Long-term forecasting of hourly retail customer flow on intermittent time series with multiple seasonality

In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2) multi-step ahead forecasting, (3) time series with multiple seasonal periods, and (4) performance measures for model selection across multiple time se...

Full description

Saved in:
Bibliographic Details
Published inData science and management Vol. 5; no. 3; pp. 137 - 148
Main Authors Sousa, Martim, Tomé, Ana Maria, Moreira, José
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2) multi-step ahead forecasting, (3) time series with multiple seasonal periods, and (4) performance measures for model selection across multiple time series. Current literature deals with these types of problems separately, and no study has dealt with all these characteristics simultaneously. To fill this knowledge gap, we begin by reviewing all the necessary existing literature relevant to this case study with the goal of proposing a framework capable of achieving adequate forecast accuracy for such a complex problem. Several adaptions and innovations have been conducted, which are marked as contributions to the literature. Specifically, we proposed a weighted average forecast combination of many cutting-edge models based on their out-of-sample performance. To gather strong evidence that our ensemble model works in practice, we undertook a large-scale study across 98 time series, rigorously assessed with unbiased performance measures, where a week seasonal naïve was set as a benchmark. The results demonstrate that the proposed ensemble model achieves eye-catching forecasting accuracy.
AbstractList In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2) multi-step ahead forecasting, (3) time series with multiple seasonal periods, and (4) performance measures for model selection across multiple time series. Current literature deals with these types of problems separately, and no study has dealt with all these characteristics simultaneously. To fill this knowledge gap, we begin by reviewing all the necessary existing literature relevant to this case study with the goal of proposing a framework capable of achieving adequate forecast accuracy for such a complex problem. Several adaptions and innovations have been conducted, which are marked as contributions to the literature. Specifically, we proposed a weighted average forecast combination of many cutting-edge models based on their out-of-sample performance. To gather strong evidence that our ensemble model works in practice, we undertook a large-scale study across 98 time series, rigorously assessed with unbiased performance measures, where a week seasonal naïve was set as a benchmark. The results demonstrate that the proposed ensemble model achieves eye-catching forecasting accuracy.
Author Tomé, Ana Maria
Sousa, Martim
Moreira, José
Author_xml – sequence: 1
  givenname: Martim
  orcidid: 0000-0002-5796-6338
  surname: Sousa
  fullname: Sousa, Martim
  email: martimsousa@ua.pt
– sequence: 2
  givenname: Ana Maria
  surname: Tomé
  fullname: Tomé, Ana Maria
– sequence: 3
  givenname: José
  surname: Moreira
  fullname: Moreira, José
BookMark eNp9kcFq3DAQhkVJoWmaB-hNL2BXkm3JpqcS2iaw0Et7FrPyaDPGloKkbdi3r7bbQukhc5lhmO9n-P-37CrEgIy9l6KVQuoPSzvnrVVCqVaYVgj1il0rrXVjdD9d_TO_Ybc5L6JejFKqQV-zZRfDoSmYNu5jQge5UDjw6PljPKb1xBMWoJW7Yy5xw8T9Gp95DJzCGaJSMBReaEOeMRFm_kzlkW_HtdDTel5CjgFWKqd37LWHNePtn37Dfnz5_P3uvtl9-_pw92nXuM6MqnHGdIMa5n5Sej9Ogxr9KHq_R-zBu1l0Zm-8l7XAdb2XBqdh7hTozk-T1Ka7YQ8X3TnCYp8SbZBONgLZ34uYDhZSIbeirefa4IBymFUPk9uPpvfOd3oE0AhQtcxFy6WYc0JvHRUoFENJ1RYrhT0nYBdbE7DnBKwwtvpbSfkf-feTl5iPFwarPT8Jk82OMDicqUZT6v_0Av0LMDKitQ
CitedBy_id crossref_primary_10_1016_j_health_2023_100146
crossref_primary_10_1016_j_inffus_2023_102141
crossref_primary_10_1016_j_enconman_2023_117590
crossref_primary_10_1016_j_jretconser_2024_103868
crossref_primary_10_1016_j_procs_2024_03_189
crossref_primary_10_1016_j_envint_2024_109124
crossref_primary_10_1016_j_eswa_2022_119184
crossref_primary_10_1016_j_measurement_2025_117313
crossref_primary_10_1002_for_3213
crossref_primary_10_1016_j_engappai_2024_109721
crossref_primary_10_1016_j_eswa_2024_124409
crossref_primary_10_1142_S0218348X23401357
crossref_primary_10_3390_ijgi12030100
crossref_primary_10_1002_for_3097
crossref_primary_10_3390_electronics13071364
crossref_primary_10_1016_j_eswa_2023_119889
crossref_primary_10_1007_s44163_025_00239_3
crossref_primary_10_1109_TII_2023_3245196
crossref_primary_10_3390_agriculture14020229
Cites_doi 10.1057/jors.1969.103
10.1016/j.ijforecast.2019.08.012
10.1287/mnsc.6.3.324
10.1016/j.ijforecast.2003.09.015
10.1198/jasa.2011.tm09771
10.1057/jors.1972.50
10.1057/palgrave.jors.2601841
10.1016/0169-2070(93)90079-3
10.1016/S0925-5273(00)00143-2
10.3390/axioms10010018
10.1016/j.ijforecast.2015.12.003
10.1016/j.eneco.2013.07.028
10.1162/neco.1997.9.8.1735
10.1002/env.2267
10.1016/j.dsm.2022.04.001
10.1057/jors.2014.103
10.1016/0893-6080(89)90020-8
10.1057/palgrave.jors.2601589
10.1016/j.ijforecast.2006.03.001
10.1016/0169-2070(86)90059-2
10.1080/00031305.2017.1380080
10.1016/S0893-6080(05)80023-1
10.1016/j.ijforecast.2015.03.001
10.2307/1912517
10.1016/j.ejor.2011.05.018
10.1016/j.neucom.2015.12.114
10.1016/0169-2070(89)90012-5
10.1016/j.ijforecast.2010.09.004
10.1016/j.eswa.2012.01.039
10.1016/j.cie.2015.01.014
10.1016/j.neucom.2006.06.015
10.7717/peerj-cs.623
10.1007/978-3-642-36318-4_3
10.1109/5.58337
ContentType Journal Article
Copyright 2022 Xi’an Jiaotong University
Copyright_xml – notice: 2022 Xi’an Jiaotong University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.dsm.2022.07.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-7649
EndPage 148
ExternalDocumentID oai_doaj_org_article_16767e5e15d24a9cb874fcf368aa6eaa
10_1016_j_dsm_2022_07_002
S2666764922000273
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c3782-c773525d4926b89528f804fbee4afcd037b7ff1111ac34f17e95d32a63f991673
IEDL.DBID DOA
ISSN 2666-7649
IngestDate Wed Aug 27 01:25:18 EDT 2025
Tue Jul 01 01:06:46 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Fri Feb 23 02:38:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-step ahead forecasting
Weighted average ensemble
Scale-independent performance measures
TBATS
Neural networks
Prophet
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3782-c773525d4926b89528f804fbee4afcd037b7ff1111ac34f17e95d32a63f991673
ORCID 0000-0002-5796-6338
OpenAccessLink https://doaj.org/article/16767e5e15d24a9cb874fcf368aa6eaa
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_16767e5e15d24a9cb874fcf368aa6eaa
crossref_citationtrail_10_1016_j_dsm_2022_07_002
crossref_primary_10_1016_j_dsm_2022_07_002
elsevier_sciencedirect_doi_10_1016_j_dsm_2022_07_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Data science and management
PublicationYear 2022
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Junior, Gusmão, Moreira (bib31) 2021
Sorjamaa, Lendasse (bib41) 2006
Abrishami, Kumar (bib1) 2018
Christ, Kempa-Liehr, Feindt (bib11) 2016
Rojas (bib39) 1996
Taieb, Bontempi, Sorjamaa (bib47) 2009
Iversen, Morales, Møller (bib29) 2014; 25
Suthaharan (bib43) 2016
Taylor (bib50) 2003; 54
Iversen, Morales, Møller (bib30) 2016; 32
Cortez, Matos, Pereira (bib14) 2017
Taylor, Letham (bib51) 2018; 72
Xiong, Bao, Hu (bib57) 2013; 40
Talarico, Duque (bib49) 2015; 82
Teunter, Syntetos, Babai (bib52) 2011; 214
Croston (bib16) 1972; 23
De Livera, Hyndman, Snyder (bib17) 2011; 106
Hyndman, Athanasopoulos (bib26) 2018
An, Anh (bib3) 2015
Costa, Cerqueira, Vinagre (bib15) 2021
Ma, Fildes (bib35) 2020; 36
Kingma, Ba (bib33) 2014
Cipra, Hanzák (bib12) 2008; 44
Adhikari, Agrawal (bib2) 2012
Ben Taieb, Hyndman (bib5) 2012
Syntetos, Boylan, Croston (bib45) 2005; 56
Winters (bib55) 1960; 6
Tofallis (bib53) 2015; 66
Zhuang, Yu, Chen (bib58) 2022; 5
Kim, Kim (bib32) 2016; 32
Wolpert (bib56) 1992; 5
Dickey, Fuller (bib19) 1979; 74
Dickey, Fuller (bib20) 1981; 49
Bates, Granger (bib4) 1969; 20
Goodfellow, Bengio, Courville (bib21) 2016
Sorjamaa, Hao, Reyhani (bib42) 2007; 70
Syntetos, Boylan (bib44) 2001; 71
Hochreiter, Schmidhuber (bib22) 1997; 9
Chicco, Warrens, Jurman (bib10) 2021; 7
De Myttenaere, Golden, Grand (bib18) 2016; 192
Tahmasbi, Hashemi (bib46) 2013
Mahrouf, Boukhouima, Zine (bib36) 2021; 10
Hyndman (bib25) 2006; 4
Clemen (bib13) 1989; 5
Iacus (bib28) 2008
Schnaars (bib40) 1986; 2
Bontempi (bib6) 2008
Taieb, Bontempi, Atiya (bib48) 2012; 39
Nikolopoulos, Syntetos, Boylan (bib38) 2011; 62
Bontempi, Ben Taieb, Le Borgne (bib8) 2013; 138
Werbos (bib54) 1990; 78
Hyndman, Koehler (bib27) 2006; 22
Bontempi, Taieb (bib7) 2011; 27
Holt (bib23) 2004; 20
Makridakis (bib37) 1993; 9
Hornik, Stinchcombe, White (bib24) 1989; 2
Chatfield (bib9) 1978; 27
Kline (bib34) 2004
Hornik (10.1016/j.dsm.2022.07.002_bib24) 1989; 2
Makridakis (10.1016/j.dsm.2022.07.002_bib37) 1993; 9
Bates (10.1016/j.dsm.2022.07.002_bib4) 1969; 20
Goodfellow (10.1016/j.dsm.2022.07.002_bib21) 2016
Rojas (10.1016/j.dsm.2022.07.002_bib39) 1996
Bontempi (10.1016/j.dsm.2022.07.002_bib6) 2008
Abrishami (10.1016/j.dsm.2022.07.002_bib1) 2018
Adhikari (10.1016/j.dsm.2022.07.002_bib2) 2012
Clemen (10.1016/j.dsm.2022.07.002_bib13) 1989; 5
Cortez (10.1016/j.dsm.2022.07.002_bib14) 2017
Taylor (10.1016/j.dsm.2022.07.002_bib50) 2003; 54
De Livera (10.1016/j.dsm.2022.07.002_bib17) 2011; 106
Taylor (10.1016/j.dsm.2022.07.002_bib51) 2018; 72
Cipra (10.1016/j.dsm.2022.07.002_bib12) 2008; 44
Hyndman (10.1016/j.dsm.2022.07.002_bib25) 2006; 4
Dickey (10.1016/j.dsm.2022.07.002_bib20) 1981; 49
De Myttenaere (10.1016/j.dsm.2022.07.002_bib18) 2016; 192
Hyndman (10.1016/j.dsm.2022.07.002_bib27) 2006; 22
Iversen (10.1016/j.dsm.2022.07.002_bib29) 2014; 25
Bontempi (10.1016/j.dsm.2022.07.002_bib7) 2011; 27
Kingma (10.1016/j.dsm.2022.07.002_bib33)
Costa (10.1016/j.dsm.2022.07.002_bib15)
Hyndman (10.1016/j.dsm.2022.07.002_bib26) 2018
Zhuang (10.1016/j.dsm.2022.07.002_bib58) 2022; 5
Kline (10.1016/j.dsm.2022.07.002_bib34) 2004
Xiong (10.1016/j.dsm.2022.07.002_bib57) 2013; 40
Hochreiter (10.1016/j.dsm.2022.07.002_bib22) 1997; 9
Chicco (10.1016/j.dsm.2022.07.002_bib10) 2021; 7
Ben Taieb (10.1016/j.dsm.2022.07.002_bib5) 2012
Tahmasbi (10.1016/j.dsm.2022.07.002_bib46) 2013
Iacus (10.1016/j.dsm.2022.07.002_bib28)
Holt (10.1016/j.dsm.2022.07.002_bib23) 2004; 20
Schnaars (10.1016/j.dsm.2022.07.002_bib40) 1986; 2
Iversen (10.1016/j.dsm.2022.07.002_bib30) 2016; 32
Kim (10.1016/j.dsm.2022.07.002_bib32) 2016; 32
Dickey (10.1016/j.dsm.2022.07.002_bib19) 1979; 74
Croston (10.1016/j.dsm.2022.07.002_bib16) 1972; 23
Junior (10.1016/j.dsm.2022.07.002_bib31) 2021
Ma (10.1016/j.dsm.2022.07.002_bib35) 2020; 36
Teunter (10.1016/j.dsm.2022.07.002_bib52) 2011; 214
Syntetos (10.1016/j.dsm.2022.07.002_bib45) 2005; 56
Nikolopoulos (10.1016/j.dsm.2022.07.002_bib38) 2011; 62
Sorjamaa (10.1016/j.dsm.2022.07.002_bib42) 2007; 70
Werbos (10.1016/j.dsm.2022.07.002_bib54) 1990; 78
Taieb (10.1016/j.dsm.2022.07.002_bib47) 2009
An (10.1016/j.dsm.2022.07.002_bib3) 2015
Winters (10.1016/j.dsm.2022.07.002_bib55) 1960; 6
Talarico (10.1016/j.dsm.2022.07.002_bib49) 2015; 82
Wolpert (10.1016/j.dsm.2022.07.002_bib56) 1992; 5
Syntetos (10.1016/j.dsm.2022.07.002_bib44) 2001; 71
Taieb (10.1016/j.dsm.2022.07.002_bib48) 2012; 39
Chatfield (10.1016/j.dsm.2022.07.002_bib9) 1978; 27
Christ (10.1016/j.dsm.2022.07.002_bib11)
Bontempi (10.1016/j.dsm.2022.07.002_bib8) 2013; 138
Tofallis (10.1016/j.dsm.2022.07.002_bib53) 2015; 66
Mahrouf (10.1016/j.dsm.2022.07.002_bib36) 2021; 10
Sorjamaa (10.1016/j.dsm.2022.07.002_bib41) 2006
Suthaharan (10.1016/j.dsm.2022.07.002_bib43) 2016
References_xml – volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: bib56
  article-title: Stacked generalization
  publication-title: Neural Network.
– volume: 20
  start-page: 5
  year: 2004
  end-page: 10
  ident: bib23
  article-title: Forecasting seasonals and trends by exponentially weighted moving averages
  publication-title: Int. J. Forecast.
– volume: 74
  start-page: 427
  year: 1979
  end-page: 431
  ident: bib19
  article-title: Distribution of the estimators for autoregressive time series with a unit root
  publication-title: J. Am. Stat. Assoc.
– volume: 2
  start-page: 387
  year: 1986
  end-page: 390
  ident: bib40
  article-title: Long-range forecasting: from crystal ball to computer: J. scott armstrong, 2nd ed. (wiley, New York, 1985) [UK pound]22.95 (paper)
  publication-title: Int. J. Forecast.
– volume: 36
  start-page: 739
  year: 2020
  end-page: 760
  ident: bib35
  article-title: Forecasting third-party mobile payments with implications for customer flow prediction
  publication-title: Int. J. Forecast.
– volume: 62
  start-page: 544
  year: 2011
  end-page: 554
  ident: bib38
  article-title: An aggregate-disaggregate intermittent demand approach (adida) to forecasting: an empirical proposition and analysis
  publication-title: JORS
– volume: 106
  start-page: 1513
  year: 2011
  end-page: 1527
  ident: bib17
  article-title: Forecasting time series with complex seasonal patterns using exponential smoothing
  publication-title: J. Am. Stat. Assoc.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib24
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network.
– start-page: 1885
  year: 2018
  end-page: 1890
  ident: bib1
  article-title: Using real-world store data for foot traffic forecasting
  publication-title: 2018 IEEE International Conference on Big Data (Big Data)
– start-page: 145
  year: 2008
  end-page: 154
  ident: bib6
  article-title: Long term time series prediction with multi-input multi-output local learning
  publication-title: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP08
– volume: 54
  start-page: 799
  year: 2003
  end-page: 805
  ident: bib50
  article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing
  publication-title: J. Oper. Res. Soc.
– volume: 32
  start-page: 669
  year: 2016
  end-page: 679
  ident: bib32
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: Int. J. Forecast.
– start-page: 226
  year: 2004
  end-page: 250
  ident: bib34
  article-title: Methods for multi-step time series forecasting with neural networks
  publication-title: Neural Networks in Business Forecasting
– volume: 72
  start-page: 37
  year: 2018
  end-page: 45
  ident: bib51
  article-title: Forecasting at scale
  publication-title: Am. Statistician
– year: 2021
  ident: bib15
  article-title: Autofits: automatic feature engineering for irregular time series
– volume: 6
  start-page: 324
  year: 1960
  end-page: 342
  ident: bib55
  article-title: Forecasting sales by exponentially weighted moving averages
  publication-title: Manag. Sci.
– year: 2016
  ident: bib11
  article-title: Distributed and parallel time series feature extraction for Industrial big data applications
– start-page: 250
  year: 2013
  end-page: 259
  ident: bib46
  article-title: Modeling and forecasting the urban volume using stochastic differential equations
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 5
  start-page: 43
  year: 2022
  end-page: 56
  ident: bib58
  article-title: A combined forecasting method for intermittent demand using the automotive aftermarket data
  publication-title: Data Sci. Manag.
– volume: 9
  start-page: 527
  year: 1993
  end-page: 529
  ident: bib37
  article-title: Accuracy measures: theoretical and practical concerns
  publication-title: Int. J. Forecast.
– volume: 20
  start-page: 451
  year: 1969
  end-page: 468
  ident: bib4
  article-title: The combination of forecasts
  publication-title: J. Oper. Res. Soc.
– start-page: 149
  year: 1996
  end-page: 182
  ident: bib39
  article-title: The Backpropagation Algorithm
– volume: 66
  start-page: 1352
  year: 2015
  end-page: 1362
  ident: bib53
  article-title: A better measure of relative prediction accuracy for model selection and model estimation
  publication-title: J. Oper. Res. Soc.
– volume: 10
  start-page: 18
  year: 2021
  ident: bib36
  article-title: Modeling and forecasting of COVID-19 spreading by delayed stochastic differential equations
  publication-title: Axioms
– volume: 214
  start-page: 606
  year: 2011
  end-page: 615
  ident: bib52
  article-title: Intermittent demand: linking forecasting to inventory obsolescence
  publication-title: Eur. J. Oper. Res.
– volume: 56
  start-page: 495
  year: 2005
  end-page: 503
  ident: bib45
  article-title: On the categorization of demand patterns
  publication-title: J. Oper. Res. Soc.
– volume: 25
  start-page: 152
  year: 2014
  end-page: 164
  ident: bib29
  article-title: Probabilistic forecasts of solar irradiance using stochastic differential equations
  publication-title: Environmetrics
– volume: 192
  start-page: 38
  year: 2016
  end-page: 48
  ident: bib18
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
– start-page: 237
  year: 2016
  end-page: 269
  ident: bib43
  article-title: Decision tree learning
  publication-title: Machine Learning Models and Algorithms for Big Data Classification
– year: 2012
  ident: bib5
  article-title: Recursive and direct multi-step forecasting: the best of both worlds
  publication-title: Monash Econometrics and Business Statistics Working Papers 19/12
– start-page: 142
  year: 2015
  end-page: 149
  ident: bib3
  article-title: Comparison of strategies for multi-step-ahead prediction of time series using neural network
  publication-title: 2015 International Conference on Advanced Computing and Applications (ACOMP),
– start-page: 267
  year: 2017
  end-page: 276
  ident: bib14
  article-title: Forecasting store foot traffic using facial recognition, time series and support vector machines
  publication-title: International Joint Conference SOCO’16-CISIS’16-ICEUTE’16
– year: 2014
  ident: bib33
  article-title: Adam: a method for stochastic optimization
– volume: 23
  start-page: 289
  year: 1972
  end-page: 303
  ident: bib16
  article-title: Forecasting and stock control for intermittent demands
  publication-title: Oper. Res. Q.
– start-page: 3054
  year: 2009
  end-page: 3061
  ident: bib47
  article-title: Long-term prediction of time series by combining direct and mimo strategies
  publication-title: 2009 International Joint Conference on Neural Networks
– start-page: 241
  year: 2021
  end-page: 262
  ident: bib31
  article-title: Time series forecasting in retail sales using lstm and prophet
  publication-title: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: bib27
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  ident: bib54
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
– year: 2018
  ident: bib26
  publication-title: Forecasting: Principles and Practice
– volume: 4
  start-page: 43
  year: 2006
  end-page: 46
  ident: bib25
  article-title: Another look at forecast accuracy metrics for intermittent demand, Foresight
  publication-title: Int. J. Appl. Forecast.
– volume: 71
  start-page: 457
  year: 2001
  end-page: 466
  ident: bib44
  article-title: On the bias of intermittent demand estimates
  publication-title: Int. J. Prod. Econ.
– year: 2016
  ident: bib21
  article-title: Deep Learning
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib22
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 44
  start-page: 385
  year: 2008
  end-page: 399
  ident: bib12
  article-title: Exponential smoothing for irregular time series
  publication-title: Kybernetika
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: bib48
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
– start-page: 143
  year: 2006
  end-page: 148
  ident: bib41
  article-title: Time series prediction using DiRrec strategy
  publication-title: Proceedings of European Symposium on Artificial Neural Networks
– volume: 82
  start-page: 65
  year: 2015
  end-page: 77
  ident: bib49
  article-title: An optimization algorithm for the workforce management in a retail chain
  publication-title: Comput. Ind. Eng.
– volume: 49
  start-page: 1057
  year: 1981
  end-page: 1072
  ident: bib20
  article-title: Likelihood ratio statistics for autoregressive time series with a unit root
  publication-title: Econometrica
– volume: 27
  start-page: 264
  year: 1978
  end-page: 279
  ident: bib9
  article-title: The holt-winters forecasting procedure
  publication-title: J. Roy. Stat. Soc. Ser. C. (Appl. Stat.)
– year: 2008
  ident: bib28
  article-title: Simulation and inference for stochastic differential equations: with R examples
– volume: 138
  start-page: 62
  year: 2013
  end-page: 77
  ident: bib8
  article-title: Machine learning strategies for time series forecasting
  publication-title: Business Intelligence
– volume: 40
  start-page: 405
  year: 2013
  end-page: 415
  ident: bib57
  article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
– start-page: 38
  year: 2012
  end-page: 49
  ident: bib2
  article-title: A novel weighted ensemble technique for time series forecasting
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: 5
  start-page: 559
  year: 1989
  end-page: 583
  ident: bib13
  article-title: Combining forecasts: a review and annotated bibliography
  publication-title: Int. J. Forecast.
– volume: 7
  start-page: e623
  year: 2021
  ident: bib10
  article-title: The coefficient of determination
  publication-title: PeerJ Comput. Sci.
– volume: 27
  start-page: 689
  year: 2011
  end-page: 699
  ident: bib7
  article-title: Conditionally dependent strategies for multiple-step-ahead prediction in local learning
  publication-title: Int. J. Forecast.
– volume: 70
  start-page: 2861
  year: 2007
  end-page: 2869
  ident: bib42
  article-title: Methodology for long-term prediction of time series
  publication-title: Neurocomputing
– volume: 32
  start-page: 981
  year: 2016
  end-page: 990
  ident: bib30
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int. J. Forecast.
– volume: 20
  start-page: 451
  issue: 4
  year: 1969
  ident: 10.1016/j.dsm.2022.07.002_bib4
  article-title: The combination of forecasts
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1969.103
– volume: 36
  start-page: 739
  issue: 3
  year: 2020
  ident: 10.1016/j.dsm.2022.07.002_bib35
  article-title: Forecasting third-party mobile payments with implications for customer flow prediction
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.08.012
– volume: 6
  start-page: 324
  issue: 3
  year: 1960
  ident: 10.1016/j.dsm.2022.07.002_bib55
  article-title: Forecasting sales by exponentially weighted moving averages
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.6.3.324
– volume: 20
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.dsm.2022.07.002_bib23
  article-title: Forecasting seasonals and trends by exponentially weighted moving averages
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2003.09.015
– start-page: 142
  year: 2015
  ident: 10.1016/j.dsm.2022.07.002_bib3
  article-title: Comparison of strategies for multi-step-ahead prediction of time series using neural network
– volume: 106
  start-page: 1513
  issue: 496
  year: 2011
  ident: 10.1016/j.dsm.2022.07.002_bib17
  article-title: Forecasting time series with complex seasonal patterns using exponential smoothing
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.tm09771
– volume: 23
  start-page: 289
  issue: 3
  year: 1972
  ident: 10.1016/j.dsm.2022.07.002_bib16
  article-title: Forecasting and stock control for intermittent demands
  publication-title: Oper. Res. Q.
  doi: 10.1057/jors.1972.50
– volume: 56
  start-page: 495
  issue: May
  year: 2005
  ident: 10.1016/j.dsm.2022.07.002_bib45
  article-title: On the categorization of demand patterns
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601841
– volume: 9
  start-page: 527
  issue: 4
  year: 1993
  ident: 10.1016/j.dsm.2022.07.002_bib37
  article-title: Accuracy measures: theoretical and practical concerns
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(93)90079-3
– start-page: 226
  year: 2004
  ident: 10.1016/j.dsm.2022.07.002_bib34
  article-title: Methods for multi-step time series forecasting with neural networks
– volume: 71
  start-page: 457
  issue: 1–3
  year: 2001
  ident: 10.1016/j.dsm.2022.07.002_bib44
  article-title: On the bias of intermittent demand estimates
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/S0925-5273(00)00143-2
– volume: 10
  start-page: 18
  issue: 1
  year: 2021
  ident: 10.1016/j.dsm.2022.07.002_bib36
  article-title: Modeling and forecasting of COVID-19 spreading by delayed stochastic differential equations
  publication-title: Axioms
  doi: 10.3390/axioms10010018
– volume: 44
  start-page: 385
  issue: 3
  year: 2008
  ident: 10.1016/j.dsm.2022.07.002_bib12
  article-title: Exponential smoothing for irregular time series
  publication-title: Kybernetika
– start-page: 145
  year: 2008
  ident: 10.1016/j.dsm.2022.07.002_bib6
  article-title: Long term time series prediction with multi-input multi-output local learning
– year: 2016
  ident: 10.1016/j.dsm.2022.07.002_bib21
– volume: 32
  start-page: 669
  issue: 3
  year: 2016
  ident: 10.1016/j.dsm.2022.07.002_bib32
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.12.003
– start-page: 250
  year: 2013
  ident: 10.1016/j.dsm.2022.07.002_bib46
  article-title: Modeling and forecasting the urban volume using stochastic differential equations
– volume: 40
  start-page: 405
  issue: Nov.
  year: 2013
  ident: 10.1016/j.dsm.2022.07.002_bib57
  article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.07.028
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.dsm.2022.07.002_bib22
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 143
  year: 2006
  ident: 10.1016/j.dsm.2022.07.002_bib41
  article-title: Time series prediction using DiRrec strategy
– volume: 25
  start-page: 152
  issue: Oct.
  year: 2014
  ident: 10.1016/j.dsm.2022.07.002_bib29
  article-title: Probabilistic forecasts of solar irradiance using stochastic differential equations
  publication-title: Environmetrics
  doi: 10.1002/env.2267
– volume: 5
  start-page: 43
  issue: 2
  year: 2022
  ident: 10.1016/j.dsm.2022.07.002_bib58
  article-title: A combined forecasting method for intermittent demand using the automotive aftermarket data
  publication-title: Data Sci. Manag.
  doi: 10.1016/j.dsm.2022.04.001
– volume: 66
  start-page: 1352
  issue: Nov.
  year: 2015
  ident: 10.1016/j.dsm.2022.07.002_bib53
  article-title: A better measure of relative prediction accuracy for model selection and model estimation
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2014.103
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.dsm.2022.07.002_bib24
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 54
  start-page: 799
  issue: Jul.
  year: 2003
  ident: 10.1016/j.dsm.2022.07.002_bib50
  article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601589
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.dsm.2022.07.002_bib27
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 2
  start-page: 387
  issue: 3
  year: 1986
  ident: 10.1016/j.dsm.2022.07.002_bib40
  article-title: Long-range forecasting: from crystal ball to computer: J. scott armstrong, 2nd ed. (wiley, New York, 1985) [UK pound]22.95 (paper)
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(86)90059-2
– volume: 74
  start-page: 427
  issue: Nov.
  year: 1979
  ident: 10.1016/j.dsm.2022.07.002_bib19
  article-title: Distribution of the estimators for autoregressive time series with a unit root
  publication-title: J. Am. Stat. Assoc.
– volume: 72
  start-page: 37
  issue: Apr.
  year: 2018
  ident: 10.1016/j.dsm.2022.07.002_bib51
  article-title: Forecasting at scale
  publication-title: Am. Statistician
  doi: 10.1080/00031305.2017.1380080
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10.1016/j.dsm.2022.07.002_bib56
  article-title: Stacked generalization
  publication-title: Neural Network.
  doi: 10.1016/S0893-6080(05)80023-1
– year: 2012
  ident: 10.1016/j.dsm.2022.07.002_bib5
  article-title: Recursive and direct multi-step forecasting: the best of both worlds
– start-page: 3054
  year: 2009
  ident: 10.1016/j.dsm.2022.07.002_bib47
  article-title: Long-term prediction of time series by combining direct and mimo strategies
– volume: 32
  start-page: 981
  issue: 3
  year: 2016
  ident: 10.1016/j.dsm.2022.07.002_bib30
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.03.001
– volume: 49
  start-page: 1057
  issue: Jul.
  year: 1981
  ident: 10.1016/j.dsm.2022.07.002_bib20
  article-title: Likelihood ratio statistics for autoregressive time series with a unit root
  publication-title: Econometrica
  doi: 10.2307/1912517
– start-page: 149
  year: 1996
  ident: 10.1016/j.dsm.2022.07.002_bib39
– volume: 214
  start-page: 606
  issue: 3
  year: 2011
  ident: 10.1016/j.dsm.2022.07.002_bib52
  article-title: Intermittent demand: linking forecasting to inventory obsolescence
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.05.018
– ident: 10.1016/j.dsm.2022.07.002_bib28
– start-page: 267
  year: 2017
  ident: 10.1016/j.dsm.2022.07.002_bib14
  article-title: Forecasting store foot traffic using facial recognition, time series and support vector machines
– start-page: 38
  year: 2012
  ident: 10.1016/j.dsm.2022.07.002_bib2
  article-title: A novel weighted ensemble technique for time series forecasting
– volume: 192
  start-page: 38
  issue: Jun.
  year: 2016
  ident: 10.1016/j.dsm.2022.07.002_bib18
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.114
– volume: 5
  start-page: 559
  issue: 4
  year: 1989
  ident: 10.1016/j.dsm.2022.07.002_bib13
  article-title: Combining forecasts: a review and annotated bibliography
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(89)90012-5
– ident: 10.1016/j.dsm.2022.07.002_bib15
– volume: 62
  start-page: 544
  issue: 3
  year: 2011
  ident: 10.1016/j.dsm.2022.07.002_bib38
  article-title: An aggregate-disaggregate intermittent demand approach (adida) to forecasting: an empirical proposition and analysis
  publication-title: JORS
– volume: 4
  start-page: 43
  issue: 4
  year: 2006
  ident: 10.1016/j.dsm.2022.07.002_bib25
  article-title: Another look at forecast accuracy metrics for intermittent demand, Foresight
  publication-title: Int. J. Appl. Forecast.
– volume: 27
  start-page: 689
  issue: 3
  year: 2011
  ident: 10.1016/j.dsm.2022.07.002_bib7
  article-title: Conditionally dependent strategies for multiple-step-ahead prediction in local learning
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2010.09.004
– volume: 27
  start-page: 264
  issue: 3
  year: 1978
  ident: 10.1016/j.dsm.2022.07.002_bib9
  article-title: The holt-winters forecasting procedure
  publication-title: J. Roy. Stat. Soc. Ser. C. (Appl. Stat.)
– volume: 39
  start-page: 7067
  issue: 8
  year: 2012
  ident: 10.1016/j.dsm.2022.07.002_bib48
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.039
– volume: 82
  start-page: 65
  issue: Apr.
  year: 2015
  ident: 10.1016/j.dsm.2022.07.002_bib49
  article-title: An optimization algorithm for the workforce management in a retail chain
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.01.014
– ident: 10.1016/j.dsm.2022.07.002_bib11
– year: 2018
  ident: 10.1016/j.dsm.2022.07.002_bib26
– volume: 70
  start-page: 2861
  issue: 16–18
  year: 2007
  ident: 10.1016/j.dsm.2022.07.002_bib42
  article-title: Methodology for long-term prediction of time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.06.015
– volume: 7
  start-page: e623
  issue: Jul.
  year: 2021
  ident: 10.1016/j.dsm.2022.07.002_bib10
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.623
– ident: 10.1016/j.dsm.2022.07.002_bib33
– start-page: 1885
  year: 2018
  ident: 10.1016/j.dsm.2022.07.002_bib1
  article-title: Using real-world store data for foot traffic forecasting
– start-page: 241
  year: 2021
  ident: 10.1016/j.dsm.2022.07.002_bib31
  article-title: Time series forecasting in retail sales using lstm and prophet
– start-page: 237
  year: 2016
  ident: 10.1016/j.dsm.2022.07.002_bib43
  article-title: Decision tree learning
– volume: 138
  start-page: 62
  year: 2013
  ident: 10.1016/j.dsm.2022.07.002_bib8
  article-title: Machine learning strategies for time series forecasting
  publication-title: Business Intelligence
  doi: 10.1007/978-3-642-36318-4_3
– volume: 78
  start-page: 1550
  issue: 10
  year: 1990
  ident: 10.1016/j.dsm.2022.07.002_bib54
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
SSID ssj0002811256
Score 2.3225753
Snippet In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2)...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Multi-step ahead forecasting
Neural networks
Prophet
Scale-independent performance measures
TBATS
Weighted average ensemble
Title Long-term forecasting of hourly retail customer flow on intermittent time series with multiple seasonality
URI https://dx.doi.org/10.1016/j.dsm.2022.07.002
https://doaj.org/article/16767e5e15d24a9cb874fcf368aa6eaa
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXgSgk2TJu1RxWUR8eTC3kqe6rK2sg_Ef28mbZde1IvXkkeZDJkvky_fIHRJbSap8UU4m-SWcC0p0SbLifFKFMYBYo5siycxGvOHSTbplfoCTlgjD9wY7pqCopjLHM1sylVhdC65N56JXCnhVIRGIeb1DlPTmDIKOCKWbg0BSBApeNFdaUZyl13AK_Q0jcKdbUqlC0pRu78Xm3rxZriLdlqgiG-aH9xDG67aR9s9-cADNH2sqxcCeysO0NMZtQAOM649fg29Z194Hvmh2KwCwnt3c-xn9SeuKwwaEfCQP-DlJYbq8hgc0S0wZGVxxzHEkD9sgfohGg_vn-9GpK2dQAwLQZ8YKUHo1IIeoM6LLM19nnCvnePKG5swqaX3sF8qw7in0hWZZakSzANilOwIbVZ15Y4RThRNrShsZqniPhEqIAwjFBcMqlEleoCSznilaYXFob7FrOwYZNMy2LsEe5cJXHenA3S17vLRqGr81vgWVmTdEASx44fgJmXrJuVfbjJAvFvPssUWDWYIQ739PPfJf8x9irZgyIaZdoY2l_OVOw9QZqkvotd-Axvx8eY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+forecasting+of+hourly+retail+customer+flow+on+intermittent+time+series+with+multiple+seasonality&rft.jtitle=Data+science+and+management&rft.au=Sousa%2C+Martim&rft.au=Tom%C3%A9%2C+Ana+Maria&rft.au=Moreira%2C+Jos%C3%A9&rft.date=2022-09-01&rft.issn=2666-7649&rft.eissn=2666-7649&rft.volume=5&rft.issue=3&rft.spage=137&rft.epage=148&rft_id=info:doi/10.1016%2Fj.dsm.2022.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsm_2022_07_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon