Predicting Soybean Relative Maturity and Seed Yield Using Canopy Reflectance
Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements may increase the efficiency of cultivar development. The objectives of this study were to: (i) assess canopy reflectance as a tool for predi...
Saved in:
Published in | Crop science Vol. 56; no. 2; pp. 625 - 643 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
The Crop Science Society of America, Inc
01.03.2016
|
Online Access | Get full text |
Cover
Loading…
Abstract | Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements may increase the efficiency of cultivar development. The objectives of this study were to: (i) assess canopy reflectance as a tool for predicting soybean maturity and seed yield; (ii) identify specific development stages that contribute to maturity and yield estimation; and (iii) test the stability and utility of maturity and yield estimation models across environments. Canopy reflectance, maturity, and seed yield were measured on 20 maturity group (MG) 3 and 20 MG 4 soybean cultivars released from 1923 to 2010. Measurements were conducted on six irrigated and water‐stressed environments in 2011 and 2012. Cultivar, environment, and cultivar by environment sources of variation were all significant for maturity, yield, and reflectance. Maturity estimation models were created using the visible, red edge, and near‐infrared spectrum as well as normalized difference vegetation index (NDVI) and water index ratios. Yield estimation models using the red edge, near‐infrared, and visible NDVI indices explained much of the variation in yield among genotypes. No significant trends were found for canopy reflectance data collected at specific development stages or in different water regimes contributing to more accurate yield estimation; however, later development stages (R5‐R6) were more accurate for maturity estimation due to spectral data identifying senescing vegetation. Performance of canopy reflectance models for maturity and yield accounted for a significant portion of variability among genotypes for maturity in some environments and for seed yield in most environments. |
---|---|
AbstractList | Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements may increase the efficiency of cultivar development. The objectives of this study were to: (i) assess canopy reflectance as a tool for predicting soybean maturity and seed yield; (ii) identify specific development stages that contribute to maturity and yield estimation; and (iii) test the stability and utility of maturity and yield estimation models across environments. Canopy reflectance, maturity, and seed yield were measured on 20 maturity group (MG) 3 and 20 MG 4 soybean cultivars released from 1923 to 2010. Measurements were conducted on six irrigated and water‐stressed environments in 2011 and 2012. Cultivar, environment, and cultivar by environment sources of variation were all significant for maturity, yield, and reflectance. Maturity estimation models were created using the visible, red edge, and near‐infrared spectrum as well as normalized difference vegetation index (NDVI) and water index ratios. Yield estimation models using the red edge, near‐infrared, and visible NDVI indices explained much of the variation in yield among genotypes. No significant trends were found for canopy reflectance data collected at specific development stages or in different water regimes contributing to more accurate yield estimation; however, later development stages (R5‐R6) were more accurate for maturity estimation due to spectral data identifying senescing vegetation. Performance of canopy reflectance models for maturity and yield accounted for a significant portion of variability among genotypes for maturity in some environments and for seed yield in most environments. |
Author | Fritz, Allan K. Price, Kevin P. Prasad, Vara Schapaugh, William T. Christenson, Brent S. An, Nan |
Author_xml | – sequence: 1 givenname: Brent S. surname: Christenson fullname: Christenson, Brent S. organization: Kansas State Univ – sequence: 2 givenname: William T. surname: Schapaugh fullname: Schapaugh, William T. email: wts@ksu.edu organization: Kansas State Univ – sequence: 3 givenname: Nan surname: An fullname: An, Nan organization: Kansas State Univ – sequence: 4 givenname: Kevin P. surname: Price fullname: Price, Kevin P. organization: AgPixel, LLC – sequence: 5 givenname: Vara surname: Prasad fullname: Prasad, Vara organization: Kansas State Univ – sequence: 6 givenname: Allan K. surname: Fritz fullname: Fritz, Allan K. organization: Kansas State Univ |
BookMark | eNpNkNFKwzAUhoNMcJs-gTd5gc6TpLHZpQSng8rG6kCvQpqcSqSmo61K394WvRAOHPj4-C--BZnFJiIh1wxWnAl549rm1LnAgckVpCvgIjsjc5YKmcCtFDMyB2AsYUq8XJBF170DQLbO5Jzk-xZ9cH2Ib7RohhJtpAesbR--kD7Z_rMN_UBt9LRA9PQ1YO3psZt0bWNzGka7qtH1Njq8JOeVrTu8-vtLctzcP-vHJN89bPVdnjiRqSwpU1aBTZlipeUolEWuPBtvbSuRgSylZ56XUvEU3GgpqWxlS8f4Gt1IxJJsfne_Q42DObXhw7aDYWCmGuZfDQOpmWoYXWiuD7t9obcTh3Si4gcWKlwv |
CitedBy_id | crossref_primary_10_3390_agriculture10080348 crossref_primary_10_3390_rs14112629 crossref_primary_10_3390_rs16224184 crossref_primary_10_1016_j_compag_2022_107235 crossref_primary_10_3390_rs15174286 crossref_primary_10_1007_s11119_022_09876_5 crossref_primary_10_1016_j_indcrop_2024_119470 crossref_primary_10_3390_plants10010101 crossref_primary_10_1016_j_rsase_2020_100318 crossref_primary_10_3390_rs16234343 crossref_primary_10_3390_plants13182610 crossref_primary_10_1038_s41598_019_52802_5 crossref_primary_10_3390_plants10112512 crossref_primary_10_1038_s41598_019_53451_4 crossref_primary_10_3390_rs10030426 crossref_primary_10_1002_ppj2_20018 crossref_primary_10_1016_j_mlwa_2021_100233 crossref_primary_10_3390_rs12091480 crossref_primary_10_1002_csc2_21028 crossref_primary_10_1016_j_cropro_2019_104883 crossref_primary_10_3390_rs13050977 crossref_primary_10_1002_csc2_20079 crossref_primary_10_1002_tpg2_20244 crossref_primary_10_3390_agriengineering6040272 crossref_primary_10_1016_j_compag_2022_107169 crossref_primary_10_1590_1807_1929_agriambi_v26n6p466_476 crossref_primary_10_3390_app12041983 crossref_primary_10_1016_j_plantsci_2018_06_008 crossref_primary_10_3390_rs11182075 crossref_primary_10_1016_j_fcr_2020_107988 crossref_primary_10_1080_15427528_2020_1846101 crossref_primary_10_3390_s19235225 crossref_primary_10_3390_chemosensors9030055 crossref_primary_10_3390_s20226569 crossref_primary_10_1002_tpg2_70002 crossref_primary_10_1007_s10681_019_2399_0 crossref_primary_10_3390_rs12213617 crossref_primary_10_3390_rs13040598 crossref_primary_10_3390_rs13163260 crossref_primary_10_1016_j_fcr_2021_108260 crossref_primary_10_1080_10106049_2022_2102239 crossref_primary_10_34133_2019_5809404 crossref_primary_10_1016_j_rsase_2023_101026 crossref_primary_10_3389_fpls_2019_01537 |
ContentType | Journal Article |
Copyright | Copyright © by the Crop Science Society of America, Inc. |
Copyright_xml | – notice: Copyright © by the Crop Science Society of America, Inc. |
DBID | 24P |
DOI | 10.2135/cropsci2015.04.0237 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0653 |
EndPage | 643 |
ExternalDocumentID | CSC2CROPSCI2015040237 |
Genre | article |
GroupedDBID | -~X .86 .~0 0R~ 186 18M 1OB 1OC 24P 29F 2A4 2WC 33P 3V. 53G 5GY 6J9 6KN 7X2 7XC 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAHBH AAHHS AAHQN AAMNL AANLZ AAYCA ABCQX ABCUV ABEFU ABJCF ABJNI ABUWG ACAWQ ACCFJ ACCZN ACGOD ACIWK ACPOU ACXQS ADFRT ADKYN ADNWM ADYHW ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFFPM AFKRA AFRAH AFWVQ AHBTC AI. AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ATCPS AZQEC BENPR BES BFHJK BGLVJ BGNMA BHPHI BKOMP BPHCQ C1A CCPQU CS3 D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P GNUQQ GUQSH H13 HCIFZ HF~ HGLYW IAG IAO ICU IEA IEP IGG IOF ITC L6V L7B LAS LATKE LEEKS M0K M2O M2P M2Q M4Y M7S MEWTI MV1 NHAZY NHB NU0 O9- PATMY PQQKQ PRG PROAC PTHSS PYCSY Q2X R05 RAK ROL RPX RXW S0X SAMSI SUPJJ TAE TR2 TWZ U2A U5U VH1 VQA WOQ WXSBR XOL Y6R ~02 ~KM |
ID | FETCH-LOGICAL-c3787-b41f0a4181ba2e38ae28d18d19af3705b5d1d2b58240c181858afabc129ec0c13 |
IEDL.DBID | 24P |
ISSN | 0011-183X |
IngestDate | Wed Jan 22 16:36:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3787-b41f0a4181ba2e38ae28d18d19af3705b5d1d2b58240c181858afabc129ec0c13 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2015.04.0237 |
PageCount | 19 |
ParticipantIDs | wiley_primary_10_2135_cropsci2015_04_0237_CSC2CROPSCI2015040237 |
PublicationCentury | 2000 |
PublicationDate | March–April 2016 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March–April 2016 |
PublicationDecade | 2010 |
PublicationTitle | Crop science |
PublicationYear | 2016 |
Publisher | The Crop Science Society of America, Inc |
Publisher_xml | – name: The Crop Science Society of America, Inc |
References | 1995; 31 2011; 115 2001; 93 2004; 25 1999; 47 2009; 155 1973 2003; 95 2012; 128 1983; 13 1978 1977 1985; 18 2012; 133 2001 1986; 7 2002; 42 2003; 160 2005; 32 2010; 2 2007; 1 1999; 91 2003; 84 2003; 41 2014; 54 1979; 8 2007; 26 1992; 41 1995; 52 2006b; 46 1997; 61 1991; 35 2011 2007a; 47 1969; 50 1992; 39 2002; 139 2011; 75 2005; 85 2008 1999; 20 1996; 58 2007b; 47 1994; 86 2004; 55 1993; 14 2014; 106 2012; 110 1993; 18 2004; 92 2007; 150 2006; 46 1997; 37 1999; 39 2002; 23 2000; 74 1980; 10 2003; 24 2000; 40 1994; 18 2001; 39 2012; 115 1993; 110 1994; 52 2006a; 46 2010; 50 1966 |
References_xml | – volume: 92 start-page: 475 issue: 4 year: 2004 end-page: 482 article-title: Vegetation water content mapping using Landsat data derived normalized difference water index in corn and soybean publication-title: Remote Sens. of Env. – volume: 50 start-page: 663 year: 1969 end-page: 666 article-title: Derivation of leaf area index from quality of light on the forest floor publication-title: Ecology – volume: 91 start-page: 685 year: 1999 end-page: 689 article-title: Physiological changes from 58 years of genetic improvement of short‐season soybean cultivars in Canada publication-title: Agron. J. – volume: 52 start-page: 229 year: 1994 end-page: 276 article-title: Morphological and physiological traits associated with wheat yield increases in Mediterranean environments publication-title: Adv. Agron. – volume: 1 start-page: 013530 year: 2007 article-title: Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis publication-title: J. Appl. Remote Sens. – year: 2001 – volume: 14 start-page: 1887 year: 1993 end-page: 1905 article-title: The reflectance at the 950–970 mm region as an indicator of plant water status publication-title: Int. J. Remote Sens. – volume: 84 start-page: 526 year: 2003 end-page: 537 article-title: Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features publication-title: Remote Sens. Environ. – volume: 18 start-page: 39 year: 1994 end-page: 72 article-title: PARAFAC: Parallel factor analysis publication-title: Comput. Stat. Data Anal. – volume: 85 start-page: 1 year: 2005 end-page: 18 article-title: Artificial neural networks for corn and soybean yield prediction publication-title: Agric. Syst. – volume: 40 start-page: 723 year: 2000 end-page: 731 article-title: Remote sensing of biomass and yield of winter wheat under different nitrogen supplies publication-title: Crop Sci. – volume: 41 start-page: 35 year: 1992 end-page: 44 article-title: A narrow‐waveband spectral index that tracks diurnal changes in photosynthetic efficiency publication-title: Remote Sens. Environ. – volume: 2 start-page: 562 year: 2010 end-page: 578 article-title: Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices publication-title: Remote Sens. – volume: 41 start-page: 1246 year: 2003 end-page: 1259 article-title: Pre‐processing EO‐1 Hyperion hyperspectral data to support the application of agricultural indexes publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 23 start-page: 1207 year: 2002 end-page: 1212 article-title: The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents publication-title: Int. J. Remote Sens. – volume: 47 start-page: 909 year: 1999 end-page: 923 article-title: Remote sensing of water content in Eucalyptus leaves publication-title: Aust. J. Bot. – volume: 26 start-page: 335 year: 2007 end-page: 344 article-title: Canopy reflectance in cotton for growth assessment and lint yield prediction publication-title: Eur. J. Agron. – volume: 95 start-page: 1447 year: 2003 end-page: 1453 article-title: Corn ( L.) yield prediction using multispectral and multidate reflectance publication-title: Agron. J. – volume: 61 start-page: 221 year: 1997 end-page: 228 article-title: A simplified approach for yield prediction of sugar beet based on optical remote sensing data publication-title: Remote Sens. Environ. – volume: 58 start-page: 257 year: 1996 end-page: 266 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. – volume: 18 start-page: 251 issue: 3 year: 1993 end-page: 263 article-title: SIMPLS: An alternative approach to partial least squares regression publication-title: Chemom. Intell. Lab. Syst. – volume: 25 start-page: 2409 issue: 12 year: 2004 end-page: 2419 article-title: Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance publication-title: Int. J. Remote Sens. – volume: 110 start-page: 1271 year: 2012 end-page: 1279 article-title: Advanced phenotyping offers opportunities for improved breeding of forage and turf species publication-title: Ann. Bot. – volume: 47 start-page: 1426 year: 2007b end-page: 1440 article-title: Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under Great Plains conditions publication-title: Crop Sci. – volume: 46 start-page: 927 year: 2006 end-page: 934 article-title: Development of canopy reflectance algorithms for real‐time prediction of Bermudagrass pasture biomass and nutritive values publication-title: Crop Sci. – volume: 18 start-page: 255 year: 1985 end-page: 267 article-title: Winter wheat vegetation indices calculated from combinations of seven spectral bands publication-title: Remote Sens. Environ. – year: 2008 – volume: 8 start-page: 127 year: 1979 end-page: 150 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – volume: 39 start-page: 1611 year: 1999 end-page: 1621 article-title: Physiological and genetic changes of irrigated wheat in the post‐green revolution period and approaches for meeting projected global demand publication-title: Crop Sci. – start-page: 329 year: 2011 end-page: 358 – volume: 13 start-page: 301 year: 1983 end-page: 311 article-title: Remote sensing estimators of potential and actual crop yield publication-title: Remote Sens. Environ. – start-page: 391 year: 1966 end-page: 420 – volume: 39 start-page: 239 year: 1992 end-page: 247 article-title: Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves publication-title: Remote Sens. Environ. – volume: 54 start-page: 1585 year: 2014 end-page: 1597 article-title: Characterizing Changes in Soybean Spectral Response Curves with Breeding Advancements publication-title: Crop Sci. – volume: 20 start-page: 3663 year: 1999 end-page: 3675 article-title: Yellowness index: An application of spectral 2nd derivatives to estimate chlorosis of leaves in stressed vegetation publication-title: Int. J. Remote Sens. – volume: 93 start-page: 1227 year: 2001 end-page: 1234 article-title: Early prediction of soybean yield from canopy reflectance measurements publication-title: Agron. J. – volume: 133 start-page: 101 year: 2012 end-page: 112 article-title: Field‐based phenomics for plant genetics research publication-title: Field Crops Res. – volume: 50 start-page: 197 year: 2010 end-page: 214 article-title: Spectral water indices for assessing yield in elite bread wheat genotypes under well‐irrigated, water‐stressed, and high‐temperature conditions publication-title: Crop Sci. – volume: 74 start-page: 229 year: 2000 end-page: 239 article-title: Estimating corn leaf chlorophyll content from leaf and canopy reflectance publication-title: Remote Sens. Environ. – volume: 86 start-page: 934 year: 1994 end-page: 938 article-title: Light reflectance compared with other nitrogen stress measurements in corn leaves publication-title: Agron. J. – volume: 110 start-page: 277 issue: 4 year: 1993 end-page: 282 article-title: Relationship between grain‐yield and remotely‐sensed data in wheat breeding experiments publication-title: Plant Breed. – year: 1973 – volume: 42 start-page: 1547 issue: 5 year: 2002 end-page: 1555 article-title: Relationship between growth traits and spectral vegetation indices in durum wheat publication-title: Crop Sci. – volume: 139 start-page: 307 year: 2002 end-page: 318 article-title: Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression publication-title: J. Agric. Sci. – volume: 47 start-page: 1416 year: 2007a end-page: 1425 article-title: Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices publication-title: Crop Sci. – volume: 54 start-page: 1 year: 2014 end-page: 14 article-title: Genetic improvement of U.S. soybean in maturity groups II, III, and IV publication-title: Crop Sci. – volume: 55 start-page: 1139 year: 2004 end-page: 1147 article-title: Association between canopy reflectance indices and yield and physiological traits in bread wheat under drought and well‐irrigated conditions publication-title: Aust. J. Agric. Res. – volume: 39 start-page: 1491 year: 2001 end-page: 1507 article-title: Scaling‐up and model inversion methods with narrow‐band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data publication-title: IEEE Trans. Geosci. Rem. Sens. – year: 1977 – volume: 155 start-page: 309 issue: 3 year: 2009 end-page: 320 article-title: Phenotyping approaches for physiological breeding and gene discovery in wheat publication-title: Ann. Appl. Biol. – volume: 24 start-page: 4403 year: 2003 end-page: 4419 article-title: Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions publication-title: Int. J. Remote Sens. – volume: 160 start-page: 271 year: 2003 end-page: 282 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non‐destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. – volume: 32 start-page: 108403 year: 2005 article-title: Remote estimation of canopy chlorophyll content in crops publication-title: Geophys. Res. Lett. – volume: 7 start-page: 1395 year: 1986 end-page: 1416 article-title: Satellite remote sensing of primary production publication-title: Int. J. Remote Sens. – volume: 10 start-page: 23 year: 1980 end-page: 32 article-title: Remote sensing of leaf water content in the near infrared publication-title: Remote Sens. Environ. – volume: 115 start-page: 281 year: 2011 end-page: 297 article-title: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies publication-title: Remote Sens. Environ. – volume: 46 start-page: 1046 issue: 3 year: 2006b end-page: 1057 article-title: Spectral reflectance to estimate genetic variation for in‐season biomass, leaf chlorophyll, and canopy temperature in wheat publication-title: Crop Sci. – volume: 37 start-page: 1400 year: 1997 end-page: 1405 article-title: Visible and near infrared reflectance assessment of salinity effects on barley publication-title: Crop Sci. – volume: 150 start-page: 253 year: 2007 end-page: 257 article-title: Can wheat yield be assessed by early measurements of normalized difference vegetation index? publication-title: Ann. Appl. Biol. – volume: 46 start-page: 578 issue: 2 year: 2006a end-page: 588 article-title: Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation publication-title: Crop Sci. – volume: 115 start-page: 25 year: 2012 end-page: 36 article-title: Classifying cultivars of rice ( L.) based on corrected canopy reflectance spectra data using the orthogonal projections of latent structures (O‐PLS) method publication-title: Chemom. Intell. Lab. Syst. – volume: 35 start-page: 161 year: 1991 end-page: 174 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sens. Environ. – volume: 106 start-page: 1159 year: 2014 end-page: 1168 article-title: The use of reflectance data for in‐season soybean yield prediction publication-title: Agron. J. – volume: 75 start-page: 190 year: 2011 end-page: 195 article-title: Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean publication-title: Computers and Electronics in Agriculture – year: 1978 – volume: 31 start-page: 221 year: 1995 end-page: 230 article-title: Semi‐empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance publication-title: Photosynthetica – volume: 35 start-page: 105 year: 1991 end-page: 119 article-title: Vegetation indexes in crop assessment publication-title: Remote Sens. Environ. – volume: 93 start-page: 583 year: 2001 end-page: 589 article-title: Use of remote sensing imagery to estimate corn grain yield publication-title: Agron. J. – volume: 52 start-page: 55 year: 1995 end-page: 65 article-title: Leaf area index estimation from visible and near‐infrared reflectance data publication-title: Remote Sens. Environ. – volume: 128 start-page: 82 year: 2012 end-page: 90 article-title: Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes publication-title: Field Crops Res. |
SSID | ssj0007975 |
Score | 2.3750641 |
Snippet | Optimized phenotyping, the observable characteristics attributed to the interaction between genotype and the environment, using canopy reflectance measurements... |
SourceID | wiley |
SourceType | Publisher |
StartPage | 625 |
Title | Predicting Soybean Relative Maturity and Seed Yield Using Canopy Reflectance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2135%2Fcropsci2015.04.0237 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qvehBfOKbPXhdzD7yOkkJLVWsFmOhnsJusustKaUK_ffObGJR8CbkkiWZw0xmvtnNzDeE3DirXKSDiiU6SZkyUcBM6ASruKtSLUwZW2wUnjxF45l6mIfzHhl-98K0_BCbAzf0DB-v0cG18VNIBJfIh4ATrgAlAMBCT1YqZLxFtrHJFiv7hJpuAnKcxt0gA87gC5635EMo5vYPIb-zVA8zo32y1-WHdNAa9ID0bH1Idgfvy44jwx6Rx-kS_65gvTLNm7WxuqZtTdunpRMk6oTMmuq6ojlAE33DGjXqSwNoputmsYanHZ7Wo8GPyWw0fM3GrBuKwEoJzsWM4i7QCoDZaGFloq1IKg5Xqp2Mg9CEFa-ECROA6pIjHCfaaVMCrtsSVuQJ6ddNbU8JdbB3tHFqVCpLBUk2vOqkDVIHWU9UuuiM3HlNFIuW-KKADQNqrfihtSJQBWqtyPJMZC_P0zy7x3WIDbB6_m8JF2QHbqK26uuS9FfLD3sFacDKXHsjfwFxS6sT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVKOQAHxCp2fIBjRGI72wGhKlC1dKGirVROwU5sbmlVCqg_xvcxk4QKJG6oUk5OYlnjsd_Yfn5DyIXRwnjSTq1ABqEllGdbyjXMSh2ThpKpxNd4UbjT9RpDcT9yRxXy-X0XptCHWGy44cjI52sc4LghnXOXHY6CCJjiCmACEMzN1UoZ90tyZUvPP2Dp9nrdvIV-vmSsfjeIGlaZXcBKOHippYRjbCkA4ZRkmgdSsyB14Aml4b7tKjd1UqbcADAvcRDXAmmkSgAgdQIlHOpdIavCYz5mTmCit0AAP_TLzAmOBUNmVKgdYbOv_mj077A4x7X6FtksA1JaKzxom1R0tkM2ai_TUpRD75J2b4rHOUiQpv3xXGmZ0YJE965pB5VBIZSnMktpH7CQPiEpjuZcBBrJbDyZw9cGjwfQw_bIcCl22ifVbJzpA0INLFa1HyoR8kRAVA-_Gq7t0ECY5SXGOyQ3uSXiSaG0EcMKBa0W_7BabIsYrRZH_YhFjw-9ftTEcpiMoPTo3zWck7XGoNOO281u65iswwuvoJydkOps-qZPIQaZqbO8wyl5XraHfQGnYuf_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA5zguiDeMW7edDHYpumtweR0Tk2d7FYB_OpJm3iWzfmVPbD_H-e09ah4JsM-nRoQzg5yXfS8-ULIRdace0KMzN84QcGl65pSEczI7N0FggmU0_hQeH-wG0P-d3IGdXI5_dZmFIfYvHDDWdGsV7jBJ9kuqAuWzbqIeANV4ASAGBOIVbKbK_iVnbV_AN2bq_XnSYM8yVjrdvHsG1UlwsYqQ1BakhuaVNwADgpmLJ9oZifWfAEQtue6UgnszImHR8gL7UQ1nyhhUwBH1UKFhvaXSGrWGZEJhnj0QIAvMCrLk6wDJgxo1LsCLt99Uenf2fFBay1tshmlY_SRhlA26Sm8h2y0XiZVpocapf0oilWc5AfTePxXCqR05JD965oH4VBIZOnIs9oDFBIn5ATRwsqAg1FPp7M4W2N1QEMsD0yXIqf9kk9H-fqgFANe1XlBZIHdsohqYdPta3MQEOW5abaPSQ3hSeSSSm0kcAGBb2W_PBaYvIEvZaEccjCh_soDjtoh7UIrEf_buGcrEXNVtLrDLrHZB3sbkk4OyH12fRNnUIGMpNnxXhT8rzsAPsCPvTnMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Soybean+Relative+Maturity+and+Seed+Yield+Using+Canopy+Reflectance&rft.jtitle=Crop+science&rft.au=Christenson%2C+Brent+S.&rft.au=Schapaugh%2C+William+T.&rft.au=An%2C+Nan&rft.au=Price%2C+Kevin+P.&rft.date=2016-03-01&rft.pub=The+Crop+Science+Society+of+America%2C+Inc&rft.issn=0011-183X&rft.eissn=1435-0653&rft.volume=56&rft.issue=2&rft.spage=625&rft.epage=643&rft_id=info:doi/10.2135%2Fcropsci2015.04.0237&rft.externalDBID=10.2135%252Fcropsci2015.04.0237&rft.externalDocID=CSC2CROPSCI2015040237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-183X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-183X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-183X&client=summon |