Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading

Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloi...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 110; no. 12; pp. 1932 - 1943.e5
Main Authors Lee, Wha Jin, Brown, Jesse A., Kim, Hye Ryun, La Joie, Renaud, Cho, Hanna, Lyoo, Chul Hyoung, Rabinovici, Gil D., Seong, Joon-Kyung, Seeley, William W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition. [Display omitted] •Network flow-based model identifies tau propagation hubs in inferior temporal gyri•Remote Aβ-tau interactions in entorhinal cortex may trigger initial tau spreading•Local Aβ-tau interactions in inferior temporal gyrus may promote tau propagation•Connectivity-based model addresses the spatial incongruity between early Aβ and tau Lee et al. show that the natural history of AD traverses a critical period that begins once Aβ emerges within entorhinal cortex (EC)-connected regions, continues as tau spreads from the EC into connected mesial temporal and limbic regions, and may end once Aβ and tau interact within the inferior temporal gyrus propagation hubs, whose connections are well suited to facilitate widespread neocortical tau propagation.
AbstractList Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition.Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition.
Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition.
Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition. [Display omitted] •Network flow-based model identifies tau propagation hubs in inferior temporal gyri•Remote Aβ-tau interactions in entorhinal cortex may trigger initial tau spreading•Local Aβ-tau interactions in inferior temporal gyrus may promote tau propagation•Connectivity-based model addresses the spatial incongruity between early Aβ and tau Lee et al. show that the natural history of AD traverses a critical period that begins once Aβ emerges within entorhinal cortex (EC)-connected regions, continues as tau spreads from the EC into connected mesial temporal and limbic regions, and may end once Aβ and tau interact within the inferior temporal gyrus propagation hubs, whose connections are well suited to facilitate widespread neocortical tau propagation.
Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but how these proteins interact to promote disease remains unclear. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectionally mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well-suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition. “Lee et al. show that the natural history of AD traverses a critical period that begins once Aβ emerges within entorhinal cortex (EC)-connected regions, continues as tau spreads from the EC into connected mesial temporal and limbic regions, and may end once Aβ and tau interact within the inferior temporal gyrus propagation hubs, whose connections are well-suited to facilitate widespread neocortical tau propagation.”
Author Seong, Joon-Kyung
Cho, Hanna
Kim, Hye Ryun
Lee, Wha Jin
Rabinovici, Gil D.
Brown, Jesse A.
Lyoo, Chul Hyoung
Seeley, William W.
La Joie, Renaud
AuthorAffiliation 2 University of California, San Francisco, Memory and Aging Center, Department of Neurology, San Francisco, CA 94143, USA
1 Korea University, School of Biomedical Engineering, Seoul, 02841, Korea
5 Gangnam Severance Hospital, Department of Neurology, Seoul, 06273, Korea
3 University of California, San Francisco, Weill Institute for Neurosciences, San Francisco, CA 94143, USA
7 Korea University, Department of Artificial Intelligence, Seoul, 02841, Korea
4 Korea University, Global Health Technology Research Center, College of Health Science, Seoul, 02841, Korea
6 University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA 94143, USA
9 Lead Contact
8 University of California, San Francisco, Department of Pathology, San Francisco, CA 94143, USA
AuthorAffiliation_xml – name: 9 Lead Contact
– name: 5 Gangnam Severance Hospital, Department of Neurology, Seoul, 06273, Korea
– name: 1 Korea University, School of Biomedical Engineering, Seoul, 02841, Korea
– name: 3 University of California, San Francisco, Weill Institute for Neurosciences, San Francisco, CA 94143, USA
– name: 4 Korea University, Global Health Technology Research Center, College of Health Science, Seoul, 02841, Korea
– name: 2 University of California, San Francisco, Memory and Aging Center, Department of Neurology, San Francisco, CA 94143, USA
– name: 6 University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA 94143, USA
– name: 8 University of California, San Francisco, Department of Pathology, San Francisco, CA 94143, USA
– name: 7 Korea University, Department of Artificial Intelligence, Seoul, 02841, Korea
Author_xml – sequence: 1
  givenname: Wha Jin
  surname: Lee
  fullname: Lee, Wha Jin
  organization: School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
– sequence: 2
  givenname: Jesse A.
  surname: Brown
  fullname: Brown, Jesse A.
  organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA
– sequence: 3
  givenname: Hye Ryun
  surname: Kim
  fullname: Kim, Hye Ryun
  organization: School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
– sequence: 4
  givenname: Renaud
  surname: La Joie
  fullname: La Joie, Renaud
  organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA
– sequence: 5
  givenname: Hanna
  surname: Cho
  fullname: Cho, Hanna
  organization: Department of Neurology, Gangnam Severance Hospital, Seoul 06273, South Korea
– sequence: 6
  givenname: Chul Hyoung
  surname: Lyoo
  fullname: Lyoo, Chul Hyoung
  organization: Department of Neurology, Gangnam Severance Hospital, Seoul 06273, South Korea
– sequence: 7
  givenname: Gil D.
  surname: Rabinovici
  fullname: Rabinovici, Gil D.
  organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA
– sequence: 8
  givenname: Joon-Kyung
  surname: Seong
  fullname: Seong, Joon-Kyung
  email: jkseong@korea.ac.kr
  organization: School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
– sequence: 9
  givenname: William W.
  surname: Seeley
  fullname: Seeley, William W.
  email: bill.seeley@ucsf.edu
  organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35443153$$D View this record in MEDLINE/PubMed
BookMark eNqFUU2KFDEUDjLi9LTeQCRLN9Xmr1MVF0Iz-AcDgug6pJJXPWmqkjZJDejKa3gND-IhPIlpu0fUhcILCXnfT_K9C3QWYgCEHlKyooTKJ7tVgDnFsGKEsRXhtcQdtKBEtY2gSp2hBemUbCRr-Tm6yHlHCBVrRe-hc74WgtM1XyD7FrY-BjPizbevTTEz9qFAMrbU24z3KU6xAK5nKNgEh421MFbAoY_jgDfjp2vwE6Tvn79k7HwGkwEfhPI-gXE-bO-ju4MZMzw47Uv0_sXzd5evmqs3L19fbq4ay9tONEJAbxzpuGW2HVhvVN9LRfv6fjq0LZDOtIrIrh-Yk8C61oEysies6yQDZ_gSPTvq7ud-AmchlGRGvU9-MumjjsbrPzvBX-ttvNGKcU7rWqLHJ4EUP8yQi558rt8dTYA4Z83kmjOpiCAV-uh3r18mt8lWwNMjwKaYc4JBW19-plat_agp0Ycx6p0-jlEfxqgJryUqWfxFvtX_D-0UANSUbzwkna2HYMH5BLZoF_2_BX4ApKW9gA
CitedBy_id crossref_primary_10_1002_hbm_70083
crossref_primary_10_3233_JAD_230367
crossref_primary_10_1038_s41583_023_00731_8
crossref_primary_10_1162_netn_a_00327
crossref_primary_10_1186_s40478_023_01581_2
crossref_primary_10_1016_j_nbd_2023_105991
crossref_primary_10_1007_s00401_024_02839_2
crossref_primary_10_3389_fnins_2024_1345225
crossref_primary_10_1016_j_biopha_2023_115999
crossref_primary_10_1038_s41583_023_00779_6
crossref_primary_10_1016_j_brainresbull_2023_110777
crossref_primary_10_1038_s41398_023_02572_6
crossref_primary_10_1038_s41591_023_02505_2
crossref_primary_10_1038_s41401_025_01526_6
crossref_primary_10_1126_scitranslmed_abc8693
crossref_primary_10_1093_braincomms_fcad058
crossref_primary_10_1186_s13195_023_01178_w
crossref_primary_10_1016_j_heliyon_2023_e17987
crossref_primary_10_1162_imag_a_00089
crossref_primary_10_1016_j_media_2025_103463
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1093_braincomms_fcae031
crossref_primary_10_1016_j_tics_2022_11_015
crossref_primary_10_1016_j_neurobiolaging_2023_10_001
crossref_primary_10_1038_s43587_022_00236_6
crossref_primary_10_1523_JNEUROSCI_0488_23_2023
crossref_primary_10_1007_s12031_024_02212_8
crossref_primary_10_1038_s41582_022_00667_0
crossref_primary_10_31083_j_jin2206138
crossref_primary_10_1038_s41598_023_48993_7
crossref_primary_10_1371_journal_pcbi_1012743
crossref_primary_10_1523_ENEURO_0247_22_2022
crossref_primary_10_1093_braincomms_fcad305
crossref_primary_10_3389_fnagi_2024_1442721
crossref_primary_10_1007_s11682_024_00933_3
crossref_primary_10_3390_brainsci14060575
crossref_primary_10_1016_j_neuroimage_2024_120737
crossref_primary_10_1038_s41467_022_32592_7
crossref_primary_10_1109_TMI_2024_3502545
crossref_primary_10_1038_s41593_024_01763_8
crossref_primary_10_1093_braincomms_fcae198
crossref_primary_10_1126_sciadv_adp5978
crossref_primary_10_1038_s12276_024_01274_3
crossref_primary_10_1016_j_media_2024_103210
crossref_primary_10_1186_s13195_024_01520_w
crossref_primary_10_1093_braincomms_fcaf099
crossref_primary_10_1016_j_nbd_2024_106427
crossref_primary_10_1002_btm2_10459
crossref_primary_10_1016_j_nicl_2024_103660
crossref_primary_10_1038_s41593_024_01610_w
crossref_primary_10_1002_alz_14378
crossref_primary_10_1186_s40035_025_00479_4
crossref_primary_10_3233_JAD_220975
crossref_primary_10_1016_j_jare_2023_04_014
crossref_primary_10_1109_TMI_2023_3309821
crossref_primary_10_1016_j_neurobiolaging_2024_02_013
crossref_primary_10_1016_j_celrep_2024_113691
crossref_primary_10_1111_jnc_15713
crossref_primary_10_1093_brain_awae116
crossref_primary_10_1162_imag_a_00026
crossref_primary_10_3233_JAD_231362
crossref_primary_10_1177_13872877241294084
crossref_primary_10_1002_alz_13164
crossref_primary_10_1093_brain_awac299
crossref_primary_10_3233_JAD_231320
crossref_primary_10_1093_cercor_bhae386
crossref_primary_10_1002_ana_26813
crossref_primary_10_1016_j_neulet_2024_137943
crossref_primary_10_3389_fnagi_2024_1402573
crossref_primary_10_2196_57830
crossref_primary_10_1001_jamaneurol_2023_4038
crossref_primary_10_1016_j_neurobiolaging_2025_01_005
crossref_primary_10_1002_ana_26818
crossref_primary_10_1002_alz_13769
crossref_primary_10_2174_0115672050329828240805074938
crossref_primary_10_3233_JAD_240434
crossref_primary_10_3390_ijms251910797
crossref_primary_10_1016_j_neuron_2023_11_014
crossref_primary_10_3389_fnins_2023_1219299
crossref_primary_10_1002_cmdc_202400180
crossref_primary_10_1002_mco2_638
crossref_primary_10_1016_j_tins_2022_11_006
crossref_primary_10_1002_alz_14625
crossref_primary_10_1016_j_nicl_2024_103727
crossref_primary_10_1126_scitranslmed_adp2564
crossref_primary_10_1016_j_clinph_2023_06_008
crossref_primary_10_1016_j_brainresbull_2022_10_006
crossref_primary_10_2174_1566523223666230419101023
crossref_primary_10_3389_fnins_2024_1467333
crossref_primary_10_1093_brain_awad411
crossref_primary_10_1186_s13195_024_01589_3
crossref_primary_10_1016_j_celrep_2025_115422
Cites_doi 10.1016/j.jalz.2011.03.008
10.1038/s41467-017-01285-x
10.1016/S1474-4422(09)70299-6
10.1016/j.nicl.2019.101848
10.1126/science.6474172
10.1016/j.neuron.2011.12.040
10.1007/s00259-020-04773-3
10.1038/s41591-018-0206-4
10.1016/j.jalz.2015.05.001
10.1007/s00401-006-0127-z
10.1002/ana.24711
10.1001/archneur.65.11.1509
10.1371/journal.pcbi.1003956
10.1002/nbm.782
10.2967/jnumed.118.221697
10.1007/s00401-019-02075-z
10.1038/nm.4443
10.1371/journal.pone.0015709
10.1186/s13195-020-00765-5
10.1093/cercor/bhw157
10.1038/s41583-018-0067-3
10.1007/s00401-014-1349-0
10.1016/j.celrep.2014.12.034
10.1016/j.neuroimage.2020.116991
10.1038/srep10057
10.1016/j.dadm.2018.01.007
10.1007/s00401-011-0825-z
10.1038/s41467-020-15701-2
10.1523/JNEUROSCI.3539-11.2011
10.1073/pnas.1301175110
10.1186/s13195-019-0470-7
10.1111/j.2517-6161.1995.tb02031.x
10.1038/s41467-019-14159-1
10.1212/WNL.0000000000004643
10.1212/WNL.0000000000003724
10.1097/WCO.0b013e32835a30f4
10.1212/WNL.58.12.1791
10.1038/s41380-018-0342-8
10.1016/j.neuropsychologia.2007.04.011
10.1016/j.neuron.2012.03.004
10.1002/ana.24546
10.1523/JNEUROSCI.2170-12.2012
10.1056/NEJMoa2100708
10.1212/WNL.0000000000006277
10.1016/j.neuroimage.2017.05.058
10.2967/jnumed.117.195248
10.2967/jnumed.111.090340
10.1016/j.jalz.2011.03.005
10.1126/scitranslmed.abc0655
10.1212/WNL.49.3.786
10.1016/j.neurobiolaging.2018.01.024
10.1073/pnas.1001412107
10.1007/BF00308809
10.1093/brain/awv191
10.1016/j.neuron.2019.08.037
10.1038/s41591-021-01309-6
10.1002/alz.12444
10.1212/WNL.0b013e3181cb3e25
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.neuron.2022.03.034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 1943.e5
ExternalDocumentID PMC9233123
35443153
10_1016_j_neuron_2022_03_034
S0896627322003051
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG062422
– fundername: NIA NIH HHS
  grantid: K01 AG055698
– fundername: NIA NIH HHS
  grantid: K99 AG065501
– fundername: NIA NIH HHS
  grantid: P01 AG019724
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M2O
M3Z
M41
N9A
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
RIG
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c3784-44ebad083c2c7f2ba9bb691b2731f77e08a79068bf2d6e287de9a6b028862eda3
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:37:37 EDT 2025
Fri Jul 11 00:03:52 EDT 2025
Mon Jul 21 05:59:34 EDT 2025
Tue Jul 01 01:16:28 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Fri Feb 23 02:40:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords amyloid-beta
DTI
tau
connectome
Alzheimer’s disease
PET
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3784-44ebad083c2c7f2ba9bb691b2731f77e08a79068bf2d6e287de9a6b028862eda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
W.L., J.S. and W.W.S. conceived and designed the study. W.L., H.K., H.C. and C.L. contributed to data acquisition and processing. W.L. performed the experimental work and W.L., J.A.B., J.S. and W.W.S. analyzed and interpreted the results. W.L., J.A.B., J.S. and W.W.S. wrote the manuscript, and J.S. and W.W.S. substantively revised it. All authors participated in the discussion and critically reviewed the paper.
These authors contributed equally.
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
Author contributions
OpenAccessLink https://ir.ymlib.yonsei.ac.kr/handle/22282913/191583
PMID 35443153
PQID 2653269040
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9233123
proquest_miscellaneous_2653269040
pubmed_primary_35443153
crossref_citationtrail_10_1016_j_neuron_2022_03_034
crossref_primary_10_1016_j_neuron_2022_03_034
elsevier_sciencedirect_doi_10_1016_j_neuron_2022_03_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cummings, Salloway (bib15) 2021; 18
Iturria-Medina, Sotero, Toussaint, Evans (bib26) 2014; 10
Fan, Li, Zhuo, Zhang, Wang, Chen, Yang, Chu, Xie, Laird (bib18) 2016; 26
Albert, Dekosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen (bib2) 2011; 7
Waters (bib60) 2010; 5
Zhou, Gennatas, Kramer, Miller, Seeley (bib64) 2012; 73
Baek, Cho, Lee, Choi, Lee, Ryu, Lee, Lyoo (bib3) 2020; 47
Johnson, Schultz, Betensky, Becker, Sepulcre, Rentz, Mormino, Chhatwal, Amariglio, Papp (bib31) 2016; 79
Choi, Cho, Ahn, Lee, Ryu, Lee, Lyoo (bib12) 2018; 59
Tsai, Bejanin, Lesman-Segev, Lajoie, Visani, Bourakova, O’Neil, Janabi, Baker, Lee (bib55) 2019; 11
Jagust (bib29) 2018; 19
Musiek, Holtzman (bib44) 2012; 25
Leuzy, Chiotis, Lemoine, Gillberg, Almkvist, Rodriguez-Vieitez, Nordberg (bib36) 2019; 24
Vogel, Young, Oxtoby, Smith, Ossenkoppele, Strandberg, La Joie, Aksman, Grothe, Iturria-Medina (bib58) 2021; 27
Raj, Kuceyeski, Weiner (bib48) 2012; 73
Beaulieu (bib4) 2002; 15
Braak, Alafuzoff, Arzberger, Kretzschmar, Del Tredici (bib6) 2006; 112
Clavaguera, Akatsu, Fraser, Crowther, Frank, Hench, Probst, Winkler, Reichwald, Staufenbiel (bib13) 2013; 110
Das, Xie, Wisse, Ittyerah, Tustison, Dickerson, Yushkevich, Wolk (bib16) 2018; 66
Jagust, Landau, Koeppe, Reiman, Chen, Mathis, Price, Foster, Wang (bib30) 2015; 11
Kim, Hwang, Gaus, Nana, Deng, Brown, Spina, Lee, Ramos, Grinberg (bib33) 2020; 139
Lockhart, Ayakta, Winer, La Joie, Rabinovici, Jagust (bib38) 2017; 88
Maass, Landau, Baker, Horng, Lockhart, La Joie, Rabinovici, Jagust (bib39) 2017; 157
La Joie, Perrotin, Barrë, Hommet, Mëzenge, Ibazizene, Camus, Abbas, Landeau, Guilloteau (bib34) 2012; 32
Sanchez, Becker, Jacobs, Hanseeuw, Jiang, Schultz, Properzi, Katz, Beiser, Satizabal (bib50) 2021; 13
Ossenkoppele, Pijnenburg, Perry, Cohn-Sheehy, Scheltens, Vogel, Kramer, Van Der Vlies, La Joie, Rosen (bib46) 2015; 138
Ewing-Cobbs, Hasan, Prasad, Kramer, Bachevalier (bib17) 2006; 27
Mcdade, Wang, Gordon, Hassenstab, Benzinger, Buckles, Fagan, Holtzman, Cairns, Goate (bib41) 2018; 91
Braak, Del Tredici (bib8) 2011; 121
Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib27) 2010; 9
Joshi, Pontecorvo, Clark, Carpenter, Jennings, Sadowsky, Adler, Kovnat, Seibyl, Arora (bib32) 2012; 53
Hyman, Damasio, Van Hoesen, Barnes (bib24) 1984; 225
Lemoine, Leuzy, Chiotis, Rodriguez-Vieitez, Nordberg (bib35) 2018; 10
Van Den Heuvel, Sporns (bib56) 2011; 31
Hoaglin, Mosteller, Tukey (bib23) 2000
Jack, Petersen, Xu, Waring, O'Brien, Tangalos, Smith, Ivnik, Kokmen (bib28) 1997; 49
Grothe, Barthel, Sepulcre, Dyrba, Sabri, Teipel (bib21) 2017; 89
Ossenkoppele, Iaccarino, Schonhaut, Brown, La Joie, O'Neil, Janabi, Baker, Kramer, Gorno-Tempini (bib45) 2019; 23
Wilson (bib61) 1979
Scott, Hampton, Buckley, Chhatwal, Hanseeuw, Jacobs, Properzi, Sanchez, Johnson, Sperling (bib52) 2020; 220
Braak, Braak (bib7) 1991; 82
Franzmeier, Neitzel, Rubinski, Smith, Strandberg, Ossenkoppele, Hansson, Ewers, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (bib19) 2020; 11
Wook Yoo, Han, Shin, Won Seo, Na, Kaiser, Jeong, Seong (bib63) 2015; 5
Maier-Hein, Neher, Houde, Cötë, Garyfallidis, Zhong, Chamberland, Yeh, Lin, Ji (bib40) 2017; 8
Liu, Drouet, Wu, Witter, Small, Clelland, Duff (bib37) 2012; 7
Benjamini, Hochberg (bib5) 1995; 57
Thal, Rüb, Orantes, Braak (bib54) 2002; 58
Cho, Choi, Hwang, Kim, Lee, Lee, Lee, Ryu, Lee, Lyoo (bib10) 2016; 80
Wang, Benner, Sorensen, Wedeen (bib59) 2007; 15
He, Guo, Mcbride, Narasimhan, Kim, Changolkar, Zhang, Gathagan, Yue, Dengler, Stieber (bib22) 2018; 24
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux (bib42) 2011; 7
Vogel, Iturria-Medina, Strandberg, Smith, Levitis, Evans, Hansson (bib57) 2020; 11
Cho, Choi, Lee, Lee, Ryu, Lee, Jack, Lyoo (bib11) 2019; 60
Crary, Trojanowski, Schneider, Abisambra, Abner, Alafuzoff, Arnold, Attems, Beach, Bigio (bib14) 2014; 128
Sepulcre, Grothe, D'Oleire Uquillas, Ortiz-Terán, Diez, Yang, Jacobs, Hanseeuw, Li, El-Fakhri (bib53) 2018; 24
Wolk, Dickerson (bib62) 2010; 107
Sanchez, Hanseeuw, Lopera, Sperling, Baena, Bocanegra, Aguillon, Guzmãn-Vëlez, Pardilla-Delgado, Ramirez-Gomez (bib51) 2021; 13
Mintun, Lo, Duggan Evans, Wessels, Ardayfio, Andersen, Shcherbinin, Sparks, Sims, Brys (bib43) 2021; 384
Indrayan, Malhotra (bib25) 2017
Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga (bib47) 2010; 74
Raj, Locastro, Kuceyeski, Tosun, Relkin, Weiner, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (bib49) 2015; 10
Gold, Powell, Xuan, Jiang, Hardy (bib20) 2007; 45
Brown, Deng, Neuhaus, Sible, Sias, Lee, Kornak, Marx, Karydas, Spina (bib9) 2019; 104
Aizenstein, Nebes, Saxton, Price, Mathis, Tsopelas, Ziolko, James, Snitz, Houck (bib1) 2008; 65
Hyman (10.1016/j.neuron.2022.03.034_bib24) 1984; 225
Jack (10.1016/j.neuron.2022.03.034_bib27) 2010; 9
Maier-Hein (10.1016/j.neuron.2022.03.034_bib40) 2017; 8
Scott (10.1016/j.neuron.2022.03.034_bib52) 2020; 220
Braak (10.1016/j.neuron.2022.03.034_bib6) 2006; 112
Petersen (10.1016/j.neuron.2022.03.034_bib47) 2010; 74
Baek (10.1016/j.neuron.2022.03.034_bib3) 2020; 47
Mcdade (10.1016/j.neuron.2022.03.034_bib41) 2018; 91
Wilson (10.1016/j.neuron.2022.03.034_bib61) 1979
Aizenstein (10.1016/j.neuron.2022.03.034_bib1) 2008; 65
Beaulieu (10.1016/j.neuron.2022.03.034_bib4) 2002; 15
McKhann (10.1016/j.neuron.2022.03.034_bib42) 2011; 7
Maass (10.1016/j.neuron.2022.03.034_bib39) 2017; 157
Sanchez (10.1016/j.neuron.2022.03.034_bib50) 2021; 13
Thal (10.1016/j.neuron.2022.03.034_bib54) 2002; 58
Lemoine (10.1016/j.neuron.2022.03.034_bib35) 2018; 10
Van Den Heuvel (10.1016/j.neuron.2022.03.034_bib56) 2011; 31
Cho (10.1016/j.neuron.2022.03.034_bib10) 2016; 80
Hoaglin (10.1016/j.neuron.2022.03.034_bib23) 2000
Braak (10.1016/j.neuron.2022.03.034_bib7) 1991; 82
He (10.1016/j.neuron.2022.03.034_bib22) 2018; 24
Kim (10.1016/j.neuron.2022.03.034_bib33) 2020; 139
Liu (10.1016/j.neuron.2022.03.034_bib37) 2012; 7
Brown (10.1016/j.neuron.2022.03.034_bib9) 2019; 104
Wolk (10.1016/j.neuron.2022.03.034_bib62) 2010; 107
Albert (10.1016/j.neuron.2022.03.034_bib2) 2011; 7
Wang (10.1016/j.neuron.2022.03.034_bib59) 2007; 15
Sepulcre (10.1016/j.neuron.2022.03.034_bib53) 2018; 24
Vogel (10.1016/j.neuron.2022.03.034_bib58) 2021; 27
Leuzy (10.1016/j.neuron.2022.03.034_bib36) 2019; 24
Cho (10.1016/j.neuron.2022.03.034_bib11) 2019; 60
Tsai (10.1016/j.neuron.2022.03.034_bib55) 2019; 11
Das (10.1016/j.neuron.2022.03.034_bib16) 2018; 66
Jack (10.1016/j.neuron.2022.03.034_bib28) 1997; 49
Johnson (10.1016/j.neuron.2022.03.034_bib31) 2016; 79
Ossenkoppele (10.1016/j.neuron.2022.03.034_bib45) 2019; 23
Choi (10.1016/j.neuron.2022.03.034_bib12) 2018; 59
Wook Yoo (10.1016/j.neuron.2022.03.034_bib63) 2015; 5
Zhou (10.1016/j.neuron.2022.03.034_bib64) 2012; 73
Benjamini (10.1016/j.neuron.2022.03.034_bib5) 1995; 57
Braak (10.1016/j.neuron.2022.03.034_bib8) 2011; 121
Crary (10.1016/j.neuron.2022.03.034_bib14) 2014; 128
Jagust (10.1016/j.neuron.2022.03.034_bib30) 2015; 11
Musiek (10.1016/j.neuron.2022.03.034_bib44) 2012; 25
Sanchez (10.1016/j.neuron.2022.03.034_bib51) 2021; 13
Ossenkoppele (10.1016/j.neuron.2022.03.034_bib46) 2015; 138
Lockhart (10.1016/j.neuron.2022.03.034_bib38) 2017; 88
Joshi (10.1016/j.neuron.2022.03.034_bib32) 2012; 53
Fan (10.1016/j.neuron.2022.03.034_bib18) 2016; 26
Waters (10.1016/j.neuron.2022.03.034_bib60) 2010; 5
Iturria-Medina (10.1016/j.neuron.2022.03.034_bib26) 2014; 10
Cummings (10.1016/j.neuron.2022.03.034_bib15) 2021; 18
Franzmeier (10.1016/j.neuron.2022.03.034_bib19) 2020; 11
Clavaguera (10.1016/j.neuron.2022.03.034_bib13) 2013; 110
Raj (10.1016/j.neuron.2022.03.034_bib49) 2015; 10
Ewing-Cobbs (10.1016/j.neuron.2022.03.034_bib17) 2006; 27
Mintun (10.1016/j.neuron.2022.03.034_bib43) 2021; 384
Vogel (10.1016/j.neuron.2022.03.034_bib57) 2020; 11
Indrayan (10.1016/j.neuron.2022.03.034_bib25) 2017
Gold (10.1016/j.neuron.2022.03.034_bib20) 2007; 45
Jagust (10.1016/j.neuron.2022.03.034_bib29) 2018; 19
Raj (10.1016/j.neuron.2022.03.034_bib48) 2012; 73
La Joie (10.1016/j.neuron.2022.03.034_bib34) 2012; 32
Grothe (10.1016/j.neuron.2022.03.034_bib21) 2017; 89
35508634 - Nat Rev Neurol. 2022 Jun;18(6):318. doi: 10.1038/s41582-022-00667-0
References_xml – volume: 60
  start-page: 1611
  year: 2019
  end-page: 1621
  ident: bib11
  article-title: Progressive tau accumulation in Alzheimer disease: 2-year follow-up study
  publication-title: J. Nucl. Med.
– volume: 49
  start-page: 786
  year: 1997
  end-page: 794
  ident: bib28
  article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease
  publication-title: Neurology
– volume: 121
  start-page: 589
  year: 2011
  end-page: 595
  ident: bib8
  article-title: Alzheimer’s pathogenesis: is there neuron-to-neuron propagation?
  publication-title: Acta Neuropathol.
– volume: 18
  start-page: 531
  year: 2021
  end-page: 533
  ident: bib15
  article-title: Aducanumab: appropriate use recommendations
  publication-title: Alzheimers Dem.
– volume: 73
  start-page: 1216
  year: 2012
  end-page: 1227
  ident: bib64
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
– volume: 225
  start-page: 1168
  year: 1984
  end-page: 1170
  ident: bib24
  article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation
  publication-title: Science
– volume: 5
  start-page: 10057
  year: 2015
  ident: bib63
  article-title: A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s disease
  publication-title: Sci. Rep.
– volume: 11
  start-page: 757
  year: 2015
  end-page: 771
  ident: bib30
  article-title: The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015
  publication-title: Alzheimers. Dement.
– volume: 13
  year: 2021
  ident: bib50
  article-title: The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography
  publication-title: Sci. Transl. Med.
– volume: 19
  start-page: 687
  year: 2018
  end-page: 700
  ident: bib29
  article-title: Imaging the evolution and pathophysiology of Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  ident: bib27
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
– volume: 31
  start-page: 15775
  year: 2011
  end-page: 15786
  ident: bib56
  article-title: Rich-club organization of the human connectome
  publication-title: J. Neurosci.
– volume: 11
  start-page: 347
  year: 2020
  ident: bib19
  article-title: Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease
  publication-title: Nat. Commun.
– volume: 5
  year: 2010
  ident: bib60
  article-title: The concentration of soluble extracellular amyloid-β protein in acute brain slices from CRND8 mice
  publication-title: PloS One
– volume: 7
  year: 2012
  ident: bib37
  article-title: Trans-synaptic spread of tau pathology in vivo
  publication-title: PLoS One
– year: 1979
  ident: bib61
  article-title: Introduction to Graph Theory
– volume: 89
  start-page: 2031
  year: 2017
  end-page: 2038
  ident: bib21
  article-title: In vivo staging of regional amyloid deposition
  publication-title: Neurology
– volume: 80
  start-page: 247
  year: 2016
  end-page: 258
  ident: bib10
  article-title: In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum
  publication-title: Ann. Neurol.
– volume: 15
  start-page: 3720
  year: 2007
  ident: bib59
  article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 27
  start-page: 871
  year: 2021
  end-page: 881
  ident: bib58
  article-title: Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  publication-title: Nat. Med.
– volume: 23
  start-page: 101848
  year: 2019
  ident: bib45
  article-title: Tau covariance patterns in Alzheimer’s disease patients match intrinsic connectivity networks in the healthy brain
  publication-title: NeuroImage Clin.
– volume: 26
  start-page: 3508
  year: 2016
  end-page: 3526
  ident: bib18
  article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture
  publication-title: Cereb. Cortex
– volume: 24
  start-page: 29
  year: 2018
  end-page: 38
  ident: bib22
  article-title: Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation
  publication-title: Nat. Med.
– volume: 10
  start-page: 359
  year: 2015
  end-page: 369
  ident: bib49
  article-title: Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease
  publication-title: Cell Rep.
– volume: 27
  start-page: 879
  year: 2006
  end-page: 881
  ident: bib17
  article-title: Corpus callosum diffusion anisotropy correlates with neuropsychological outcomes in twins disconcordant for traumatic brain injury
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 66
  start-page: 49
  year: 2018
  end-page: 58
  ident: bib16
  article-title: Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake
  publication-title: Neurobiol. Aging
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  ident: bib2
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers. Dement.
– volume: 110
  start-page: 9535
  year: 2013
  end-page: 9540
  ident: bib13
  article-title: Brain homogenates from human tauopathies induce tau inclusions in mouse brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 220
  start-page: 116991
  year: 2020
  ident: bib52
  article-title: Inferior temporal tau is associated with accelerated prospective cortical thinning in clinically normal older adults
  publication-title: NeuroImage
– year: 2000
  ident: bib23
  article-title: Understanding Robust and Exploratory Data Analysis
– volume: 24
  start-page: 1112
  year: 2019
  end-page: 1134
  ident: bib36
  article-title: Tau PET imaging in neurodegenerative tauopathies—still a challenge
  publication-title: Mol. Psychiatry
– volume: 128
  start-page: 755
  year: 2014
  end-page: 766
  ident: bib14
  article-title: Primary age-related tauopathy (PART): a common pathology associated with human aging
  publication-title: Acta neuropathol.
– volume: 384
  start-page: 1691
  year: 2021
  end-page: 1704
  ident: bib43
  article-title: Donanemab in early Alzheimer’s disease
  publication-title: N. Engl. J. Med.
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  ident: bib4
  article-title: The basis of anisotropic water diffusion in the nervous system – a technical review
  publication-title: NMR Biomed.
– year: 2017
  ident: bib25
  article-title: Medical Biostatistics
– volume: 47
  start-page: 2879
  year: 2020
  end-page: 2886
  ident: bib3
  article-title: Temporal trajectories of in vivo tau and amyloid-β accumulation in Alzheimer’s disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 11
  start-page: 13
  year: 2019
  ident: bib55
  article-title: 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes
  publication-title: Alzheimers Res. Ther.
– volume: 10
  year: 2014
  ident: bib26
  article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders
  publication-title: PLoS Comput. Biol.
– volume: 65
  start-page: 1509
  year: 2008
  end-page: 1517
  ident: bib1
  article-title: Frequent amyloid deposition without significant cognitive impairment Among the elderly
  publication-title: Arch. Neurol.
– volume: 32
  start-page: 16265
  year: 2012
  end-page: 16273
  ident: bib34
  article-title: Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia
  publication-title: J. Neurosci.
– volume: 88
  start-page: 1095
  year: 2017
  end-page: 1097
  ident: bib38
  article-title: Elevated (18)F-AV-1451 PET tracer uptake detected in incidental imaging findings
  publication-title: Neurology
– volume: 91
  start-page: e1295
  year: 2018
  end-page: e1306
  ident: bib41
  article-title: Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease
  publication-title: Neurology
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib5
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B Methodol.
– volume: 24
  start-page: 1910
  year: 2018
  end-page: 1918
  ident: bib53
  article-title: Neurogenetic contributions to amyloid beta and tau spreading in the human cortex
  publication-title: Nat. Med.
– volume: 157
  start-page: 448
  year: 2017
  end-page: 463
  ident: bib39
  article-title: Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease
  publication-title: NeuroImage
– volume: 58
  start-page: 1791
  year: 2002
  end-page: 1800
  ident: bib54
  article-title: Phases of A beta-deposition in the human brain and its relevance for the development of AD
  publication-title: Neurology
– volume: 45
  start-page: 2439
  year: 2007
  end-page: 2446
  ident: bib20
  article-title: Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging
  publication-title: Neuropsychologia
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: bib42
  article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers. Dement.
– volume: 138
  start-page: 2732
  year: 2015
  end-page: 2749
  ident: bib46
  article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features
  publication-title: Brain
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  ident: bib7
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
– volume: 73
  start-page: 1204
  year: 2012
  end-page: 1215
  ident: bib48
  article-title: A network diffusion model of disease progression in dementia
  publication-title: Neuron
– volume: 112
  start-page: 389
  year: 2006
  end-page: 404
  ident: bib6
  article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry
  publication-title: Acta Neuropathol.
– volume: 104
  start-page: 856
  year: 2019
  end-page: 868.e5
  ident: bib9
  article-title: Patient-tailored, connectivity-based forecasts of spreading brain atrophy
  publication-title: Neuron
– volume: 53
  start-page: 378
  year: 2012
  end-page: 384
  ident: bib32
  article-title: Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects
  publication-title: J. Nucl. Med.
– volume: 10
  start-page: 232
  year: 2018
  end-page: 236
  ident: bib35
  article-title: Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding
  publication-title: Alzheimers. Dement. (Amst)
– volume: 8
  start-page: 1349
  year: 2017
  ident: bib40
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2612
  year: 2020
  ident: bib57
  article-title: Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease
  publication-title: Nat. Commun.
– volume: 79
  start-page: 110
  year: 2016
  end-page: 119
  ident: bib31
  article-title: Tau positron emission tomographic imaging in aging and early Alzheimer disease
  publication-title: Ann. Neurol.
– volume: 25
  start-page: 715
  year: 2012
  end-page: 720
  ident: bib44
  article-title: Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement
  publication-title: Curr. Opin. Neurol.
– volume: 74
  start-page: 201
  year: 2010
  end-page: 209
  ident: bib47
  article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization
  publication-title: Neurology
– volume: 107
  start-page: 10256
  year: 2010
  end-page: 10261
  ident: bib62
  article-title: Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional–executive network function in Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 139
  start-page: 27
  year: 2020
  end-page: 43
  ident: bib33
  article-title: Evidence of corticofugal tau spreading in patients with frontotemporal dementia
  publication-title: Acta Neuropathol.
– volume: 13
  start-page: 27
  year: 2021
  ident: bib51
  article-title: Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer’s disease: findings from the Colombia-Boston (COLBOS) biomarker study
  publication-title: Alzheimer’s Res. Therapy
– volume: 59
  start-page: 117
  year: 2018
  end-page: 120
  ident: bib12
  article-title: Off-target 18F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation
  publication-title: J. Nucl. Med.
– volume: 7
  start-page: 270
  year: 2011
  ident: 10.1016/j.neuron.2022.03.034_bib2
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers. Dement.
  doi: 10.1016/j.jalz.2011.03.008
– volume: 8
  start-page: 1349
  year: 2017
  ident: 10.1016/j.neuron.2022.03.034_bib40
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01285-x
– volume: 9
  start-page: 119
  year: 2010
  ident: 10.1016/j.neuron.2022.03.034_bib27
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 23
  start-page: 101848
  year: 2019
  ident: 10.1016/j.neuron.2022.03.034_bib45
  article-title: Tau covariance patterns in Alzheimer’s disease patients match intrinsic connectivity networks in the healthy brain
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.101848
– volume: 7
  year: 2012
  ident: 10.1016/j.neuron.2022.03.034_bib37
  article-title: Trans-synaptic spread of tau pathology in vivo
  publication-title: PLoS One
– volume: 225
  start-page: 1168
  year: 1984
  ident: 10.1016/j.neuron.2022.03.034_bib24
  article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation
  publication-title: Science
  doi: 10.1126/science.6474172
– volume: 73
  start-page: 1204
  year: 2012
  ident: 10.1016/j.neuron.2022.03.034_bib48
  article-title: A network diffusion model of disease progression in dementia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.040
– volume: 47
  start-page: 2879
  year: 2020
  ident: 10.1016/j.neuron.2022.03.034_bib3
  article-title: Temporal trajectories of in vivo tau and amyloid-β accumulation in Alzheimer’s disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-020-04773-3
– volume: 24
  start-page: 1910
  year: 2018
  ident: 10.1016/j.neuron.2022.03.034_bib53
  article-title: Neurogenetic contributions to amyloid beta and tau spreading in the human cortex
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0206-4
– volume: 11
  start-page: 757
  year: 2015
  ident: 10.1016/j.neuron.2022.03.034_bib30
  article-title: The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015
  publication-title: Alzheimers. Dement.
  doi: 10.1016/j.jalz.2015.05.001
– volume: 112
  start-page: 389
  year: 2006
  ident: 10.1016/j.neuron.2022.03.034_bib6
  article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-006-0127-z
– volume: 80
  start-page: 247
  year: 2016
  ident: 10.1016/j.neuron.2022.03.034_bib10
  article-title: In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24711
– volume: 65
  start-page: 1509
  year: 2008
  ident: 10.1016/j.neuron.2022.03.034_bib1
  article-title: Frequent amyloid deposition without significant cognitive impairment Among the elderly
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.65.11.1509
– volume: 10
  year: 2014
  ident: 10.1016/j.neuron.2022.03.034_bib26
  article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003956
– volume: 15
  start-page: 435
  year: 2002
  ident: 10.1016/j.neuron.2022.03.034_bib4
  article-title: The basis of anisotropic water diffusion in the nervous system – a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.782
– volume: 60
  start-page: 1611
  year: 2019
  ident: 10.1016/j.neuron.2022.03.034_bib11
  article-title: Progressive tau accumulation in Alzheimer disease: 2-year follow-up study
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.118.221697
– volume: 139
  start-page: 27
  year: 2020
  ident: 10.1016/j.neuron.2022.03.034_bib33
  article-title: Evidence of corticofugal tau spreading in patients with frontotemporal dementia
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-019-02075-z
– volume: 24
  start-page: 29
  year: 2018
  ident: 10.1016/j.neuron.2022.03.034_bib22
  article-title: Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation
  publication-title: Nat. Med.
  doi: 10.1038/nm.4443
– volume: 5
  year: 2010
  ident: 10.1016/j.neuron.2022.03.034_bib60
  article-title: The concentration of soluble extracellular amyloid-β protein in acute brain slices from CRND8 mice
  publication-title: PloS One
  doi: 10.1371/journal.pone.0015709
– volume: 13
  start-page: 27
  year: 2021
  ident: 10.1016/j.neuron.2022.03.034_bib51
  article-title: Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer’s disease: findings from the Colombia-Boston (COLBOS) biomarker study
  publication-title: Alzheimer’s Res. Therapy
  doi: 10.1186/s13195-020-00765-5
– volume: 26
  start-page: 3508
  year: 2016
  ident: 10.1016/j.neuron.2022.03.034_bib18
  article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw157
– volume: 19
  start-page: 687
  year: 2018
  ident: 10.1016/j.neuron.2022.03.034_bib29
  article-title: Imaging the evolution and pathophysiology of Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0067-3
– volume: 128
  start-page: 755
  year: 2014
  ident: 10.1016/j.neuron.2022.03.034_bib14
  article-title: Primary age-related tauopathy (PART): a common pathology associated with human aging
  publication-title: Acta neuropathol.
  doi: 10.1007/s00401-014-1349-0
– volume: 10
  start-page: 359
  year: 2015
  ident: 10.1016/j.neuron.2022.03.034_bib49
  article-title: Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.034
– volume: 220
  start-page: 116991
  year: 2020
  ident: 10.1016/j.neuron.2022.03.034_bib52
  article-title: Inferior temporal tau is associated with accelerated prospective cortical thinning in clinically normal older adults
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116991
– volume: 5
  start-page: 10057
  year: 2015
  ident: 10.1016/j.neuron.2022.03.034_bib63
  article-title: A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s disease
  publication-title: Sci. Rep.
  doi: 10.1038/srep10057
– volume: 10
  start-page: 232
  year: 2018
  ident: 10.1016/j.neuron.2022.03.034_bib35
  article-title: Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding
  publication-title: Alzheimers. Dement. (Amst)
  doi: 10.1016/j.dadm.2018.01.007
– volume: 121
  start-page: 589
  year: 2011
  ident: 10.1016/j.neuron.2022.03.034_bib8
  article-title: Alzheimer’s pathogenesis: is there neuron-to-neuron propagation?
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-011-0825-z
– volume: 11
  start-page: 2612
  year: 2020
  ident: 10.1016/j.neuron.2022.03.034_bib57
  article-title: Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15701-2
– volume: 31
  start-page: 15775
  year: 2011
  ident: 10.1016/j.neuron.2022.03.034_bib56
  article-title: Rich-club organization of the human connectome
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3539-11.2011
– volume: 110
  start-page: 9535
  year: 2013
  ident: 10.1016/j.neuron.2022.03.034_bib13
  article-title: Brain homogenates from human tauopathies induce tau inclusions in mouse brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1301175110
– volume: 11
  start-page: 13
  year: 2019
  ident: 10.1016/j.neuron.2022.03.034_bib55
  article-title: 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/s13195-019-0470-7
– year: 1979
  ident: 10.1016/j.neuron.2022.03.034_bib61
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.neuron.2022.03.034_bib5
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 11
  start-page: 347
  year: 2020
  ident: 10.1016/j.neuron.2022.03.034_bib19
  article-title: Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14159-1
– volume: 89
  start-page: 2031
  year: 2017
  ident: 10.1016/j.neuron.2022.03.034_bib21
  article-title: In vivo staging of regional amyloid deposition
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004643
– year: 2000
  ident: 10.1016/j.neuron.2022.03.034_bib23
– volume: 88
  start-page: 1095
  year: 2017
  ident: 10.1016/j.neuron.2022.03.034_bib38
  article-title: Elevated (18)F-AV-1451 PET tracer uptake detected in incidental imaging findings
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003724
– volume: 27
  start-page: 879
  year: 2006
  ident: 10.1016/j.neuron.2022.03.034_bib17
  article-title: Corpus callosum diffusion anisotropy correlates with neuropsychological outcomes in twins disconcordant for traumatic brain injury
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 25
  start-page: 715
  year: 2012
  ident: 10.1016/j.neuron.2022.03.034_bib44
  article-title: Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32835a30f4
– volume: 58
  start-page: 1791
  year: 2002
  ident: 10.1016/j.neuron.2022.03.034_bib54
  article-title: Phases of A beta-deposition in the human brain and its relevance for the development of AD
  publication-title: Neurology
  doi: 10.1212/WNL.58.12.1791
– volume: 24
  start-page: 1112
  year: 2019
  ident: 10.1016/j.neuron.2022.03.034_bib36
  article-title: Tau PET imaging in neurodegenerative tauopathies—still a challenge
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-018-0342-8
– volume: 45
  start-page: 2439
  year: 2007
  ident: 10.1016/j.neuron.2022.03.034_bib20
  article-title: Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2007.04.011
– volume: 73
  start-page: 1216
  year: 2012
  ident: 10.1016/j.neuron.2022.03.034_bib64
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.004
– volume: 79
  start-page: 110
  year: 2016
  ident: 10.1016/j.neuron.2022.03.034_bib31
  article-title: Tau positron emission tomographic imaging in aging and early Alzheimer disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24546
– volume: 32
  start-page: 16265
  year: 2012
  ident: 10.1016/j.neuron.2022.03.034_bib34
  article-title: Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2170-12.2012
– volume: 384
  start-page: 1691
  year: 2021
  ident: 10.1016/j.neuron.2022.03.034_bib43
  article-title: Donanemab in early Alzheimer’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2100708
– volume: 91
  start-page: e1295
  year: 2018
  ident: 10.1016/j.neuron.2022.03.034_bib41
  article-title: Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006277
– volume: 15
  start-page: 3720
  year: 2007
  ident: 10.1016/j.neuron.2022.03.034_bib59
  article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 157
  start-page: 448
  year: 2017
  ident: 10.1016/j.neuron.2022.03.034_bib39
  article-title: Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.05.058
– volume: 59
  start-page: 117
  year: 2018
  ident: 10.1016/j.neuron.2022.03.034_bib12
  article-title: Off-target 18F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.117.195248
– volume: 53
  start-page: 378
  year: 2012
  ident: 10.1016/j.neuron.2022.03.034_bib32
  article-title: Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.111.090340
– volume: 7
  start-page: 263
  year: 2011
  ident: 10.1016/j.neuron.2022.03.034_bib42
  article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers. Dement.
  doi: 10.1016/j.jalz.2011.03.005
– volume: 13
  year: 2021
  ident: 10.1016/j.neuron.2022.03.034_bib50
  article-title: The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abc0655
– volume: 49
  start-page: 786
  year: 1997
  ident: 10.1016/j.neuron.2022.03.034_bib28
  article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.49.3.786
– volume: 66
  start-page: 49
  year: 2018
  ident: 10.1016/j.neuron.2022.03.034_bib16
  article-title: Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2018.01.024
– volume: 107
  start-page: 10256
  year: 2010
  ident: 10.1016/j.neuron.2022.03.034_bib62
  article-title: Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional–executive network function in Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1001412107
– volume: 82
  start-page: 239
  year: 1991
  ident: 10.1016/j.neuron.2022.03.034_bib7
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00308809
– volume: 138
  start-page: 2732
  year: 2015
  ident: 10.1016/j.neuron.2022.03.034_bib46
  article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features
  publication-title: Brain
  doi: 10.1093/brain/awv191
– volume: 104
  start-page: 856
  year: 2019
  ident: 10.1016/j.neuron.2022.03.034_bib9
  article-title: Patient-tailored, connectivity-based forecasts of spreading brain atrophy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.08.037
– year: 2017
  ident: 10.1016/j.neuron.2022.03.034_bib25
– volume: 27
  start-page: 871
  year: 2021
  ident: 10.1016/j.neuron.2022.03.034_bib58
  article-title: Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01309-6
– volume: 18
  start-page: 531
  year: 2021
  ident: 10.1016/j.neuron.2022.03.034_bib15
  article-title: Aducanumab: appropriate use recommendations
  publication-title: Alzheimers Dem.
  doi: 10.1002/alz.12444
– volume: 74
  start-page: 201
  year: 2010
  ident: 10.1016/j.neuron.2022.03.034_bib47
  article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
– reference: 35508634 - Nat Rev Neurol. 2022 Jun;18(6):318. doi: 10.1038/s41582-022-00667-0
SSID ssj0014591
Score 2.6289818
Snippet Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here,...
Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here,...
Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but how these proteins interact to promote disease remains unclear. Here, by...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1932
SubjectTerms Acceleration
Alzheimer Disease - metabolism
Alzheimer’s disease
Amyloid beta-Peptides - metabolism
amyloid-beta
Brain - metabolism
connectome
Cross-Sectional Studies
DTI
Humans
PET
Positron-Emission Tomography - methods
tau
tau Proteins - metabolism
Title Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading
URI https://dx.doi.org/10.1016/j.neuron.2022.03.034
https://www.ncbi.nlm.nih.gov/pubmed/35443153
https://www.proquest.com/docview/2653269040
https://pubmed.ncbi.nlm.nih.gov/PMC9233123
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBUhpdBNaZM-pm2CAqU7MWNLI0tLNySEhmSRNnR2QpLlZkLiGeaxSFf9jf5GPiQf0S_pvZI9dFpKIOCNbcnIunocSeeeS8h75WzhrXNMOe2YELlgzkvPpHaZslJJ69FR-ORUHp2LT6PhaIPsd74wSKtsx_40psfRun3Sb2uzPx2P-58HSqN6ObTICIRxCcSFik58o4-rkwQxTFHzIDHD1J37XOR4Rc1IVEHN8yh1ysX_pqd_4effLMo_pqXDZ-RpiydpmYr8nGyEZotslw2spa9v6AcaGZ5x63yLPE6BJ2-2iT8L3-IeIC3vbtnCLinKRsySk8OcTiNHL1BkWi-obSpqvYf5KbUWOqlpefX9Ioyvw-zXj59z2p7yUPzQfDpLvPwX5Pzw4Mv-EWvDLTDPCyXAUMHZCiCZz31R585q56TOHFRaVhdFGChb6IFUrs4rGWClVQVtpQOAAquiUFn-kmw2kya8JjR4q5UFJGaRB-iE43VdefiKlAJjUfQI72rZ-FaLHENiXJmOdHZpkm0M2sYMOFyiR9gq1zRpcdyTvugMaNbalIHp4p6ce529DXQ3PEOxTZgs5yaXQwC8Goa-HnmV7L8qC0ctwQz_rlhrGasEKOW9_qYZX0RJb4DZHDDEmweX-C15gndIYsuG78jmYrYMOwCXFm6XPCqPz74e78Z-8RvPnhr2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLWqIgSbClqgKS8jIXZWMjOOH8tQUaXQdgGtlJ1lezw0qJ1EeSzaFb_R3-iH8BF8CffaMxEBoUpIs5qxLY-vH-fax-cS8lY5K711jimnHeM858x54ZnQLlNWKGE9XhQ-PhHDM_5x1B9tkP32LgzSKpu5P83pcbZu3nSb1uxOx-Pul57SqF4OPTICYXCB7gEakBi_4XD0fnWUwPspbB6kZpi8vT8XSV5RNBJlUPM8ap0W_F_r09_4808a5W_r0sEjstUASjpIdX5MNkK9TXYGNTjTl1f0HY0Uz7h3vk3up8iTVzvEfw5f4yYgHfy4ZQu7pKgbMUu3HOZ0Gkl6gSLVekFtXVLrPSxQqbvQSUUHF9fnYXwZZj-_38xpc8xDsaD5dJaI-U_I2cGH0_0ha-ItMF9IxcFSwdkSMJnPvaxyZ7VzQmcOGi2rpAw9ZaXuCeWqvBQBXK0yaCscIBRwi0Jpi6dks57UYZfQ4K1WFqCYRSKg466oqtJDKUJwDEbRIUXbysY3YuQYE-PCtKyzbybZxqBtTK-Ah3cIW-WaJjGOO9LL1oBmrVMZWC_uyPmmtbeB8YaHKLYOk-Xc5KIPiFfD3Nchz5L9V3UpUEwww7-Taz1jlQC1vNe_1OPzqOkNOLsAELH33zV-TR4MT4-PzNHhyafn5CF-QUZb1n9BNhezZXgJ2GnhXsWx8QsZVBxy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+A%CE%B2-tau+interactions+promote+onset+and+acceleration+of+Alzheimer%27s+disease+tau+spreading&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Lee%2C+Wha+Jin&rft.au=Brown%2C+Jesse+A&rft.au=Kim%2C+Hye+Ryun&rft.au=La+Joie%2C+Renaud&rft.date=2022-06-15&rft.eissn=1097-4199&rft.volume=110&rft.issue=12&rft.spage=1932&rft_id=info:doi/10.1016%2Fj.neuron.2022.03.034&rft_id=info%3Apmid%2F35443153&rft.externalDocID=35443153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon