A comprehensive review on emerging trends in industrial wastewater research
Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial...
Saved in:
Published in | Journal of basic microbiology Vol. 62; no. 3-4; pp. 296 - 309 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0233-111X 1521-4028 1521-4028 |
DOI | 10.1002/jobm.202100554 |
Cover
Abstract | Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial assistance, and technical expertise, sustainable treatment of industrial effluents has become an onerous process in most parts of the world. The majority of current treatment solutions are conventional and outdated, and thus fall short to remove all the contaminants efficiently from the industrial wastewater. Moreover, poorly treated or untreated industrial effluents are indiscriminately dumped into water bodies such as lakes, ponds, and rivers, causing substantial health hazards to humans and animals and serious threats to the aquatic ecosystem. Thus, there is a need for highly efficient, cost‐effective, and sustainable technologies for the treatment of industrial wastewater. Employment of microbial technologies such as microbial fuel cells and microalgal technologies, treatment of wastewater can be coupled with the production of bioelectricity and valuable biomass, respectively. Moreover, with nanofiltration and biochar technologies, the efficiency of the overall treatment procedure can be increased to a greater extent. The present review aims to highlight opportunities and challenges associated with some of the emerging trends in industrial wastewater research. |
---|---|
AbstractList | Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial assistance, and technical expertise, sustainable treatment of industrial effluents has become an onerous process in most parts of the world. The majority of current treatment solutions are conventional and outdated, and thus fall short to remove all the contaminants efficiently from the industrial wastewater. Moreover, poorly treated or untreated industrial effluents are indiscriminately dumped into water bodies such as lakes, ponds, and rivers, causing substantial health hazards to humans and animals and serious threats to the aquatic ecosystem. Thus, there is a need for highly efficient, cost-effective, and sustainable technologies for the treatment of industrial wastewater. Employment of microbial technologies such as microbial fuel cells and microalgal technologies, treatment of wastewater can be coupled with the production of bioelectricity and valuable biomass, respectively. Moreover, with nanofiltration and biochar technologies, the efficiency of the overall treatment procedure can be increased to a greater extent. The present review aims to highlight opportunities and challenges associated with some of the emerging trends in industrial wastewater research.Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial assistance, and technical expertise, sustainable treatment of industrial effluents has become an onerous process in most parts of the world. The majority of current treatment solutions are conventional and outdated, and thus fall short to remove all the contaminants efficiently from the industrial wastewater. Moreover, poorly treated or untreated industrial effluents are indiscriminately dumped into water bodies such as lakes, ponds, and rivers, causing substantial health hazards to humans and animals and serious threats to the aquatic ecosystem. Thus, there is a need for highly efficient, cost-effective, and sustainable technologies for the treatment of industrial wastewater. Employment of microbial technologies such as microbial fuel cells and microalgal technologies, treatment of wastewater can be coupled with the production of bioelectricity and valuable biomass, respectively. Moreover, with nanofiltration and biochar technologies, the efficiency of the overall treatment procedure can be increased to a greater extent. The present review aims to highlight opportunities and challenges associated with some of the emerging trends in industrial wastewater research. Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial assistance, and technical expertise, sustainable treatment of industrial effluents has become an onerous process in most parts of the world. The majority of current treatment solutions are conventional and outdated, and thus fall short to remove all the contaminants efficiently from the industrial wastewater. Moreover, poorly treated or untreated industrial effluents are indiscriminately dumped into water bodies such as lakes, ponds, and rivers, causing substantial health hazards to humans and animals and serious threats to the aquatic ecosystem. Thus, there is a need for highly efficient, cost‐effective, and sustainable technologies for the treatment of industrial wastewater. Employment of microbial technologies such as microbial fuel cells and microalgal technologies, treatment of wastewater can be coupled with the production of bioelectricity and valuable biomass, respectively. Moreover, with nanofiltration and biochar technologies, the efficiency of the overall treatment procedure can be increased to a greater extent. The present review aims to highlight opportunities and challenges associated with some of the emerging trends in industrial wastewater research. |
Author | Malik, Sumira Kishore, Shristi Shah, Maulin P. Prasad, Shilpa |
Author_xml | – sequence: 1 givenname: Sumira surname: Malik fullname: Malik, Sumira email: smalik@rnc.amity.edu organization: Amity University Jharkhand – sequence: 2 givenname: Shristi orcidid: 0000-0002-8851-5951 surname: Kishore fullname: Kishore, Shristi organization: Amity University Jharkhand – sequence: 3 givenname: Shilpa surname: Prasad fullname: Prasad, Shilpa organization: Amity University Jharkhand – sequence: 4 givenname: Maulin P. surname: Shah fullname: Shah, Maulin P. organization: Environmental Technology Lab |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35132661$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1Lw0AQhhep2A-9epQcvaTubpLN7rGK35VeFLwtm2TSbkk2dTdp6L83pa2CIAoDw8DzDMO8Q9QzlQGEzgkeE4zp1bJKyjHFtBuiKDxCAxJR4oeY8h4aYBoEPiHkvY-Gzi0xxkJQcYL6QUQCyhgZoOeJl1blysICjNNr8CysNbReZTwowc61mXu1BZM5T5uussbVVqvCa5WroVU12E5xoGy6OEXHuSocnO37CL3d3b7ePPjT2f3jzWTqp0HMQ1_klCc5KEViRiHjNOa8O5hBkggAnmVxlGO2bSwOGVV5mmOcRoQTxTGEeTBCl7u9K1t9NOBqWWqXQlEoA1XjJGUh57EISPgPlDIuKBVBh17s0SYpIZMrq0tlN_Lwqw4Id0BqK-cs5DLVtap1ZWqrdCEJlttI5DYS-RVJp41_aIfNvwpiJ7S6gM0ftHyaXb98u58ZIp6h |
CitedBy_id | crossref_primary_10_1515_zkri_2022_0054 crossref_primary_10_3390_challe16010001 crossref_primary_10_1002_jctb_7775 crossref_primary_10_1080_02648725_2022_2106014 crossref_primary_10_1002_slct_202203272 crossref_primary_10_1016_j_jece_2024_112188 crossref_primary_10_1039_D3CP03305H crossref_primary_10_1007_s12613_023_2748_9 crossref_primary_10_1016_j_jpowsour_2024_236001 crossref_primary_10_1016_j_jwpe_2025_107444 crossref_primary_10_1002_clen_202200044 crossref_primary_10_1016_j_cej_2024_158276 crossref_primary_10_1080_21622515_2023_2198147 crossref_primary_10_1002_jemt_24657 crossref_primary_10_1016_j_cej_2024_157832 crossref_primary_10_1039_D4NJ04978K crossref_primary_10_1016_j_psep_2024_04_066 crossref_primary_10_2166_wst_2024_244 crossref_primary_10_1007_s40808_025_02289_z crossref_primary_10_3390_w15020316 |
Cites_doi | 10.1016/j.rser.2014.07.116 10.1016/j.cej.2017.11.048 10.1016/j.watres.2020.116692 10.1016/j.scitotenv.2018.07.282 10.1080/10590500802708267 10.1007/s10811-018-1571-6 10.1016/j.jhazmat.2020.123311 10.1016/j.desal.2014.10.043 10.1007/978-3-030-83811-9_1 10.1080/15226514.2014.989313 10.2166/wst.2019.217 10.1016/j.biortech.2017.09.120 10.1016/j.memsci.2019.05.038 10.1016/B978-0-8155-1578-4.50014-7 10.1038/s41545-021-00127-0 10.1081/SS-120039343 10.1016/j.jwpe.2020.101193 10.1016/j.scitotenv.2019.135303 10.3329/bjsir.v49i4.22626 10.1016/j.cej.2020.125087 10.1016/j.biortech.2017.06.084 10.1016/j.watres.2011.10.011 10.1016/j.scitotenv.2018.04.002 10.5194/essd-13-237-2021 10.1016/j.algal.2013.11.007 10.1016/j.memsci.2016.08.062 10.1016/j.asej.2018.08.001 10.1155/2021/5314404 10.5772/intechopen.77110 10.1016/j.tibtech.2015.01.007 10.1016/j.desal.2012.05.019 10.1016/j.biortech.2020.122992 10.1007/s11270-006-9268-x 10.1016/j.seppur.2008.05.010 10.1016/j.jclepro.2019.04.282 10.1080/09593330.2015.1121292 10.1016/j.sjbs.2012.04.005 10.1016/j.biortech.2016.03.154 10.1088/1755-1315/142/1/012017 10.1016/j.biortech.2016.09.070 10.1016/j.chemosphere.2020.126539 10.1007/s00449-020-02348-y 10.4028/www.scientific.net/MSF.1008.202 10.3390/w13010027 10.1155/2013/634738 10.1016/j.rineng.2019.100053 10.1016/j.chemosphere.2013.10.071 10.3389/fbioe.2019.00042 10.1016/j.biortech.2016.09.034 10.1016/j.jbiosc.2016.03.025 10.1016/j.clet.2020.100006 10.1016/j.biortech.2014.10.064 10.1016/j.proeng.2012.09.025 10.1016/j.psep.2016.03.016 10.1007/s11356-016-8083-1 10.1186/2052-336X-12-55 10.1016/j.reffit.2016.09.004 10.1155/2019/5656983 10.5194/dwes-6-47-2013 10.1002/elsc.200900003 10.1007/s42398-019-00056-2 10.1007/s11356-019-05699-6 10.1080/19443994.2013.838526 10.5004/dwt.2017.20453 10.1007/s11356-019-04725-x 10.1016/j.biortech.2013.06.116 10.3390/w10010037 10.1016/j.scitotenv.2020.142168 10.2478/cons-2017-0003 10.1016/j.biortech.2020.123902 10.1111/1541-4337.12782 10.1016/j.biotechadv.2013.06.005 10.3390/molecules25163639 10.1016/j.jscs.2014.08.002 10.1016/j.scitotenv.2020.142429 10.1016/j.rser.2012.11.030 10.1016/j.biortech.2015.09.088 10.1016/j.biortech.2019.122030 10.1016/j.seppur.2014.01.056 10.1016/j.chemosphere.2015.03.072 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1002/jobm.202100554 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1521-4028 |
EndPage | 309 |
ExternalDocumentID | 35132661 10_1002_jobm_202100554 JOBM202100554 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 UB1 V2E VH1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WWD WXSBR WYISQ XG1 XPP XV2 ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 |
ID | FETCH-LOGICAL-c3784-9f28bfeaa1762ed827884026ebb9ee8dd75f06dd7567462afcf00c5181a80e4f3 |
IEDL.DBID | DR2 |
ISSN | 0233-111X 1521-4028 |
IngestDate | Fri Jul 11 18:32:13 EDT 2025 Fri Jul 11 00:53:54 EDT 2025 Wed Feb 19 02:26:18 EST 2025 Tue Jul 01 00:43:52 EDT 2025 Thu Apr 24 23:07:17 EDT 2025 Wed Jan 22 16:26:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | microalgal wastewater treatment biochar technology microbial fuel cells wastewater treatment nanofiltration |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3784-9f28bfeaa1762ed827884026ebb9ee8dd75f06dd7567462afcf00c5181a80e4f3 |
Notes | Sumira Malik and Shristi Kishore contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8851-5951 |
PMID | 35132661 |
PQID | 2626892293 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2648879314 proquest_miscellaneous_2626892293 pubmed_primary_35132661 crossref_citationtrail_10_1002_jobm_202100554 crossref_primary_10_1002_jobm_202100554 wiley_primary_10_1002_jobm_202100554_JOBM202100554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March-April 2022 2022-03-00 2022-Mar 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March-April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Journal of basic microbiology |
PublicationTitleAlternate | J Basic Microbiol |
PublicationYear | 2022 |
References | 2015; 184 2019; 2019 2021; 20 2013; 2 2021; 401 2015; 33 2018; 247 2016; 102 2016; 221 2012; 19 2019; 646 2013; 7 2013; 6 2016; 37 2013; 19 2018; 9 2017; 75 2014; 5 2015; 49 2014; 4 2014; 2 2020; 1 2013; 2013 2018; 336 2021; 752 2020; 252 2021; 754 2015; 134 2013; 53 2019; 26 2007; 180 2008; 63 2020; 43 2005; 39 2017; 246 2017; 521 2018; 31 2014; 12 2014; 126 2014; 99 2021; 2021 2021; 190 2018; 142 2019; 7 2017; 20 2015; 17 2019; 4 2021; 4 2019; 2 2019; 79 2017; 24 2009 2013; 144 2016; 200 2019; 586 2016; 122 2020; 304 2020; 35 2019; 227 2015; 9 2012; 302 2009; 27 2020; 704 2021; 13 2016; 2 2018; 634 2022 2015; 356 2020; 395 2013; 31 2016; 211 2016; 20 2020; 27 2018 2009; 9 2020; 316 2020; 1008 2020; 25 2015 2014; 39 2012; 46 2012; 4 2019; 292 2018; 10 2012; 44 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 Ghaly A (e_1_2_11_15_1) 2014; 5 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 Gude VG (e_1_2_11_55_1) 2015 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 Enitan A (e_1_2_11_19_1) 2015; 9 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 Tikariha A (e_1_2_11_17_1) 2014; 2 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 Mohod CV (e_1_2_11_13_1) 2013; 2 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 Fernandez‐Luqueno F (e_1_2_11_14_1) 2013; 7 e_1_2_11_18_1 e_1_2_11_16_1 Cristóvão R (e_1_2_11_26_1) 2012; 4 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 2 start-page: 175 year: 2016 end-page: 84 article-title: Comparison on efficiency of various techniques in treatment of waste and sewage water–a comprehensive review publication-title: Resource‐Efficient Technol – volume: 754 year: 2021 article-title: An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production publication-title: Sci Total Environ – volume: 4 year: 2019 article-title: Sustainable and clean treatment of industrial wastewater with microbial fuel cell publication-title: Results Eng – volume: 27 start-page: 1 year: 2009 end-page: 35 article-title: Toxicity and environmental risks of nanomaterials: challenges and future needs publication-title: J Environ Sci Health C Environ Carcinog Ecotoxicol Rev – volume: 27 start-page: 27172 year: 2020 end-page: 80 article-title: Treatment of wastewater from petroleum industry: current practices and perspectives publication-title: Environ Sci Pollut Res Int – volume: 49 start-page: 233 year: 2015 end-page: 42 article-title: Characterization of tannery wastewater and its treatment by aquatic macrophytes and algae publication-title: Bangladesh J Sci Ind Res – volume: 356 start-page: 226 year: 2015 end-page: 54 article-title: Nanofiltration membranes review: recent advances and future prospects publication-title: Desalination – volume: 646 start-page: 220 year: 2019 end-page: 8 article-title: Application potential of biochar in environment: Insight from degradation of biochar‐derived DOM and complexation of DOM with heavy metals publication-title: Sci Total Environ – volume: 25 year: 2020 article-title: Removal of pharmaceuticals from water by free and imobilised microalgae publication-title: Molecules – volume: 2021 start-page: 1 year: 2021 end-page: 14 article-title: Textile industry effluent treatment techniques publication-title: J Chem – volume: 704 year: 2020 article-title: Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review publication-title: Sci Total Environ – volume: 2 start-page: 2992 year: 2013 end-page: 6 article-title: Review of heavy metals in drinking water and their effect on human health publication-title: Int J Innov Res Sci Eng Technol – volume: 521 start-page: 18 year: 2017 end-page: 32 article-title: Fundamentals of low‐pressure nanofiltration: membrane characterization, modeling, and understanding the multi‐ionic interactions in water softening publication-title: J Membr Sci – volume: 4 start-page: 76 year: 2014 end-page: 88 article-title: A critical analysis of paddlewheel‐driven raceway ponds for algal biofuel production at commercial scales publication-title: Algal Res – volume: 75 start-page: 342 year: 2017 end-page: 7 article-title: Application of nanofiltration for removal of zinc from industrial wastewater publication-title: Desalin Water Treat – volume: 227 start-page: 1002 year: 2019 end-page: 22 article-title: Preparation, modification and environmental application of biochar: a review publication-title: J Clean Prod – volume: 39 start-page: 617 year: 2014 end-page: 27 article-title: Techno‐productive potential of photosynthetic microbial fuel cells through different configurations publication-title: Renew Sust Energ Rev – volume: 10 start-page: 37 year: 2018 article-title: The effect of primary, secondary, and tertiary wastewater treatment processes on antibiotic resistance gene (arg) concentrations in solid and dissolved wastewater fractions publication-title: Water (Basel) – volume: 2 start-page: 199 year: 2019 end-page: 209 article-title: Recent advances in brewery wastewater treatment; Approaches for water reuse and energy recovery: a review publication-title: Environ Sustain – volume: 102 start-page: 263 year: 2016 end-page: 76 article-title: Fish canning industry wastewater variability assessment using multivariate statistical methods publication-title: Process Saf Environ Prot – volume: 586 start-page: 44 year: 2019 end-page: 52 article-title: Amphibian‐inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment publication-title: J Membr Sci – volume: 9 start-page: 3077 year: 2018 end-page: 92 article-title: Nanofiltration systems and applications in wastewater treatment: review article publication-title: Ain Shams Eng J. – volume: 2013 start-page: 1 year: 2013 end-page: 8 article-title: Microbial fuel cells for direct electrical energy recovery from urban wastewaters publication-title: Sci World J – volume: 26 start-page: 26102 year: 2019 end-page: 11 article-title: A review for tannery wastewater treatment: some thoughts under stricter discharge requirements publication-title: Environ Sci Pollut Res – start-page: 247 year: 2015 end-page: 85 – volume: 246 start-page: 176 year: 2017 end-page: 92 article-title: Challenges and recent advances in biochar as low‐cost biosorbent: from batch assays to continuous‐flow systems publication-title: Bioresour Technol – volume: 395 year: 2020 article-title: Nanofiltration in pilot scale for wastewater reclamation: long‐term performance and membrane biofouling characteristics publication-title: Chem Eng J – volume: 33 start-page: 214 year: 2015 end-page: 20 article-title: Source‐separated urine opens golden opportunities for microbial electrochemical technologies publication-title: Trends Biotechnol – volume: 63 start-page: 251 year: 2008 end-page: 63 article-title: Drawbacks of applying nanofiltration and how to avoid them: a review publication-title: Sep Purif Technol – volume: 4 start-page: 36 year: 2021 article-title: Removal of heavy metal ions from wastewater: a comprehensive and critical review publication-title: NPJ Clean Water. – volume: 292 year: 2019 article-title: Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants publication-title: Bioresour Technol – volume: 19 start-page: 257 year: 2012 end-page: 75 article-title: Microalgae and wastewater treatment publication-title: Saudi J Biol Sci – volume: 316 year: 2020 article-title: Resourceful treatment of cane sugar industry wastewater by towards the production of valuable biomass publication-title: Bioresour Technol – volume: 17 start-page: 907 year: 2015 end-page: 16 article-title: Phycoremediation of tannery wastewater using microalgae species publication-title: Int J Phytoremediation – volume: 221 start-page: 70 year: 2016 end-page: 7 article-title: Electro‐biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation publication-title: Bioresour Technol – volume: 2019 start-page: 1 year: 2019 end-page: 11 article-title: Removal of Zn (II) and Cu (II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth publication-title: J Eng – start-page: 59 year: 2009 end-page: 75 – volume: 1 year: 2020 article-title: Lead and cadmium removal from wastewater using eco‐friendly biochar adsorbent derived from rice husk, wheat straw, and corncob publication-title: Clean Eng Technol – volume: 401 year: 2021 article-title: Highly efficient removal of thallium in wastewater by MnFe O ‐biochar composite publication-title: J Hazard Mater – volume: 12 start-page: 55 year: 2014 article-title: Development of pilot scale nanofiltration system for yeast industry wastewater treatment publication-title: J Environ Health Sci Eng – volume: 1008 start-page: 202 year: 2020 end-page: 12 article-title: Biochar Synthesis for Industrial Wastewater Treatment: a Critical Review publication-title: Mater Sci Forum – volume: 6 start-page: 47 year: 2013 end-page: 53 article-title: Nanofiltration for water and wastewater treatment–a mini review publication-title: Drink Water Eng Sci. – volume: 247 start-page: 794 year: 2018 end-page: 803 article-title: Comparative study for microcystin‐LR sorption onto biochars produced from various plant‐ and animal‐wastes at different pyrolysis temperatures: influencing mechanisms of biochar properties publication-title: Bioresour Technol – volume: 13 start-page: 237 year: 2021 end-page: 54 article-title: Country‐level and gridded estimates of wastewater production, collection, treatment and reuse publication-title: Earth Syst Sci Data – volume: 7 start-page: 567 year: 2013 end-page: 84 article-title: Heavy metal pollution in drinking water: a global risk for human health: a review publication-title: Afr J Environ Sci Technol – volume: 184 start-page: 230 year: 2015 end-page: 5 article-title: Combining urban wastewater treatment with biohydrogen production—an integrated microalgae‐based approach publication-title: Bioresour Technol – volume: 180 start-page: 261 year: 2007 end-page: 9 article-title: Sugar cane industry as a source of water pollution–case study on the situation in Ipojuca river, Pernambuco, Brazil publication-title: Water Air Soil Pollut – volume: 752 year: 2021 article-title: Integrating micro‐algae into wastewater treatment: a review publication-title: Sci Total Environ – volume: 13 start-page: 27 year: 2021 article-title: Treatment of wastewaters by microalgae and the potential applications of the produced biomass–a review publication-title: Water – volume: 7 start-page: 42 year: 2019 article-title: The use of microalgae for coupling wastewater treatment with CO2 biofixation publication-title: Front Bioeng Biotechnol – volume: 144 start-page: 499 year: 2013 end-page: 503 article-title: Production of biodiesel from microalgae grown on dairy industry wastewater publication-title: Bioresour Technol – volume: 200 start-page: 1 year: 2016 end-page: 7 article-title: Anaerobic microbial fuel cell treating combined industrial wastewater: correlation of electricity generation with pollutants publication-title: Bioresour Technol – volume: 142 year: 2018 article-title: Wastewater treatment by nanofiltration membranes publication-title: IOP Conf Ser Earth Environ Sci – volume: 39 start-page: 2261 year: 2005 end-page: 97 article-title: Fouling of reverse osmosis and ultrafiltration membranes: a critical review publication-title: Sep Sci Technol – volume: 9 start-page: 165 year: 2009 end-page: 77 article-title: Design principles of photo‐bioreactors for cultivation of microalgae publication-title: Eng Life Sci – volume: 336 start-page: 160 year: 2018 end-page: 9 article-title: Sustainable efficient adsorbent: alkali‐acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal publication-title: Chem Eng J – volume: 37 start-page: 1568 year: 2016 end-page: 81 article-title: Feasibility of using brewery wastewater for biodiesel production and nutrient removal by publication-title: Environ Technol – volume: 634 start-page: 586 year: 2018 end-page: 94 article-title: Bioelectricity production from wood hydrothermal‐treatment wastewater: enhanced power generation in MFC‐fed mixed wastewaters publication-title: Sci Total Environ – volume: 35 year: 2020 article-title: Hybrid ozonation process for industrial wastewater treatment: principles and applications: a review publication-title: J Water Process Eng – volume: 221 start-page: 455 year: 2016 end-page: 60 article-title: Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production publication-title: Bioresour Technol – volume: 19 start-page: 360 year: 2013 end-page: 9 article-title: Nutrient recovery from wastewater streams by microalgae: status and prospects publication-title: Renew Sustain Energy Rev – start-page: 1 year: 2018 – volume: 126 start-page: 21 year: 2014 end-page: 9 article-title: Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor publication-title: Sep Purif Technol – volume: 252 year: 2020 article-title: Biochar technology in wastewater treatment: a critical review publication-title: Chemosphere – volume: 53 start-page: 309 year: 2013 end-page: 18 article-title: A review on sugar industry wastewater: sources, treatment technologies, and reuse publication-title: Desalin Water Treat – volume: 24 start-page: 3506 year: 2017 end-page: 18 article-title: Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation publication-title: Environ Sci Pollut Res – volume: 20 start-page: 88 year: 2016 end-page: 100 article-title: Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst‐less and mediator‐less membrane microbial fuel cell publication-title: J Saudi Chem Soc – volume: 134 start-page: 232 year: 2015 end-page: 40 article-title: The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review publication-title: Chemosphere – volume: 99 start-page: 19 year: 2014 end-page: 33 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 31 start-page: 435 year: 2018 end-page: 44 article-title: Microalgal bioremediation of petroleum‐derived low salinity and low pH produced water publication-title: J Appl Phycol – volume: 4 start-page: 237 year: 2012 end-page: 42 article-title: Chemical and biological treatment of fish canning wastewaters publication-title: Int J Biosci Biochem Bioinforma – volume: 211 start-page: 698 year: 2016 end-page: 703 article-title: Cultivation of Chlorella on brewery wastewater and nano‐particle biosynthesis by its biomass publication-title: Bioresour Technol – volume: 190 year: 2021 article-title: Fluidized‐bed Fenton technologies for recalcitrant industrial wastewater treatment–recent advances, challenges and perspective publication-title: Water Res – volume: 304 year: 2020 article-title: A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid publication-title: Bioresour Technol – volume: 5 start-page: 1 year: 2014 end-page: 18 article-title: Production, characterization and treatment of textile effluents: a critical review publication-title: J Chem Eng Proc Technol – volume: 122 start-page: 589 year: 2016 end-page: 93 article-title: Evaluation of microbial fuel cells for electricity generation from oil‐contaminated wastewater publication-title: J Biosci Bioeng – volume: 2 start-page: 16 year: 2014 end-page: 22 article-title: Study of characteristics and treatments of dairy industry waste water publication-title: J Appl Environ Microbiol – volume: 302 start-page: 24 year: 2012 end-page: 32 article-title: Pilot‐scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater publication-title: Desalination – volume: 31 start-page: 1408 year: 2013 end-page: 25 article-title: Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges publication-title: Biotechnol Adv – volume: 9 start-page: 1073 year: 2015 end-page: 6 article-title: Characterization of brewery wastewater composition publication-title: Int J Environ Ecol Eng – volume: 20 start-page: 17 year: 2017 end-page: 25 article-title: Review on challenges and limitations for algae‐based wastewater treatment publication-title: Constr Sci – volume: 46 start-page: 33 year: 2012 end-page: 42 article-title: Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters publication-title: Water Res – volume: 79 start-page: 2166 year: 2019 end-page: 74 article-title: Nutrient removal from pickle industry wastewater by cultivation of for lipid production publication-title: Water Sci Technol – volume: 44 start-page: 2010 year: 2012 end-page: 2 article-title: Batik industry synthetic wastewater treatment using nanofiltration membrane publication-title: Procedia Eng – start-page: 1 year: 2022 end-page: 23 – volume: 20 start-page: 4779 year: 2021 end-page: 815 article-title: Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water‐food‐environment nexus publication-title: Compr Rev Food Sci Food Saf – volume: 43 start-page: 1561 year: 2020 end-page: 71 article-title: Long‐term performance and acute toxicity assessment of scaled‐up air‐cathode microbial fuel cell fed by dairy wastewater publication-title: Bioprocess Biosyst Eng – ident: e_1_2_11_57_1 doi: 10.1016/j.rser.2014.07.116 – volume: 4 start-page: 237 year: 2012 ident: e_1_2_11_26_1 article-title: Chemical and biological treatment of fish canning wastewaters publication-title: Int J Biosci Biochem Bioinforma – start-page: 247 volume-title: Microbial electrochemical and fuel cells year: 2015 ident: e_1_2_11_55_1 – ident: e_1_2_11_72_1 doi: 10.1016/j.cej.2017.11.048 – ident: e_1_2_11_5_1 doi: 10.1016/j.watres.2020.116692 – ident: e_1_2_11_86_1 doi: 10.1016/j.scitotenv.2018.07.282 – ident: e_1_2_11_87_1 doi: 10.1080/10590500802708267 – ident: e_1_2_11_83_1 doi: 10.1007/s10811-018-1571-6 – ident: e_1_2_11_75_1 doi: 10.1016/j.jhazmat.2020.123311 – ident: e_1_2_11_30_1 doi: 10.1016/j.desal.2014.10.043 – volume: 9 start-page: 1073 year: 2015 ident: e_1_2_11_19_1 article-title: Characterization of brewery wastewater composition publication-title: Int J Environ Ecol Eng – ident: e_1_2_11_11_1 doi: 10.1007/978-3-030-83811-9_1 – volume: 7 start-page: 567 year: 2013 ident: e_1_2_11_14_1 article-title: Heavy metal pollution in drinking water: a global risk for human health: a review publication-title: Afr J Environ Sci Technol – ident: e_1_2_11_49_1 doi: 10.1080/15226514.2014.989313 – ident: e_1_2_11_50_1 doi: 10.2166/wst.2019.217 – ident: e_1_2_11_73_1 doi: 10.1016/j.biortech.2017.09.120 – ident: e_1_2_11_35_1 doi: 10.1016/j.memsci.2019.05.038 – ident: e_1_2_11_88_1 doi: 10.1016/B978-0-8155-1578-4.50014-7 – ident: e_1_2_11_12_1 doi: 10.1038/s41545-021-00127-0 – ident: e_1_2_11_28_1 doi: 10.1081/SS-120039343 – ident: e_1_2_11_4_1 doi: 10.1016/j.jwpe.2020.101193 – ident: e_1_2_11_40_1 doi: 10.1016/j.scitotenv.2019.135303 – ident: e_1_2_11_23_1 doi: 10.3329/bjsir.v49i4.22626 – ident: e_1_2_11_34_1 doi: 10.1016/j.cej.2020.125087 – ident: e_1_2_11_70_1 doi: 10.1016/j.biortech.2017.06.084 – ident: e_1_2_11_37_1 doi: 10.1016/j.watres.2011.10.011 – ident: e_1_2_11_61_1 doi: 10.1016/j.scitotenv.2018.04.002 – ident: e_1_2_11_2_1 doi: 10.5194/essd-13-237-2021 – ident: e_1_2_11_43_1 doi: 10.1016/j.algal.2013.11.007 – ident: e_1_2_11_76_1 doi: 10.1016/j.memsci.2016.08.062 – ident: e_1_2_11_27_1 doi: 10.1016/j.asej.2018.08.001 – volume: 2 start-page: 2992 year: 2013 ident: e_1_2_11_13_1 article-title: Review of heavy metals in drinking water and their effect on human health publication-title: Int J Innov Res Sci Eng Technol – ident: e_1_2_11_16_1 doi: 10.1155/2021/5314404 – ident: e_1_2_11_18_1 doi: 10.5772/intechopen.77110 – ident: e_1_2_11_53_1 doi: 10.1016/j.tibtech.2015.01.007 – ident: e_1_2_11_38_1 doi: 10.1016/j.desal.2012.05.019 – ident: e_1_2_11_62_1 doi: 10.1016/j.biortech.2020.122992 – ident: e_1_2_11_21_1 doi: 10.1007/s11270-006-9268-x – ident: e_1_2_11_78_1 doi: 10.1016/j.seppur.2008.05.010 – ident: e_1_2_11_9_1 doi: 10.1016/j.jclepro.2019.04.282 – ident: e_1_2_11_45_1 doi: 10.1080/09593330.2015.1121292 – ident: e_1_2_11_81_1 doi: 10.1016/j.sjbs.2012.04.005 – ident: e_1_2_11_46_1 doi: 10.1016/j.biortech.2016.03.154 – ident: e_1_2_11_10_1 doi: 10.1088/1755-1315/142/1/012017 – ident: e_1_2_11_48_1 doi: 10.1016/j.biortech.2016.09.070 – ident: e_1_2_11_65_1 doi: 10.1016/j.chemosphere.2020.126539 – ident: e_1_2_11_58_1 doi: 10.1007/s00449-020-02348-y – ident: e_1_2_11_66_1 doi: 10.4028/www.scientific.net/MSF.1008.202 – ident: e_1_2_11_7_1 doi: 10.3390/w13010027 – volume: 2 start-page: 16 year: 2014 ident: e_1_2_11_17_1 article-title: Study of characteristics and treatments of dairy industry waste water publication-title: J Appl Environ Microbiol – ident: e_1_2_11_54_1 doi: 10.1155/2013/634738 – ident: e_1_2_11_56_1 doi: 10.1016/j.rineng.2019.100053 – ident: e_1_2_11_69_1 doi: 10.1016/j.chemosphere.2013.10.071 – ident: e_1_2_11_41_1 doi: 10.3389/fbioe.2019.00042 – ident: e_1_2_11_63_1 doi: 10.1016/j.biortech.2016.09.034 – ident: e_1_2_11_64_1 doi: 10.1016/j.jbiosc.2016.03.025 – ident: e_1_2_11_71_1 doi: 10.1016/j.clet.2020.100006 – ident: e_1_2_11_79_1 doi: 10.1016/j.biortech.2014.10.064 – ident: e_1_2_11_31_1 doi: 10.1016/j.proeng.2012.09.025 – ident: e_1_2_11_25_1 doi: 10.1016/j.psep.2016.03.016 – ident: e_1_2_11_77_1 doi: 10.1007/s11356-016-8083-1 – ident: e_1_2_11_36_1 doi: 10.1186/2052-336X-12-55 – ident: e_1_2_11_6_1 doi: 10.1016/j.reffit.2016.09.004 – ident: e_1_2_11_74_1 doi: 10.1155/2019/5656983 – ident: e_1_2_11_29_1 doi: 10.5194/dwes-6-47-2013 – ident: e_1_2_11_44_1 doi: 10.1002/elsc.200900003 – ident: e_1_2_11_20_1 doi: 10.1007/s42398-019-00056-2 – volume: 5 start-page: 1 year: 2014 ident: e_1_2_11_15_1 article-title: Production, characterization and treatment of textile effluents: a critical review publication-title: J Chem Eng Proc Technol – ident: e_1_2_11_24_1 doi: 10.1007/s11356-019-05699-6 – ident: e_1_2_11_22_1 doi: 10.1080/19443994.2013.838526 – ident: e_1_2_11_32_1 doi: 10.5004/dwt.2017.20453 – ident: e_1_2_11_85_1 doi: 10.1007/s11356-019-04725-x – ident: e_1_2_11_47_1 doi: 10.1016/j.biortech.2013.06.116 – ident: e_1_2_11_84_1 doi: 10.3390/w10010037 – ident: e_1_2_11_39_1 doi: 10.1016/j.scitotenv.2020.142168 – ident: e_1_2_11_82_1 doi: 10.2478/cons-2017-0003 – ident: e_1_2_11_51_1 doi: 10.1016/j.biortech.2020.123902 – ident: e_1_2_11_3_1 doi: 10.1111/1541-4337.12782 – ident: e_1_2_11_42_1 doi: 10.1016/j.biotechadv.2013.06.005 – ident: e_1_2_11_52_1 doi: 10.3390/molecules25163639 – ident: e_1_2_11_59_1 doi: 10.1016/j.jscs.2014.08.002 – ident: e_1_2_11_8_1 doi: 10.1016/j.scitotenv.2020.142429 – ident: e_1_2_11_80_1 doi: 10.1016/j.rser.2012.11.030 – ident: e_1_2_11_60_1 doi: 10.1016/j.biortech.2015.09.088 – ident: e_1_2_11_67_1 doi: 10.1016/j.biortech.2019.122030 – ident: e_1_2_11_33_1 doi: 10.1016/j.seppur.2014.01.056 – ident: e_1_2_11_68_1 doi: 10.1016/j.chemosphere.2015.03.072 |
SSID | ssj0009929 |
Score | 2.434901 |
SecondaryResourceType | review_article |
Snippet | Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 296 |
SubjectTerms | Animals aquatic ecosystems biochar biochar technology Bioelectric Energy Sources bioelectricity Biomass cost effectiveness Ecosystem industrial wastewater industrialization Microalgae microalgal wastewater treatment microbial fuel cells microbiology nanofiltration Waste Water wastewater treatment |
Title | A comprehensive review on emerging trends in industrial wastewater research |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjobm.202100554 https://www.ncbi.nlm.nih.gov/pubmed/35132661 https://www.proquest.com/docview/2626892293 https://www.proquest.com/docview/2648879314 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwEA8iiH7xMV_zRQTBT5ltmrXJR53KUKYgCvtW0vaCLzpxG6J_vZdm7ZyigkKhFBKa5nKX36V3vyNkT4DKZAI-0wjwmVAiY1ppycI0MpkvJUBRM7JzEbZvxFm32f2Qxe_4IaoDN6sZhb22Cq6T_sGYNPS-l9hMcnRZPNwS0Qj7QWjJ84-vxvxRShVlynBfChgqdbdkbfT4wWT3yV3pC9ScRK7F1nO6QHQ5aBdx8tAYDpJG-vaJz_E_X7VI5ke4lB66hbREpiCvkRlXqfK1RmZbZWG4ZXJ-SG0g-jPcuuB36tJfaC-nNtvYVj2igyLUlt7leJW1QeiL7tujOpQkHXEM3a6Qm9OT61abjWoysDSIpGDKcJkY0NpHKwqZ5OhCowsaQpIoAJllUdN4ob2FkQi5NqnxvLSJOEJLD4QJVsl03sthnVANSvrGpDozmYgCUMKSxUeIYYTRqS_qhJUyidMRYbmtm_EYO6plHtvJiqvJqpP9qv2To-r4tuVuKeIY587-ItE59Ib9mKN_JxVHDPRTGzR6aNbsCNfc-qjeFzTRu0fIUye8kPIvA4nPLo861dPGXzptkjluMzKKsLgtMj14HsI24qRBslPowjs5sAnm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB5aS9GXtmqt119uQfBpNdnsJbuPV1u5qqdQFHwLm2QW20pOvDtK-9d3JnuJXIstWAiEwC7Z7OzMfrOZ-QZgW6OtTIGxdATwpba6ks46I9My81VsDGJTM3J0kg7P9eFFv40m5FyYwA_RHbixZjT2mhWcD6T3bllDv44LTiUnnyWiPfEhPNKENtj_-vD5lkHK2qZQGe1MiSS1vmh5GyO1t9h_cV_6A2wuYtdm8zl4CkU77BBz8m13Ni12y5-_MTr-13c9gydzaCoGYS2twgOs1-BxKFb5Yw2W99vacOtwNBAci36DlyH-XYQMGDGuBSccc-EjMW2ibcWXmq62PIj47iZ8WkfCFHOaocvncH7w8Wx_KOdlGWSZZEZL65UpPDoXkyHFyijyoskLTbEoLKKpqqzvo5RvaaZT5Xzpo6jsE5RwJkLtkw1Yqsc1boJwaE3sfekqX-ksQauZLz4jGKO9K2PdA9kKJS_nnOVcOuMqD2zLKufJyrvJ6sFO1_46sHXc2fJdK-Oc5o7_krgax7NJrsjFM1YRDPpbG7J7ZNl4hC_CAunel_TJwSfU0wPViPkfA8kPT9-PuqeX9-m0BcvDs9Fxfvzp5OgVrChO0Gii5F7D0vRmhm8INk2Lt41i_ALjAQ4F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xqMdLOXptW8CVKvHkJXG8if1IKSvKVYSKtG-RE49FD2UR7Koqv55xvAlsESAVKVIUyVYcj2f8jTPzDcAnidqqAmNuCOBzqaXlRhvF0zJzNlYKsa4ZeXCY7pzI3UFvcCOLP_BDtAduXjNqe-0V_My6jWvS0J_DwmeSk8sS0ZY4C_MyJTjhYdHxNYGU1nWdMtqYEk5aPWhoGyOxMd1_elu6hTWnoWu99_QXwDSjDiEnv7rjUdEtL_8hdHzMZy3CiwkwZZthJS3BDFbL8CSUqvy7DM-2mspwL2Fvk_lI9HM8DdHvLOS_sGHFfLqxL3vERnWsLftR0dUUB2F_zIU_qyNRsgnJ0OkrOOlvf9_a4ZOiDLxMMiW5dkIVDo2JyYyiVYJ8aPJBUywKjaiszXouSv0tzWQqjCtdFJU9AhJGRShd8hrmqmGFb4EZ1Cp2rjTWWZklqKVni88IxEhnylh2gDcyycsJY7kvnPE7D1zLIveTlbeT1YH1tv1Z4Oq4s-XHRsQ5zZ3_R2IqHI4vckEOntKCQNB9bcjqkV3zI3wT1kf7vqRH7j1hng6IWsoPDCTf_fb5oH169z-d1uDp0Zd-vv_1cO89PBc-O6MOkfsAc6PzMa4QZhoVq7VaXAGoDQy0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+on+emerging+trends+in+industrial+wastewater+research&rft.jtitle=Journal+of+basic+microbiology&rft.au=Malik%2C+Sumira&rft.au=Kishore%2C+Shristi&rft.au=Prasad%2C+Shilpa&rft.au=Shah%2C+Maulin+P.&rft.date=2022-03-01&rft.issn=0233-111X&rft.eissn=1521-4028&rft.volume=62&rft.issue=3-4&rft.spage=296&rft.epage=309&rft_id=info:doi/10.1002%2Fjobm.202100554&rft.externalDBID=10.1002%252Fjobm.202100554&rft.externalDocID=JOBM202100554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-111X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-111X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-111X&client=summon |