Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading
Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloi...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 110; no. 12; pp. 1932 - 1943.e5 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition.
[Display omitted]
•Network flow-based model identifies tau propagation hubs in inferior temporal gyri•Remote Aβ-tau interactions in entorhinal cortex may trigger initial tau spreading•Local Aβ-tau interactions in inferior temporal gyrus may promote tau propagation•Connectivity-based model addresses the spatial incongruity between early Aβ and tau
Lee et al. show that the natural history of AD traverses a critical period that begins once Aβ emerges within entorhinal cortex (EC)-connected regions, continues as tau spreads from the EC into connected mesial temporal and limbic regions, and may end once Aβ and tau interact within the inferior temporal gyrus propagation hubs, whose connections are well suited to facilitate widespread neocortical tau propagation. |
---|---|
AbstractList | Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition.Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition. Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition. Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition. [Display omitted] •Network flow-based model identifies tau propagation hubs in inferior temporal gyri•Remote Aβ-tau interactions in entorhinal cortex may trigger initial tau spreading•Local Aβ-tau interactions in inferior temporal gyrus may promote tau propagation•Connectivity-based model addresses the spatial incongruity between early Aβ and tau Lee et al. show that the natural history of AD traverses a critical period that begins once Aβ emerges within entorhinal cortex (EC)-connected regions, continues as tau spreads from the EC into connected mesial temporal and limbic regions, and may end once Aβ and tau interact within the inferior temporal gyrus propagation hubs, whose connections are well suited to facilitate widespread neocortical tau propagation. Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but how these proteins interact to promote disease remains unclear. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectionally mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well-suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition. “Lee et al. show that the natural history of AD traverses a critical period that begins once Aβ emerges within entorhinal cortex (EC)-connected regions, continues as tau spreads from the EC into connected mesial temporal and limbic regions, and may end once Aβ and tau interact within the inferior temporal gyrus propagation hubs, whose connections are well-suited to facilitate widespread neocortical tau propagation.” |
Author | Seong, Joon-Kyung Cho, Hanna Kim, Hye Ryun Lee, Wha Jin Rabinovici, Gil D. Brown, Jesse A. Lyoo, Chul Hyoung Seeley, William W. La Joie, Renaud |
AuthorAffiliation | 2 University of California, San Francisco, Memory and Aging Center, Department of Neurology, San Francisco, CA 94143, USA 1 Korea University, School of Biomedical Engineering, Seoul, 02841, Korea 5 Gangnam Severance Hospital, Department of Neurology, Seoul, 06273, Korea 3 University of California, San Francisco, Weill Institute for Neurosciences, San Francisco, CA 94143, USA 7 Korea University, Department of Artificial Intelligence, Seoul, 02841, Korea 4 Korea University, Global Health Technology Research Center, College of Health Science, Seoul, 02841, Korea 6 University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA 94143, USA 9 Lead Contact 8 University of California, San Francisco, Department of Pathology, San Francisco, CA 94143, USA |
AuthorAffiliation_xml | – name: 9 Lead Contact – name: 5 Gangnam Severance Hospital, Department of Neurology, Seoul, 06273, Korea – name: 1 Korea University, School of Biomedical Engineering, Seoul, 02841, Korea – name: 3 University of California, San Francisco, Weill Institute for Neurosciences, San Francisco, CA 94143, USA – name: 4 Korea University, Global Health Technology Research Center, College of Health Science, Seoul, 02841, Korea – name: 2 University of California, San Francisco, Memory and Aging Center, Department of Neurology, San Francisco, CA 94143, USA – name: 6 University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA 94143, USA – name: 8 University of California, San Francisco, Department of Pathology, San Francisco, CA 94143, USA – name: 7 Korea University, Department of Artificial Intelligence, Seoul, 02841, Korea |
Author_xml | – sequence: 1 givenname: Wha Jin surname: Lee fullname: Lee, Wha Jin organization: School of Biomedical Engineering, Korea University, Seoul 02841, South Korea – sequence: 2 givenname: Jesse A. surname: Brown fullname: Brown, Jesse A. organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA – sequence: 3 givenname: Hye Ryun surname: Kim fullname: Kim, Hye Ryun organization: School of Biomedical Engineering, Korea University, Seoul 02841, South Korea – sequence: 4 givenname: Renaud surname: La Joie fullname: La Joie, Renaud organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA – sequence: 5 givenname: Hanna surname: Cho fullname: Cho, Hanna organization: Department of Neurology, Gangnam Severance Hospital, Seoul 06273, South Korea – sequence: 6 givenname: Chul Hyoung surname: Lyoo fullname: Lyoo, Chul Hyoung organization: Department of Neurology, Gangnam Severance Hospital, Seoul 06273, South Korea – sequence: 7 givenname: Gil D. surname: Rabinovici fullname: Rabinovici, Gil D. organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA – sequence: 8 givenname: Joon-Kyung surname: Seong fullname: Seong, Joon-Kyung email: jkseong@korea.ac.kr organization: School of Biomedical Engineering, Korea University, Seoul 02841, South Korea – sequence: 9 givenname: William W. surname: Seeley fullname: Seeley, William W. email: bill.seeley@ucsf.edu organization: Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35443153$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU2KFDEUDjLi9LTeQCRLN9Xmr1MVF0Iz-AcDgug6pJJXPWmqkjZJDejKa3gND-IhPIlpu0fUhcILCXnfT_K9C3QWYgCEHlKyooTKJ7tVgDnFsGKEsRXhtcQdtKBEtY2gSp2hBemUbCRr-Tm6yHlHCBVrRe-hc74WgtM1XyD7FrY-BjPizbevTTEz9qFAMrbU24z3KU6xAK5nKNgEh421MFbAoY_jgDfjp2vwE6Tvn79k7HwGkwEfhPI-gXE-bO-ju4MZMzw47Uv0_sXzd5evmqs3L19fbq4ay9tONEJAbxzpuGW2HVhvVN9LRfv6fjq0LZDOtIrIrh-Yk8C61oEysies6yQDZ_gSPTvq7ud-AmchlGRGvU9-MumjjsbrPzvBX-ttvNGKcU7rWqLHJ4EUP8yQi558rt8dTYA4Z83kmjOpiCAV-uh3r18mt8lWwNMjwKaYc4JBW19-plat_agp0Ycx6p0-jlEfxqgJryUqWfxFvtX_D-0UANSUbzwkna2HYMH5BLZoF_2_BX4ApKW9gA |
CitedBy_id | crossref_primary_10_1002_hbm_70083 crossref_primary_10_3233_JAD_230367 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_1162_netn_a_00327 crossref_primary_10_1186_s40478_023_01581_2 crossref_primary_10_1016_j_nbd_2023_105991 crossref_primary_10_1007_s00401_024_02839_2 crossref_primary_10_3389_fnins_2024_1345225 crossref_primary_10_1016_j_biopha_2023_115999 crossref_primary_10_1038_s41583_023_00779_6 crossref_primary_10_1016_j_brainresbull_2023_110777 crossref_primary_10_1038_s41398_023_02572_6 crossref_primary_10_1038_s41591_023_02505_2 crossref_primary_10_1038_s41401_025_01526_6 crossref_primary_10_1126_scitranslmed_abc8693 crossref_primary_10_1093_braincomms_fcad058 crossref_primary_10_1186_s13195_023_01178_w crossref_primary_10_1016_j_heliyon_2023_e17987 crossref_primary_10_1162_imag_a_00089 crossref_primary_10_1016_j_media_2025_103463 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1093_braincomms_fcae031 crossref_primary_10_1016_j_tics_2022_11_015 crossref_primary_10_1016_j_neurobiolaging_2023_10_001 crossref_primary_10_1038_s43587_022_00236_6 crossref_primary_10_1523_JNEUROSCI_0488_23_2023 crossref_primary_10_1007_s12031_024_02212_8 crossref_primary_10_1038_s41582_022_00667_0 crossref_primary_10_31083_j_jin2206138 crossref_primary_10_1038_s41598_023_48993_7 crossref_primary_10_1371_journal_pcbi_1012743 crossref_primary_10_1523_ENEURO_0247_22_2022 crossref_primary_10_1093_braincomms_fcad305 crossref_primary_10_3389_fnagi_2024_1442721 crossref_primary_10_1007_s11682_024_00933_3 crossref_primary_10_3390_brainsci14060575 crossref_primary_10_1016_j_neuroimage_2024_120737 crossref_primary_10_1038_s41467_022_32592_7 crossref_primary_10_1109_TMI_2024_3502545 crossref_primary_10_1038_s41593_024_01763_8 crossref_primary_10_1093_braincomms_fcae198 crossref_primary_10_1126_sciadv_adp5978 crossref_primary_10_1038_s12276_024_01274_3 crossref_primary_10_1016_j_media_2024_103210 crossref_primary_10_1186_s13195_024_01520_w crossref_primary_10_1093_braincomms_fcaf099 crossref_primary_10_1016_j_nbd_2024_106427 crossref_primary_10_1002_btm2_10459 crossref_primary_10_1016_j_nicl_2024_103660 crossref_primary_10_1038_s41593_024_01610_w crossref_primary_10_1002_alz_14378 crossref_primary_10_1186_s40035_025_00479_4 crossref_primary_10_3233_JAD_220975 crossref_primary_10_1016_j_jare_2023_04_014 crossref_primary_10_1109_TMI_2023_3309821 crossref_primary_10_1016_j_neurobiolaging_2024_02_013 crossref_primary_10_1016_j_celrep_2024_113691 crossref_primary_10_1111_jnc_15713 crossref_primary_10_1093_brain_awae116 crossref_primary_10_1162_imag_a_00026 crossref_primary_10_3233_JAD_231362 crossref_primary_10_1177_13872877241294084 crossref_primary_10_1002_alz_13164 crossref_primary_10_1093_brain_awac299 crossref_primary_10_3233_JAD_231320 crossref_primary_10_1093_cercor_bhae386 crossref_primary_10_1002_ana_26813 crossref_primary_10_1016_j_neulet_2024_137943 crossref_primary_10_3389_fnagi_2024_1402573 crossref_primary_10_2196_57830 crossref_primary_10_1001_jamaneurol_2023_4038 crossref_primary_10_1016_j_neurobiolaging_2025_01_005 crossref_primary_10_1002_ana_26818 crossref_primary_10_1002_alz_13769 crossref_primary_10_2174_0115672050329828240805074938 crossref_primary_10_3233_JAD_240434 crossref_primary_10_3390_ijms251910797 crossref_primary_10_1016_j_neuron_2023_11_014 crossref_primary_10_3389_fnins_2023_1219299 crossref_primary_10_1002_cmdc_202400180 crossref_primary_10_1002_mco2_638 crossref_primary_10_1016_j_tins_2022_11_006 crossref_primary_10_1002_alz_14625 crossref_primary_10_1016_j_nicl_2024_103727 crossref_primary_10_1126_scitranslmed_adp2564 crossref_primary_10_1016_j_clinph_2023_06_008 crossref_primary_10_1016_j_brainresbull_2022_10_006 crossref_primary_10_2174_1566523223666230419101023 crossref_primary_10_3389_fnins_2024_1467333 crossref_primary_10_1093_brain_awad411 crossref_primary_10_1186_s13195_024_01589_3 crossref_primary_10_1016_j_celrep_2025_115422 |
Cites_doi | 10.1016/j.jalz.2011.03.008 10.1038/s41467-017-01285-x 10.1016/S1474-4422(09)70299-6 10.1016/j.nicl.2019.101848 10.1126/science.6474172 10.1016/j.neuron.2011.12.040 10.1007/s00259-020-04773-3 10.1038/s41591-018-0206-4 10.1016/j.jalz.2015.05.001 10.1007/s00401-006-0127-z 10.1002/ana.24711 10.1001/archneur.65.11.1509 10.1371/journal.pcbi.1003956 10.1002/nbm.782 10.2967/jnumed.118.221697 10.1007/s00401-019-02075-z 10.1038/nm.4443 10.1371/journal.pone.0015709 10.1186/s13195-020-00765-5 10.1093/cercor/bhw157 10.1038/s41583-018-0067-3 10.1007/s00401-014-1349-0 10.1016/j.celrep.2014.12.034 10.1016/j.neuroimage.2020.116991 10.1038/srep10057 10.1016/j.dadm.2018.01.007 10.1007/s00401-011-0825-z 10.1038/s41467-020-15701-2 10.1523/JNEUROSCI.3539-11.2011 10.1073/pnas.1301175110 10.1186/s13195-019-0470-7 10.1111/j.2517-6161.1995.tb02031.x 10.1038/s41467-019-14159-1 10.1212/WNL.0000000000004643 10.1212/WNL.0000000000003724 10.1097/WCO.0b013e32835a30f4 10.1212/WNL.58.12.1791 10.1038/s41380-018-0342-8 10.1016/j.neuropsychologia.2007.04.011 10.1016/j.neuron.2012.03.004 10.1002/ana.24546 10.1523/JNEUROSCI.2170-12.2012 10.1056/NEJMoa2100708 10.1212/WNL.0000000000006277 10.1016/j.neuroimage.2017.05.058 10.2967/jnumed.117.195248 10.2967/jnumed.111.090340 10.1016/j.jalz.2011.03.005 10.1126/scitranslmed.abc0655 10.1212/WNL.49.3.786 10.1016/j.neurobiolaging.2018.01.024 10.1073/pnas.1001412107 10.1007/BF00308809 10.1093/brain/awv191 10.1016/j.neuron.2019.08.037 10.1038/s41591-021-01309-6 10.1002/alz.12444 10.1212/WNL.0b013e3181cb3e25 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.neuron.2022.03.034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 1943.e5 |
ExternalDocumentID | PMC9233123 35443153 10_1016_j_neuron_2022_03_034 S0896627322003051 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG062422 – fundername: NIA NIH HHS grantid: K01 AG055698 – fundername: NIA NIH HHS grantid: K99 AG065501 – fundername: NIA NIH HHS grantid: P01 AG019724 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M2O M3Z M41 N9A O-L O9- OK1 P2P P6G PQQKQ PROAC RCE ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FGOYB G-2 HZ~ ITC MVM OZT R2- RIG X7M ZGI ZKB CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3784-44ebad083c2c7f2ba9bb691b2731f77e08a79068bf2d6e287de9a6b028862eda3 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:37:37 EDT 2025 Fri Jul 11 00:03:52 EDT 2025 Mon Jul 21 05:59:34 EDT 2025 Tue Jul 01 01:16:28 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Fri Feb 23 02:40:48 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | amyloid-beta DTI tau connectome Alzheimer’s disease PET |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3784-44ebad083c2c7f2ba9bb691b2731f77e08a79068bf2d6e287de9a6b028862eda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 W.L., J.S. and W.W.S. conceived and designed the study. W.L., H.K., H.C. and C.L. contributed to data acquisition and processing. W.L. performed the experimental work and W.L., J.A.B., J.S. and W.W.S. analyzed and interpreted the results. W.L., J.A.B., J.S. and W.W.S. wrote the manuscript, and J.S. and W.W.S. substantively revised it. All authors participated in the discussion and critically reviewed the paper. These authors contributed equally. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf Author contributions |
OpenAccessLink | https://ir.ymlib.yonsei.ac.kr/handle/22282913/191583 |
PMID | 35443153 |
PQID | 2653269040 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9233123 proquest_miscellaneous_2653269040 pubmed_primary_35443153 crossref_citationtrail_10_1016_j_neuron_2022_03_034 crossref_primary_10_1016_j_neuron_2022_03_034 elsevier_sciencedirect_doi_10_1016_j_neuron_2022_03_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cummings, Salloway (bib15) 2021; 18 Iturria-Medina, Sotero, Toussaint, Evans (bib26) 2014; 10 Fan, Li, Zhuo, Zhang, Wang, Chen, Yang, Chu, Xie, Laird (bib18) 2016; 26 Albert, Dekosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen (bib2) 2011; 7 Waters (bib60) 2010; 5 Zhou, Gennatas, Kramer, Miller, Seeley (bib64) 2012; 73 Baek, Cho, Lee, Choi, Lee, Ryu, Lee, Lyoo (bib3) 2020; 47 Johnson, Schultz, Betensky, Becker, Sepulcre, Rentz, Mormino, Chhatwal, Amariglio, Papp (bib31) 2016; 79 Choi, Cho, Ahn, Lee, Ryu, Lee, Lyoo (bib12) 2018; 59 Tsai, Bejanin, Lesman-Segev, Lajoie, Visani, Bourakova, O’Neil, Janabi, Baker, Lee (bib55) 2019; 11 Jagust (bib29) 2018; 19 Musiek, Holtzman (bib44) 2012; 25 Leuzy, Chiotis, Lemoine, Gillberg, Almkvist, Rodriguez-Vieitez, Nordberg (bib36) 2019; 24 Vogel, Young, Oxtoby, Smith, Ossenkoppele, Strandberg, La Joie, Aksman, Grothe, Iturria-Medina (bib58) 2021; 27 Raj, Kuceyeski, Weiner (bib48) 2012; 73 Beaulieu (bib4) 2002; 15 Braak, Alafuzoff, Arzberger, Kretzschmar, Del Tredici (bib6) 2006; 112 Clavaguera, Akatsu, Fraser, Crowther, Frank, Hench, Probst, Winkler, Reichwald, Staufenbiel (bib13) 2013; 110 Das, Xie, Wisse, Ittyerah, Tustison, Dickerson, Yushkevich, Wolk (bib16) 2018; 66 Jagust, Landau, Koeppe, Reiman, Chen, Mathis, Price, Foster, Wang (bib30) 2015; 11 Kim, Hwang, Gaus, Nana, Deng, Brown, Spina, Lee, Ramos, Grinberg (bib33) 2020; 139 Lockhart, Ayakta, Winer, La Joie, Rabinovici, Jagust (bib38) 2017; 88 Maass, Landau, Baker, Horng, Lockhart, La Joie, Rabinovici, Jagust (bib39) 2017; 157 La Joie, Perrotin, Barrë, Hommet, Mëzenge, Ibazizene, Camus, Abbas, Landeau, Guilloteau (bib34) 2012; 32 Sanchez, Becker, Jacobs, Hanseeuw, Jiang, Schultz, Properzi, Katz, Beiser, Satizabal (bib50) 2021; 13 Ossenkoppele, Pijnenburg, Perry, Cohn-Sheehy, Scheltens, Vogel, Kramer, Van Der Vlies, La Joie, Rosen (bib46) 2015; 138 Ewing-Cobbs, Hasan, Prasad, Kramer, Bachevalier (bib17) 2006; 27 Mcdade, Wang, Gordon, Hassenstab, Benzinger, Buckles, Fagan, Holtzman, Cairns, Goate (bib41) 2018; 91 Braak, Del Tredici (bib8) 2011; 121 Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib27) 2010; 9 Joshi, Pontecorvo, Clark, Carpenter, Jennings, Sadowsky, Adler, Kovnat, Seibyl, Arora (bib32) 2012; 53 Hyman, Damasio, Van Hoesen, Barnes (bib24) 1984; 225 Lemoine, Leuzy, Chiotis, Rodriguez-Vieitez, Nordberg (bib35) 2018; 10 Van Den Heuvel, Sporns (bib56) 2011; 31 Hoaglin, Mosteller, Tukey (bib23) 2000 Jack, Petersen, Xu, Waring, O'Brien, Tangalos, Smith, Ivnik, Kokmen (bib28) 1997; 49 Grothe, Barthel, Sepulcre, Dyrba, Sabri, Teipel (bib21) 2017; 89 Ossenkoppele, Iaccarino, Schonhaut, Brown, La Joie, O'Neil, Janabi, Baker, Kramer, Gorno-Tempini (bib45) 2019; 23 Wilson (bib61) 1979 Scott, Hampton, Buckley, Chhatwal, Hanseeuw, Jacobs, Properzi, Sanchez, Johnson, Sperling (bib52) 2020; 220 Braak, Braak (bib7) 1991; 82 Franzmeier, Neitzel, Rubinski, Smith, Strandberg, Ossenkoppele, Hansson, Ewers, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (bib19) 2020; 11 Wook Yoo, Han, Shin, Won Seo, Na, Kaiser, Jeong, Seong (bib63) 2015; 5 Maier-Hein, Neher, Houde, Cötë, Garyfallidis, Zhong, Chamberland, Yeh, Lin, Ji (bib40) 2017; 8 Liu, Drouet, Wu, Witter, Small, Clelland, Duff (bib37) 2012; 7 Benjamini, Hochberg (bib5) 1995; 57 Thal, Rüb, Orantes, Braak (bib54) 2002; 58 Cho, Choi, Hwang, Kim, Lee, Lee, Lee, Ryu, Lee, Lyoo (bib10) 2016; 80 Wang, Benner, Sorensen, Wedeen (bib59) 2007; 15 He, Guo, Mcbride, Narasimhan, Kim, Changolkar, Zhang, Gathagan, Yue, Dengler, Stieber (bib22) 2018; 24 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux (bib42) 2011; 7 Vogel, Iturria-Medina, Strandberg, Smith, Levitis, Evans, Hansson (bib57) 2020; 11 Cho, Choi, Lee, Lee, Ryu, Lee, Jack, Lyoo (bib11) 2019; 60 Crary, Trojanowski, Schneider, Abisambra, Abner, Alafuzoff, Arnold, Attems, Beach, Bigio (bib14) 2014; 128 Sepulcre, Grothe, D'Oleire Uquillas, Ortiz-Terán, Diez, Yang, Jacobs, Hanseeuw, Li, El-Fakhri (bib53) 2018; 24 Wolk, Dickerson (bib62) 2010; 107 Sanchez, Hanseeuw, Lopera, Sperling, Baena, Bocanegra, Aguillon, Guzmãn-Vëlez, Pardilla-Delgado, Ramirez-Gomez (bib51) 2021; 13 Mintun, Lo, Duggan Evans, Wessels, Ardayfio, Andersen, Shcherbinin, Sparks, Sims, Brys (bib43) 2021; 384 Indrayan, Malhotra (bib25) 2017 Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga (bib47) 2010; 74 Raj, Locastro, Kuceyeski, Tosun, Relkin, Weiner, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (bib49) 2015; 10 Gold, Powell, Xuan, Jiang, Hardy (bib20) 2007; 45 Brown, Deng, Neuhaus, Sible, Sias, Lee, Kornak, Marx, Karydas, Spina (bib9) 2019; 104 Aizenstein, Nebes, Saxton, Price, Mathis, Tsopelas, Ziolko, James, Snitz, Houck (bib1) 2008; 65 Hyman (10.1016/j.neuron.2022.03.034_bib24) 1984; 225 Jack (10.1016/j.neuron.2022.03.034_bib27) 2010; 9 Maier-Hein (10.1016/j.neuron.2022.03.034_bib40) 2017; 8 Scott (10.1016/j.neuron.2022.03.034_bib52) 2020; 220 Braak (10.1016/j.neuron.2022.03.034_bib6) 2006; 112 Petersen (10.1016/j.neuron.2022.03.034_bib47) 2010; 74 Baek (10.1016/j.neuron.2022.03.034_bib3) 2020; 47 Mcdade (10.1016/j.neuron.2022.03.034_bib41) 2018; 91 Wilson (10.1016/j.neuron.2022.03.034_bib61) 1979 Aizenstein (10.1016/j.neuron.2022.03.034_bib1) 2008; 65 Beaulieu (10.1016/j.neuron.2022.03.034_bib4) 2002; 15 McKhann (10.1016/j.neuron.2022.03.034_bib42) 2011; 7 Maass (10.1016/j.neuron.2022.03.034_bib39) 2017; 157 Sanchez (10.1016/j.neuron.2022.03.034_bib50) 2021; 13 Thal (10.1016/j.neuron.2022.03.034_bib54) 2002; 58 Lemoine (10.1016/j.neuron.2022.03.034_bib35) 2018; 10 Van Den Heuvel (10.1016/j.neuron.2022.03.034_bib56) 2011; 31 Cho (10.1016/j.neuron.2022.03.034_bib10) 2016; 80 Hoaglin (10.1016/j.neuron.2022.03.034_bib23) 2000 Braak (10.1016/j.neuron.2022.03.034_bib7) 1991; 82 He (10.1016/j.neuron.2022.03.034_bib22) 2018; 24 Kim (10.1016/j.neuron.2022.03.034_bib33) 2020; 139 Liu (10.1016/j.neuron.2022.03.034_bib37) 2012; 7 Brown (10.1016/j.neuron.2022.03.034_bib9) 2019; 104 Wolk (10.1016/j.neuron.2022.03.034_bib62) 2010; 107 Albert (10.1016/j.neuron.2022.03.034_bib2) 2011; 7 Wang (10.1016/j.neuron.2022.03.034_bib59) 2007; 15 Sepulcre (10.1016/j.neuron.2022.03.034_bib53) 2018; 24 Vogel (10.1016/j.neuron.2022.03.034_bib58) 2021; 27 Leuzy (10.1016/j.neuron.2022.03.034_bib36) 2019; 24 Cho (10.1016/j.neuron.2022.03.034_bib11) 2019; 60 Tsai (10.1016/j.neuron.2022.03.034_bib55) 2019; 11 Das (10.1016/j.neuron.2022.03.034_bib16) 2018; 66 Jack (10.1016/j.neuron.2022.03.034_bib28) 1997; 49 Johnson (10.1016/j.neuron.2022.03.034_bib31) 2016; 79 Ossenkoppele (10.1016/j.neuron.2022.03.034_bib45) 2019; 23 Choi (10.1016/j.neuron.2022.03.034_bib12) 2018; 59 Wook Yoo (10.1016/j.neuron.2022.03.034_bib63) 2015; 5 Zhou (10.1016/j.neuron.2022.03.034_bib64) 2012; 73 Benjamini (10.1016/j.neuron.2022.03.034_bib5) 1995; 57 Braak (10.1016/j.neuron.2022.03.034_bib8) 2011; 121 Crary (10.1016/j.neuron.2022.03.034_bib14) 2014; 128 Jagust (10.1016/j.neuron.2022.03.034_bib30) 2015; 11 Musiek (10.1016/j.neuron.2022.03.034_bib44) 2012; 25 Sanchez (10.1016/j.neuron.2022.03.034_bib51) 2021; 13 Ossenkoppele (10.1016/j.neuron.2022.03.034_bib46) 2015; 138 Lockhart (10.1016/j.neuron.2022.03.034_bib38) 2017; 88 Joshi (10.1016/j.neuron.2022.03.034_bib32) 2012; 53 Fan (10.1016/j.neuron.2022.03.034_bib18) 2016; 26 Waters (10.1016/j.neuron.2022.03.034_bib60) 2010; 5 Iturria-Medina (10.1016/j.neuron.2022.03.034_bib26) 2014; 10 Cummings (10.1016/j.neuron.2022.03.034_bib15) 2021; 18 Franzmeier (10.1016/j.neuron.2022.03.034_bib19) 2020; 11 Clavaguera (10.1016/j.neuron.2022.03.034_bib13) 2013; 110 Raj (10.1016/j.neuron.2022.03.034_bib49) 2015; 10 Ewing-Cobbs (10.1016/j.neuron.2022.03.034_bib17) 2006; 27 Mintun (10.1016/j.neuron.2022.03.034_bib43) 2021; 384 Vogel (10.1016/j.neuron.2022.03.034_bib57) 2020; 11 Indrayan (10.1016/j.neuron.2022.03.034_bib25) 2017 Gold (10.1016/j.neuron.2022.03.034_bib20) 2007; 45 Jagust (10.1016/j.neuron.2022.03.034_bib29) 2018; 19 Raj (10.1016/j.neuron.2022.03.034_bib48) 2012; 73 La Joie (10.1016/j.neuron.2022.03.034_bib34) 2012; 32 Grothe (10.1016/j.neuron.2022.03.034_bib21) 2017; 89 35508634 - Nat Rev Neurol. 2022 Jun;18(6):318. doi: 10.1038/s41582-022-00667-0 |
References_xml | – volume: 60 start-page: 1611 year: 2019 end-page: 1621 ident: bib11 article-title: Progressive tau accumulation in Alzheimer disease: 2-year follow-up study publication-title: J. Nucl. Med. – volume: 49 start-page: 786 year: 1997 end-page: 794 ident: bib28 article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease publication-title: Neurology – volume: 121 start-page: 589 year: 2011 end-page: 595 ident: bib8 article-title: Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? publication-title: Acta Neuropathol. – volume: 18 start-page: 531 year: 2021 end-page: 533 ident: bib15 article-title: Aducanumab: appropriate use recommendations publication-title: Alzheimers Dem. – volume: 73 start-page: 1216 year: 2012 end-page: 1227 ident: bib64 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron – volume: 225 start-page: 1168 year: 1984 end-page: 1170 ident: bib24 article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation publication-title: Science – volume: 5 start-page: 10057 year: 2015 ident: bib63 article-title: A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s disease publication-title: Sci. Rep. – volume: 11 start-page: 757 year: 2015 end-page: 771 ident: bib30 article-title: The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015 publication-title: Alzheimers. Dement. – volume: 13 year: 2021 ident: bib50 article-title: The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography publication-title: Sci. Transl. Med. – volume: 19 start-page: 687 year: 2018 end-page: 700 ident: bib29 article-title: Imaging the evolution and pathophysiology of Alzheimer disease publication-title: Nat. Rev. Neurosci. – volume: 9 start-page: 119 year: 2010 end-page: 128 ident: bib27 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. – volume: 31 start-page: 15775 year: 2011 end-page: 15786 ident: bib56 article-title: Rich-club organization of the human connectome publication-title: J. Neurosci. – volume: 11 start-page: 347 year: 2020 ident: bib19 article-title: Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease publication-title: Nat. Commun. – volume: 5 year: 2010 ident: bib60 article-title: The concentration of soluble extracellular amyloid-β protein in acute brain slices from CRND8 mice publication-title: PloS One – volume: 7 year: 2012 ident: bib37 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS One – year: 1979 ident: bib61 article-title: Introduction to Graph Theory – volume: 89 start-page: 2031 year: 2017 end-page: 2038 ident: bib21 article-title: In vivo staging of regional amyloid deposition publication-title: Neurology – volume: 80 start-page: 247 year: 2016 end-page: 258 ident: bib10 article-title: In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum publication-title: Ann. Neurol. – volume: 15 start-page: 3720 year: 2007 ident: bib59 article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 27 start-page: 871 year: 2021 end-page: 881 ident: bib58 article-title: Four distinct trajectories of tau deposition identified in Alzheimer’s disease publication-title: Nat. Med. – volume: 23 start-page: 101848 year: 2019 ident: bib45 article-title: Tau covariance patterns in Alzheimer’s disease patients match intrinsic connectivity networks in the healthy brain publication-title: NeuroImage Clin. – volume: 26 start-page: 3508 year: 2016 end-page: 3526 ident: bib18 article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture publication-title: Cereb. Cortex – volume: 24 start-page: 29 year: 2018 end-page: 38 ident: bib22 article-title: Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation publication-title: Nat. Med. – volume: 10 start-page: 359 year: 2015 end-page: 369 ident: bib49 article-title: Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease publication-title: Cell Rep. – volume: 27 start-page: 879 year: 2006 end-page: 881 ident: bib17 article-title: Corpus callosum diffusion anisotropy correlates with neuropsychological outcomes in twins disconcordant for traumatic brain injury publication-title: AJNR Am. J. Neuroradiol. – volume: 66 start-page: 49 year: 2018 end-page: 58 ident: bib16 article-title: Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake publication-title: Neurobiol. Aging – volume: 7 start-page: 270 year: 2011 end-page: 279 ident: bib2 article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers. Dement. – volume: 110 start-page: 9535 year: 2013 end-page: 9540 ident: bib13 article-title: Brain homogenates from human tauopathies induce tau inclusions in mouse brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 220 start-page: 116991 year: 2020 ident: bib52 article-title: Inferior temporal tau is associated with accelerated prospective cortical thinning in clinically normal older adults publication-title: NeuroImage – year: 2000 ident: bib23 article-title: Understanding Robust and Exploratory Data Analysis – volume: 24 start-page: 1112 year: 2019 end-page: 1134 ident: bib36 article-title: Tau PET imaging in neurodegenerative tauopathies—still a challenge publication-title: Mol. Psychiatry – volume: 128 start-page: 755 year: 2014 end-page: 766 ident: bib14 article-title: Primary age-related tauopathy (PART): a common pathology associated with human aging publication-title: Acta neuropathol. – volume: 384 start-page: 1691 year: 2021 end-page: 1704 ident: bib43 article-title: Donanemab in early Alzheimer’s disease publication-title: N. Engl. J. Med. – volume: 15 start-page: 435 year: 2002 end-page: 455 ident: bib4 article-title: The basis of anisotropic water diffusion in the nervous system – a technical review publication-title: NMR Biomed. – year: 2017 ident: bib25 article-title: Medical Biostatistics – volume: 47 start-page: 2879 year: 2020 end-page: 2886 ident: bib3 article-title: Temporal trajectories of in vivo tau and amyloid-β accumulation in Alzheimer’s disease publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 11 start-page: 13 year: 2019 ident: bib55 article-title: 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes publication-title: Alzheimers Res. Ther. – volume: 10 year: 2014 ident: bib26 article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders publication-title: PLoS Comput. Biol. – volume: 65 start-page: 1509 year: 2008 end-page: 1517 ident: bib1 article-title: Frequent amyloid deposition without significant cognitive impairment Among the elderly publication-title: Arch. Neurol. – volume: 32 start-page: 16265 year: 2012 end-page: 16273 ident: bib34 article-title: Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia publication-title: J. Neurosci. – volume: 88 start-page: 1095 year: 2017 end-page: 1097 ident: bib38 article-title: Elevated (18)F-AV-1451 PET tracer uptake detected in incidental imaging findings publication-title: Neurology – volume: 91 start-page: e1295 year: 2018 end-page: e1306 ident: bib41 article-title: Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease publication-title: Neurology – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib5 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B Methodol. – volume: 24 start-page: 1910 year: 2018 end-page: 1918 ident: bib53 article-title: Neurogenetic contributions to amyloid beta and tau spreading in the human cortex publication-title: Nat. Med. – volume: 157 start-page: 448 year: 2017 end-page: 463 ident: bib39 article-title: Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease publication-title: NeuroImage – volume: 58 start-page: 1791 year: 2002 end-page: 1800 ident: bib54 article-title: Phases of A beta-deposition in the human brain and its relevance for the development of AD publication-title: Neurology – volume: 45 start-page: 2439 year: 2007 end-page: 2446 ident: bib20 article-title: Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging publication-title: Neuropsychologia – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: bib42 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers. Dement. – volume: 138 start-page: 2732 year: 2015 end-page: 2749 ident: bib46 article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features publication-title: Brain – volume: 82 start-page: 239 year: 1991 end-page: 259 ident: bib7 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol. – volume: 73 start-page: 1204 year: 2012 end-page: 1215 ident: bib48 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron – volume: 112 start-page: 389 year: 2006 end-page: 404 ident: bib6 article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol. – volume: 104 start-page: 856 year: 2019 end-page: 868.e5 ident: bib9 article-title: Patient-tailored, connectivity-based forecasts of spreading brain atrophy publication-title: Neuron – volume: 53 start-page: 378 year: 2012 end-page: 384 ident: bib32 article-title: Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects publication-title: J. Nucl. Med. – volume: 10 start-page: 232 year: 2018 end-page: 236 ident: bib35 article-title: Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding publication-title: Alzheimers. Dement. (Amst) – volume: 8 start-page: 1349 year: 2017 ident: bib40 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. – volume: 11 start-page: 2612 year: 2020 ident: bib57 article-title: Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease publication-title: Nat. Commun. – volume: 79 start-page: 110 year: 2016 end-page: 119 ident: bib31 article-title: Tau positron emission tomographic imaging in aging and early Alzheimer disease publication-title: Ann. Neurol. – volume: 25 start-page: 715 year: 2012 end-page: 720 ident: bib44 article-title: Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement publication-title: Curr. Opin. Neurol. – volume: 74 start-page: 201 year: 2010 end-page: 209 ident: bib47 article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization publication-title: Neurology – volume: 107 start-page: 10256 year: 2010 end-page: 10261 ident: bib62 article-title: Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional–executive network function in Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 139 start-page: 27 year: 2020 end-page: 43 ident: bib33 article-title: Evidence of corticofugal tau spreading in patients with frontotemporal dementia publication-title: Acta Neuropathol. – volume: 13 start-page: 27 year: 2021 ident: bib51 article-title: Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer’s disease: findings from the Colombia-Boston (COLBOS) biomarker study publication-title: Alzheimer’s Res. Therapy – volume: 59 start-page: 117 year: 2018 end-page: 120 ident: bib12 article-title: Off-target 18F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation publication-title: J. Nucl. Med. – volume: 7 start-page: 270 year: 2011 ident: 10.1016/j.neuron.2022.03.034_bib2 article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers. Dement. doi: 10.1016/j.jalz.2011.03.008 – volume: 8 start-page: 1349 year: 2017 ident: 10.1016/j.neuron.2022.03.034_bib40 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. doi: 10.1038/s41467-017-01285-x – volume: 9 start-page: 119 year: 2010 ident: 10.1016/j.neuron.2022.03.034_bib27 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70299-6 – volume: 23 start-page: 101848 year: 2019 ident: 10.1016/j.neuron.2022.03.034_bib45 article-title: Tau covariance patterns in Alzheimer’s disease patients match intrinsic connectivity networks in the healthy brain publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.101848 – volume: 7 year: 2012 ident: 10.1016/j.neuron.2022.03.034_bib37 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS One – volume: 225 start-page: 1168 year: 1984 ident: 10.1016/j.neuron.2022.03.034_bib24 article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation publication-title: Science doi: 10.1126/science.6474172 – volume: 73 start-page: 1204 year: 2012 ident: 10.1016/j.neuron.2022.03.034_bib48 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron doi: 10.1016/j.neuron.2011.12.040 – volume: 47 start-page: 2879 year: 2020 ident: 10.1016/j.neuron.2022.03.034_bib3 article-title: Temporal trajectories of in vivo tau and amyloid-β accumulation in Alzheimer’s disease publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-020-04773-3 – volume: 24 start-page: 1910 year: 2018 ident: 10.1016/j.neuron.2022.03.034_bib53 article-title: Neurogenetic contributions to amyloid beta and tau spreading in the human cortex publication-title: Nat. Med. doi: 10.1038/s41591-018-0206-4 – volume: 11 start-page: 757 year: 2015 ident: 10.1016/j.neuron.2022.03.034_bib30 article-title: The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015 publication-title: Alzheimers. Dement. doi: 10.1016/j.jalz.2015.05.001 – volume: 112 start-page: 389 year: 2006 ident: 10.1016/j.neuron.2022.03.034_bib6 article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol. doi: 10.1007/s00401-006-0127-z – volume: 80 start-page: 247 year: 2016 ident: 10.1016/j.neuron.2022.03.034_bib10 article-title: In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum publication-title: Ann. Neurol. doi: 10.1002/ana.24711 – volume: 65 start-page: 1509 year: 2008 ident: 10.1016/j.neuron.2022.03.034_bib1 article-title: Frequent amyloid deposition without significant cognitive impairment Among the elderly publication-title: Arch. Neurol. doi: 10.1001/archneur.65.11.1509 – volume: 10 year: 2014 ident: 10.1016/j.neuron.2022.03.034_bib26 article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003956 – volume: 15 start-page: 435 year: 2002 ident: 10.1016/j.neuron.2022.03.034_bib4 article-title: The basis of anisotropic water diffusion in the nervous system – a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.782 – volume: 60 start-page: 1611 year: 2019 ident: 10.1016/j.neuron.2022.03.034_bib11 article-title: Progressive tau accumulation in Alzheimer disease: 2-year follow-up study publication-title: J. Nucl. Med. doi: 10.2967/jnumed.118.221697 – volume: 139 start-page: 27 year: 2020 ident: 10.1016/j.neuron.2022.03.034_bib33 article-title: Evidence of corticofugal tau spreading in patients with frontotemporal dementia publication-title: Acta Neuropathol. doi: 10.1007/s00401-019-02075-z – volume: 24 start-page: 29 year: 2018 ident: 10.1016/j.neuron.2022.03.034_bib22 article-title: Amyloid-beta plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation publication-title: Nat. Med. doi: 10.1038/nm.4443 – volume: 5 year: 2010 ident: 10.1016/j.neuron.2022.03.034_bib60 article-title: The concentration of soluble extracellular amyloid-β protein in acute brain slices from CRND8 mice publication-title: PloS One doi: 10.1371/journal.pone.0015709 – volume: 13 start-page: 27 year: 2021 ident: 10.1016/j.neuron.2022.03.034_bib51 article-title: Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer’s disease: findings from the Colombia-Boston (COLBOS) biomarker study publication-title: Alzheimer’s Res. Therapy doi: 10.1186/s13195-020-00765-5 – volume: 26 start-page: 3508 year: 2016 ident: 10.1016/j.neuron.2022.03.034_bib18 article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw157 – volume: 19 start-page: 687 year: 2018 ident: 10.1016/j.neuron.2022.03.034_bib29 article-title: Imaging the evolution and pathophysiology of Alzheimer disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0067-3 – volume: 128 start-page: 755 year: 2014 ident: 10.1016/j.neuron.2022.03.034_bib14 article-title: Primary age-related tauopathy (PART): a common pathology associated with human aging publication-title: Acta neuropathol. doi: 10.1007/s00401-014-1349-0 – volume: 10 start-page: 359 year: 2015 ident: 10.1016/j.neuron.2022.03.034_bib49 article-title: Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.034 – volume: 220 start-page: 116991 year: 2020 ident: 10.1016/j.neuron.2022.03.034_bib52 article-title: Inferior temporal tau is associated with accelerated prospective cortical thinning in clinically normal older adults publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116991 – volume: 5 start-page: 10057 year: 2015 ident: 10.1016/j.neuron.2022.03.034_bib63 article-title: A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s disease publication-title: Sci. Rep. doi: 10.1038/srep10057 – volume: 10 start-page: 232 year: 2018 ident: 10.1016/j.neuron.2022.03.034_bib35 article-title: Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding publication-title: Alzheimers. Dement. (Amst) doi: 10.1016/j.dadm.2018.01.007 – volume: 121 start-page: 589 year: 2011 ident: 10.1016/j.neuron.2022.03.034_bib8 article-title: Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? publication-title: Acta Neuropathol. doi: 10.1007/s00401-011-0825-z – volume: 11 start-page: 2612 year: 2020 ident: 10.1016/j.neuron.2022.03.034_bib57 article-title: Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-020-15701-2 – volume: 31 start-page: 15775 year: 2011 ident: 10.1016/j.neuron.2022.03.034_bib56 article-title: Rich-club organization of the human connectome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3539-11.2011 – volume: 110 start-page: 9535 year: 2013 ident: 10.1016/j.neuron.2022.03.034_bib13 article-title: Brain homogenates from human tauopathies induce tau inclusions in mouse brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1301175110 – volume: 11 start-page: 13 year: 2019 ident: 10.1016/j.neuron.2022.03.034_bib55 article-title: 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes publication-title: Alzheimers Res. Ther. doi: 10.1186/s13195-019-0470-7 – year: 1979 ident: 10.1016/j.neuron.2022.03.034_bib61 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.neuron.2022.03.034_bib5 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 11 start-page: 347 year: 2020 ident: 10.1016/j.neuron.2022.03.034_bib19 article-title: Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-14159-1 – volume: 89 start-page: 2031 year: 2017 ident: 10.1016/j.neuron.2022.03.034_bib21 article-title: In vivo staging of regional amyloid deposition publication-title: Neurology doi: 10.1212/WNL.0000000000004643 – year: 2000 ident: 10.1016/j.neuron.2022.03.034_bib23 – volume: 88 start-page: 1095 year: 2017 ident: 10.1016/j.neuron.2022.03.034_bib38 article-title: Elevated (18)F-AV-1451 PET tracer uptake detected in incidental imaging findings publication-title: Neurology doi: 10.1212/WNL.0000000000003724 – volume: 27 start-page: 879 year: 2006 ident: 10.1016/j.neuron.2022.03.034_bib17 article-title: Corpus callosum diffusion anisotropy correlates with neuropsychological outcomes in twins disconcordant for traumatic brain injury publication-title: AJNR Am. J. Neuroradiol. – volume: 25 start-page: 715 year: 2012 ident: 10.1016/j.neuron.2022.03.034_bib44 article-title: Origins of Alzheimer's disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32835a30f4 – volume: 58 start-page: 1791 year: 2002 ident: 10.1016/j.neuron.2022.03.034_bib54 article-title: Phases of A beta-deposition in the human brain and its relevance for the development of AD publication-title: Neurology doi: 10.1212/WNL.58.12.1791 – volume: 24 start-page: 1112 year: 2019 ident: 10.1016/j.neuron.2022.03.034_bib36 article-title: Tau PET imaging in neurodegenerative tauopathies—still a challenge publication-title: Mol. Psychiatry doi: 10.1038/s41380-018-0342-8 – volume: 45 start-page: 2439 year: 2007 ident: 10.1016/j.neuron.2022.03.034_bib20 article-title: Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2007.04.011 – volume: 73 start-page: 1216 year: 2012 ident: 10.1016/j.neuron.2022.03.034_bib64 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron doi: 10.1016/j.neuron.2012.03.004 – volume: 79 start-page: 110 year: 2016 ident: 10.1016/j.neuron.2022.03.034_bib31 article-title: Tau positron emission tomographic imaging in aging and early Alzheimer disease publication-title: Ann. Neurol. doi: 10.1002/ana.24546 – volume: 32 start-page: 16265 year: 2012 ident: 10.1016/j.neuron.2022.03.034_bib34 article-title: Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2170-12.2012 – volume: 384 start-page: 1691 year: 2021 ident: 10.1016/j.neuron.2022.03.034_bib43 article-title: Donanemab in early Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2100708 – volume: 91 start-page: e1295 year: 2018 ident: 10.1016/j.neuron.2022.03.034_bib41 article-title: Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease publication-title: Neurology doi: 10.1212/WNL.0000000000006277 – volume: 15 start-page: 3720 year: 2007 ident: 10.1016/j.neuron.2022.03.034_bib59 article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 157 start-page: 448 year: 2017 ident: 10.1016/j.neuron.2022.03.034_bib39 article-title: Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.05.058 – volume: 59 start-page: 117 year: 2018 ident: 10.1016/j.neuron.2022.03.034_bib12 article-title: Off-target 18F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation publication-title: J. Nucl. Med. doi: 10.2967/jnumed.117.195248 – volume: 53 start-page: 378 year: 2012 ident: 10.1016/j.neuron.2022.03.034_bib32 article-title: Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects publication-title: J. Nucl. Med. doi: 10.2967/jnumed.111.090340 – volume: 7 start-page: 263 year: 2011 ident: 10.1016/j.neuron.2022.03.034_bib42 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers. Dement. doi: 10.1016/j.jalz.2011.03.005 – volume: 13 year: 2021 ident: 10.1016/j.neuron.2022.03.034_bib50 article-title: The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abc0655 – volume: 49 start-page: 786 year: 1997 ident: 10.1016/j.neuron.2022.03.034_bib28 article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.49.3.786 – volume: 66 start-page: 49 year: 2018 ident: 10.1016/j.neuron.2022.03.034_bib16 article-title: Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2018.01.024 – volume: 107 start-page: 10256 year: 2010 ident: 10.1016/j.neuron.2022.03.034_bib62 article-title: Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional–executive network function in Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1001412107 – volume: 82 start-page: 239 year: 1991 ident: 10.1016/j.neuron.2022.03.034_bib7 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol. doi: 10.1007/BF00308809 – volume: 138 start-page: 2732 year: 2015 ident: 10.1016/j.neuron.2022.03.034_bib46 article-title: The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features publication-title: Brain doi: 10.1093/brain/awv191 – volume: 104 start-page: 856 year: 2019 ident: 10.1016/j.neuron.2022.03.034_bib9 article-title: Patient-tailored, connectivity-based forecasts of spreading brain atrophy publication-title: Neuron doi: 10.1016/j.neuron.2019.08.037 – year: 2017 ident: 10.1016/j.neuron.2022.03.034_bib25 – volume: 27 start-page: 871 year: 2021 ident: 10.1016/j.neuron.2022.03.034_bib58 article-title: Four distinct trajectories of tau deposition identified in Alzheimer’s disease publication-title: Nat. Med. doi: 10.1038/s41591-021-01309-6 – volume: 18 start-page: 531 year: 2021 ident: 10.1016/j.neuron.2022.03.034_bib15 article-title: Aducanumab: appropriate use recommendations publication-title: Alzheimers Dem. doi: 10.1002/alz.12444 – volume: 74 start-page: 201 year: 2010 ident: 10.1016/j.neuron.2022.03.034_bib47 article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – reference: 35508634 - Nat Rev Neurol. 2022 Jun;18(6):318. doi: 10.1038/s41582-022-00667-0 |
SSID | ssj0014591 |
Score | 2.6289818 |
Snippet | Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but it remains unclear how these proteins interact to promote disease. Here,... Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here,... Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer’s disease, but how these proteins interact to promote disease remains unclear. Here, by... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1932 |
SubjectTerms | Acceleration Alzheimer Disease - metabolism Alzheimer’s disease Amyloid beta-Peptides - metabolism amyloid-beta Brain - metabolism connectome Cross-Sectional Studies DTI Humans PET Positron-Emission Tomography - methods tau tau Proteins - metabolism |
Title | Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading |
URI | https://dx.doi.org/10.1016/j.neuron.2022.03.034 https://www.ncbi.nlm.nih.gov/pubmed/35443153 https://www.proquest.com/docview/2653269040 https://pubmed.ncbi.nlm.nih.gov/PMC9233123 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBUhpdBNaZM-pm2CAqU7MWNLI0tLNySEhmSRNnR2QpLlZkLiGeaxSFf9jf5GPiQf0S_pvZI9dFpKIOCNbcnIunocSeeeS8h75WzhrXNMOe2YELlgzkvPpHaZslJJ69FR-ORUHp2LT6PhaIPsd74wSKtsx_40psfRun3Sb2uzPx2P-58HSqN6ObTICIRxCcSFik58o4-rkwQxTFHzIDHD1J37XOR4Rc1IVEHN8yh1ysX_pqd_4effLMo_pqXDZ-RpiydpmYr8nGyEZotslw2spa9v6AcaGZ5x63yLPE6BJ2-2iT8L3-IeIC3vbtnCLinKRsySk8OcTiNHL1BkWi-obSpqvYf5KbUWOqlpefX9Ioyvw-zXj59z2p7yUPzQfDpLvPwX5Pzw4Mv-EWvDLTDPCyXAUMHZCiCZz31R585q56TOHFRaVhdFGChb6IFUrs4rGWClVQVtpQOAAquiUFn-kmw2kya8JjR4q5UFJGaRB-iE43VdefiKlAJjUfQI72rZ-FaLHENiXJmOdHZpkm0M2sYMOFyiR9gq1zRpcdyTvugMaNbalIHp4p6ce529DXQ3PEOxTZgs5yaXQwC8Goa-HnmV7L8qC0ctwQz_rlhrGasEKOW9_qYZX0RJb4DZHDDEmweX-C15gndIYsuG78jmYrYMOwCXFm6XPCqPz74e78Z-8RvPnhr2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLWqIgSbClqgKS8jIXZWMjOOH8tQUaXQdgGtlJ1lezw0qJ1EeSzaFb_R3-iH8BF8CffaMxEBoUpIs5qxLY-vH-fax-cS8lY5K711jimnHeM858x54ZnQLlNWKGE9XhQ-PhHDM_5x1B9tkP32LgzSKpu5P83pcbZu3nSb1uxOx-Pul57SqF4OPTICYXCB7gEakBi_4XD0fnWUwPspbB6kZpi8vT8XSV5RNBJlUPM8ap0W_F_r09_4808a5W_r0sEjstUASjpIdX5MNkK9TXYGNTjTl1f0HY0Uz7h3vk3up8iTVzvEfw5f4yYgHfy4ZQu7pKgbMUu3HOZ0Gkl6gSLVekFtXVLrPSxQqbvQSUUHF9fnYXwZZj-_38xpc8xDsaD5dJaI-U_I2cGH0_0ha-ItMF9IxcFSwdkSMJnPvaxyZ7VzQmcOGi2rpAw9ZaXuCeWqvBQBXK0yaCscIBRwi0Jpi6dks57UYZfQ4K1WFqCYRSKg466oqtJDKUJwDEbRIUXbysY3YuQYE-PCtKyzbybZxqBtTK-Ah3cIW-WaJjGOO9LL1oBmrVMZWC_uyPmmtbeB8YaHKLYOk-Xc5KIPiFfD3Nchz5L9V3UpUEwww7-Taz1jlQC1vNe_1OPzqOkNOLsAELH33zV-TR4MT4-PzNHhyafn5CF-QUZb1n9BNhezZXgJ2GnhXsWx8QsZVBxy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+A%CE%B2-tau+interactions+promote+onset+and+acceleration+of+Alzheimer%27s+disease+tau+spreading&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Lee%2C+Wha+Jin&rft.au=Brown%2C+Jesse+A&rft.au=Kim%2C+Hye+Ryun&rft.au=La+Joie%2C+Renaud&rft.date=2022-06-15&rft.eissn=1097-4199&rft.volume=110&rft.issue=12&rft.spage=1932&rft_id=info:doi/10.1016%2Fj.neuron.2022.03.034&rft_id=info%3Apmid%2F35443153&rft.externalDocID=35443153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |