Core-shell structured Fe2O3@Fe3C@C nanochains and Ni–Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor

Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the performance gap between lithium ion batteries and conventional capacitors. Herein, we report a novel porous core-shell structured Fe2O3@Fe3C@C nanocha...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 482; p. 228915
Main Authors Dai, Shuge, Bai, Yucheng, Shen, Weixia, Zhang, Sen, Hu, Hao, Fu, Jianwei, Wang, Xinchang, Hu, Chenguo, Liu, Meilin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the performance gap between lithium ion batteries and conventional capacitors. Herein, we report a novel porous core-shell structured Fe2O3@Fe3C@C nanochains and urchin-like Ni–Co carbonate hydroxide hybridized (denoted as NiCo–CHH) microspheres for advanced battery-type supercapacitors. The as-obtained Fe2O3@Fe3C@C anode shows high specific capacity (611 C g−1) and good rate capability. The fabricated NiCo–CHH cathode delivers high specific capacity (814 C g−1) and excellent cycling stability. When assembled into a battery-type supercapacitor, the NiCo–CHH//Fe2O3@Fe3C@C device delivers a high energy density (95.2 Wh kg−1) and excellent cycling stability. Moreover, In situ Raman spectroscopy proves the reversibility of the NiCo–CHH electrode, and the synergistic effects of Ni and Co ions, further revealing its energy storage mechanism. These findings provide a novel insight on high-performance battery-type supercapacitors. [Display omitted] •The Fe2O3@Fe3C@C nanochains are successfully constructed, exhibiting high capacity.•The NiCo–CHH electrode exhibits outstanding electrochemical performance.•The charge storage behaviour of NiCo–CHH is probed by in situ Raman spectroscopy.•The battery-type supercapacitor demonstrates high energy storage capability.
AbstractList Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the performance gap between lithium ion batteries and conventional capacitors. Herein, we report a novel porous core-shell structured Fe2O3@Fe3C@C nanochains and urchin-like Ni–Co carbonate hydroxide hybridized (denoted as NiCo–CHH) microspheres for advanced battery-type supercapacitors. The as-obtained Fe2O3@Fe3C@C anode shows high specific capacity (611 C g−1) and good rate capability. The fabricated NiCo–CHH cathode delivers high specific capacity (814 C g−1) and excellent cycling stability. When assembled into a battery-type supercapacitor, the NiCo–CHH//Fe2O3@Fe3C@C device delivers a high energy density (95.2 Wh kg−1) and excellent cycling stability. Moreover, In situ Raman spectroscopy proves the reversibility of the NiCo–CHH electrode, and the synergistic effects of Ni and Co ions, further revealing its energy storage mechanism. These findings provide a novel insight on high-performance battery-type supercapacitors. [Display omitted] •The Fe2O3@Fe3C@C nanochains are successfully constructed, exhibiting high capacity.•The NiCo–CHH electrode exhibits outstanding electrochemical performance.•The charge storage behaviour of NiCo–CHH is probed by in situ Raman spectroscopy.•The battery-type supercapacitor demonstrates high energy storage capability.
ArticleNumber 228915
Author Liu, Meilin
Zhang, Sen
Shen, Weixia
Dai, Shuge
Hu, Hao
Wang, Xinchang
Fu, Jianwei
Hu, Chenguo
Bai, Yucheng
Author_xml – sequence: 1
  givenname: Shuge
  surname: Dai
  fullname: Dai, Shuge
  email: shugedai@zzu.edu.cn
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China
– sequence: 2
  givenname: Yucheng
  surname: Bai
  fullname: Bai, Yucheng
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China
– sequence: 3
  givenname: Weixia
  surname: Shen
  fullname: Shen, Weixia
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China
– sequence: 4
  givenname: Sen
  surname: Zhang
  fullname: Zhang, Sen
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China
– sequence: 5
  givenname: Hao
  surname: Hu
  fullname: Hu, Hao
  organization: School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, PR China
– sequence: 6
  givenname: Jianwei
  orcidid: 0000-0002-2570-2610
  surname: Fu
  fullname: Fu, Jianwei
  email: jwfu@zzu.edu.cn
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, PR China
– sequence: 7
  givenname: Xinchang
  surname: Wang
  fullname: Wang, Xinchang
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China
– sequence: 8
  givenname: Chenguo
  surname: Hu
  fullname: Hu, Chenguo
  email: hucg@cqu.edu.cn
  organization: Department of Applied Physics, Chongqing University, Chongqing, 400044, PR China
– sequence: 9
  givenname: Meilin
  surname: Liu
  fullname: Liu, Meilin
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
BookMark eNqFkE1uE0EQhVsokXBCroD6AmP6x_PTEgujEU6QIrKBdaump4Zpy-4eVbcBZ5U7IHHAnISxDBs2WdWTSu9Vve-KXYQYkLG3UiylkNW77XI7xR8pHmiphBJLpRojy1dsIZtaF6ouywu2ELpuirou9Wt2ldJWCCFlLRbsdxsJizTibsdTpoPLB8Keb1A96PUGdbtueYAQ3Qg-JA6h55_989OvNnIH1MUAGfl47Cn-9P1JdeR7_zhH7L2jmKYRCRMfIvHRfxuLCWnWewgOeQc5Ix2LfJyQp8O8cjCB8znSG3Y5wC7hzd95zb5uPn5p74r7h9tP7Yf7ws19ciG11No4Y5zQGppV0wyuq6BC1TQrqcwK0RjtQIKsjHMldqrrjC67YehhpWt9zd6fc0-_JsLBzuch-xgygd9ZKeyJsd3af4ztibE9M57t1X_2ifwe6PiycX024lzuu0eyyXmcofSe0GXbR_9SxB9waaKP
CitedBy_id crossref_primary_10_1016_j_jelechem_2020_114795
crossref_primary_10_1016_j_est_2023_107528
crossref_primary_10_1007_s10853_023_08594_1
crossref_primary_10_1016_j_inoche_2024_112053
crossref_primary_10_1039_D2RA07383H
crossref_primary_10_1016_j_est_2024_112838
crossref_primary_10_1016_j_ensm_2021_10_032
crossref_primary_10_1021_acsami_3c02865
crossref_primary_10_1016_j_colsurfa_2022_130663
crossref_primary_10_1016_j_jallcom_2022_166222
crossref_primary_10_1016_j_jallcom_2022_167158
crossref_primary_10_1016_j_apsusc_2024_160136
crossref_primary_10_1016_j_est_2024_112716
crossref_primary_10_1016_j_est_2024_112398
crossref_primary_10_1016_j_cej_2022_135225
crossref_primary_10_1016_j_jallcom_2022_167790
crossref_primary_10_1016_j_nanoen_2022_107624
crossref_primary_10_1021_acsaelm_5c00069
crossref_primary_10_1016_j_rser_2025_115381
crossref_primary_10_1016_j_jelechem_2022_116860
crossref_primary_10_1016_j_inoche_2024_113789
crossref_primary_10_1016_j_seppur_2022_122845
crossref_primary_10_1016_j_est_2021_102477
crossref_primary_10_3390_molecules28155751
crossref_primary_10_1016_j_carbon_2021_12_058
crossref_primary_10_1016_j_diamond_2023_110076
crossref_primary_10_1016_j_est_2022_104148
crossref_primary_10_1016_j_est_2021_102584
crossref_primary_10_1039_D4TA02190H
crossref_primary_10_1021_acsanm_2c04584
crossref_primary_10_1016_j_compositesb_2023_111025
crossref_primary_10_1016_j_energy_2024_130723
crossref_primary_10_1016_j_est_2023_110246
crossref_primary_10_1007_s12274_021_3992_9
crossref_primary_10_1016_j_cej_2021_134083
crossref_primary_10_1016_j_est_2022_105194
crossref_primary_10_1016_j_electacta_2023_143135
crossref_primary_10_1039_D3QI00123G
crossref_primary_10_1016_j_jcis_2022_04_072
crossref_primary_10_1007_s12598_024_02818_2
crossref_primary_10_1002_elsa_202100187
crossref_primary_10_1002_aenm_202304060
crossref_primary_10_1016_j_est_2021_103716
crossref_primary_10_1016_j_est_2023_107075
crossref_primary_10_1002_adma_202303360
crossref_primary_10_1016_j_scriptamat_2022_114691
crossref_primary_10_1016_j_jmat_2022_09_003
crossref_primary_10_1016_j_diamond_2024_111372
crossref_primary_10_1016_j_jallcom_2023_169915
crossref_primary_10_1016_j_surfin_2025_105883
crossref_primary_10_1016_j_jallcom_2024_178073
crossref_primary_10_1016_j_synthmet_2022_117201
crossref_primary_10_1002_smll_202102565
crossref_primary_10_1016_j_colsurfa_2022_128804
crossref_primary_10_1016_j_jallcom_2022_166289
crossref_primary_10_1039_D1TA02741G
crossref_primary_10_1016_j_jallcom_2023_169754
crossref_primary_10_1016_j_jpowsour_2023_233352
crossref_primary_10_1016_j_supflu_2022_105672
crossref_primary_10_1007_s11581_022_04841_8
crossref_primary_10_1016_j_jallcom_2022_168586
crossref_primary_10_3390_molecules28176432
crossref_primary_10_1016_j_jpowsour_2022_231683
crossref_primary_10_1021_acsaem_1c01662
crossref_primary_10_1021_acsnano_4c03301
crossref_primary_10_1016_j_diamond_2023_110519
crossref_primary_10_1016_j_est_2024_112454
crossref_primary_10_1016_j_est_2023_109045
crossref_primary_10_1016_j_flatc_2023_100518
crossref_primary_10_1016_j_materresbull_2023_112287
crossref_primary_10_1016_j_cclet_2021_04_045
crossref_primary_10_1016_j_est_2022_105727
crossref_primary_10_1007_s10854_022_08289_4
crossref_primary_10_1002_slct_202104112
crossref_primary_10_1021_acs_energyfuels_1c04041
crossref_primary_10_1007_s11664_022_09758_6
crossref_primary_10_1016_j_est_2024_113718
crossref_primary_10_1021_acsestwater_2c00509
crossref_primary_10_1016_j_ceramint_2022_09_329
crossref_primary_10_1007_s11581_022_04472_z
crossref_primary_10_1016_j_jssc_2023_124110
crossref_primary_10_1016_j_clay_2022_106539
crossref_primary_10_1016_j_est_2024_111415
crossref_primary_10_1021_acsanm_2c04566
crossref_primary_10_1021_acsami_1c18777
crossref_primary_10_1016_j_apsusc_2024_160523
crossref_primary_10_1016_j_est_2024_112621
crossref_primary_10_1002_er_8653
crossref_primary_10_1021_acsomega_2c01988
crossref_primary_10_20964_2022_05_23
crossref_primary_10_1016_j_cej_2024_153423
crossref_primary_10_1016_j_jpowsour_2024_235832
crossref_primary_10_1016_j_matlet_2022_132791
crossref_primary_10_1016_j_cej_2021_129643
crossref_primary_10_1016_j_jelechem_2023_117665
crossref_primary_10_1016_j_matlet_2023_134232
crossref_primary_10_1016_j_cej_2021_132406
crossref_primary_10_1016_j_ijhydene_2024_08_208
crossref_primary_10_1016_j_pnsc_2024_07_023
crossref_primary_10_31258_Jamt_4_1_1_10
crossref_primary_10_1039_D3NR02723F
crossref_primary_10_1016_j_electacta_2024_144892
crossref_primary_10_1016_j_est_2021_103123
crossref_primary_10_1016_j_jcis_2021_11_191
crossref_primary_10_1016_j_jallcom_2021_160046
crossref_primary_10_1016_j_est_2022_104298
crossref_primary_10_1016_j_ijhydene_2022_03_068
crossref_primary_10_1016_j_est_2024_112758
crossref_primary_10_1016_j_jallcom_2022_164481
crossref_primary_10_1016_j_surfin_2023_102756
crossref_primary_10_1016_j_mser_2022_100713
crossref_primary_10_1016_j_mssp_2021_106176
crossref_primary_10_1016_j_est_2024_113321
crossref_primary_10_1016_j_fuel_2021_121151
crossref_primary_10_1002_ente_202201120
crossref_primary_10_1016_j_synthmet_2021_116775
crossref_primary_10_1016_j_electacta_2021_138087
crossref_primary_10_1016_j_est_2023_108776
crossref_primary_10_1088_1361_6528_ac45c4
crossref_primary_10_1016_j_est_2022_104616
crossref_primary_10_1016_j_est_2023_109589
crossref_primary_10_1039_D4RA00523F
crossref_primary_10_1016_j_jpowsour_2023_233922
crossref_primary_10_1016_j_est_2022_105945
crossref_primary_10_1016_j_cej_2023_148206
crossref_primary_10_1007_s11244_021_01472_7
crossref_primary_10_1016_j_mtsust_2022_100151
crossref_primary_10_1039_D1TA06706K
crossref_primary_10_1016_j_est_2022_105037
crossref_primary_10_1016_j_ijhydene_2022_02_132
crossref_primary_10_1016_j_inoche_2022_110360
crossref_primary_10_1016_j_cclet_2021_10_075
crossref_primary_10_1016_j_mtsust_2023_100335
crossref_primary_10_1016_j_colsurfa_2022_130191
crossref_primary_10_3390_polym15020454
crossref_primary_10_1002_adsu_202400043
crossref_primary_10_1016_j_jpowsour_2024_235138
crossref_primary_10_1016_j_electacta_2023_142922
crossref_primary_10_1016_j_inoche_2022_109226
crossref_primary_10_1016_j_jallcom_2025_179517
crossref_primary_10_1039_D4TC02245A
crossref_primary_10_1088_1361_6528_ac218e
crossref_primary_10_1016_j_cej_2023_146377
crossref_primary_10_1016_j_compositesb_2022_109812
crossref_primary_10_1016_j_carbon_2021_08_044
crossref_primary_10_1039_D2MA00653G
crossref_primary_10_1016_j_jallcom_2022_167733
crossref_primary_10_1016_j_nxener_2023_100076
crossref_primary_10_1016_j_surfin_2023_103501
crossref_primary_10_1016_j_jallcom_2022_165551
crossref_primary_10_1016_j_jpowsour_2024_234288
crossref_primary_10_1039_D3NR03839D
crossref_primary_10_1016_j_synthmet_2024_117600
crossref_primary_10_1016_j_surfin_2021_101638
crossref_primary_10_1016_j_jpowsour_2023_232854
crossref_primary_10_1007_s40843_021_2040_4
crossref_primary_10_1007_s40843_022_2330_6
crossref_primary_10_1021_acs_energyfuels_3c03094
crossref_primary_10_1016_j_cej_2021_134238
crossref_primary_10_1115_1_4064380
crossref_primary_10_1016_j_electacta_2022_139872
crossref_primary_10_1016_j_est_2022_104713
crossref_primary_10_1016_j_est_2023_106657
crossref_primary_10_1016_j_jcis_2021_11_182
crossref_primary_10_1016_j_electacta_2024_144585
crossref_primary_10_1002_smll_202312179
crossref_primary_10_1016_j_colsurfa_2023_130953
crossref_primary_10_1016_j_cej_2021_128995
crossref_primary_10_1016_j_ijhydene_2021_06_225
crossref_primary_10_1016_j_matpr_2022_04_029
crossref_primary_10_1016_j_est_2023_110346
crossref_primary_10_1016_j_seta_2022_102771
crossref_primary_10_1007_s10853_024_10262_x
crossref_primary_10_1016_j_electacta_2023_142146
crossref_primary_10_1016_j_jallcom_2022_165165
crossref_primary_10_1007_s11581_021_04056_3
crossref_primary_10_1016_j_jallcom_2023_170364
crossref_primary_10_1016_j_cej_2022_138687
crossref_primary_10_1016_j_ceramint_2023_04_125
crossref_primary_10_1016_j_est_2023_109355
crossref_primary_10_1016_j_indcrop_2021_113900
crossref_primary_10_1007_s10854_023_11091_5
crossref_primary_10_1007_s42114_024_01187_9
crossref_primary_10_1016_j_est_2023_107216
crossref_primary_10_1016_j_jcis_2022_05_096
crossref_primary_10_1016_j_est_2023_107614
Cites_doi 10.3389/fchem.2018.00431
10.1039/C8NR02337A
10.1016/j.nanoen.2016.08.021
10.1016/j.nanoen.2011.11.006
10.1002/adma.201605336
10.1039/C4TA03442B
10.1021/acsami.8b11416
10.1016/j.electacta.2018.09.149
10.1107/S2053229618017734
10.1038/ncomms12647
10.1016/j.cej.2018.02.021
10.1002/aenm.201702247
10.1016/j.jpowsour.2020.228286
10.1039/C7DT03853D
10.1002/smll.201901145
10.1007/s40820-019-0337-2
10.1002/adma.201605051
10.1002/aenm.201702787
10.1016/j.jpowsour.2019.227407
10.1016/j.nanoen.2018.04.032
10.1016/j.carbon.2020.04.016
10.1002/smll.201800285
10.1016/j.nanoen.2019.103919
10.1016/j.nanoen.2017.06.042
10.1016/j.ensm.2018.06.026
10.1149/2.0201505jes
10.1016/j.nanoen.2016.08.049
10.1016/j.cej.2019.121938
10.1021/acsenergylett.7b00265
10.1016/j.cej.2019.01.102
10.1039/C7TA07628B
10.1016/j.nanoen.2017.04.007
10.1016/j.nanoen.2018.12.011
10.1016/j.nanoen.2015.11.025
10.1021/nl503852m
10.1039/C8CY01223G
10.1039/C8TA00540K
10.1002/smll.202002806
10.1002/adma.201504833
10.1002/jrs.1978
10.1002/advs.201600539
10.1002/adma.201703463
10.1039/C9TA13225B
10.1002/adfm.201902822
10.1016/j.nanoen.2018.01.024
10.1016/j.nanoen.2017.01.056
10.1039/C8TA11249E
10.1016/j.matdes.2020.108992
10.1002/adfm.201800036
10.1007/s11663-001-0071-1
10.1021/acsami.7b12392
10.1002/aenm.201703453
10.1002/cssc.201902339
10.1039/C7TA11100B
10.1002/adfm.201705921
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2020.228915
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID 10_1016_j_jpowsour_2020_228915
S0378775320312167
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c378t-131339c99c033a8488fcb6a6e28841294ee993ca1a169cc5eb2bb935bffda4373
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Thu Apr 24 22:55:21 EDT 2025
Tue Jul 01 01:40:30 EDT 2025
Fri Feb 23 02:41:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords In-situ Raman
Battery-type supercapacitors
Fe2O3@Fe3C@C nanochains
NiCo–CHH microspheres
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-131339c99c033a8488fcb6a6e28841294ee993ca1a169cc5eb2bb935bffda4373
ORCID 0000-0002-2570-2610
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2020_228915
crossref_primary_10_1016_j_jpowsour_2020_228915
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2020_228915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patil, Chodankar, Pujari, Han, Lee (bib52) 2020; 466
Wang, Xi, Wang, Zhang, Wang, Yang, Li, Hu, Zhang (bib8) 2016; 28
Brousse, Belanger, Long (bib33) 2015; 162
Qu, Zhang, Meng, Liang, Zhu, Dang, Dai, Zhao, Tabassum, Gao, Zhang, Guo, Zhao, Huang, Liu, Zou (bib6) 2018; 6
Zhao, Li, Yuan, Yang, Zhang, Meng, Li (bib1) 2018; 8
Choudhary, Li, Moore, Nagaiah, Zhai, Jung, Thomas (bib2) 2017; 29
Chodankar, Pham, Nanjundan, Fernando, Jayaramulu, Golberg, Han, Dubal (bib14) 2020; 16
Chodankar, Raju, Park, Shinde, Jun, Dubal, Huh, Han (bib51) 2020; 8
Zhang, Zhao, Wang, Qu, Sun, Zhang, Liu (bib15) 2016; 28
Dai, Xu, Xi, Wang, Gu, Guo, Hu (bib7) 2016; 19
Wei, Cui, Ding, Mi, Chen, Hu (bib41) 2017; 9
Liu, Guan, Zhou, Fan, Ke, Zhang, Liu, Wang (bib29) 2017; 29
Chodankar, Ji, Han, Kim (bib53) 2020; 12
Lukatskaya, Dunn, Gogotsi (bib3) 2016; 7
Lin, Liang, Jia, Chen, Guo, Qi, Qu, Cao, Fei, Feng (bib25) 2017; 5
Chodankar, Dubal, Ji, Kim (bib54) 2019; 15
Shen, Zang, Hu, Xu, Zhang, Yan, Dai (bib13) 2020; 195
Dai, Zhang, Xu, Shen, Zhang, Yang, Xu, Dang, Hu, Zhao, Wang, Qu, Fu, Li, Hu, Liu (bib31) 2019; 64
Zou, Quan, Pan, Zhou, Chen, Luo (bib21) 2018; 292
Zhang, Liu, Zhao, Cheng, Zhang, Wu, Wang, Dai, Zhang, Ding, Wuc, Liu (bib28) 2019; 16
Qu, Zhao, Jiao, Chen, Dai, deglee, Chen, Walton, Zou, Liu (bib4) 2017; 2
Dai, Guo, Wang, Liu, Wang, Hu, Xi (bib5) 2014; 2
Feng, Liu, Liu, Song, Wang (bib38) 2018; 8
Frost, Dickfos, Reddy (bib50) 2008; 39
Wang, Zhang, Jiang, Li, Cheng, Meng (bib11) 2019; 362
Cao, Tan, Zhang, Zhao, Zhang (bib18) 2016; 28
Zheng, Zhang, Wang, Jiang, Liu, Lv, Meng (bib17) 2018; 47
Jiang, Xu, Yan, Ma, Dai (bib40) 2018; 6
Zhang, Wang, Jiang, Wang, Zheng, Meng (bib16) 2019; 375
Wu, Shi, Song, Ren, Tan, Tang, Meng (bib44) 2018; 45
Cheng, Zhang, Jiang, Dong, Meng, Kou (bib12) 2020; 448
Qin, Zhang, Zhao, Liu, Jia, Han, Wu, Liu, Wang, Min, Xi, Lao, Wang, Qu, Kumar (bib20) 2019; 29
Zhao, Zhang, Zhang, Chen, Cheng, Deng, Chen, Murphy, Xiong, Song, Wong, Wang, Liu (bib49) 2017; 8
Dai, Zhao, Qu, Chen, Dang, Song, deGleea, Fu, Hu, Wong, Liu (bib10) 2017; 33
Liu, Chen, Zhang, Jiang, Yan, Huang, Lin, Fan, Shen (bib24) 2014; 14
Qu, Liang, Jiao, Zhao, Zhu, Dang, Dai, Chen, Zou, Liu (bib30) 2018; 14
Li, Wu, Elshahawy, Wang, Pennycook, Guan, Wang (bib47) 2018; 28
Díaz, Urías, Sandoval (bib35) 2020; 164
Li, Li, Li, Wu (bib27) 2018; 10
Chen, Zhou, Quan, Zou, Gao, Luo, Guo (bib23) 2018; 341
Bhojane, Bail, Shirage (bib39) 2019; 75
Wang, Chen, Lei, Ai, Peng, Yan, Li, Zhang, Wang, Chueh (bib26) 2018; 8
Liang, Xia, Emwas, Anjum, Miao, Alshareef (bib22) 2018; 49
Wang, Li, Li, Lin, Bai, Dai, Liang, Zhu, Sun, Dou (bib45) 2019; 7
Liang, Xia, Jiang, Gandi, Schwingenschlögl, Alshareef (bib32) 2017; 35
Li, Liu, Zhang, Cheng, Zhao, Dai, Wu, Zhang, Ding, Wu, Liu, Wang (bib34) 2019; 57
Liu, Ni, Li, Hui, Ouyang, Jun (bib43) 2018; 6
Chodankar, Patil, Raju, Lee, Dubal, Huh, Han (bib55) 2020; 13
Zuo, Li, Zhou, Li, Xia, Liu (bib9) 2017; 4
Li, Zhang, Li, Fan, Xu (bib37) 2018; 10
Elshahawy, Guan, Li, Zhang, Hu, Wu, Pennycook, Wang (bib42) 2017; 39
Hou, Shi, Wu, Zhang, Ma, Sun, Sun, Zhang, Yuan (bib48) 2018; 28
Candelaria, Shao, Zhou, Li, Xiao, Zhang, Wang, Liu, Li, Cao (bib19) 2012; 1
Park, Zhang, Thomson, Ostrovski, Howe (bib36) 2001; 32B
Guan, Yu, Wang, Song, Lou (bib46) 2017; 29
Zhang (10.1016/j.jpowsour.2020.228915_bib15) 2016; 28
Zuo (10.1016/j.jpowsour.2020.228915_bib9) 2017; 4
Chodankar (10.1016/j.jpowsour.2020.228915_bib51) 2020; 8
Patil (10.1016/j.jpowsour.2020.228915_bib52) 2020; 466
Chodankar (10.1016/j.jpowsour.2020.228915_bib53) 2020; 12
Jiang (10.1016/j.jpowsour.2020.228915_bib40) 2018; 6
Bhojane (10.1016/j.jpowsour.2020.228915_bib39) 2019; 75
Zhao (10.1016/j.jpowsour.2020.228915_bib49) 2017; 8
Wu (10.1016/j.jpowsour.2020.228915_bib44) 2018; 45
Chodankar (10.1016/j.jpowsour.2020.228915_bib54) 2019; 15
Feng (10.1016/j.jpowsour.2020.228915_bib38) 2018; 8
Qin (10.1016/j.jpowsour.2020.228915_bib20) 2019; 29
Liu (10.1016/j.jpowsour.2020.228915_bib29) 2017; 29
Liang (10.1016/j.jpowsour.2020.228915_bib32) 2017; 35
Park (10.1016/j.jpowsour.2020.228915_bib36) 2001; 32B
Frost (10.1016/j.jpowsour.2020.228915_bib50) 2008; 39
Dai (10.1016/j.jpowsour.2020.228915_bib7) 2016; 19
Zhang (10.1016/j.jpowsour.2020.228915_bib28) 2019; 16
Qu (10.1016/j.jpowsour.2020.228915_bib4) 2017; 2
Wang (10.1016/j.jpowsour.2020.228915_bib11) 2019; 362
Wei (10.1016/j.jpowsour.2020.228915_bib41) 2017; 9
Wang (10.1016/j.jpowsour.2020.228915_bib45) 2019; 7
Zhang (10.1016/j.jpowsour.2020.228915_bib16) 2019; 375
Li (10.1016/j.jpowsour.2020.228915_bib37) 2018; 10
Díaz (10.1016/j.jpowsour.2020.228915_bib35) 2020; 164
Cheng (10.1016/j.jpowsour.2020.228915_bib12) 2020; 448
Dai (10.1016/j.jpowsour.2020.228915_bib5) 2014; 2
Liang (10.1016/j.jpowsour.2020.228915_bib22) 2018; 49
Lin (10.1016/j.jpowsour.2020.228915_bib25) 2017; 5
Elshahawy (10.1016/j.jpowsour.2020.228915_bib42) 2017; 39
Li (10.1016/j.jpowsour.2020.228915_bib27) 2018; 10
Cao (10.1016/j.jpowsour.2020.228915_bib18) 2016; 28
Liu (10.1016/j.jpowsour.2020.228915_bib24) 2014; 14
Dai (10.1016/j.jpowsour.2020.228915_bib31) 2019; 64
Li (10.1016/j.jpowsour.2020.228915_bib47) 2018; 28
Dai (10.1016/j.jpowsour.2020.228915_bib10) 2017; 33
Brousse (10.1016/j.jpowsour.2020.228915_bib33) 2015; 162
Li (10.1016/j.jpowsour.2020.228915_bib34) 2019; 57
Zheng (10.1016/j.jpowsour.2020.228915_bib17) 2018; 47
Chodankar (10.1016/j.jpowsour.2020.228915_bib55) 2020; 13
Choudhary (10.1016/j.jpowsour.2020.228915_bib2) 2017; 29
Lukatskaya (10.1016/j.jpowsour.2020.228915_bib3) 2016; 7
Liu (10.1016/j.jpowsour.2020.228915_bib43) 2018; 6
Qu (10.1016/j.jpowsour.2020.228915_bib30) 2018; 14
Guan (10.1016/j.jpowsour.2020.228915_bib46) 2017; 29
Shen (10.1016/j.jpowsour.2020.228915_bib13) 2020; 195
Zou (10.1016/j.jpowsour.2020.228915_bib21) 2018; 292
Zhao (10.1016/j.jpowsour.2020.228915_bib1) 2018; 8
Chodankar (10.1016/j.jpowsour.2020.228915_bib14) 2020; 16
Wang (10.1016/j.jpowsour.2020.228915_bib8) 2016; 28
Candelaria (10.1016/j.jpowsour.2020.228915_bib19) 2012; 1
Wang (10.1016/j.jpowsour.2020.228915_bib26) 2018; 8
Hou (10.1016/j.jpowsour.2020.228915_bib48) 2018; 28
Chen (10.1016/j.jpowsour.2020.228915_bib23) 2018; 341
Qu (10.1016/j.jpowsour.2020.228915_bib6) 2018; 6
References_xml – volume: 75
  start-page: 61
  year: 2019
  end-page: 64
  ident: bib39
  publication-title: Acta Crystallogr. C
– volume: 28
  start-page: 1800036
  year: 2018
  ident: bib47
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 162
  year: 2017
  end-page: 171
  ident: bib42
  publication-title: Nano Energy
– volume: 57
  start-page: 22
  year: 2019
  end-page: 33
  ident: bib34
  publication-title: Nano Energy
– volume: 195
  start-page: 108992
  year: 2020
  ident: bib13
  publication-title: Mater. Des.
– volume: 8
  start-page: 1702787
  year: 2018
  ident: bib1
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 1705921
  year: 2018
  ident: bib48
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 5721
  year: 2020
  end-page: 5733
  ident: bib51
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1703453
  year: 2018
  ident: bib26
  publication-title: Adv. Energy Mater.
– volume: 35
  start-page: 331
  year: 2017
  end-page: 340
  ident: bib32
  publication-title: Nano Energy
– volume: 2
  start-page: 1263
  year: 2017
  end-page: 1269
  ident: bib4
  publication-title: ACS Energy Lett
– volume: 47
  start-page: 452
  year: 2018
  end-page: 464
  ident: bib17
  publication-title: Dalton Trans.
– volume: 28
  start-page: 115
  year: 2016
  end-page: 123
  ident: bib8
  publication-title: Nano Energy
– volume: 19
  start-page: 363
  year: 2016
  end-page: 372
  ident: bib7
  publication-title: Nano Energy
– volume: 49
  start-page: 155
  year: 2018
  end-page: 162
  ident: bib22
  publication-title: Nano Energy
– volume: 362
  start-page: 818
  year: 2019
  end-page: 829
  ident: bib11
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 10674
  year: 2018
  end-page: 10685
  ident: bib43
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 475
  year: 2016
  end-page: 485
  ident: bib15
  publication-title: Nano Energy
– volume: 162
  start-page: A5185
  year: 2015
  end-page: A5189
  ident: bib33
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 24594
  year: 2017
  end-page: 24601
  ident: bib25
  publication-title: J. Mater. Chem. A
– volume: 64
  start-page: 103919
  year: 2019
  ident: bib31
  publication-title: Nano Energy
– volume: 1
  start-page: 195
  year: 2012
  end-page: 220
  ident: bib19
  publication-title: Nano Energy
– volume: 14
  start-page: 1800285
  year: 2018
  ident: bib30
  publication-title: Small
– volume: 8
  start-page: 4900
  year: 2018
  end-page: 4906
  ident: bib38
  publication-title: Catal. Sci. Technol.
– volume: 39
  start-page: 1250
  year: 2008
  end-page: 1256
  ident: bib50
  publication-title: J. Raman Spectrosc.
– volume: 16
  start-page: 2002806
  year: 2020
  ident: bib14
  publication-title: Small
– volume: 292
  start-page: 31
  year: 2018
  end-page: 38
  ident: bib21
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 9252
  year: 2018
  end-page: 9260
  ident: bib37
  publication-title: Nanoscale
– volume: 29
  start-page: 1605051
  year: 2017
  ident: bib46
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4003
  year: 2018
  end-page: 4012
  ident: bib6
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1703463
  year: 2017
  ident: bib29
  publication-title: Adv. Mater.
– volume: 32B
  start-page: 839
  year: 2001
  ident: bib36
  publication-title: Metall. Mater. Trans. B
– volume: 33
  start-page: 522
  year: 2017
  end-page: 531
  ident: bib10
  publication-title: Nano Energy
– volume: 10
  start-page: 34254
  year: 2018
  end-page: 34264
  ident: bib27
  publication-title: ACS Appl. Mater. Interfaces
– volume: 164
  start-page: 324
  year: 2020
  end-page: 336
  ident: bib35
  publication-title: Carbon
– volume: 29
  start-page: 1605336
  year: 2017
  ident: bib2
  publication-title: Adv. Mater.
– volume: 6
  start-page: 431
  year: 2018
  ident: bib40
  publication-title: Frontiers in Chemistry
– volume: 375
  start-page: 121938
  year: 2019
  ident: bib16
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1
  year: 2020
  ident: bib53
  publication-title: Nano-Micro Lett.
– volume: 28
  start-page: 6167
  year: 2016
  end-page: 6196
  ident: bib18
  publication-title: Adv. Mater.
– volume: 9
  start-page: 40655
  year: 2017
  end-page: 40670
  ident: bib41
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 439
  year: 2018
  end-page: 447
  ident: bib44
  publication-title: Nano Energy
– volume: 7
  start-page: 12647
  year: 2016
  ident: bib3
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2291
  year: 2019
  end-page: 2300
  ident: bib45
  publication-title: J. Mater. Chem. A
– volume: 466
  start-page: 228286
  year: 2020
  ident: bib52
  publication-title: J. Power Sources
– volume: 15
  start-page: 1901145
  year: 2019
  ident: bib54
  publication-title: Small
– volume: 341
  start-page: 102
  year: 2018
  end-page: 111
  ident: bib23
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 19665
  year: 2014
  end-page: 19669
  ident: bib5
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1600539
  year: 2017
  ident: bib9
  publication-title: Adv. Sci.
– volume: 8
  start-page: 1702247
  year: 2017
  ident: bib49
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1902822
  year: 2019
  ident: bib20
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 7180
  year: 2014
  end-page: 7187
  ident: bib24
  publication-title: Nano Lett.
– volume: 448
  start-page: 227407
  year: 2020
  ident: bib12
  publication-title: J. Power Sources
– volume: 16
  start-page: 632
  year: 2019
  end-page: 645
  ident: bib28
  publication-title: Energy Storage Materials
– volume: 13
  start-page: 1582
  year: 2020
  end-page: 1592
  ident: bib55
  publication-title: ChemSusChem
– volume: 6
  start-page: 431
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib40
  publication-title: Frontiers in Chemistry
  doi: 10.3389/fchem.2018.00431
– volume: 10
  start-page: 9252
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib37
  publication-title: Nanoscale
  doi: 10.1039/C8NR02337A
– volume: 28
  start-page: 115
  year: 2016
  ident: 10.1016/j.jpowsour.2020.228915_bib8
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.021
– volume: 1
  start-page: 195
  year: 2012
  ident: 10.1016/j.jpowsour.2020.228915_bib19
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.11.006
– volume: 29
  start-page: 1605336
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605336
– volume: 2
  start-page: 19665
  year: 2014
  ident: 10.1016/j.jpowsour.2020.228915_bib5
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03442B
– volume: 10
  start-page: 34254
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11416
– volume: 292
  start-page: 31
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib21
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.149
– volume: 75
  start-page: 61
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib39
  publication-title: Acta Crystallogr. C
  doi: 10.1107/S2053229618017734
– volume: 7
  start-page: 12647
  year: 2016
  ident: 10.1016/j.jpowsour.2020.228915_bib3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12647
– volume: 341
  start-page: 102
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib23
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.02.021
– volume: 8
  start-page: 1702247
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib49
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702247
– volume: 466
  start-page: 228286
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib52
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228286
– volume: 47
  start-page: 452
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib17
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT03853D
– volume: 15
  start-page: 1901145
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib54
  publication-title: Small
  doi: 10.1002/smll.201901145
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib53
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0337-2
– volume: 29
  start-page: 1605051
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605051
– volume: 8
  start-page: 1702787
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702787
– volume: 448
  start-page: 227407
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227407
– volume: 49
  start-page: 155
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.032
– volume: 164
  start-page: 324
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib35
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.04.016
– volume: 14
  start-page: 1800285
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib30
  publication-title: Small
  doi: 10.1002/smll.201800285
– volume: 64
  start-page: 103919
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib31
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103919
– volume: 39
  start-page: 162
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib42
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.042
– volume: 16
  start-page: 632
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib28
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2018.06.026
– volume: 162
  start-page: A5185
  year: 2015
  ident: 10.1016/j.jpowsour.2020.228915_bib33
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0201505jes
– volume: 28
  start-page: 475
  year: 2016
  ident: 10.1016/j.jpowsour.2020.228915_bib15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.049
– volume: 375
  start-page: 121938
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib16
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121938
– volume: 2
  start-page: 1263
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib4
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b00265
– volume: 362
  start-page: 818
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib11
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.102
– volume: 5
  start-page: 24594
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07628B
– volume: 35
  start-page: 331
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.007
– volume: 57
  start-page: 22
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib34
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.011
– volume: 19
  start-page: 363
  year: 2016
  ident: 10.1016/j.jpowsour.2020.228915_bib7
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.11.025
– volume: 14
  start-page: 7180
  year: 2014
  ident: 10.1016/j.jpowsour.2020.228915_bib24
  publication-title: Nano Lett.
  doi: 10.1021/nl503852m
– volume: 8
  start-page: 4900
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib38
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY01223G
– volume: 6
  start-page: 10674
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib43
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00540K
– volume: 16
  start-page: 2002806
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib14
  publication-title: Small
  doi: 10.1002/smll.202002806
– volume: 28
  start-page: 6167
  year: 2016
  ident: 10.1016/j.jpowsour.2020.228915_bib18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504833
– volume: 39
  start-page: 1250
  year: 2008
  ident: 10.1016/j.jpowsour.2020.228915_bib50
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1978
– volume: 4
  start-page: 1600539
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib9
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600539
– volume: 29
  start-page: 1703463
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703463
– volume: 8
  start-page: 5721
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib51
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13225B
– volume: 29
  start-page: 1902822
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902822
– volume: 45
  start-page: 439
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib44
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.024
– volume: 33
  start-page: 522
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib10
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.056
– volume: 7
  start-page: 2291
  year: 2019
  ident: 10.1016/j.jpowsour.2020.228915_bib45
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11249E
– volume: 195
  start-page: 108992
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib13
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108992
– volume: 28
  start-page: 1800036
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib47
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800036
– volume: 32B
  start-page: 839
  year: 2001
  ident: 10.1016/j.jpowsour.2020.228915_bib36
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-001-0071-1
– volume: 9
  start-page: 40655
  year: 2017
  ident: 10.1016/j.jpowsour.2020.228915_bib41
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12392
– volume: 8
  start-page: 1703453
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703453
– volume: 13
  start-page: 1582
  year: 2020
  ident: 10.1016/j.jpowsour.2020.228915_bib55
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201902339
– volume: 6
  start-page: 4003
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib6
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11100B
– volume: 28
  start-page: 1705921
  year: 2018
  ident: 10.1016/j.jpowsour.2020.228915_bib48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705921
SSID ssj0001170
Score 2.6639395
Snippet Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 228915
SubjectTerms Battery-type supercapacitors
Fe2O3@Fe3C@C nanochains
In-situ Raman
NiCo–CHH microspheres
Title Core-shell structured Fe2O3@Fe3C@C nanochains and Ni–Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor
URI https://dx.doi.org/10.1016/j.jpowsour.2020.228915
Volume 482
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoEDKi9RHpUPXL27ju1sfGsVsVpALAeo1FtkO2M1K0hWCRUtB8R_QOIH8kuY2SR0kZB64BYlmSiamcwrM98w9iJTEKM2TkRvMqFV1MKWNorEemkdpBCA6h1vV-nyVL8-M2d7LB9nYaitcrD9vU3fWuvhzHTg5nRTVdP3M4XKNqfFBkomMqWJcq3npOWTb9dtHrRZZfsnAbMluntnSng9WW-aL1QkxzwxmU0STD5oPe6_HNSO01kcsLtDtMhP-he6x_agvs_u7GAIPmA_86YF0VE_J-_BYC9aKPkCknfqeAEqP8557eomnLuq7rirS76qfn3_kTc8uNZT8Rz4-VXZNpdVSUc0wlV9xUd8ol69jmAHoOMY23KCNhab60kD7rfgnFeC6ri8u8BLAX1vQCPRPmSni5cf8qUYli2IgKyhlfSYrdpgbZgp5TL8rmPwqUshyTKNQYEGwFAmOOlkakMwmJF7b5XxMZaO8JEesf26qeEx42giZGrAeMIpjUiGSZvTBmQps-j0_JCZkcNFGJDIaSHGx2JsOVsXo2QKkkzRS-aQTf_QbXosjhsp7CjA4i-tKtBh3ED75D9on7LbCfW-zKSQ5hnbR-nDcwxePvujrXYesVsnr94sV78Bdqf0pw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKOQAHxK8oUPCBq3fXcZyNb0VRVwu0y4FW6i2ynbGaVUlWCRVtD4h3QOIBeRJmNgldJKQeuEVJJoo84_nzzDeMvUkVhBBrK4LTqYhViIUpTBCRcdJYSMAD5TsOF8n8OH5_ok-2WDb0wlBZZa_7O52-1tb9nXG_muNVWY4_TRQK25QGGygZyWR6i92OcfvSGIPRt-s6Dxqtsj5KwHCJXt9oE16Olqv6K2XJMVCMJqMIow-aj_svC7VhdWYP2P3eXeRvuz96yLagesTubYAIPmY_s7oB0VJBJ-_QYM8bKPgMoo9qbwYq28t4Zavan9qyarmtCr4of33_kdXc28ZR9hz46WXR1BdlQVfUw1Ve4Sc-U7FeS7gD0HJ0bjlhG4vVdasBd2t0zktBiVzenuMjj8bXo5ZonrDj2f5RNhf9tAXhcWloJj2Gq8Yb4ydK2RQ3dvAusQlEaRqjVxADoC_jrbQyMd5rDMmdM0q7EApLAElP2XZVV_CMcdQRMtGgHQGVBiTDqM3GGmQh02Dj6Q7Twwrnvocip4kYZ_lQc7bMB87kxJm848wOG_-hW3VgHDdSmIGB-V9ilaPFuIH2-X_QvmZ35keHB_nBu8WHF-xuRIUwEymkfsm2URJgFz2ZL-7VWlJ_Awpc9jU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+structured+Fe2O3%40Fe3C%40C+nanochains+and+Ni%E2%80%93Co+carbonate+hydroxide+hybridized+microspheres+for+high-performance+battery-type+supercapacitor&rft.jtitle=Journal+of+power+sources&rft.au=Dai%2C+Shuge&rft.au=Bai%2C+Yucheng&rft.au=Shen%2C+Weixia&rft.au=Zhang%2C+Sen&rft.date=2021-01-15&rft.issn=0378-7753&rft.volume=482&rft.spage=228915&rft_id=info:doi/10.1016%2Fj.jpowsour.2020.228915&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2020_228915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon