Manual
– year: 1987
  ident: b0205
  article-title: A simplified thermal model for flat plate photovoltaic arrays
– volume: 70
  start-page: 155
  year: 2001
  end-page: 164
  ident: b0080
  article-title: Simulation and experimental performance of a solar-heated anaerobic digester
  publication-title: Sol Energy
– volume: 78
  start-page: 725
  year: 1956
  end-page: 735
  ident: b0175
  article-title: Radiation Analysis by the Network Method
  publication-title: Transactions ASME
– reference: ADEME, “Suivi technique, économique, et social de 10 installations de méthanisation. Synthetic report,” Angers, 2020.
– year: 2018
  ident: b0100
  article-title: Heat loss analysis in the semi-buried anaerobic digester in Northeast Poland
– reference: D. Robb, “PyPI,” 2020. [Online]. Available: https://pypi.org/project/freshwater/. [Accessed 2022].
– reference: IEA, “World Energy Outlook 2018,” https://www.iea.org/reports/world-energy-outlook-2018, Paris, 2018.
– reference: ADEME, “Réaliser une unité de méthanisation à la ferme,” Angers, 2019.
– reference: G. Bastide, “Fiche technique méthanisation,” Angers, 2015.
– reference: vol. 49, no. 3, pp. 749-757, 2006.
– year: 2003
  ident: b0155
  article-title: Introduction to Environmental Soil Physics
– reference: ADEME, “Méthanisation. Feuille de route stratégique,” Paris, 2017.
– volume: 240
  start-page: 120
  year: 2019
  end-page: 137
  ident: b0060
  article-title: Enhancement of methane production in anaerobic digestion process: A review
  publication-title: Appl Energy
– volume: 119
  start-page: 101
  year: 2017
  end-page: 116
  ident: b0110
  article-title: Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester
  publication-title: Chem Eng Res Des
– reference: The SciPy community, “SciPy documentation,” 2008. [Online]. Available: https://docs.scipy.org/doc/scipy/. [Accessed 2022].
– year: 2011
  ident: b0170
  article-title: Fundamentals of heat and mass transfer
– volume: 18
  start-page: 1323
  year: 1975
  end-page: 1329
  ident: b0140
  article-title: Correlating equations for laminar and turbulent free convection from a vertical plate
  publication-title: Int J Heat Mass Transf
– volume: 260
  start-page: 47
  year: 2018
  end-page: 57
  ident: b0190
  article-title: Liquid manure storage temperature is affected by storage design and management practices - A modelling assessment
  publication-title: Agr Ecosyst Environ
– volume: 29
  start-page: 549
  year: 2015
  end-page: 557
  ident: b0035
  article-title: A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste
  publication-title: Water and Environment Journal
– ident: 10.1016/j.fuel.2022.126978_b0040
– year: 2003
  ident: 10.1016/j.fuel.2022.126978_b0155
– volume: 119
  start-page: 101
  year: 2017
  ident: 10.1016/j.fuel.2022.126978_b0110
  article-title: Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2017.01.007
– ident: 10.1016/j.fuel.2022.126978_b0225
– year: 1973
  ident: 10.1016/j.fuel.2022.126978_b0180
– volume: 287
  year: 2021
  ident: 10.1016/j.fuel.2022.126978_b0020
  article-title: A vision of European biogas sector development towards 2030: Trends and challenges
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125065
– volume: 30
  start-page: 199
  issue: 3
  year: 1989
  ident: 10.1016/j.fuel.2022.126978_b0185
  article-title: A heat-transfer analysis of fixed-dome biogas plants
  publication-title: Biol Wastes
  doi: 10.1016/0269-7483(89)90121-3
– volume: 78
  start-page: 725
  year: 1956
  ident: 10.1016/j.fuel.2022.126978_b0175
  article-title: Radiation Analysis by the Network Method
  publication-title: Transactions ASME
– ident: 10.1016/j.fuel.2022.126978_b0200
– volume: 53
  start-page: 159
  issue: 8
  year: 2006
  ident: 10.1016/j.fuel.2022.126978_b0210
  article-title: Self-heating of anaerobic digesters using energy crops
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2006.246
– ident: 10.1016/j.fuel.2022.126978_b0075
– year: 1987
  ident: 10.1016/j.fuel.2022.126978_b0205
– volume: 94
  start-page: 915
  year: 2018
  ident: 10.1016/j.fuel.2022.126978_b0025
  article-title: A spatial analysis of biogas potential from manure in Europe
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.06.035
– volume: 85
  start-page: 903
  year: 2016
  ident: 10.1016/j.fuel.2022.126978_b0055
  article-title: Biogas production from wet olive mill wastes pretreated with hydrogen peroxide in alkaline conditions
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.029
– ident: 10.1016/j.fuel.2022.126978_b0030
– ident: 10.1016/j.fuel.2022.126978_b0130
– volume: 18
  start-page: 1323
  year: 1975
  ident: 10.1016/j.fuel.2022.126978_b0140
  article-title: Correlating equations for laminar and turbulent free convection from a vertical plate
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(75)90243-4
– volume: 163
  start-page: 116
  year: 2017
  ident: 10.1016/j.fuel.2022.126978_b0095
  article-title: Investigation on the heat loss characteristic of underground household biogas digester using dynamic simulations and experiments
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2017.09.002
– volume: 29
  start-page: 549
  year: 2015
  ident: 10.1016/j.fuel.2022.126978_b0035
  article-title: A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste
  publication-title: Water and Environment Journal
  doi: 10.1111/wej.12130
– year: 1954
  ident: 10.1016/j.fuel.2022.126978_b0135
– year: 1983
  ident: 10.1016/j.fuel.2022.126978_b0195
– year: 2011
  ident: 10.1016/j.fuel.2022.126978_b0170
– ident: 10.1016/j.fuel.2022.126978_b0065
– volume: 48
  start-page: 777
  issue: 2
  year: 2005
  ident: 10.1016/j.fuel.2022.126978_b0145
  article-title: Heat transfer model for plug-flow anaerobic digesters
  publication-title: American Society of Agricultural Engineers
  doi: 10.13031/2013.18320
– ident: 10.1016/j.fuel.2022.126978_b0125
– ident: 10.1016/j.fuel.2022.126978_b0150
– volume: 124
  start-page: 259
  year: 2012
  ident: 10.1016/j.fuel.2022.126978_b0090
  article-title: Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.08.019
– volume: 240
  start-page: 120
  year: 2019
  ident: 10.1016/j.fuel.2022.126978_b0060
  article-title: Enhancement of methane production in anaerobic digestion process: A review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.243
– volume: 13
  start-page: 2702
  issue: 11
  year: 2020
  ident: 10.1016/j.fuel.2022.126978_b0085
  article-title: Modeling of the anaerobic digestion of organic wastes: Integration of heat transfer and biochemical aspects
  publication-title: Energies
  doi: 10.3390/en13112702
– ident: 10.1016/j.fuel.2022.126978_b0070
– volume: 70
  start-page: 155
  issue: 2
  year: 2001
  ident: 10.1016/j.fuel.2022.126978_b0080
  article-title: Simulation and experimental performance of a solar-heated anaerobic digester
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(00)00130-4
– volume: 99
  start-page: 300
  year: 1977
  ident: 10.1016/j.fuel.2022.126978_b0160
  article-title: A correlation equation for forced convection from gases and liquids to a circular cylinder in crossflow
  publication-title: J Heat Transfer
  doi: 10.1115/1.3450685
– volume: 296
  year: 2020
  ident: 10.1016/j.fuel.2022.126978_b0115
  article-title: Management and design of biogas digesters: A non-calibrated heat transfer model
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2019.122264
– ident: 10.1016/j.fuel.2022.126978_b0010
  doi: 10.3390/en14164895
– ident: 10.1016/j.fuel.2022.126978_b0220
– volume: 100
  start-page: 5478
  year: 2009
  ident: 10.1016/j.fuel.2022.126978_b0015
  article-title: The future of anaerobic digestion and biogas utilization
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2008.12.046
– year: 2018
  ident: 10.1016/j.fuel.2022.126978_b0120
– ident: 10.1016/j.fuel.2022.126978_b0050
– ident: 10.1016/j.fuel.2022.126978_b0105
  doi: 10.13031/2013.20482
– year: 1983
  ident: 10.1016/j.fuel.2022.126978_b0165
– ident: 10.1016/j.fuel.2022.126978_b0215
– ident: 10.1016/j.fuel.2022.126978_b0005
– year: 2018
  ident: 10.1016/j.fuel.2022.126978_b0100
  article-title: Heat loss analysis in the semi-buried anaerobic digester in Northeast Poland
– volume: 260
  start-page: 47
  year: 2018
  ident: 10.1016/j.fuel.2022.126978_b0190
  article-title: Liquid manure storage temperature is affected by storage design and management practices - A modelling assessment
  publication-title: Agr Ecosyst Environ
  doi: 10.1016/j.agee.2018.03.013
– ident: 10.1016/j.fuel.2022.126978_b0045
SSID ssj0007854
Score 2.436548
Snippet •A thermal model is set up for large anaerobic digesters with multimembrane gasholders.•The model is validated using data from one year of operation for a...
Biogas production via anaerobic digestion could approach thermal autarky (less biogas self-consumption and better energy efficiency) using enhanced solutions...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 126978
SubjectTerms Anaerobic digestion
Dynamic energy modeling
Engineering Sciences
Large-scale biogas plants
Multimembrane gasholder
Physics
Thermal autarky
Title Toward thermal autarky for large-scale biogas plants: Dynamic energy modeling for energy efficiency in anaerobic digesters with enhanced multimembrane gasholders
URI https://dx.doi.org/10.1016/j.fuel.2022.126978
https://hal.science/hal-03974180
Volume 339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELV4bGCBeAq4gCzEDhliJ45TdhUPlecKJHaR7U6g0IYK2ivdzf0X_pQZJ-EhIRZsrbEdZSzPsX3mDGM7hYcEUX8iuohVBeJbKxxGSRGpwrmWMlKGLP7Lq7Rzk5zd6tsJdtjkwhCtst77qz097NZ1y379N_eHvR7l-MqUpEOUiuIsUpTElySGVvne_w-ah8l0pcQsU0HWdeJMxfEqxkDPD0rtSZWGUmvfB6fJ--aaNYSdk3k2V-NF3q4-aYFNQLnIZj-pCC6x1-tAfeUE5QZoa8cj-_z4jyMc5X0ieosXdARw13u6sy982CfqywE_qmrRcwjZfzyUxMHxQre6DYK-BCVn8l7JbWmBVJs874ZXKQSOnK5x0fo-8Ah4YCcOYIAn8BI4TkZvW2i2zG5Ojq8PO6KuvCB8bLKRkAhLYu1UN8mg0CYyDoGYt8YUBWXuGu19IVM8WqcQW1Jsd5AVziI0tDG0MhmvsKnyqYRVxqkyfZS2nE5bGAg9bhcWSBBGxhq8VnqNyeaX576WJafqGP284Z895OSmnNyUV25aY7vvfYaVKMeP1rrxZP5laeUYNX7st41uf5-AdLg77Yuc2iJEcYnMor9y_ZeD_2EzVLi-ok5usKnR8xg2Ed6M3FZYv1tsun163rl6Azj1-hY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HFoOiEIrHi21qt6QIXbiPHpDPLTAwmmRuFm2d9LdshtWsIvEhf_CP-2Mk1AqIQ5crbETZZyZL_E33zD2s_SQIOpPRB-xqkB8a4XDLCkiVTpXqEzKUMV_fpF2LpPTK301xw7aWhiiVTaxv47pIVo3I3vN09ybDIdU4ytTkg5RKorzSBXzbDHB15faGOw-_uN5ZLmupZhlKsi8qZypSV7lDOj8QaldqdLQa-317DQ_aP-zhrxzvMKWG8DI9-t7-sTmoFplSy9kBNfYUy9wXzlhuTHa2tnU3l4_cMSjfERMb3GHngDuhje_7R2fjIj78osf1s3oOYTyPx564uB6YVozBkFggqoz-bDitrJAsk2e98OxFCJHTv9x0XoQiAQ80BPHMMZP8Ao4XowOt9DsM7s8PuoddETTekH4OMunQiIuibVT_SSHUmdR5hCJeZtlZUmlu5n2vpQpflunEFuSbHeQl84iNrQxFLmMv7CF6qaCdcapNX2UFk6nBWZCj_HCAinCyFiD10pvMNk-cuMbXXJqjzEyLQHtjyE3GXKTqd20wXae50xqVY43rXXrSfPf3jKYNt6c9wPd_nwBEuLu7HcNjUUI4xKZR_dy852Lf2cfOr3zrumeXJxtsY_Uxb7mUX5lC9PbGXxDrDN122Ev_wXno_uk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+thermal+autarky+for+large-scale+biogas+plants%3A+Dynamic+energy+modeling+for+energy+efficiency+in+anaerobic+digesters+with+enhanced+multimembrane+gasholders&rft.jtitle=Fuel+%28Guildford%29&rft.au=Avila-Lopez%2C+M.&rft.au=Robles-Rodriguez%2C+C.&rft.au=Tiruta-Barna%2C+L.&rft.au=Ahmadi%2C+A.&rft.date=2023-05-01&rft.issn=0016-2361&rft.volume=339&rft.spage=126978&rft_id=info:doi/10.1016%2Fj.fuel.2022.126978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2022_126978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon