Core-shell structured Fe2O3@Fe3C@C nanochains and Ni–Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor
Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the performance gap between lithium ion batteries and conventional capacitors. Herein, we report a novel porous core-shell structured Fe2O3@Fe3C@C nanocha...
Saved in:
Published in | Journal of power sources Vol. 482; p. 228915 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the performance gap between lithium ion batteries and conventional capacitors. Herein, we report a novel porous core-shell structured Fe2O3@Fe3C@C nanochains and urchin-like Ni–Co carbonate hydroxide hybridized (denoted as NiCo–CHH) microspheres for advanced battery-type supercapacitors. The as-obtained Fe2O3@Fe3C@C anode shows high specific capacity (611 C g−1) and good rate capability. The fabricated NiCo–CHH cathode delivers high specific capacity (814 C g−1) and excellent cycling stability. When assembled into a battery-type supercapacitor, the NiCo–CHH//Fe2O3@Fe3C@C device delivers a high energy density (95.2 Wh kg−1) and excellent cycling stability. Moreover, In situ Raman spectroscopy proves the reversibility of the NiCo–CHH electrode, and the synergistic effects of Ni and Co ions, further revealing its energy storage mechanism. These findings provide a novel insight on high-performance battery-type supercapacitors.
[Display omitted]
•The Fe2O3@Fe3C@C nanochains are successfully constructed, exhibiting high capacity.•The NiCo–CHH electrode exhibits outstanding electrochemical performance.•The charge storage behaviour of NiCo–CHH is probed by in situ Raman spectroscopy.•The battery-type supercapacitor demonstrates high energy storage capability. |
---|---|
AbstractList | Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the performance gap between lithium ion batteries and conventional capacitors. Herein, we report a novel porous core-shell structured Fe2O3@Fe3C@C nanochains and urchin-like Ni–Co carbonate hydroxide hybridized (denoted as NiCo–CHH) microspheres for advanced battery-type supercapacitors. The as-obtained Fe2O3@Fe3C@C anode shows high specific capacity (611 C g−1) and good rate capability. The fabricated NiCo–CHH cathode delivers high specific capacity (814 C g−1) and excellent cycling stability. When assembled into a battery-type supercapacitor, the NiCo–CHH//Fe2O3@Fe3C@C device delivers a high energy density (95.2 Wh kg−1) and excellent cycling stability. Moreover, In situ Raman spectroscopy proves the reversibility of the NiCo–CHH electrode, and the synergistic effects of Ni and Co ions, further revealing its energy storage mechanism. These findings provide a novel insight on high-performance battery-type supercapacitors.
[Display omitted]
•The Fe2O3@Fe3C@C nanochains are successfully constructed, exhibiting high capacity.•The NiCo–CHH electrode exhibits outstanding electrochemical performance.•The charge storage behaviour of NiCo–CHH is probed by in situ Raman spectroscopy.•The battery-type supercapacitor demonstrates high energy storage capability. |
ArticleNumber | 228915 |
Author | Liu, Meilin Zhang, Sen Shen, Weixia Dai, Shuge Hu, Hao Wang, Xinchang Fu, Jianwei Hu, Chenguo Bai, Yucheng |
Author_xml | – sequence: 1 givenname: Shuge surname: Dai fullname: Dai, Shuge email: shugedai@zzu.edu.cn organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China – sequence: 2 givenname: Yucheng surname: Bai fullname: Bai, Yucheng organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China – sequence: 3 givenname: Weixia surname: Shen fullname: Shen, Weixia organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China – sequence: 4 givenname: Sen surname: Zhang fullname: Zhang, Sen organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China – sequence: 5 givenname: Hao surname: Hu fullname: Hu, Hao organization: School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, PR China – sequence: 6 givenname: Jianwei orcidid: 0000-0002-2570-2610 surname: Fu fullname: Fu, Jianwei email: jwfu@zzu.edu.cn organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, PR China – sequence: 7 givenname: Xinchang surname: Wang fullname: Wang, Xinchang organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, PR China – sequence: 8 givenname: Chenguo surname: Hu fullname: Hu, Chenguo email: hucg@cqu.edu.cn organization: Department of Applied Physics, Chongqing University, Chongqing, 400044, PR China – sequence: 9 givenname: Meilin surname: Liu fullname: Liu, Meilin organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA |
BookMark | eNqFkE1uE0EQhVsokXBCroD6AmP6x_PTEgujEU6QIrKBdaump4Zpy-4eVbcBZ5U7IHHAnISxDBs2WdWTSu9Vve-KXYQYkLG3UiylkNW77XI7xR8pHmiphBJLpRojy1dsIZtaF6ouywu2ELpuirou9Wt2ldJWCCFlLRbsdxsJizTibsdTpoPLB8Keb1A96PUGdbtueYAQ3Qg-JA6h55_989OvNnIH1MUAGfl47Cn-9P1JdeR7_zhH7L2jmKYRCRMfIvHRfxuLCWnWewgOeQc5Ix2LfJyQp8O8cjCB8znSG3Y5wC7hzd95zb5uPn5p74r7h9tP7Yf7ws19ciG11No4Y5zQGppV0wyuq6BC1TQrqcwK0RjtQIKsjHMldqrrjC67YehhpWt9zd6fc0-_JsLBzuch-xgygd9ZKeyJsd3af4ztibE9M57t1X_2ifwe6PiycX024lzuu0eyyXmcofSe0GXbR_9SxB9waaKP |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2020_114795 crossref_primary_10_1016_j_est_2023_107528 crossref_primary_10_1007_s10853_023_08594_1 crossref_primary_10_1016_j_inoche_2024_112053 crossref_primary_10_1039_D2RA07383H crossref_primary_10_1016_j_est_2024_112838 crossref_primary_10_1016_j_ensm_2021_10_032 crossref_primary_10_1021_acsami_3c02865 crossref_primary_10_1016_j_colsurfa_2022_130663 crossref_primary_10_1016_j_jallcom_2022_166222 crossref_primary_10_1016_j_jallcom_2022_167158 crossref_primary_10_1016_j_apsusc_2024_160136 crossref_primary_10_1016_j_est_2024_112716 crossref_primary_10_1016_j_est_2024_112398 crossref_primary_10_1016_j_cej_2022_135225 crossref_primary_10_1016_j_jallcom_2022_167790 crossref_primary_10_1016_j_nanoen_2022_107624 crossref_primary_10_1021_acsaelm_5c00069 crossref_primary_10_1016_j_rser_2025_115381 crossref_primary_10_1016_j_jelechem_2022_116860 crossref_primary_10_1016_j_inoche_2024_113789 crossref_primary_10_1016_j_seppur_2022_122845 crossref_primary_10_1016_j_est_2021_102477 crossref_primary_10_3390_molecules28155751 crossref_primary_10_1016_j_carbon_2021_12_058 crossref_primary_10_1016_j_diamond_2023_110076 crossref_primary_10_1016_j_est_2022_104148 crossref_primary_10_1016_j_est_2021_102584 crossref_primary_10_1039_D4TA02190H crossref_primary_10_1021_acsanm_2c04584 crossref_primary_10_1016_j_compositesb_2023_111025 crossref_primary_10_1016_j_energy_2024_130723 crossref_primary_10_1016_j_est_2023_110246 crossref_primary_10_1007_s12274_021_3992_9 crossref_primary_10_1016_j_cej_2021_134083 crossref_primary_10_1016_j_est_2022_105194 crossref_primary_10_1016_j_electacta_2023_143135 crossref_primary_10_1039_D3QI00123G crossref_primary_10_1016_j_jcis_2022_04_072 crossref_primary_10_1007_s12598_024_02818_2 crossref_primary_10_1002_elsa_202100187 crossref_primary_10_1002_aenm_202304060 crossref_primary_10_1016_j_est_2021_103716 crossref_primary_10_1016_j_est_2023_107075 crossref_primary_10_1002_adma_202303360 crossref_primary_10_1016_j_scriptamat_2022_114691 crossref_primary_10_1016_j_jmat_2022_09_003 crossref_primary_10_1016_j_diamond_2024_111372 crossref_primary_10_1016_j_jallcom_2023_169915 crossref_primary_10_1016_j_surfin_2025_105883 crossref_primary_10_1016_j_jallcom_2024_178073 crossref_primary_10_1016_j_synthmet_2022_117201 crossref_primary_10_1002_smll_202102565 crossref_primary_10_1016_j_colsurfa_2022_128804 crossref_primary_10_1016_j_jallcom_2022_166289 crossref_primary_10_1039_D1TA02741G crossref_primary_10_1016_j_jallcom_2023_169754 crossref_primary_10_1016_j_jpowsour_2023_233352 crossref_primary_10_1016_j_supflu_2022_105672 crossref_primary_10_1007_s11581_022_04841_8 crossref_primary_10_1016_j_jallcom_2022_168586 crossref_primary_10_3390_molecules28176432 crossref_primary_10_1016_j_jpowsour_2022_231683 crossref_primary_10_1021_acsaem_1c01662 crossref_primary_10_1021_acsnano_4c03301 crossref_primary_10_1016_j_diamond_2023_110519 crossref_primary_10_1016_j_est_2024_112454 crossref_primary_10_1016_j_est_2023_109045 crossref_primary_10_1016_j_flatc_2023_100518 crossref_primary_10_1016_j_materresbull_2023_112287 crossref_primary_10_1016_j_cclet_2021_04_045 crossref_primary_10_1016_j_est_2022_105727 crossref_primary_10_1007_s10854_022_08289_4 crossref_primary_10_1002_slct_202104112 crossref_primary_10_1021_acs_energyfuels_1c04041 crossref_primary_10_1007_s11664_022_09758_6 crossref_primary_10_1016_j_est_2024_113718 crossref_primary_10_1021_acsestwater_2c00509 crossref_primary_10_1016_j_ceramint_2022_09_329 crossref_primary_10_1007_s11581_022_04472_z crossref_primary_10_1016_j_jssc_2023_124110 crossref_primary_10_1016_j_clay_2022_106539 crossref_primary_10_1016_j_est_2024_111415 crossref_primary_10_1021_acsanm_2c04566 crossref_primary_10_1021_acsami_1c18777 crossref_primary_10_1016_j_apsusc_2024_160523 crossref_primary_10_1016_j_est_2024_112621 crossref_primary_10_1002_er_8653 crossref_primary_10_1021_acsomega_2c01988 crossref_primary_10_20964_2022_05_23 crossref_primary_10_1016_j_cej_2024_153423 crossref_primary_10_1016_j_jpowsour_2024_235832 crossref_primary_10_1016_j_matlet_2022_132791 crossref_primary_10_1016_j_cej_2021_129643 crossref_primary_10_1016_j_jelechem_2023_117665 crossref_primary_10_1016_j_matlet_2023_134232 crossref_primary_10_1016_j_cej_2021_132406 crossref_primary_10_1016_j_ijhydene_2024_08_208 crossref_primary_10_1016_j_pnsc_2024_07_023 crossref_primary_10_31258_Jamt_4_1_1_10 crossref_primary_10_1039_D3NR02723F crossref_primary_10_1016_j_electacta_2024_144892 crossref_primary_10_1016_j_est_2021_103123 crossref_primary_10_1016_j_jcis_2021_11_191 crossref_primary_10_1016_j_jallcom_2021_160046 crossref_primary_10_1016_j_est_2022_104298 crossref_primary_10_1016_j_ijhydene_2022_03_068 crossref_primary_10_1016_j_est_2024_112758 crossref_primary_10_1016_j_jallcom_2022_164481 crossref_primary_10_1016_j_surfin_2023_102756 crossref_primary_10_1016_j_mser_2022_100713 crossref_primary_10_1016_j_mssp_2021_106176 crossref_primary_10_1016_j_est_2024_113321 crossref_primary_10_1016_j_fuel_2021_121151 crossref_primary_10_1002_ente_202201120 crossref_primary_10_1016_j_synthmet_2021_116775 crossref_primary_10_1016_j_electacta_2021_138087 crossref_primary_10_1016_j_est_2023_108776 crossref_primary_10_1088_1361_6528_ac45c4 crossref_primary_10_1016_j_est_2022_104616 crossref_primary_10_1016_j_est_2023_109589 crossref_primary_10_1039_D4RA00523F crossref_primary_10_1016_j_jpowsour_2023_233922 crossref_primary_10_1016_j_est_2022_105945 crossref_primary_10_1016_j_cej_2023_148206 crossref_primary_10_1007_s11244_021_01472_7 crossref_primary_10_1016_j_mtsust_2022_100151 crossref_primary_10_1039_D1TA06706K crossref_primary_10_1016_j_est_2022_105037 crossref_primary_10_1016_j_ijhydene_2022_02_132 crossref_primary_10_1016_j_inoche_2022_110360 crossref_primary_10_1016_j_cclet_2021_10_075 crossref_primary_10_1016_j_mtsust_2023_100335 crossref_primary_10_1016_j_colsurfa_2022_130191 crossref_primary_10_3390_polym15020454 crossref_primary_10_1002_adsu_202400043 crossref_primary_10_1016_j_jpowsour_2024_235138 crossref_primary_10_1016_j_electacta_2023_142922 crossref_primary_10_1016_j_inoche_2022_109226 crossref_primary_10_1016_j_jallcom_2025_179517 crossref_primary_10_1039_D4TC02245A crossref_primary_10_1088_1361_6528_ac218e crossref_primary_10_1016_j_cej_2023_146377 crossref_primary_10_1016_j_compositesb_2022_109812 crossref_primary_10_1016_j_carbon_2021_08_044 crossref_primary_10_1039_D2MA00653G crossref_primary_10_1016_j_jallcom_2022_167733 crossref_primary_10_1016_j_nxener_2023_100076 crossref_primary_10_1016_j_surfin_2023_103501 crossref_primary_10_1016_j_jallcom_2022_165551 crossref_primary_10_1016_j_jpowsour_2024_234288 crossref_primary_10_1039_D3NR03839D crossref_primary_10_1016_j_synthmet_2024_117600 crossref_primary_10_1016_j_surfin_2021_101638 crossref_primary_10_1016_j_jpowsour_2023_232854 crossref_primary_10_1007_s40843_021_2040_4 crossref_primary_10_1007_s40843_022_2330_6 crossref_primary_10_1021_acs_energyfuels_3c03094 crossref_primary_10_1016_j_cej_2021_134238 crossref_primary_10_1115_1_4064380 crossref_primary_10_1016_j_electacta_2022_139872 crossref_primary_10_1016_j_est_2022_104713 crossref_primary_10_1016_j_est_2023_106657 crossref_primary_10_1016_j_jcis_2021_11_182 crossref_primary_10_1016_j_electacta_2024_144585 crossref_primary_10_1002_smll_202312179 crossref_primary_10_1016_j_colsurfa_2023_130953 crossref_primary_10_1016_j_cej_2021_128995 crossref_primary_10_1016_j_ijhydene_2021_06_225 crossref_primary_10_1016_j_matpr_2022_04_029 crossref_primary_10_1016_j_est_2023_110346 crossref_primary_10_1016_j_seta_2022_102771 crossref_primary_10_1007_s10853_024_10262_x crossref_primary_10_1016_j_electacta_2023_142146 crossref_primary_10_1016_j_jallcom_2022_165165 crossref_primary_10_1007_s11581_021_04056_3 crossref_primary_10_1016_j_jallcom_2023_170364 crossref_primary_10_1016_j_cej_2022_138687 crossref_primary_10_1016_j_ceramint_2023_04_125 crossref_primary_10_1016_j_est_2023_109355 crossref_primary_10_1016_j_indcrop_2021_113900 crossref_primary_10_1007_s10854_023_11091_5 crossref_primary_10_1007_s42114_024_01187_9 crossref_primary_10_1016_j_est_2023_107216 crossref_primary_10_1016_j_jcis_2022_05_096 crossref_primary_10_1016_j_est_2023_107614 |
Cites_doi | 10.3389/fchem.2018.00431 10.1039/C8NR02337A 10.1016/j.nanoen.2016.08.021 10.1016/j.nanoen.2011.11.006 10.1002/adma.201605336 10.1039/C4TA03442B 10.1021/acsami.8b11416 10.1016/j.electacta.2018.09.149 10.1107/S2053229618017734 10.1038/ncomms12647 10.1016/j.cej.2018.02.021 10.1002/aenm.201702247 10.1016/j.jpowsour.2020.228286 10.1039/C7DT03853D 10.1002/smll.201901145 10.1007/s40820-019-0337-2 10.1002/adma.201605051 10.1002/aenm.201702787 10.1016/j.jpowsour.2019.227407 10.1016/j.nanoen.2018.04.032 10.1016/j.carbon.2020.04.016 10.1002/smll.201800285 10.1016/j.nanoen.2019.103919 10.1016/j.nanoen.2017.06.042 10.1016/j.ensm.2018.06.026 10.1149/2.0201505jes 10.1016/j.nanoen.2016.08.049 10.1016/j.cej.2019.121938 10.1021/acsenergylett.7b00265 10.1016/j.cej.2019.01.102 10.1039/C7TA07628B 10.1016/j.nanoen.2017.04.007 10.1016/j.nanoen.2018.12.011 10.1016/j.nanoen.2015.11.025 10.1021/nl503852m 10.1039/C8CY01223G 10.1039/C8TA00540K 10.1002/smll.202002806 10.1002/adma.201504833 10.1002/jrs.1978 10.1002/advs.201600539 10.1002/adma.201703463 10.1039/C9TA13225B 10.1002/adfm.201902822 10.1016/j.nanoen.2018.01.024 10.1016/j.nanoen.2017.01.056 10.1039/C8TA11249E 10.1016/j.matdes.2020.108992 10.1002/adfm.201800036 10.1007/s11663-001-0071-1 10.1021/acsami.7b12392 10.1002/aenm.201703453 10.1002/cssc.201902339 10.1039/C7TA11100B 10.1002/adfm.201705921 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2020.228915 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
ExternalDocumentID | 10_1016_j_jpowsour_2020_228915 S0378775320312167 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- RIG SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c378t-131339c99c033a8488fcb6a6e28841294ee993ca1a169cc5eb2bb935bffda4373 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Thu Apr 24 22:55:21 EDT 2025 Tue Jul 01 01:40:30 EDT 2025 Fri Feb 23 02:41:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-situ Raman Battery-type supercapacitors Fe2O3@Fe3C@C nanochains NiCo–CHH microspheres |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-131339c99c033a8488fcb6a6e28841294ee993ca1a169cc5eb2bb935bffda4373 |
ORCID | 0000-0002-2570-2610 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2020_228915 crossref_primary_10_1016_j_jpowsour_2020_228915 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2020_228915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of power sources |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Patil, Chodankar, Pujari, Han, Lee (bib52) 2020; 466 Wang, Xi, Wang, Zhang, Wang, Yang, Li, Hu, Zhang (bib8) 2016; 28 Brousse, Belanger, Long (bib33) 2015; 162 Qu, Zhang, Meng, Liang, Zhu, Dang, Dai, Zhao, Tabassum, Gao, Zhang, Guo, Zhao, Huang, Liu, Zou (bib6) 2018; 6 Zhao, Li, Yuan, Yang, Zhang, Meng, Li (bib1) 2018; 8 Choudhary, Li, Moore, Nagaiah, Zhai, Jung, Thomas (bib2) 2017; 29 Chodankar, Pham, Nanjundan, Fernando, Jayaramulu, Golberg, Han, Dubal (bib14) 2020; 16 Chodankar, Raju, Park, Shinde, Jun, Dubal, Huh, Han (bib51) 2020; 8 Zhang, Zhao, Wang, Qu, Sun, Zhang, Liu (bib15) 2016; 28 Dai, Xu, Xi, Wang, Gu, Guo, Hu (bib7) 2016; 19 Wei, Cui, Ding, Mi, Chen, Hu (bib41) 2017; 9 Liu, Guan, Zhou, Fan, Ke, Zhang, Liu, Wang (bib29) 2017; 29 Chodankar, Ji, Han, Kim (bib53) 2020; 12 Lukatskaya, Dunn, Gogotsi (bib3) 2016; 7 Lin, Liang, Jia, Chen, Guo, Qi, Qu, Cao, Fei, Feng (bib25) 2017; 5 Chodankar, Dubal, Ji, Kim (bib54) 2019; 15 Shen, Zang, Hu, Xu, Zhang, Yan, Dai (bib13) 2020; 195 Dai, Zhang, Xu, Shen, Zhang, Yang, Xu, Dang, Hu, Zhao, Wang, Qu, Fu, Li, Hu, Liu (bib31) 2019; 64 Zou, Quan, Pan, Zhou, Chen, Luo (bib21) 2018; 292 Zhang, Liu, Zhao, Cheng, Zhang, Wu, Wang, Dai, Zhang, Ding, Wuc, Liu (bib28) 2019; 16 Qu, Zhao, Jiao, Chen, Dai, deglee, Chen, Walton, Zou, Liu (bib4) 2017; 2 Dai, Guo, Wang, Liu, Wang, Hu, Xi (bib5) 2014; 2 Feng, Liu, Liu, Song, Wang (bib38) 2018; 8 Frost, Dickfos, Reddy (bib50) 2008; 39 Wang, Zhang, Jiang, Li, Cheng, Meng (bib11) 2019; 362 Cao, Tan, Zhang, Zhao, Zhang (bib18) 2016; 28 Zheng, Zhang, Wang, Jiang, Liu, Lv, Meng (bib17) 2018; 47 Jiang, Xu, Yan, Ma, Dai (bib40) 2018; 6 Zhang, Wang, Jiang, Wang, Zheng, Meng (bib16) 2019; 375 Wu, Shi, Song, Ren, Tan, Tang, Meng (bib44) 2018; 45 Cheng, Zhang, Jiang, Dong, Meng, Kou (bib12) 2020; 448 Qin, Zhang, Zhao, Liu, Jia, Han, Wu, Liu, Wang, Min, Xi, Lao, Wang, Qu, Kumar (bib20) 2019; 29 Zhao, Zhang, Zhang, Chen, Cheng, Deng, Chen, Murphy, Xiong, Song, Wong, Wang, Liu (bib49) 2017; 8 Dai, Zhao, Qu, Chen, Dang, Song, deGleea, Fu, Hu, Wong, Liu (bib10) 2017; 33 Liu, Chen, Zhang, Jiang, Yan, Huang, Lin, Fan, Shen (bib24) 2014; 14 Qu, Liang, Jiao, Zhao, Zhu, Dang, Dai, Chen, Zou, Liu (bib30) 2018; 14 Li, Wu, Elshahawy, Wang, Pennycook, Guan, Wang (bib47) 2018; 28 Díaz, Urías, Sandoval (bib35) 2020; 164 Li, Li, Li, Wu (bib27) 2018; 10 Chen, Zhou, Quan, Zou, Gao, Luo, Guo (bib23) 2018; 341 Bhojane, Bail, Shirage (bib39) 2019; 75 Wang, Chen, Lei, Ai, Peng, Yan, Li, Zhang, Wang, Chueh (bib26) 2018; 8 Liang, Xia, Emwas, Anjum, Miao, Alshareef (bib22) 2018; 49 Wang, Li, Li, Lin, Bai, Dai, Liang, Zhu, Sun, Dou (bib45) 2019; 7 Liang, Xia, Jiang, Gandi, Schwingenschlögl, Alshareef (bib32) 2017; 35 Li, Liu, Zhang, Cheng, Zhao, Dai, Wu, Zhang, Ding, Wu, Liu, Wang (bib34) 2019; 57 Liu, Ni, Li, Hui, Ouyang, Jun (bib43) 2018; 6 Chodankar, Patil, Raju, Lee, Dubal, Huh, Han (bib55) 2020; 13 Zuo, Li, Zhou, Li, Xia, Liu (bib9) 2017; 4 Li, Zhang, Li, Fan, Xu (bib37) 2018; 10 Elshahawy, Guan, Li, Zhang, Hu, Wu, Pennycook, Wang (bib42) 2017; 39 Hou, Shi, Wu, Zhang, Ma, Sun, Sun, Zhang, Yuan (bib48) 2018; 28 Candelaria, Shao, Zhou, Li, Xiao, Zhang, Wang, Liu, Li, Cao (bib19) 2012; 1 Park, Zhang, Thomson, Ostrovski, Howe (bib36) 2001; 32B Guan, Yu, Wang, Song, Lou (bib46) 2017; 29 Zhang (10.1016/j.jpowsour.2020.228915_bib15) 2016; 28 Zuo (10.1016/j.jpowsour.2020.228915_bib9) 2017; 4 Chodankar (10.1016/j.jpowsour.2020.228915_bib51) 2020; 8 Patil (10.1016/j.jpowsour.2020.228915_bib52) 2020; 466 Chodankar (10.1016/j.jpowsour.2020.228915_bib53) 2020; 12 Jiang (10.1016/j.jpowsour.2020.228915_bib40) 2018; 6 Bhojane (10.1016/j.jpowsour.2020.228915_bib39) 2019; 75 Zhao (10.1016/j.jpowsour.2020.228915_bib49) 2017; 8 Wu (10.1016/j.jpowsour.2020.228915_bib44) 2018; 45 Chodankar (10.1016/j.jpowsour.2020.228915_bib54) 2019; 15 Feng (10.1016/j.jpowsour.2020.228915_bib38) 2018; 8 Qin (10.1016/j.jpowsour.2020.228915_bib20) 2019; 29 Liu (10.1016/j.jpowsour.2020.228915_bib29) 2017; 29 Liang (10.1016/j.jpowsour.2020.228915_bib32) 2017; 35 Park (10.1016/j.jpowsour.2020.228915_bib36) 2001; 32B Frost (10.1016/j.jpowsour.2020.228915_bib50) 2008; 39 Dai (10.1016/j.jpowsour.2020.228915_bib7) 2016; 19 Zhang (10.1016/j.jpowsour.2020.228915_bib28) 2019; 16 Qu (10.1016/j.jpowsour.2020.228915_bib4) 2017; 2 Wang (10.1016/j.jpowsour.2020.228915_bib11) 2019; 362 Wei (10.1016/j.jpowsour.2020.228915_bib41) 2017; 9 Wang (10.1016/j.jpowsour.2020.228915_bib45) 2019; 7 Zhang (10.1016/j.jpowsour.2020.228915_bib16) 2019; 375 Li (10.1016/j.jpowsour.2020.228915_bib37) 2018; 10 Díaz (10.1016/j.jpowsour.2020.228915_bib35) 2020; 164 Cheng (10.1016/j.jpowsour.2020.228915_bib12) 2020; 448 Dai (10.1016/j.jpowsour.2020.228915_bib5) 2014; 2 Liang (10.1016/j.jpowsour.2020.228915_bib22) 2018; 49 Lin (10.1016/j.jpowsour.2020.228915_bib25) 2017; 5 Elshahawy (10.1016/j.jpowsour.2020.228915_bib42) 2017; 39 Li (10.1016/j.jpowsour.2020.228915_bib27) 2018; 10 Cao (10.1016/j.jpowsour.2020.228915_bib18) 2016; 28 Liu (10.1016/j.jpowsour.2020.228915_bib24) 2014; 14 Dai (10.1016/j.jpowsour.2020.228915_bib31) 2019; 64 Li (10.1016/j.jpowsour.2020.228915_bib47) 2018; 28 Dai (10.1016/j.jpowsour.2020.228915_bib10) 2017; 33 Brousse (10.1016/j.jpowsour.2020.228915_bib33) 2015; 162 Li (10.1016/j.jpowsour.2020.228915_bib34) 2019; 57 Zheng (10.1016/j.jpowsour.2020.228915_bib17) 2018; 47 Chodankar (10.1016/j.jpowsour.2020.228915_bib55) 2020; 13 Choudhary (10.1016/j.jpowsour.2020.228915_bib2) 2017; 29 Lukatskaya (10.1016/j.jpowsour.2020.228915_bib3) 2016; 7 Liu (10.1016/j.jpowsour.2020.228915_bib43) 2018; 6 Qu (10.1016/j.jpowsour.2020.228915_bib30) 2018; 14 Guan (10.1016/j.jpowsour.2020.228915_bib46) 2017; 29 Shen (10.1016/j.jpowsour.2020.228915_bib13) 2020; 195 Zou (10.1016/j.jpowsour.2020.228915_bib21) 2018; 292 Zhao (10.1016/j.jpowsour.2020.228915_bib1) 2018; 8 Chodankar (10.1016/j.jpowsour.2020.228915_bib14) 2020; 16 Wang (10.1016/j.jpowsour.2020.228915_bib8) 2016; 28 Candelaria (10.1016/j.jpowsour.2020.228915_bib19) 2012; 1 Wang (10.1016/j.jpowsour.2020.228915_bib26) 2018; 8 Hou (10.1016/j.jpowsour.2020.228915_bib48) 2018; 28 Chen (10.1016/j.jpowsour.2020.228915_bib23) 2018; 341 Qu (10.1016/j.jpowsour.2020.228915_bib6) 2018; 6 |
References_xml | – volume: 75 start-page: 61 year: 2019 end-page: 64 ident: bib39 publication-title: Acta Crystallogr. C – volume: 28 start-page: 1800036 year: 2018 ident: bib47 publication-title: Adv. Funct. Mater. – volume: 39 start-page: 162 year: 2017 end-page: 171 ident: bib42 publication-title: Nano Energy – volume: 57 start-page: 22 year: 2019 end-page: 33 ident: bib34 publication-title: Nano Energy – volume: 195 start-page: 108992 year: 2020 ident: bib13 publication-title: Mater. Des. – volume: 8 start-page: 1702787 year: 2018 ident: bib1 publication-title: Adv. Energy Mater. – volume: 28 start-page: 1705921 year: 2018 ident: bib48 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 5721 year: 2020 end-page: 5733 ident: bib51 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1703453 year: 2018 ident: bib26 publication-title: Adv. Energy Mater. – volume: 35 start-page: 331 year: 2017 end-page: 340 ident: bib32 publication-title: Nano Energy – volume: 2 start-page: 1263 year: 2017 end-page: 1269 ident: bib4 publication-title: ACS Energy Lett – volume: 47 start-page: 452 year: 2018 end-page: 464 ident: bib17 publication-title: Dalton Trans. – volume: 28 start-page: 115 year: 2016 end-page: 123 ident: bib8 publication-title: Nano Energy – volume: 19 start-page: 363 year: 2016 end-page: 372 ident: bib7 publication-title: Nano Energy – volume: 49 start-page: 155 year: 2018 end-page: 162 ident: bib22 publication-title: Nano Energy – volume: 362 start-page: 818 year: 2019 end-page: 829 ident: bib11 publication-title: Chem. Eng. J. – volume: 6 start-page: 10674 year: 2018 end-page: 10685 ident: bib43 publication-title: J. Mater. Chem. A – volume: 28 start-page: 475 year: 2016 end-page: 485 ident: bib15 publication-title: Nano Energy – volume: 162 start-page: A5185 year: 2015 end-page: A5189 ident: bib33 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 24594 year: 2017 end-page: 24601 ident: bib25 publication-title: J. Mater. Chem. A – volume: 64 start-page: 103919 year: 2019 ident: bib31 publication-title: Nano Energy – volume: 1 start-page: 195 year: 2012 end-page: 220 ident: bib19 publication-title: Nano Energy – volume: 14 start-page: 1800285 year: 2018 ident: bib30 publication-title: Small – volume: 8 start-page: 4900 year: 2018 end-page: 4906 ident: bib38 publication-title: Catal. Sci. Technol. – volume: 39 start-page: 1250 year: 2008 end-page: 1256 ident: bib50 publication-title: J. Raman Spectrosc. – volume: 16 start-page: 2002806 year: 2020 ident: bib14 publication-title: Small – volume: 292 start-page: 31 year: 2018 end-page: 38 ident: bib21 publication-title: Electrochim. Acta – volume: 10 start-page: 9252 year: 2018 end-page: 9260 ident: bib37 publication-title: Nanoscale – volume: 29 start-page: 1605051 year: 2017 ident: bib46 publication-title: Adv. Mater. – volume: 6 start-page: 4003 year: 2018 end-page: 4012 ident: bib6 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1703463 year: 2017 ident: bib29 publication-title: Adv. Mater. – volume: 32B start-page: 839 year: 2001 ident: bib36 publication-title: Metall. Mater. Trans. B – volume: 33 start-page: 522 year: 2017 end-page: 531 ident: bib10 publication-title: Nano Energy – volume: 10 start-page: 34254 year: 2018 end-page: 34264 ident: bib27 publication-title: ACS Appl. Mater. Interfaces – volume: 164 start-page: 324 year: 2020 end-page: 336 ident: bib35 publication-title: Carbon – volume: 29 start-page: 1605336 year: 2017 ident: bib2 publication-title: Adv. Mater. – volume: 6 start-page: 431 year: 2018 ident: bib40 publication-title: Frontiers in Chemistry – volume: 375 start-page: 121938 year: 2019 ident: bib16 publication-title: Chem. Eng. J. – volume: 12 start-page: 1 year: 2020 ident: bib53 publication-title: Nano-Micro Lett. – volume: 28 start-page: 6167 year: 2016 end-page: 6196 ident: bib18 publication-title: Adv. Mater. – volume: 9 start-page: 40655 year: 2017 end-page: 40670 ident: bib41 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 439 year: 2018 end-page: 447 ident: bib44 publication-title: Nano Energy – volume: 7 start-page: 12647 year: 2016 ident: bib3 publication-title: Nat. Commun. – volume: 7 start-page: 2291 year: 2019 end-page: 2300 ident: bib45 publication-title: J. Mater. Chem. A – volume: 466 start-page: 228286 year: 2020 ident: bib52 publication-title: J. Power Sources – volume: 15 start-page: 1901145 year: 2019 ident: bib54 publication-title: Small – volume: 341 start-page: 102 year: 2018 end-page: 111 ident: bib23 publication-title: Chem. Eng. J. – volume: 2 start-page: 19665 year: 2014 end-page: 19669 ident: bib5 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1600539 year: 2017 ident: bib9 publication-title: Adv. Sci. – volume: 8 start-page: 1702247 year: 2017 ident: bib49 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1902822 year: 2019 ident: bib20 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 7180 year: 2014 end-page: 7187 ident: bib24 publication-title: Nano Lett. – volume: 448 start-page: 227407 year: 2020 ident: bib12 publication-title: J. Power Sources – volume: 16 start-page: 632 year: 2019 end-page: 645 ident: bib28 publication-title: Energy Storage Materials – volume: 13 start-page: 1582 year: 2020 end-page: 1592 ident: bib55 publication-title: ChemSusChem – volume: 6 start-page: 431 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib40 publication-title: Frontiers in Chemistry doi: 10.3389/fchem.2018.00431 – volume: 10 start-page: 9252 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib37 publication-title: Nanoscale doi: 10.1039/C8NR02337A – volume: 28 start-page: 115 year: 2016 ident: 10.1016/j.jpowsour.2020.228915_bib8 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.021 – volume: 1 start-page: 195 year: 2012 ident: 10.1016/j.jpowsour.2020.228915_bib19 publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.11.006 – volume: 29 start-page: 1605336 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib2 publication-title: Adv. Mater. doi: 10.1002/adma.201605336 – volume: 2 start-page: 19665 year: 2014 ident: 10.1016/j.jpowsour.2020.228915_bib5 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03442B – volume: 10 start-page: 34254 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11416 – volume: 292 start-page: 31 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib21 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.149 – volume: 75 start-page: 61 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib39 publication-title: Acta Crystallogr. C doi: 10.1107/S2053229618017734 – volume: 7 start-page: 12647 year: 2016 ident: 10.1016/j.jpowsour.2020.228915_bib3 publication-title: Nat. Commun. doi: 10.1038/ncomms12647 – volume: 341 start-page: 102 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib23 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.021 – volume: 8 start-page: 1702247 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib49 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702247 – volume: 466 start-page: 228286 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib52 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228286 – volume: 47 start-page: 452 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib17 publication-title: Dalton Trans. doi: 10.1039/C7DT03853D – volume: 15 start-page: 1901145 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib54 publication-title: Small doi: 10.1002/smll.201901145 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib53 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0337-2 – volume: 29 start-page: 1605051 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib46 publication-title: Adv. Mater. doi: 10.1002/adma.201605051 – volume: 8 start-page: 1702787 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702787 – volume: 448 start-page: 227407 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227407 – volume: 49 start-page: 155 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.032 – volume: 164 start-page: 324 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib35 publication-title: Carbon doi: 10.1016/j.carbon.2020.04.016 – volume: 14 start-page: 1800285 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib30 publication-title: Small doi: 10.1002/smll.201800285 – volume: 64 start-page: 103919 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib31 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103919 – volume: 39 start-page: 162 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib42 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.042 – volume: 16 start-page: 632 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib28 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2018.06.026 – volume: 162 start-page: A5185 year: 2015 ident: 10.1016/j.jpowsour.2020.228915_bib33 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0201505jes – volume: 28 start-page: 475 year: 2016 ident: 10.1016/j.jpowsour.2020.228915_bib15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.049 – volume: 375 start-page: 121938 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib16 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121938 – volume: 2 start-page: 1263 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib4 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b00265 – volume: 362 start-page: 818 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib11 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.102 – volume: 5 start-page: 24594 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib25 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07628B – volume: 35 start-page: 331 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.007 – volume: 57 start-page: 22 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib34 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.011 – volume: 19 start-page: 363 year: 2016 ident: 10.1016/j.jpowsour.2020.228915_bib7 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.11.025 – volume: 14 start-page: 7180 year: 2014 ident: 10.1016/j.jpowsour.2020.228915_bib24 publication-title: Nano Lett. doi: 10.1021/nl503852m – volume: 8 start-page: 4900 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib38 publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY01223G – volume: 6 start-page: 10674 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib43 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00540K – volume: 16 start-page: 2002806 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib14 publication-title: Small doi: 10.1002/smll.202002806 – volume: 28 start-page: 6167 year: 2016 ident: 10.1016/j.jpowsour.2020.228915_bib18 publication-title: Adv. Mater. doi: 10.1002/adma.201504833 – volume: 39 start-page: 1250 year: 2008 ident: 10.1016/j.jpowsour.2020.228915_bib50 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1978 – volume: 4 start-page: 1600539 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib9 publication-title: Adv. Sci. doi: 10.1002/advs.201600539 – volume: 29 start-page: 1703463 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib29 publication-title: Adv. Mater. doi: 10.1002/adma.201703463 – volume: 8 start-page: 5721 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib51 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13225B – volume: 29 start-page: 1902822 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902822 – volume: 45 start-page: 439 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib44 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.024 – volume: 33 start-page: 522 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib10 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.056 – volume: 7 start-page: 2291 year: 2019 ident: 10.1016/j.jpowsour.2020.228915_bib45 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11249E – volume: 195 start-page: 108992 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib13 publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108992 – volume: 28 start-page: 1800036 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib47 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800036 – volume: 32B start-page: 839 year: 2001 ident: 10.1016/j.jpowsour.2020.228915_bib36 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-001-0071-1 – volume: 9 start-page: 40655 year: 2017 ident: 10.1016/j.jpowsour.2020.228915_bib41 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12392 – volume: 8 start-page: 1703453 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703453 – volume: 13 start-page: 1582 year: 2020 ident: 10.1016/j.jpowsour.2020.228915_bib55 publication-title: ChemSusChem doi: 10.1002/cssc.201902339 – volume: 6 start-page: 4003 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib6 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11100B – volume: 28 start-page: 1705921 year: 2018 ident: 10.1016/j.jpowsour.2020.228915_bib48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705921 |
SSID | ssj0001170 |
Score | 2.6639395 |
Snippet | Battery-supercapacitor hybrid (BSH) device is one of the most promising candidates for next advanced energy storage systems because it can bridge the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 228915 |
SubjectTerms | Battery-type supercapacitors Fe2O3@Fe3C@C nanochains In-situ Raman NiCo–CHH microspheres |
Title | Core-shell structured Fe2O3@Fe3C@C nanochains and Ni–Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor |
URI | https://dx.doi.org/10.1016/j.jpowsour.2020.228915 |
Volume | 482 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoEDKi9RHpUPXL27ju1sfGsVsVpALAeo1FtkO2M1K0hWCRUtB8R_QOIH8kuY2SR0kZB64BYlmSiamcwrM98w9iJTEKM2TkRvMqFV1MKWNorEemkdpBCA6h1vV-nyVL8-M2d7LB9nYaitcrD9vU3fWuvhzHTg5nRTVdP3M4XKNqfFBkomMqWJcq3npOWTb9dtHrRZZfsnAbMluntnSng9WW-aL1QkxzwxmU0STD5oPe6_HNSO01kcsLtDtMhP-he6x_agvs_u7GAIPmA_86YF0VE_J-_BYC9aKPkCknfqeAEqP8557eomnLuq7rirS76qfn3_kTc8uNZT8Rz4-VXZNpdVSUc0wlV9xUd8ol69jmAHoOMY23KCNhab60kD7rfgnFeC6ri8u8BLAX1vQCPRPmSni5cf8qUYli2IgKyhlfSYrdpgbZgp5TL8rmPwqUshyTKNQYEGwFAmOOlkakMwmJF7b5XxMZaO8JEesf26qeEx42giZGrAeMIpjUiGSZvTBmQps-j0_JCZkcNFGJDIaSHGx2JsOVsXo2QKkkzRS-aQTf_QbXosjhsp7CjA4i-tKtBh3ED75D9on7LbCfW-zKSQ5hnbR-nDcwxePvujrXYesVsnr94sV78Bdqf0pw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKOQAHxK8oUPCBq3fXcZyNb0VRVwu0y4FW6i2ynbGaVUlWCRVtD4h3QOIBeRJmNgldJKQeuEVJJoo84_nzzDeMvUkVhBBrK4LTqYhViIUpTBCRcdJYSMAD5TsOF8n8OH5_ok-2WDb0wlBZZa_7O52-1tb9nXG_muNVWY4_TRQK25QGGygZyWR6i92OcfvSGIPRt-s6Dxqtsj5KwHCJXt9oE16Olqv6K2XJMVCMJqMIow-aj_svC7VhdWYP2P3eXeRvuz96yLagesTubYAIPmY_s7oB0VJBJ-_QYM8bKPgMoo9qbwYq28t4Zavan9qyarmtCr4of33_kdXc28ZR9hz46WXR1BdlQVfUw1Ve4Sc-U7FeS7gD0HJ0bjlhG4vVdasBd2t0zktBiVzenuMjj8bXo5ZonrDj2f5RNhf9tAXhcWloJj2Gq8Yb4ydK2RQ3dvAusQlEaRqjVxADoC_jrbQyMd5rDMmdM0q7EApLAElP2XZVV_CMcdQRMtGgHQGVBiTDqM3GGmQh02Dj6Q7Twwrnvocip4kYZ_lQc7bMB87kxJm848wOG_-hW3VgHDdSmIGB-V9ilaPFuIH2-X_QvmZ35keHB_nBu8WHF-xuRIUwEymkfsm2URJgFz2ZL-7VWlJ_Awpc9jU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+structured+Fe2O3%40Fe3C%40C+nanochains+and+Ni%E2%80%93Co+carbonate+hydroxide+hybridized+microspheres+for+high-performance+battery-type+supercapacitor&rft.jtitle=Journal+of+power+sources&rft.au=Dai%2C+Shuge&rft.au=Bai%2C+Yucheng&rft.au=Shen%2C+Weixia&rft.au=Zhang%2C+Sen&rft.date=2021-01-15&rft.issn=0378-7753&rft.volume=482&rft.spage=228915&rft_id=info:doi/10.1016%2Fj.jpowsour.2020.228915&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2020_228915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |