Predicting Soybean Relative Maturity and Seed Yield Using Canopy Reflectance

Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements may increase the efficiency of cultivar development. The objectives of this study were to: (i) assess canopy reflectance as a tool for predi...

Full description

Saved in:
Bibliographic Details
Published inCrop science Vol. 56; no. 2; pp. 625 - 643
Main Authors Christenson, Brent S., Schapaugh, William T., An, Nan, Price, Kevin P., Prasad, Vara, Fritz, Allan K.
Format Journal Article
LanguageEnglish
Published The Crop Science Society of America, Inc 01.03.2016
Online AccessGet full text

Cover

Loading…
Abstract Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements may increase the efficiency of cultivar development. The objectives of this study were to: (i) assess canopy reflectance as a tool for predicting soybean maturity and seed yield; (ii) identify specific development stages that contribute to maturity and yield estimation; and (iii) test the stability and utility of maturity and yield estimation models across environments. Canopy reflectance, maturity, and seed yield were measured on 20 maturity group (MG) 3 and 20 MG 4 soybean cultivars released from 1923 to 2010. Measurements were conducted on six irrigated and water‐stressed environments in 2011 and 2012. Cultivar, environment, and cultivar by environment sources of variation were all significant for maturity, yield, and reflectance. Maturity estimation models were created using the visible, red edge, and near‐infrared spectrum as well as normalized difference vegetation index (NDVI) and water index ratios. Yield estimation models using the red edge, near‐infrared, and visible NDVI indices explained much of the variation in yield among genotypes. No significant trends were found for canopy reflectance data collected at specific development stages or in different water regimes contributing to more accurate yield estimation; however, later development stages (R5‐R6) were more accurate for maturity estimation due to spectral data identifying senescing vegetation. Performance of canopy reflectance models for maturity and yield accounted for a significant portion of variability among genotypes for maturity in some environments and for seed yield in most environments.
AbstractList Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements may increase the efficiency of cultivar development. The objectives of this study were to: (i) assess canopy reflectance as a tool for predicting soybean maturity and seed yield; (ii) identify specific development stages that contribute to maturity and yield estimation; and (iii) test the stability and utility of maturity and yield estimation models across environments. Canopy reflectance, maturity, and seed yield were measured on 20 maturity group (MG) 3 and 20 MG 4 soybean cultivars released from 1923 to 2010. Measurements were conducted on six irrigated and water‐stressed environments in 2011 and 2012. Cultivar, environment, and cultivar by environment sources of variation were all significant for maturity, yield, and reflectance. Maturity estimation models were created using the visible, red edge, and near‐infrared spectrum as well as normalized difference vegetation index (NDVI) and water index ratios. Yield estimation models using the red edge, near‐infrared, and visible NDVI indices explained much of the variation in yield among genotypes. No significant trends were found for canopy reflectance data collected at specific development stages or in different water regimes contributing to more accurate yield estimation; however, later development stages (R5‐R6) were more accurate for maturity estimation due to spectral data identifying senescing vegetation. Performance of canopy reflectance models for maturity and yield accounted for a significant portion of variability among genotypes for maturity in some environments and for seed yield in most environments.
Author Fritz, Allan K.
Price, Kevin P.
Prasad, Vara
Schapaugh, William T.
Christenson, Brent S.
An, Nan
Author_xml – sequence: 1
  givenname: Brent S.
  surname: Christenson
  fullname: Christenson, Brent S.
  organization: Kansas State Univ
– sequence: 2
  givenname: William T.
  surname: Schapaugh
  fullname: Schapaugh, William T.
  email: wts@ksu.edu
  organization: Kansas State Univ
– sequence: 3
  givenname: Nan
  surname: An
  fullname: An, Nan
  organization: Kansas State Univ
– sequence: 4
  givenname: Kevin P.
  surname: Price
  fullname: Price, Kevin P.
  organization: AgPixel, LLC
– sequence: 5
  givenname: Vara
  surname: Prasad
  fullname: Prasad, Vara
  organization: Kansas State Univ
– sequence: 6
  givenname: Allan K.
  surname: Fritz
  fullname: Fritz, Allan K.
  organization: Kansas State Univ
BookMark eNpNkNFKwzAUhoNMcJs-gTd5gc6TpLHZpQSng8rG6kCvQpqcSqSmo61K394WvRAOHPj4-C--BZnFJiIh1wxWnAl549rm1LnAgckVpCvgIjsjc5YKmcCtFDMyB2AsYUq8XJBF170DQLbO5Jzk-xZ9cH2Ib7RohhJtpAesbR--kD7Z_rMN_UBt9LRA9PQ1YO3psZt0bWNzGka7qtH1Njq8JOeVrTu8-vtLctzcP-vHJN89bPVdnjiRqSwpU1aBTZlipeUolEWuPBtvbSuRgSylZ56XUvEU3GgpqWxlS8f4Gt1IxJJsfne_Q42DObXhw7aDYWCmGuZfDQOpmWoYXWiuD7t9obcTh3Si4gcWKlwv
CitedBy_id crossref_primary_10_3390_agriculture10080348
crossref_primary_10_3390_rs14112629
crossref_primary_10_3390_rs16224184
crossref_primary_10_1016_j_compag_2022_107235
crossref_primary_10_3390_rs15174286
crossref_primary_10_1007_s11119_022_09876_5
crossref_primary_10_1016_j_indcrop_2024_119470
crossref_primary_10_3390_plants10010101
crossref_primary_10_1016_j_rsase_2020_100318
crossref_primary_10_3390_rs16234343
crossref_primary_10_3390_plants13182610
crossref_primary_10_1038_s41598_019_52802_5
crossref_primary_10_3390_plants10112512
crossref_primary_10_1038_s41598_019_53451_4
crossref_primary_10_3390_rs10030426
crossref_primary_10_1002_ppj2_20018
crossref_primary_10_1016_j_mlwa_2021_100233
crossref_primary_10_3390_rs12091480
crossref_primary_10_1002_csc2_21028
crossref_primary_10_1016_j_cropro_2019_104883
crossref_primary_10_3390_rs13050977
crossref_primary_10_1002_csc2_20079
crossref_primary_10_1002_tpg2_20244
crossref_primary_10_3390_agriengineering6040272
crossref_primary_10_1016_j_compag_2022_107169
crossref_primary_10_1590_1807_1929_agriambi_v26n6p466_476
crossref_primary_10_3390_app12041983
crossref_primary_10_1016_j_plantsci_2018_06_008
crossref_primary_10_3390_rs11182075
crossref_primary_10_1016_j_fcr_2020_107988
crossref_primary_10_1080_15427528_2020_1846101
crossref_primary_10_3390_s19235225
crossref_primary_10_3390_chemosensors9030055
crossref_primary_10_3390_s20226569
crossref_primary_10_1002_tpg2_70002
crossref_primary_10_1007_s10681_019_2399_0
crossref_primary_10_3390_rs12213617
crossref_primary_10_3390_rs13040598
crossref_primary_10_3390_rs13163260
crossref_primary_10_1016_j_fcr_2021_108260
crossref_primary_10_1080_10106049_2022_2102239
crossref_primary_10_34133_2019_5809404
crossref_primary_10_1016_j_rsase_2023_101026
crossref_primary_10_3389_fpls_2019_01537
ContentType Journal Article
Copyright Copyright © by the Crop Science Society of America, Inc.
Copyright_xml – notice: Copyright © by the Crop Science Society of America, Inc.
DBID 24P
DOI 10.2135/cropsci2015.04.0237
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0653
EndPage 643
ExternalDocumentID CSC2CROPSCI2015040237
Genre article
GroupedDBID -~X
.86
.~0
0R~
186
18M
1OB
1OC
24P
29F
2A4
2WC
33P
3V.
53G
5GY
6J9
6KN
7X2
7XC
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGOD
ACIWK
ACPOU
ACXQS
ADFRT
ADKYN
ADNWM
ADYHW
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BENPR
BES
BFHJK
BGLVJ
BGNMA
BHPHI
BKOMP
BPHCQ
C1A
CCPQU
CS3
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
IAG
IAO
ICU
IEA
IEP
IGG
IOF
ITC
L6V
L7B
LAS
LATKE
LEEKS
M0K
M2O
M2P
M2Q
M4Y
M7S
MEWTI
MV1
NHAZY
NHB
NU0
O9-
PATMY
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q2X
R05
RAK
ROL
RPX
RXW
S0X
SAMSI
SUPJJ
TAE
TR2
TWZ
U2A
U5U
VH1
VQA
WOQ
WXSBR
XOL
Y6R
~02
~KM
ID FETCH-LOGICAL-c3787-b41f0a4181ba2e38ae28d18d19af3705b5d1d2b58240c181858afabc129ec0c13
IEDL.DBID 24P
ISSN 0011-183X
IngestDate Wed Jan 22 16:36:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3787-b41f0a4181ba2e38ae28d18d19af3705b5d1d2b58240c181858afabc129ec0c13
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2015.04.0237
PageCount 19
ParticipantIDs wiley_primary_10_2135_cropsci2015_04_0237_CSC2CROPSCI2015040237
PublicationCentury 2000
PublicationDate March–April 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March–April 2016
PublicationDecade 2010
PublicationTitle Crop science
PublicationYear 2016
Publisher The Crop Science Society of America, Inc
Publisher_xml – name: The Crop Science Society of America, Inc
References 1995; 31
2011; 115
2001; 93
2004; 25
1999; 47
2009; 155
1973
2003; 95
2012; 128
1983; 13
1978
1977
1985; 18
2012; 133
2001
1986; 7
2002; 42
2003; 160
2005; 32
2010; 2
2007; 1
1999; 91
2003; 84
2003; 41
2014; 54
1979; 8
2007; 26
1992; 41
1995; 52
2006b; 46
1997; 61
1991; 35
2011
2007a; 47
1969; 50
1992; 39
2002; 139
2011; 75
2005; 85
2008
1999; 20
1996; 58
2007b; 47
1994; 86
2004; 55
1993; 14
2014; 106
2012; 110
1993; 18
2004; 92
2007; 150
2006; 46
1997; 37
1999; 39
2002; 23
2000; 74
1980; 10
2003; 24
2000; 40
1994; 18
2001; 39
2012; 115
1993; 110
1994; 52
2006a; 46
2010; 50
1966
References_xml – volume: 92
  start-page: 475
  issue: 4
  year: 2004
  end-page: 482
  article-title: Vegetation water content mapping using Landsat data derived normalized difference water index in corn and soybean
  publication-title: Remote Sens. of Env.
– volume: 50
  start-page: 663
  year: 1969
  end-page: 666
  article-title: Derivation of leaf area index from quality of light on the forest floor
  publication-title: Ecology
– volume: 91
  start-page: 685
  year: 1999
  end-page: 689
  article-title: Physiological changes from 58 years of genetic improvement of short‐season soybean cultivars in Canada
  publication-title: Agron. J.
– volume: 52
  start-page: 229
  year: 1994
  end-page: 276
  article-title: Morphological and physiological traits associated with wheat yield increases in Mediterranean environments
  publication-title: Adv. Agron.
– volume: 1
  start-page: 013530
  year: 2007
  article-title: Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis
  publication-title: J. Appl. Remote Sens.
– year: 2001
– volume: 14
  start-page: 1887
  year: 1993
  end-page: 1905
  article-title: The reflectance at the 950–970 mm region as an indicator of plant water status
  publication-title: Int. J. Remote Sens.
– volume: 84
  start-page: 526
  year: 2003
  end-page: 537
  article-title: Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 39
  year: 1994
  end-page: 72
  article-title: PARAFAC: Parallel factor analysis
  publication-title: Comput. Stat. Data Anal.
– volume: 85
  start-page: 1
  year: 2005
  end-page: 18
  article-title: Artificial neural networks for corn and soybean yield prediction
  publication-title: Agric. Syst.
– volume: 40
  start-page: 723
  year: 2000
  end-page: 731
  article-title: Remote sensing of biomass and yield of winter wheat under different nitrogen supplies
  publication-title: Crop Sci.
– volume: 41
  start-page: 35
  year: 1992
  end-page: 44
  article-title: A narrow‐waveband spectral index that tracks diurnal changes in photosynthetic efficiency
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 562
  year: 2010
  end-page: 578
  article-title: Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices
  publication-title: Remote Sens.
– volume: 41
  start-page: 1246
  year: 2003
  end-page: 1259
  article-title: Pre‐processing EO‐1 Hyperion hyperspectral data to support the application of agricultural indexes
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 23
  start-page: 1207
  year: 2002
  end-page: 1212
  article-title: The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents
  publication-title: Int. J. Remote Sens.
– volume: 47
  start-page: 909
  year: 1999
  end-page: 923
  article-title: Remote sensing of water content in Eucalyptus leaves
  publication-title: Aust. J. Bot.
– volume: 26
  start-page: 335
  year: 2007
  end-page: 344
  article-title: Canopy reflectance in cotton for growth assessment and lint yield prediction
  publication-title: Eur. J. Agron.
– volume: 95
  start-page: 1447
  year: 2003
  end-page: 1453
  article-title: Corn ( L.) yield prediction using multispectral and multidate reflectance
  publication-title: Agron. J.
– volume: 61
  start-page: 221
  year: 1997
  end-page: 228
  article-title: A simplified approach for yield prediction of sugar beet based on optical remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 251
  issue: 3
  year: 1993
  end-page: 263
  article-title: SIMPLS: An alternative approach to partial least squares regression
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 25
  start-page: 2409
  issue: 12
  year: 2004
  end-page: 2419
  article-title: Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance
  publication-title: Int. J. Remote Sens.
– volume: 110
  start-page: 1271
  year: 2012
  end-page: 1279
  article-title: Advanced phenotyping offers opportunities for improved breeding of forage and turf species
  publication-title: Ann. Bot.
– volume: 47
  start-page: 1426
  year: 2007b
  end-page: 1440
  article-title: Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under Great Plains conditions
  publication-title: Crop Sci.
– volume: 46
  start-page: 927
  year: 2006
  end-page: 934
  article-title: Development of canopy reflectance algorithms for real‐time prediction of Bermudagrass pasture biomass and nutritive values
  publication-title: Crop Sci.
– volume: 18
  start-page: 255
  year: 1985
  end-page: 267
  article-title: Winter wheat vegetation indices calculated from combinations of seven spectral bands
  publication-title: Remote Sens. Environ.
– year: 2008
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 1611
  year: 1999
  end-page: 1621
  article-title: Physiological and genetic changes of irrigated wheat in the post‐green revolution period and approaches for meeting projected global demand
  publication-title: Crop Sci.
– start-page: 329
  year: 2011
  end-page: 358
– volume: 13
  start-page: 301
  year: 1983
  end-page: 311
  article-title: Remote sensing estimators of potential and actual crop yield
  publication-title: Remote Sens. Environ.
– start-page: 391
  year: 1966
  end-page: 420
– volume: 39
  start-page: 239
  year: 1992
  end-page: 247
  article-title: Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves
  publication-title: Remote Sens. Environ.
– volume: 54
  start-page: 1585
  year: 2014
  end-page: 1597
  article-title: Characterizing Changes in Soybean Spectral Response Curves with Breeding Advancements
  publication-title: Crop Sci.
– volume: 20
  start-page: 3663
  year: 1999
  end-page: 3675
  article-title: Yellowness index: An application of spectral 2nd derivatives to estimate chlorosis of leaves in stressed vegetation
  publication-title: Int. J. Remote Sens.
– volume: 93
  start-page: 1227
  year: 2001
  end-page: 1234
  article-title: Early prediction of soybean yield from canopy reflectance measurements
  publication-title: Agron. J.
– volume: 133
  start-page: 101
  year: 2012
  end-page: 112
  article-title: Field‐based phenomics for plant genetics research
  publication-title: Field Crops Res.
– volume: 50
  start-page: 197
  year: 2010
  end-page: 214
  article-title: Spectral water indices for assessing yield in elite bread wheat genotypes under well‐irrigated, water‐stressed, and high‐temperature conditions
  publication-title: Crop Sci.
– volume: 74
  start-page: 229
  year: 2000
  end-page: 239
  article-title: Estimating corn leaf chlorophyll content from leaf and canopy reflectance
  publication-title: Remote Sens. Environ.
– volume: 86
  start-page: 934
  year: 1994
  end-page: 938
  article-title: Light reflectance compared with other nitrogen stress measurements in corn leaves
  publication-title: Agron. J.
– volume: 110
  start-page: 277
  issue: 4
  year: 1993
  end-page: 282
  article-title: Relationship between grain‐yield and remotely‐sensed data in wheat breeding experiments
  publication-title: Plant Breed.
– year: 1973
– volume: 42
  start-page: 1547
  issue: 5
  year: 2002
  end-page: 1555
  article-title: Relationship between growth traits and spectral vegetation indices in durum wheat
  publication-title: Crop Sci.
– volume: 139
  start-page: 307
  year: 2002
  end-page: 318
  article-title: Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression
  publication-title: J. Agric. Sci.
– volume: 47
  start-page: 1416
  year: 2007a
  end-page: 1425
  article-title: Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices
  publication-title: Crop Sci.
– volume: 54
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Genetic improvement of U.S. soybean in maturity groups II, III, and IV
  publication-title: Crop Sci.
– volume: 55
  start-page: 1139
  year: 2004
  end-page: 1147
  article-title: Association between canopy reflectance indices and yield and physiological traits in bread wheat under drought and well‐irrigated conditions
  publication-title: Aust. J. Agric. Res.
– volume: 39
  start-page: 1491
  year: 2001
  end-page: 1507
  article-title: Scaling‐up and model inversion methods with narrow‐band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– year: 1977
– volume: 155
  start-page: 309
  issue: 3
  year: 2009
  end-page: 320
  article-title: Phenotyping approaches for physiological breeding and gene discovery in wheat
  publication-title: Ann. Appl. Biol.
– volume: 24
  start-page: 4403
  year: 2003
  end-page: 4419
  article-title: Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions
  publication-title: Int. J. Remote Sens.
– volume: 160
  start-page: 271
  year: 2003
  end-page: 282
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non‐destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
– volume: 32
  start-page: 108403
  year: 2005
  article-title: Remote estimation of canopy chlorophyll content in crops
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 1395
  year: 1986
  end-page: 1416
  article-title: Satellite remote sensing of primary production
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 23
  year: 1980
  end-page: 32
  article-title: Remote sensing of leaf water content in the near infrared
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 281
  year: 2011
  end-page: 297
  article-title: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies
  publication-title: Remote Sens. Environ.
– volume: 46
  start-page: 1046
  issue: 3
  year: 2006b
  end-page: 1057
  article-title: Spectral reflectance to estimate genetic variation for in‐season biomass, leaf chlorophyll, and canopy temperature in wheat
  publication-title: Crop Sci.
– volume: 37
  start-page: 1400
  year: 1997
  end-page: 1405
  article-title: Visible and near infrared reflectance assessment of salinity effects on barley
  publication-title: Crop Sci.
– volume: 150
  start-page: 253
  year: 2007
  end-page: 257
  article-title: Can wheat yield be assessed by early measurements of normalized difference vegetation index?
  publication-title: Ann. Appl. Biol.
– volume: 46
  start-page: 578
  issue: 2
  year: 2006a
  end-page: 588
  article-title: Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation
  publication-title: Crop Sci.
– volume: 115
  start-page: 25
  year: 2012
  end-page: 36
  article-title: Classifying cultivars of rice ( L.) based on corrected canopy reflectance spectra data using the orthogonal projections of latent structures (O‐PLS) method
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 35
  start-page: 161
  year: 1991
  end-page: 174
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
– volume: 106
  start-page: 1159
  year: 2014
  end-page: 1168
  article-title: The use of reflectance data for in‐season soybean yield prediction
  publication-title: Agron. J.
– volume: 75
  start-page: 190
  year: 2011
  end-page: 195
  article-title: Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean
  publication-title: Computers and Electronics in Agriculture
– year: 1978
– volume: 31
  start-page: 221
  year: 1995
  end-page: 230
  article-title: Semi‐empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance
  publication-title: Photosynthetica
– volume: 35
  start-page: 105
  year: 1991
  end-page: 119
  article-title: Vegetation indexes in crop assessment
  publication-title: Remote Sens. Environ.
– volume: 93
  start-page: 583
  year: 2001
  end-page: 589
  article-title: Use of remote sensing imagery to estimate corn grain yield
  publication-title: Agron. J.
– volume: 52
  start-page: 55
  year: 1995
  end-page: 65
  article-title: Leaf area index estimation from visible and near‐infrared reflectance data
  publication-title: Remote Sens. Environ.
– volume: 128
  start-page: 82
  year: 2012
  end-page: 90
  article-title: Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes
  publication-title: Field Crops Res.
SSID ssj0007975
Score 2.3750641
Snippet Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements...
SourceID wiley
SourceType Publisher
StartPage 625
Title Predicting Soybean Relative Maturity and Seed Yield Using Canopy Reflectance
URI https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2015.04.0237
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qvehBfOKbPXhdzD7yOkkJLVWsFmOhnsJusustKaUK_ffObGJR8CbkkiWZw0xmvtnNzDeE3DirXKSDiiU6SZkyUcBM6ASruKtSLUwZW2wUnjxF45l6mIfzHhl-98K0_BCbAzf0DB-v0cG18VNIBJfIh4ATrgAlAMBCT1YqZLxFtrHJFiv7hJpuAnKcxt0gA87gC5635EMo5vYPIb-zVA8zo32y1-WHdNAa9ID0bH1Idgfvy44jwx6Rx-kS_65gvTLNm7WxuqZtTdunpRMk6oTMmuq6ojlAE33DGjXqSwNoputmsYanHZ7Wo8GPyWw0fM3GrBuKwEoJzsWM4i7QCoDZaGFloq1IKg5Xqp2Mg9CEFa-ECROA6pIjHCfaaVMCrtsSVuQJ6ddNbU8JdbB3tHFqVCpLBUk2vOqkDVIHWU9UuuiM3HlNFIuW-KKADQNqrfihtSJQBWqtyPJMZC_P0zy7x3WIDbB6_m8JF2QHbqK26uuS9FfLD3sFacDKXHsjfwFxS6sT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVKOQAHxCp2fIBjRGI72wGhKlC1dKGirVROwU5sbmlVCqg_xvcxk4QKJG6oUk5OYlnjsd_Yfn5DyIXRwnjSTq1ABqEllGdbyjXMSh2ThpKpxNd4UbjT9RpDcT9yRxXy-X0XptCHWGy44cjI52sc4LghnXOXHY6CCJjiCmACEMzN1UoZ90tyZUvPP2Dp9nrdvIV-vmSsfjeIGlaZXcBKOHippYRjbCkA4ZRkmgdSsyB14Aml4b7tKjd1UqbcADAvcRDXAmmkSgAgdQIlHOpdIavCYz5mTmCit0AAP_TLzAmOBUNmVKgdYbOv_mj077A4x7X6FtksA1JaKzxom1R0tkM2ai_TUpRD75J2b4rHOUiQpv3xXGmZ0YJE965pB5VBIZSnMktpH7CQPiEpjuZcBBrJbDyZw9cGjwfQw_bIcCl22ifVbJzpA0INLFa1HyoR8kRAVA-_Gq7t0ECY5SXGOyQ3uSXiSaG0EcMKBa0W_7BabIsYrRZH_YhFjw-9ftTEcpiMoPTo3zWck7XGoNOO281u65iswwuvoJydkOps-qZPIQaZqbO8wyl5XraHfQGnYuf_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA5zguiDeMW7edDHYpumtweR0Tk2d7FYB_OpJm3iWzfmVPbD_H-e09ah4JsM-nRoQzg5yXfS8-ULIRdace0KMzN84QcGl65pSEczI7N0FggmU0_hQeH-wG0P-d3IGdXI5_dZmFIfYvHDDWdGsV7jBJ9kuqAuWzbqIeANV4ASAGBOIVbKbK_iVnbV_AN2bq_XnSYM8yVjrdvHsG1UlwsYqQ1BakhuaVNwADgpmLJ9oZifWfAEQtue6UgnszImHR8gL7UQ1nyhhUwBH1UKFhvaXSGrWGZEJhnj0QIAvMCrLk6wDJgxo1LsCLt99Uenf2fFBay1tshmlY_SRhlA26Sm8h2y0XiZVpocapf0oilWc5AfTePxXCqR05JD965oH4VBIZOnIs9oDFBIn5ATRwsqAg1FPp7M4W2N1QEMsD0yXIqf9kk9H-fqgFANe1XlBZIHdsohqYdPta3MQEOW5abaPSQ3hSeSSSm0kcAGBb2W_PBaYvIEvZaEccjCh_soDjtoh7UIrEf_buGcrEXNVtLrDLrHZB3sbkk4OyH12fRNnUIGMpNnxXhT8rzsAPsCPvTnMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Soybean+Relative+Maturity+and+Seed+Yield+Using+Canopy+Reflectance&rft.jtitle=Crop+science&rft.au=Christenson%2C+Brent+S.&rft.au=Schapaugh%2C+William+T.&rft.au=An%2C+Nan&rft.au=Price%2C+Kevin+P.&rft.date=2016-03-01&rft.pub=The+Crop+Science+Society+of+America%2C+Inc&rft.issn=0011-183X&rft.eissn=1435-0653&rft.volume=56&rft.issue=2&rft.spage=625&rft.epage=643&rft_id=info:doi/10.2135%2Fcropsci2015.04.0237&rft.externalDBID=10.2135%252Fcropsci2015.04.0237&rft.externalDocID=CSC2CROPSCI2015040237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-183X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-183X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-183X&client=summon