Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germline transcription in the mouse
A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis....
Saved in:
Published in | Development (Cambridge) Vol. 146; no. 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
05.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1. |
---|---|
AbstractList | A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in
Brg1
cKO
testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1.
Summary:
Epigenetic studies of BRG1 reveal for the first time that SWI/SNF and PRC1 cooperate during gametogenesis to regulate transcription. A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1. A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1.A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1. A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1. |
Author | Shibata, Yoichiro Mu, Weipeng Menon, Debashish U. Magnuson, Terry |
AuthorAffiliation | Department of Genetics , and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill , Chapel Hill, NC 27599-7264 , USA |
AuthorAffiliation_xml | – name: Department of Genetics , and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill , Chapel Hill, NC 27599-7264 , USA |
Author_xml | – sequence: 1 givenname: Debashish U. orcidid: 0000-0003-3052-9872 surname: Menon fullname: Menon, Debashish U. – sequence: 2 givenname: Yoichiro orcidid: 0000-0003-4539-0172 surname: Shibata fullname: Shibata, Yoichiro – sequence: 3 givenname: Weipeng surname: Mu fullname: Mu, Weipeng – sequence: 4 givenname: Terry orcidid: 0000-0002-0792-835X surname: Magnuson fullname: Magnuson, Terry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31043422$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9rFDEUxYNU7Hb1xQ8geRRh2vybyeRFkNJqobYPtfQxZDJ3dyOZZEyyK_32ZtlWVHwIgdzfPefm3BN0FGIAhN5SckqZYGcj7E6pFESJF2hBhZSNokwdoQVRLWmoUvQYneT8nRDCOylfoWNOieCCsQXafTXTZLwzAd89XJ3d3VxiG703Q0ymQMY_Xdlgg-foH22chsbkHK2rpRHPKRZwAZeIE6y3vj7iKgV4DWnyLgAuyYRsk5uLiwHv0U1F4jbDa_RyZXyGN0_3Et1fXnw7_9Jc336-Ov903Vgu-9JQxngr5cg73vOOciU5kWKUHDhIY8S4Yu1oreyBDYMwZBzaAYggBJSCrjV8iT4edOftMMFoIdSZvJ6Tm0x61NE4_XcluI1ex53uesJ5PUv0_kkgxR9byEVPLluoCQWoH9GM0V4pxXpW0Xd_ev02eQ67AuQA2BRzTrDS1hWzz6ZaO68p0ft96rpPfdhnbfnwT8uz6n_gXxn2ozI |
CitedBy_id | crossref_primary_10_1080_15592294_2023_2183339 crossref_primary_10_1016_j_tig_2024_10_004 crossref_primary_10_1016_j_isci_2023_107964 crossref_primary_10_1038_s41588_021_00777_3 crossref_primary_10_3389_fmed_2023_1096615 crossref_primary_10_1007_s00018_020_03539_2 crossref_primary_10_1242_dev_198838 crossref_primary_10_1111_febs_15269 crossref_primary_10_1002_bies_201900249 crossref_primary_10_1038_s41536_023_00293_4 crossref_primary_10_1083_jcb_202310143 crossref_primary_10_1073_pnas_2409346121 crossref_primary_10_1186_s12864_023_09251_2 crossref_primary_10_3389_fpls_2021_641517 crossref_primary_10_1038_s41598_021_03538_8 crossref_primary_10_1093_pcmedi_pbac016 crossref_primary_10_1007_s12015_020_10044_3 crossref_primary_10_1016_j_heliyon_2023_e15194 crossref_primary_10_1042_BST20190960 crossref_primary_10_1007_s00418_020_01942_1 crossref_primary_10_7554_eLife_46314 crossref_primary_10_1038_s41467_021_26828_1 crossref_primary_10_7554_eLife_88024_5 crossref_primary_10_7554_eLife_88024 crossref_primary_10_1016_j_molcel_2024_06_029 crossref_primary_10_1242_dev_199967 crossref_primary_10_1242_dev_200089 crossref_primary_10_1080_07853890_2024_2442534 crossref_primary_10_3389_fcell_2023_1295452 crossref_primary_10_1002_mrd_23339 crossref_primary_10_1002_dvdy_430 |
Cites_doi | 10.1101/gad.1723908 10.1073/pnas.1804512115 10.1016/j.molcel.2010.05.004 10.1016/j.cell.2019.03.014 10.1038/ncomms4630 10.1038/nature04112 10.1128/MCB.11.4.1883 10.1186/gb-2008-9-9-r137 10.1073/pnas.0902750106 10.1371/journal.pgen.1007233 10.1634/stemcells.2008-0134 10.1101/gr.168930.113 10.1038/sj.emboj.7601767 10.1186/s13072-016-0108-y 10.1371/journal.pgen.1004954 10.1038/ng.3735 10.1242/jcs.114.16.2953 10.2144/000113764 10.1016/j.cub.2004.11.032 10.1242/dev.109496 10.1095/biolreprod.111.091330 10.1095/biolreprod.115.135533 10.1038/ng1366 10.1016/j.cell.2006.02.041 10.1186/2041-1480-4-15 10.1038/nprot.2007.202 10.1128/MCB.17.10.5976 10.1083/jcb.74.1.68 10.1128/MCB.20.22.8602-8612.2000 10.1073/pnas.1315204110 10.1093/bioinformatics/btp616 10.1016/S0091-679X(08)00004-6 10.1038/nrm.2017.26 10.1242/jcs.159103 10.1101/gad.2030811 10.1128/MCB.01197-14 10.1038/ncomms4812 10.1016/j.cub.2007.10.034 10.1101/gad.329705 10.1091/mbc.e11-05-0423 10.1242/dev.064444 10.1371/journal.pgen.1000702 10.1016/j.molcel.2014.06.028 10.1210/jcem.87.5.8476 10.1101/gad.219477.113 10.1038/ng.3483 10.1101/gad.246124.114 10.1371/journal.pgen.1002008 10.1186/s12864-015-2294-6 10.1016/j.devcel.2018.07.025 10.1371/journal.pgen.1004916 10.1038/nature11089 10.1095/biolreprod.111.097097 10.1095/biolreprod.109.083097 10.1073/pnas.1118403109 10.1242/dev.073478 10.1002/dvg.20437 10.1038/nature08911 10.1038/onc.2013.556 10.1016/j.ccr.2010.09.006 10.1371/journal.pgen.1005748 10.1016/j.cub.2017.12.020 10.1146/annurev-pathol-012414-040445 10.1038/nchembio.501 10.1038/sj.cr.7310149 10.1038/ncb1712 10.1007/s00335-015-9573-z 10.1038/nprot.2018.015 10.1002/dvg.20310 10.1038/emboj.2010.129 10.1158/0008-5472.CAN-13-3608 10.1101/gad.552310 10.1242/jcs.65.1.249 10.1089/omi.2011.0118 10.1038/nbt.3519 10.1023/A:1018445520117 10.1016/j.cell.2006.04.029 10.1038/emboj.2010.27 10.1016/j.neuron.2007.06.019 10.1038/ncomms14648 10.1038/ncomms7033 10.1093/nar/gkg047 10.1186/1471-2164-15-39 10.1083/jcb.200603063 10.1073/pnas.1302209110 10.1242/dev.000018 10.1128/MCB.01008-12 10.1038/ng.3734 10.1172/JCI57984 10.1038/nature02985 10.1016/j.molcel.2018.01.033 10.1016/j.molcel.2005.02.013 10.1002/j.1939-4640.2002.tb02345.x 10.1038/onc.2010.592 10.12688/f1000research.7563.2 10.3791/52118 10.1016/j.devcel.2015.01.014 10.1016/j.stem.2014.04.006 10.1371/journal.pgen.1002789 10.1038/nmeth.2688 10.1073/pnas.0812889106 |
ContentType | Journal Article |
Copyright | 2019. Published by The Company of Biologists Ltd. 2019. Published by The Company of Biologists Ltd 2019 |
Copyright_xml | – notice: 2019. Published by The Company of Biologists Ltd. – notice: 2019. Published by The Company of Biologists Ltd 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1242/dev.174094 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
ExternalDocumentID | PMC6803380 31043422 10_1242_dev_174094 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: U42 OD010924 – fundername: NIGMS NIH HHS grantid: R01 GM101974 – fundername: ; grantid: R01GM101974; U42OD010924 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c378t-1223577d36383613973074d73e3e7aa4df25dcc78e2bb4a0db5be0400e99e65a3 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Aug 21 14:35:57 EDT 2025 Fri Jul 11 00:51:23 EDT 2025 Thu Apr 03 06:58:58 EDT 2025 Tue Jul 01 00:45:14 EDT 2025 Thu Apr 24 23:02:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | SCML2 Transcriptional regulation BRG1 SWI/SNF chromatin remodeling |
Language | English |
License | http://www.biologists.com/user-licence-1-1 2019. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-1223577d36383613973074d73e3e7aa4df25dcc78e2bb4a0db5be0400e99e65a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0792-835X 0000-0003-3052-9872 0000-0003-4539-0172 |
OpenAccessLink | https://dev.biologists.org/content/develop/146/19/dev174094.full.pdf |
PMID | 31043422 |
PQID | 2218999282 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6803380 proquest_miscellaneous_2218999282 pubmed_primary_31043422 crossref_citationtrail_10_1242_dev_174094 crossref_primary_10_1242_dev_174094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190705 |
PublicationDateYYYYMMDD | 2019-07-05 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190705 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2019 |
Publisher | The Company of Biologists Ltd |
Publisher_xml | – name: The Company of Biologists Ltd |
References | Qi (2024061301023596800_DEV174094C69) 2014; 128 Yamaguchi (2024061301023596800_DEV174094C95) 2010; 24 Motenko (2024061301023596800_DEV174094C62) 2015; 26 Brind'Amour (2024061301023596800_DEV174094C14) 2015; 6 Baker (2024061301023596800_DEV174094C5) 2015; 11 Green (2024061301023596800_DEV174094C30) 2018; 46 Minsky (2024061301023596800_DEV174094C60) 2008; 10 Kwon (2024061301023596800_DEV174094C44) 2015; 34 Maertens (2024061301023596800_DEV174094C55) 2010; 29 Li (2024061301023596800_DEV174094C52) 2014; 5 Pavri (2024061301023596800_DEV174094C67) 2006; 125 Margolin (2024061301023596800_DEV174094C57) 2014; 15 Bellve (2024061301023596800_DEV174094C9) 1977; 74 Buenrostro (2024061301023596800_DEV174094C16) 2013; 10 Lecona (2024061301023596800_DEV174094C45) 2015; 35 Luo (2024061301023596800_DEV174094C53) 2015; 11 Eaker (2024061301023596800_DEV174094C23) 2001; 114 Hammoud (2024061301023596800_DEV174094C32) 2014; 15 Biswas (2024061301023596800_DEV174094C100) 2018; 28 Heinz (2024061301023596800_DEV174094C36) 2010; 38 Huether (2024061301023596800_DEV174094C101) 2014; 5 Watanabe (2024061301023596800_DEV174094C91) 2014; 74 Kadoch (2024061301023596800_DEV174094C40) 2017; 49 Chandler (2024061301023596800_DEV174094C17) 2013; 33 Raab (2024061301023596800_DEV174094C71) 2017; 10 Hayamizu (2024061301023596800_DEV174094C34) 2013; 4 Robinson (2024061301023596800_DEV174094C72) 2010; 26 Hayashi (2024061301023596800_DEV174094C35) 2005; 438 Bauer (2024061301023596800_DEV174094C8) 2015; 95 Zhou (2024061301023596800_DEV174094C99) 2002; 23 Chang (2024061301023596800_DEV174094C18) 2011; 51 Kim (2024061301023596800_DEV174094C42) 2012; 139 Ho (2024061301023596800_DEV174094C38) 2009; 106 Zhang (2024061301023596800_DEV174094C98) 2008; 9 Oatley (2024061301023596800_DEV174094C65) 2011; 85 Soneson (2024061301023596800_DEV174094C80) 2016; 4 Nicassio (2024061301023596800_DEV174094C64) 2007; 17 Hainer (2024061301023596800_DEV174094C31) 2019 Wu (2024061301023596800_DEV174094C94) 2010; 82 Goetz (2024061301023596800_DEV174094C29) 1984; 65 De Vries (2024061301023596800_DEV174094C21) 2005; 19 Lesch (2024061301023596800_DEV174094C48) 2013; 110 Schmahl (2024061301023596800_DEV174094C75) 2008; 22 Clapier (2024061301023596800_DEV174094C19) 2017; 18 Lessard (2024061301023596800_DEV174094C50) 2007; 55 Turner (2024061301023596800_DEV174094C87) 2004; 14 Ball (2024061301023596800_DEV174094C6) 2016; 17 Royo (2024061301023596800_DEV174094C73) 2013; 27 Serber (2024061301023596800_DEV174094C76) 2015; 94 Tachibana (2024061301023596800_DEV174094C83) 2007; 26 Raab (2024061301023596800_DEV174094C70) 2015; 11 Tolstorukov (2024061301023596800_DEV174094C85) 2013; 110 Hasegawa (2024061301023596800_DEV174094C33) 2015; 32 Shibata (2024061301023596800_DEV174094C78) 2012; 8 Mu (2024061301023596800_DEV174094C63) 2014; 28 Adams (2024061301023596800_DEV174094C1) 2018; 14 Wang (2024061301023596800_DEV174094C89) 2004; 431 Ogiwara (2024061301023596800_DEV174094C66) 2011; 30 Wilson (2024061301023596800_DEV174094C92) 2010; 18 Basciani (2024061301023596800_DEV174094C7) 2002; 87 Lee (2024061301023596800_DEV174094C46) 2010; 29 Yang (2024061301023596800_DEV174094C96) 2006; 173 Bray (2024061301023596800_DEV174094C12) 2016; 34 Montgomery (2024061301023596800_DEV174094C61) 2009; 106 Stanton (2024061301023596800_DEV174094C81) 2017; 49 Turner (2024061301023596800_DEV174094C86) 2007; 134 Ichijima (2024061301023596800_DEV174094C39) 2011; 25 Fierz (2024061301023596800_DEV174094C25) 2011; 7 Blake (2024061301023596800_DEV174094C11) 2003; 31 Wojtasz (2024061301023596800_DEV174094C93) 2009; 5 Gallinari (2024061301023596800_DEV174094C27) 2007; 17 Maezawa (2024061301023596800_DEV174094C56) 2018; 115 Alexander (2024061301023596800_DEV174094C2) 2015; 142 Van Der Knaap (2024061301023596800_DEV174094C88) 2005; 17 Wang (2024061301023596800_DEV174094C90) 2012; 86 Takada (2024061301023596800_DEV174094C84) 2011; 138 Ma (2024061301023596800_DEV174094C54) 2012; 109 Euskirchen (2024061301023596800_DEV174094C24) 2011; 7 Peters (2024061301023596800_DEV174094C68) 1997; 5 Alver (2024061301023596800_DEV174094C3) 2017; 8 Buaas (2024061301023596800_DEV174094C15) 2004; 36 Brick (2024061301023596800_DEV174094C13) 2012; 485 Yu (2024061301023596800_DEV174094C97) 2012; 16 Lee (2024061301023596800_DEV174094C47) 2011; 22 Ho (2024061301023596800_DEV174094C37) 2010; 463 Dann (2024061301023596800_DEV174094C20) 2008; 26 Li (2024061301023596800_DEV174094C51) 1991; 11 Sumi-Ichinose (2024061301023596800_DEV174094C82) 1997; 17 Attanasio (2024061301023596800_DEV174094C4) 2014; 24 Skene (2024061301023596800_DEV174094C79) 2018; 13 Sadate-Ngatchou (2024061301023596800_DEV174094C74) 2008; 46 Goertz (2024061301023596800_DEV174094C28) 2011; 121 Bernstein (2024061301023596800_DEV174094C10) 2006; 125 Masliah-Planchon (2024061301023596800_DEV174094C58) 2015; 10 Kakarougkas (2024061301023596800_DEV174094C41) 2013; 55 Lesch (2024061301023596800_DEV174094C49) 2016; 48 Kubota (2024061301023596800_DEV174094C43) 2008; 86 Shechter (2024061301023596800_DEV174094C77) 2007; 2 Diagouraga (2024061301023596800_DEV174094C22) 2018; 69 Gallardo (2024061301023596800_DEV174094C26) 2007; 45 Méndez (2024061301023596800_DEV174094C59) 2000; 20 |
References_xml | – volume: 22 start-page: 3255 year: 2008 ident: 2024061301023596800_DEV174094C75 article-title: The PDGF signaling pathway controls multiple steroid-producing lineages publication-title: Genes Dev. doi: 10.1101/gad.1723908 – volume: 115 start-page: 4957 year: 2018 ident: 2024061301023596800_DEV174094C56 article-title: Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1804512115 – volume: 38 start-page: 576 year: 2010 ident: 2024061301023596800_DEV174094C36 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – year: 2019 ident: 2024061301023596800_DEV174094C31 article-title: Profiling of pluripotency factors in single cells and early embryos publication-title: Cell doi: 10.1016/j.cell.2019.03.014 – volume: 5 start-page: 1 year: 2014 ident: 2024061301023596800_DEV174094C101 article-title: The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes publication-title: Nat. Commun. doi: 10.1038/ncomms4630 – volume: 438 start-page: 374 year: 2005 ident: 2024061301023596800_DEV174094C35 article-title: A histone H3 methyltransferase controls epigenetic events required for meiotic prophase publication-title: Nature doi: 10.1038/nature04112 – volume: 11 start-page: 1883 year: 1991 ident: 2024061301023596800_DEV174094C51 article-title: An in vitro transcription analysis of early responses of the human immunodeficiency virus type 1 long terminal repeat to different transcriptional activators publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.11.4.1883 – volume: 9 start-page: R137 year: 2008 ident: 2024061301023596800_DEV174094C98 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 106 start-page: 7876 year: 2009 ident: 2024061301023596800_DEV174094C61 article-title: Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0902750106 – volume: 14 start-page: e1007233 year: 2018 ident: 2024061301023596800_DEV174094C1 article-title: RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007233 – volume: 26 start-page: 2928 year: 2008 ident: 2024061301023596800_DEV174094C20 article-title: Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation publication-title: Stem Cells doi: 10.1634/stemcells.2008-0134 – volume: 24 start-page: 920 year: 2014 ident: 2024061301023596800_DEV174094C4 article-title: Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis publication-title: Genome Res. doi: 10.1101/gr.168930.113 – volume: 26 start-page: 3346 year: 2007 ident: 2024061301023596800_DEV174094C83 article-title: Functional dynamics of H3K9 methylation during meiotic prophase progression publication-title: EMBO J. doi: 10.1038/sj.emboj.7601767 – volume: 10 start-page: 1 year: 2017 ident: 2024061301023596800_DEV174094C71 article-title: Co-regulation of transcription by BRG1 and BRM, two mutually exclusive SWI/SNF ATPase subunits publication-title: Epigenetics Chromatin doi: 10.1186/s13072-016-0108-y – volume: 11 start-page: e1004954 year: 2015 ident: 2024061301023596800_DEV174094C53 article-title: Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004954 – volume: 49 start-page: 282 year: 2017 ident: 2024061301023596800_DEV174094C81 article-title: Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin publication-title: Nat. Genet. doi: 10.1038/ng.3735 – volume: 114 start-page: 2953 year: 2001 ident: 2024061301023596800_DEV174094C23 article-title: Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice publication-title: J. Cell Sci. doi: 10.1242/jcs.114.16.2953 – volume: 51 start-page: 341 year: 2011 ident: 2024061301023596800_DEV174094C18 article-title: Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis publication-title: BioTechniques doi: 10.2144/000113764 – volume: 14 start-page: 2135 year: 2004 ident: 2024061301023596800_DEV174094C87 article-title: BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.11.032 – volume: 142 start-page: 1418 year: 2015 ident: 2024061301023596800_DEV174094C2 article-title: Brg1 modulates enhancer activation in mesoderm lineage commitment publication-title: Development doi: 10.1242/dev.109496 – volume: 85 start-page: 347 year: 2011 ident: 2024061301023596800_DEV174094C65 article-title: Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice publication-title: Biol. Reprod. doi: 10.1095/biolreprod.111.091330 – volume: 94 start-page: 8 year: 2015 ident: 2024061301023596800_DEV174094C76 article-title: The mouse INO80 chromatin remodeling complex is an essential meiotic factor for spermatogenesis publication-title: Biol. Reprod doi: 10.1095/biolreprod.115.135533 – volume: 36 start-page: 647 year: 2004 ident: 2024061301023596800_DEV174094C15 article-title: Plzf is required in adult male germ cells for stem cell self-renewal publication-title: Nat. Genet. doi: 10.1038/ng1366 – volume: 125 start-page: 315 year: 2006 ident: 2024061301023596800_DEV174094C10 article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2006.02.041 – volume: 4 start-page: 15 year: 2013 ident: 2024061301023596800_DEV174094C34 article-title: EMAP/EMAPA ontology of mouse developmental anatomy: 2013 update publication-title: J. Biomed. Semantics doi: 10.1186/2041-1480-4-15 – volume: 2 start-page: 1445 year: 2007 ident: 2024061301023596800_DEV174094C77 article-title: Extraction, purification and analysis of histones publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.202 – volume: 17 start-page: 5976 year: 1997 ident: 2024061301023596800_DEV174094C82 article-title: SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.10.5976 – volume: 74 start-page: 68 year: 1977 ident: 2024061301023596800_DEV174094C9 article-title: Spermatogenic cells of the prepubertal mouse: isolation and morphological characterization publication-title: J. Cell Biol. doi: 10.1083/jcb.74.1.68 – volume: 20 start-page: 8602 year: 2000 ident: 2024061301023596800_DEV174094C59 article-title: Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.22.8602-8612.2000 – volume: 110 start-page: 16061 year: 2013 ident: 2024061301023596800_DEV174094C48 article-title: A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315204110 – volume: 26 start-page: 139 year: 2010 ident: 2024061301023596800_DEV174094C72 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 86 start-page: 59 year: 2008 ident: 2024061301023596800_DEV174094C43 article-title: Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(08)00004-6 – volume: 18 start-page: 407 year: 2017 ident: 2024061301023596800_DEV174094C19 article-title: Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm.2017.26 – volume: 128 start-page: 317 year: 2014 ident: 2024061301023596800_DEV174094C69 article-title: BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51 publication-title: J. Cell Sci. doi: 10.1242/jcs.159103 – volume: 25 start-page: 959 year: 2011 ident: 2024061301023596800_DEV174094C39 article-title: MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells publication-title: Genes Dev. doi: 10.1101/gad.2030811 – volume: 35 start-page: 1157 year: 2015 ident: 2024061301023596800_DEV174094C45 article-title: USP7 cooperates with SCML2 to regulate the activity of PRC1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01197-14 – volume: 5 start-page: 3812 year: 2014 ident: 2024061301023596800_DEV174094C52 article-title: Chd5 orchestrates chromatin remodelling during sperm development publication-title: Nat. Commun. doi: 10.1038/ncomms4812 – volume: 17 start-page: 1972 year: 2007 ident: 2024061301023596800_DEV174094C64 article-title: Human USP3 is a chromatin modifier required for s phase progression and genome stability publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.10.034 – volume: 19 start-page: 1376 year: 2005 ident: 2024061301023596800_DEV174094C21 article-title: Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation publication-title: Genes Dev. doi: 10.1101/gad.329705 – volume: 22 start-page: 3465 year: 2011 ident: 2024061301023596800_DEV174094C47 article-title: Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-05-0423 – volume: 138 start-page: 4207 year: 2011 ident: 2024061301023596800_DEV174094C84 article-title: HP1 links histone methylation marks to meiotic synapsis in mice publication-title: Development doi: 10.1242/dev.064444 – volume: 5 start-page: e1000702 year: 2009 ident: 2024061301023596800_DEV174094C93 article-title: Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000702 – volume: 55 start-page: 723 year: 2013 ident: 2024061301023596800_DEV174094C41 article-title: Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.06.028 – volume: 87 start-page: 2310 year: 2002 ident: 2024061301023596800_DEV174094C7 article-title: Expression of platelet-derived growth factor-A (PDGF-A), PDGF-B, and PDGF receptor-α and -β during human testicular development and disease publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.87.5.8476 – volume: 27 start-page: 1484 year: 2013 ident: 2024061301023596800_DEV174094C73 article-title: ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing publication-title: Genes Dev. doi: 10.1101/gad.219477.113 – volume: 48 start-page: 1 year: 2016 ident: 2024061301023596800_DEV174094C49 article-title: Parallel evolution of male germline epigenetic poising and somatic development in animals publication-title: Nat. Genet. doi: 10.1038/ng.3483 – volume: 28 start-page: 2056 year: 2014 ident: 2024061301023596800_DEV174094C63 article-title: Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development publication-title: Genes Dev. doi: 10.1101/gad.246124.114 – volume: 7 year: 2011 ident: 2024061301023596800_DEV174094C24 article-title: Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002008 – volume: 17 start-page: 1 year: 2016 ident: 2024061301023596800_DEV174094C6 article-title: Regulatory complexity revealed by integrated cytological and RNA-seq analyses of meiotic substages in mouse spermatocytes publication-title: BMC Genomics doi: 10.1186/s12864-015-2294-6 – volume: 46 start-page: 651 year: 2018 ident: 2024061301023596800_DEV174094C30 article-title: A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-seq publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.07.025 – volume: 11 start-page: e1004916 year: 2015 ident: 2024061301023596800_DEV174094C5 article-title: PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004916 – volume: 485 start-page: 642 year: 2012 ident: 2024061301023596800_DEV174094C13 article-title: Genetic recombination is directed away from functional genomic elements in mice publication-title: Nature doi: 10.1038/nature11089 – volume: 86 start-page: 186 year: 2012 ident: 2024061301023596800_DEV174094C90 article-title: Essential roles of the chromatin remodeling factor Brg1 in spermatogenesis in mice publication-title: Biol. Reprod. doi: 10.1095/biolreprod.111.097097 – volume: 82 start-page: 1103 year: 2010 ident: 2024061301023596800_DEV174094C94 article-title: The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells1 publication-title: Biol. Reprod. doi: 10.1095/biolreprod.109.083097 – volume: 109 start-page: E481 year: 2012 ident: 2024061301023596800_DEV174094C54 article-title: Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1118403109 – volume: 139 start-page: 1133 year: 2012 ident: 2024061301023596800_DEV174094C42 article-title: An essential role for a mammalian SWI/SNF chromatin-remodeling complex during male meiosis publication-title: Development doi: 10.1242/dev.073478 – volume: 46 start-page: 738 year: 2008 ident: 2024061301023596800_DEV174094C74 article-title: Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice publication-title: Genesis doi: 10.1002/dvg.20437 – volume: 463 start-page: 474 year: 2010 ident: 2024061301023596800_DEV174094C37 article-title: Chromatin remodelling during development publication-title: Nature doi: 10.1038/nature08911 – volume: 34 start-page: 303 year: 2015 ident: 2024061301023596800_DEV174094C44 article-title: ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair publication-title: Oncogene doi: 10.1038/onc.2013.556 – volume: 18 start-page: 316 year: 2010 ident: 2024061301023596800_DEV174094C92 article-title: Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.09.006 – volume: 11 start-page: 1 year: 2015 ident: 2024061301023596800_DEV174094C70 article-title: Genome-wide transcriptional regulation mediated by biochemically distinct SWI/SNF complexes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005748 – volume: 28 start-page: 249 year: 2018 ident: 2024061301023596800_DEV174094C100 article-title: SMC1α substitutes for many meiotic functions of SMC1β but cannot protect telomeres from damage publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.12.020 – volume: 10 start-page: 145 year: 2015 ident: 2024061301023596800_DEV174094C58 article-title: SWI/SNF chromatin remodeling and human malignancies publication-title: Annu. Rev. Pathol. Mech. Dis. doi: 10.1146/annurev-pathol-012414-040445 – volume: 7 start-page: 113 year: 2011 ident: 2024061301023596800_DEV174094C25 article-title: Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.501 – volume: 17 start-page: 195 year: 2007 ident: 2024061301023596800_DEV174094C27 article-title: HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics publication-title: Cell Res. doi: 10.1038/sj.cr.7310149 – volume: 10 start-page: 483 year: 2008 ident: 2024061301023596800_DEV174094C60 article-title: Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1712 – volume: 26 start-page: 325 year: 2015 ident: 2024061301023596800_DEV174094C62 article-title: MouseMine: a new data warehouse for MGI publication-title: Mamm. Genome doi: 10.1007/s00335-015-9573-z – volume: 13 start-page: 1006 year: 2018 ident: 2024061301023596800_DEV174094C79 article-title: Targeted in situ genome-wide profiling with high efficiency for low cell numbers publication-title: Nat. Protoc. doi: 10.1038/nprot.2018.015 – volume: 45 start-page: 413 year: 2007 ident: 2024061301023596800_DEV174094C26 article-title: Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre publication-title: Genesis doi: 10.1002/dvg.20310 – volume: 29 start-page: 2553 year: 2010 ident: 2024061301023596800_DEV174094C55 article-title: Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor publication-title: EMBO J. doi: 10.1038/emboj.2010.129 – volume: 74 start-page: 2465 year: 2014 ident: 2024061301023596800_DEV174094C91 article-title: SWI/SNF factors required for cellular resistance to dna damage include arid1a and arid1b and show interdependent protein stability publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3608 – volume: 24 start-page: 455 year: 2010 ident: 2024061301023596800_DEV174094C95 article-title: Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression publication-title: Genes Dev. doi: 10.1101/gad.552310 – volume: 65 start-page: 249 year: 1984 ident: 2024061301023596800_DEV174094C29 article-title: Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse publication-title: J. Cell Sci. doi: 10.1242/jcs.65.1.249 – volume: 16 start-page: 284 year: 2012 ident: 2024061301023596800_DEV174094C97 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: Omi. A J. Integr. Biol. doi: 10.1089/omi.2011.0118 – volume: 34 start-page: 525 year: 2016 ident: 2024061301023596800_DEV174094C12 article-title: Near-optimal probabilistic RNA-seq quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3519 – volume: 5 start-page: 66 year: 1997 ident: 2024061301023596800_DEV174094C68 article-title: A drying-down technique for the spreading of mammalian melocytes from the male and female germline publication-title: Chromosom. Res. doi: 10.1023/A:1018445520117 – volume: 125 start-page: 703 year: 2006 ident: 2024061301023596800_DEV174094C67 article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II publication-title: Cell doi: 10.1016/j.cell.2006.04.029 – volume: 29 start-page: 1434 year: 2010 ident: 2024061301023596800_DEV174094C46 article-title: A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair publication-title: EMBO J. doi: 10.1038/emboj.2010.27 – volume: 55 start-page: 201 year: 2007 ident: 2024061301023596800_DEV174094C50 article-title: An essential switch in subunit composition of a chromatin remodeling complex during neural development publication-title: Neuron doi: 10.1016/j.neuron.2007.06.019 – volume: 8 start-page: 14648 year: 2017 ident: 2024061301023596800_DEV174094C3 article-title: The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers publication-title: Nat. Commun. doi: 10.1038/ncomms14648 – volume: 6 start-page: 6033 year: 2015 ident: 2024061301023596800_DEV174094C14 article-title: An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations publication-title: Nat. Commun. doi: 10.1038/ncomms7033 – volume: 31 start-page: 193 year: 2003 ident: 2024061301023596800_DEV174094C11 article-title: MGD: the mouse genome database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg047 – volume: 15 start-page: 39 year: 2014 ident: 2024061301023596800_DEV174094C57 article-title: Integrated transcriptome analysis of mouse spermatogenesis publication-title: BMC Genomics doi: 10.1186/1471-2164-15-39 – volume: 173 start-page: 497 year: 2006 ident: 2024061301023596800_DEV174094C96 article-title: Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis publication-title: J. Cell Biol. doi: 10.1083/jcb.200603063 – volume: 110 start-page: 10165 year: 2013 ident: 2024061301023596800_DEV174094C85 article-title: Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1302209110 – volume: 134 start-page: 1823 year: 2007 ident: 2024061301023596800_DEV174094C86 article-title: Meiotic sex chromosome inactivation publication-title: Development doi: 10.1242/dev.000018 – volume: 33 start-page: 265 year: 2013 ident: 2024061301023596800_DEV174094C17 article-title: ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01008-12 – volume: 49 start-page: 213 year: 2017 ident: 2024061301023596800_DEV174094C40 article-title: Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states publication-title: Nat. Genet. doi: 10.1038/ng.3734 – volume: 121 start-page: 3456 year: 2011 ident: 2024061301023596800_DEV174094C28 article-title: Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis publication-title: J. Clin. Invest. doi: 10.1172/JCI57984 – volume: 431 start-page: 873 year: 2004 ident: 2024061301023596800_DEV174094C89 article-title: Role of histone H2A ubiquitination in Polycomb silencing publication-title: Nature doi: 10.1038/nature02985 – volume: 69 start-page: 853 year: 2018 ident: 2024061301023596800_DEV174094C22 article-title: PRDM9 methyltransferase activity is essential for meiotic DNA double-strand break formation at its binding sites publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.033 – volume: 17 start-page: 695 year: 2005 ident: 2024061301023596800_DEV174094C88 article-title: GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.013 – volume: 23 start-page: 870 year: 2002 ident: 2024061301023596800_DEV174094C99 article-title: Localization of androgen and estrogen receptors in adult male mouse reproductive tract publication-title: J. Androl. doi: 10.1002/j.1939-4640.2002.tb02345.x – volume: 30 start-page: 2135 year: 2011 ident: 2024061301023596800_DEV174094C66 article-title: Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors publication-title: Oncogene doi: 10.1038/onc.2010.592 – volume: 4 start-page: 1521 year: 2016 ident: 2024061301023596800_DEV174094C80 article-title: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences publication-title: F1000Research doi: 10.12688/f1000research.7563.2 – volume: 95 start-page: e52118.2 year: 2015 ident: 2024061301023596800_DEV174094C8 article-title: Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9 publication-title: J. Vis. Exp. doi: 10.3791/52118 – volume: 32 start-page: 574 year: 2015 ident: 2024061301023596800_DEV174094C33 article-title: SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination article SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.01.014 – volume: 15 start-page: 239 year: 2014 ident: 2024061301023596800_DEV174094C32 article-title: Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.04.006 – volume: 8 start-page: e1002789 year: 2012 ident: 2024061301023596800_DEV174094C78 article-title: Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002789 – volume: 10 start-page: 1213 year: 2013 ident: 2024061301023596800_DEV174094C16 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods doi: 10.1038/nmeth.2688 – volume: 106 start-page: 5181 year: 2009 ident: 2024061301023596800_DEV174094C38 article-title: An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0812889106 |
SSID | ssj0003677 |
Score | 2.458872 |
Snippet | A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Acetylation Animals Chromatin - metabolism Chromosomal Proteins, Non-Histone - metabolism DNA Helicases - metabolism Epigenesis, Genetic Gene Expression Regulation, Developmental Histone Code Lysine - metabolism Male Mammals - genetics Meiosis - genetics Mice Models, Genetic Nuclear Proteins - metabolism Polycomb-Group Proteins - metabolism Promoter Regions, Genetic Protein Binding - genetics Spermatogenesis - genetics Spermatogonia - metabolism Transcription Factors - metabolism Transcription, Genetic |
Title | Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germline transcription in the mouse |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31043422 https://www.proquest.com/docview/2218999282 https://pubmed.ncbi.nlm.nih.gov/PMC6803380 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCMQLggGjfMkIXlAVlsbO1yOCVRus5YFWFF4iO76slbZmKtmk8ddz5zhpA30YvFSVYzlpfr-e7873wdgbsBmLg8iLUVnwpFLC00UOnpEyLnItC51TNvJoHB1O5adZOFsfxdjskkq_y39tzSv5H1RxDHGlLNl_QLZdFAfwO-KLn4gwfl4L45E6O6v9FF-_HdGZ6HjYXwMLTeYadWK4wvtrTzkwgIoDlNToknTPVd2PnkJZT6F_grLa6p4VbWOtUHHxkOQp6EQPbUQd2RPhJgdsw8UwgmXZCDfq3fRz3p-2np35Qqtag_1eLvL5YlWuOWADAGFxDm57tZ7zk-WFyxKbwMoFMTu3hc2U8vxwQ9JKOjseuGeBLWONeHYuSsfDdKvcR0UD37KBSwrQ8uu2yd3i2uMv2XB6fJxNDmaTm-xWgFYFNbz4ePS53bhFZBt1tk_hqtni2vvrlbv6y19GyZ-xtRvKyuQ-u-esDP6-pswDdgOWu-x23Xf0apfdGbmIChz8UdrBh-yyZRNHNu0jl_gmlzhxiSu-hUvccYlXJW-4xIlLvOES73CJ09Q5TiEuPWLT4cHkw6HnunJ4uYiTyhsEVCEpNgIlt4jIgMBtQppYgIBYKWmKIDR5HicQaC2Vb3SogbYKSFOIQiUesx1kHTxhHEITFqGvjSpiGZk4zfEVF2kuTQpGK91jb5t3neWuZD11TjnNyHRFXDLEJatx6bHX7dzzulDL1lmvGsgylKN0OKaWgL82C1DXRWMpSIIe26shbNdBE0gKGeCVuANuO4FqtHevLBdzW6s9SnwhEv_pNe77jN1d_1Ges51qdQEvUOOt9EvL099SCLPg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+SWI%2FSNF+collaborates+with+a+polycomb-associated+protein+to+regulate+male+germline+transcription+in+the+mouse&rft.jtitle=Development+%28Cambridge%29&rft.au=Menon%2C+Debashish+U&rft.au=Shibata%2C+Yoichiro&rft.au=Mu%2C+Weipeng&rft.au=Magnuson%2C+Terry&rft.date=2019-07-05&rft.issn=1477-9129&rft.eissn=1477-9129&rft.volume=146&rft.issue=19&rft_id=info:doi/10.1242%2Fdev.174094&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |