Long-term forecasting of hourly retail customer flow on intermittent time series with multiple seasonality
In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2) multi-step ahead forecasting, (3) time series with multiple seasonal periods, and (4) performance measures for model selection across multiple time se...
Saved in:
Published in | Data science and management Vol. 5; no. 3; pp. 137 - 148 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2) multi-step ahead forecasting, (3) time series with multiple seasonal periods, and (4) performance measures for model selection across multiple time series. Current literature deals with these types of problems separately, and no study has dealt with all these characteristics simultaneously. To fill this knowledge gap, we begin by reviewing all the necessary existing literature relevant to this case study with the goal of proposing a framework capable of achieving adequate forecast accuracy for such a complex problem. Several adaptions and innovations have been conducted, which are marked as contributions to the literature. Specifically, we proposed a weighted average forecast combination of many cutting-edge models based on their out-of-sample performance. To gather strong evidence that our ensemble model works in practice, we undertook a large-scale study across 98 time series, rigorously assessed with unbiased performance measures, where a week seasonal naïve was set as a benchmark. The results demonstrate that the proposed ensemble model achieves eye-catching forecasting accuracy. |
---|---|
AbstractList | In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2) multi-step ahead forecasting, (3) time series with multiple seasonal periods, and (4) performance measures for model selection across multiple time series. Current literature deals with these types of problems separately, and no study has dealt with all these characteristics simultaneously. To fill this knowledge gap, we begin by reviewing all the necessary existing literature relevant to this case study with the goal of proposing a framework capable of achieving adequate forecast accuracy for such a complex problem. Several adaptions and innovations have been conducted, which are marked as contributions to the literature. Specifically, we proposed a weighted average forecast combination of many cutting-edge models based on their out-of-sample performance. To gather strong evidence that our ensemble model works in practice, we undertook a large-scale study across 98 time series, rigorously assessed with unbiased performance measures, where a week seasonal naïve was set as a benchmark. The results demonstrate that the proposed ensemble model achieves eye-catching forecasting accuracy. |
Author | Tomé, Ana Maria Sousa, Martim Moreira, José |
Author_xml | – sequence: 1 givenname: Martim orcidid: 0000-0002-5796-6338 surname: Sousa fullname: Sousa, Martim email: martimsousa@ua.pt – sequence: 2 givenname: Ana Maria surname: Tomé fullname: Tomé, Ana Maria – sequence: 3 givenname: José surname: Moreira fullname: Moreira, José |
BookMark | eNp9kcFq3DAQhkVJoWmaB-hNL2BXkm3JpqcS2iaw0Et7FrPyaDPGloKkbdi3r7bbQukhc5lhmO9n-P-37CrEgIy9l6KVQuoPSzvnrVVCqVaYVgj1il0rrXVjdD9d_TO_Ybc5L6JejFKqQV-zZRfDoSmYNu5jQge5UDjw6PljPKb1xBMWoJW7Yy5xw8T9Gp95DJzCGaJSMBReaEOeMRFm_kzlkW_HtdDTel5CjgFWKqd37LWHNePtn37Dfnz5_P3uvtl9-_pw92nXuM6MqnHGdIMa5n5Sej9Ogxr9KHq_R-zBu1l0Zm-8l7XAdb2XBqdh7hTozk-T1Ka7YQ8X3TnCYp8SbZBONgLZ34uYDhZSIbeirefa4IBymFUPk9uPpvfOd3oE0AhQtcxFy6WYc0JvHRUoFENJ1RYrhT0nYBdbE7DnBKwwtvpbSfkf-feTl5iPFwarPT8Jk82OMDicqUZT6v_0Av0LMDKitQ |
CitedBy_id | crossref_primary_10_1016_j_health_2023_100146 crossref_primary_10_1016_j_inffus_2023_102141 crossref_primary_10_1016_j_enconman_2023_117590 crossref_primary_10_1016_j_jretconser_2024_103868 crossref_primary_10_1016_j_procs_2024_03_189 crossref_primary_10_1016_j_envint_2024_109124 crossref_primary_10_1016_j_eswa_2022_119184 crossref_primary_10_1016_j_measurement_2025_117313 crossref_primary_10_1002_for_3213 crossref_primary_10_1016_j_engappai_2024_109721 crossref_primary_10_1016_j_eswa_2024_124409 crossref_primary_10_1142_S0218348X23401357 crossref_primary_10_3390_ijgi12030100 crossref_primary_10_1002_for_3097 crossref_primary_10_3390_electronics13071364 crossref_primary_10_1016_j_eswa_2023_119889 crossref_primary_10_1007_s44163_025_00239_3 crossref_primary_10_1109_TII_2023_3245196 crossref_primary_10_3390_agriculture14020229 |
Cites_doi | 10.1057/jors.1969.103 10.1016/j.ijforecast.2019.08.012 10.1287/mnsc.6.3.324 10.1016/j.ijforecast.2003.09.015 10.1198/jasa.2011.tm09771 10.1057/jors.1972.50 10.1057/palgrave.jors.2601841 10.1016/0169-2070(93)90079-3 10.1016/S0925-5273(00)00143-2 10.3390/axioms10010018 10.1016/j.ijforecast.2015.12.003 10.1016/j.eneco.2013.07.028 10.1162/neco.1997.9.8.1735 10.1002/env.2267 10.1016/j.dsm.2022.04.001 10.1057/jors.2014.103 10.1016/0893-6080(89)90020-8 10.1057/palgrave.jors.2601589 10.1016/j.ijforecast.2006.03.001 10.1016/0169-2070(86)90059-2 10.1080/00031305.2017.1380080 10.1016/S0893-6080(05)80023-1 10.1016/j.ijforecast.2015.03.001 10.2307/1912517 10.1016/j.ejor.2011.05.018 10.1016/j.neucom.2015.12.114 10.1016/0169-2070(89)90012-5 10.1016/j.ijforecast.2010.09.004 10.1016/j.eswa.2012.01.039 10.1016/j.cie.2015.01.014 10.1016/j.neucom.2006.06.015 10.7717/peerj-cs.623 10.1007/978-3-642-36318-4_3 10.1109/5.58337 |
ContentType | Journal Article |
Copyright | 2022 Xi’an Jiaotong University |
Copyright_xml | – notice: 2022 Xi’an Jiaotong University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.dsm.2022.07.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2666-7649 |
EndPage | 148 |
ExternalDocumentID | oai_doaj_org_article_16767e5e15d24a9cb874fcf368aa6eaa 10_1016_j_dsm_2022_07_002 S2666764922000273 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c3782-c773525d4926b89528f804fbee4afcd037b7ff1111ac34f17e95d32a63f991673 |
IEDL.DBID | DOA |
ISSN | 2666-7649 |
IngestDate | Wed Aug 27 01:25:18 EDT 2025 Tue Jul 01 01:06:46 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Fri Feb 23 02:38:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Multi-step ahead forecasting Weighted average ensemble Scale-independent performance measures TBATS Neural networks Prophet |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3782-c773525d4926b89528f804fbee4afcd037b7ff1111ac34f17e95d32a63f991673 |
ORCID | 0000-0002-5796-6338 |
OpenAccessLink | https://doaj.org/article/16767e5e15d24a9cb874fcf368aa6eaa |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_16767e5e15d24a9cb874fcf368aa6eaa crossref_citationtrail_10_1016_j_dsm_2022_07_002 crossref_primary_10_1016_j_dsm_2022_07_002 elsevier_sciencedirect_doi_10_1016_j_dsm_2022_07_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Data science and management |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Junior, Gusmão, Moreira (bib31) 2021 Sorjamaa, Lendasse (bib41) 2006 Abrishami, Kumar (bib1) 2018 Christ, Kempa-Liehr, Feindt (bib11) 2016 Rojas (bib39) 1996 Taieb, Bontempi, Sorjamaa (bib47) 2009 Iversen, Morales, Møller (bib29) 2014; 25 Suthaharan (bib43) 2016 Taylor (bib50) 2003; 54 Iversen, Morales, Møller (bib30) 2016; 32 Cortez, Matos, Pereira (bib14) 2017 Taylor, Letham (bib51) 2018; 72 Xiong, Bao, Hu (bib57) 2013; 40 Talarico, Duque (bib49) 2015; 82 Teunter, Syntetos, Babai (bib52) 2011; 214 Croston (bib16) 1972; 23 De Livera, Hyndman, Snyder (bib17) 2011; 106 Hyndman, Athanasopoulos (bib26) 2018 An, Anh (bib3) 2015 Costa, Cerqueira, Vinagre (bib15) 2021 Ma, Fildes (bib35) 2020; 36 Kingma, Ba (bib33) 2014 Cipra, Hanzák (bib12) 2008; 44 Adhikari, Agrawal (bib2) 2012 Ben Taieb, Hyndman (bib5) 2012 Syntetos, Boylan, Croston (bib45) 2005; 56 Winters (bib55) 1960; 6 Tofallis (bib53) 2015; 66 Zhuang, Yu, Chen (bib58) 2022; 5 Kim, Kim (bib32) 2016; 32 Wolpert (bib56) 1992; 5 Dickey, Fuller (bib19) 1979; 74 Dickey, Fuller (bib20) 1981; 49 Bates, Granger (bib4) 1969; 20 Goodfellow, Bengio, Courville (bib21) 2016 Sorjamaa, Hao, Reyhani (bib42) 2007; 70 Syntetos, Boylan (bib44) 2001; 71 Hochreiter, Schmidhuber (bib22) 1997; 9 Chicco, Warrens, Jurman (bib10) 2021; 7 De Myttenaere, Golden, Grand (bib18) 2016; 192 Tahmasbi, Hashemi (bib46) 2013 Mahrouf, Boukhouima, Zine (bib36) 2021; 10 Hyndman (bib25) 2006; 4 Clemen (bib13) 1989; 5 Iacus (bib28) 2008 Schnaars (bib40) 1986; 2 Bontempi (bib6) 2008 Taieb, Bontempi, Atiya (bib48) 2012; 39 Nikolopoulos, Syntetos, Boylan (bib38) 2011; 62 Bontempi, Ben Taieb, Le Borgne (bib8) 2013; 138 Werbos (bib54) 1990; 78 Hyndman, Koehler (bib27) 2006; 22 Bontempi, Taieb (bib7) 2011; 27 Holt (bib23) 2004; 20 Makridakis (bib37) 1993; 9 Hornik, Stinchcombe, White (bib24) 1989; 2 Chatfield (bib9) 1978; 27 Kline (bib34) 2004 Hornik (10.1016/j.dsm.2022.07.002_bib24) 1989; 2 Makridakis (10.1016/j.dsm.2022.07.002_bib37) 1993; 9 Bates (10.1016/j.dsm.2022.07.002_bib4) 1969; 20 Goodfellow (10.1016/j.dsm.2022.07.002_bib21) 2016 Rojas (10.1016/j.dsm.2022.07.002_bib39) 1996 Bontempi (10.1016/j.dsm.2022.07.002_bib6) 2008 Abrishami (10.1016/j.dsm.2022.07.002_bib1) 2018 Adhikari (10.1016/j.dsm.2022.07.002_bib2) 2012 Clemen (10.1016/j.dsm.2022.07.002_bib13) 1989; 5 Cortez (10.1016/j.dsm.2022.07.002_bib14) 2017 Taylor (10.1016/j.dsm.2022.07.002_bib50) 2003; 54 De Livera (10.1016/j.dsm.2022.07.002_bib17) 2011; 106 Taylor (10.1016/j.dsm.2022.07.002_bib51) 2018; 72 Cipra (10.1016/j.dsm.2022.07.002_bib12) 2008; 44 Hyndman (10.1016/j.dsm.2022.07.002_bib25) 2006; 4 Dickey (10.1016/j.dsm.2022.07.002_bib20) 1981; 49 De Myttenaere (10.1016/j.dsm.2022.07.002_bib18) 2016; 192 Hyndman (10.1016/j.dsm.2022.07.002_bib27) 2006; 22 Iversen (10.1016/j.dsm.2022.07.002_bib29) 2014; 25 Bontempi (10.1016/j.dsm.2022.07.002_bib7) 2011; 27 Kingma (10.1016/j.dsm.2022.07.002_bib33) Costa (10.1016/j.dsm.2022.07.002_bib15) Hyndman (10.1016/j.dsm.2022.07.002_bib26) 2018 Zhuang (10.1016/j.dsm.2022.07.002_bib58) 2022; 5 Kline (10.1016/j.dsm.2022.07.002_bib34) 2004 Xiong (10.1016/j.dsm.2022.07.002_bib57) 2013; 40 Hochreiter (10.1016/j.dsm.2022.07.002_bib22) 1997; 9 Chicco (10.1016/j.dsm.2022.07.002_bib10) 2021; 7 Ben Taieb (10.1016/j.dsm.2022.07.002_bib5) 2012 Tahmasbi (10.1016/j.dsm.2022.07.002_bib46) 2013 Iacus (10.1016/j.dsm.2022.07.002_bib28) Holt (10.1016/j.dsm.2022.07.002_bib23) 2004; 20 Schnaars (10.1016/j.dsm.2022.07.002_bib40) 1986; 2 Iversen (10.1016/j.dsm.2022.07.002_bib30) 2016; 32 Kim (10.1016/j.dsm.2022.07.002_bib32) 2016; 32 Dickey (10.1016/j.dsm.2022.07.002_bib19) 1979; 74 Croston (10.1016/j.dsm.2022.07.002_bib16) 1972; 23 Junior (10.1016/j.dsm.2022.07.002_bib31) 2021 Ma (10.1016/j.dsm.2022.07.002_bib35) 2020; 36 Teunter (10.1016/j.dsm.2022.07.002_bib52) 2011; 214 Syntetos (10.1016/j.dsm.2022.07.002_bib45) 2005; 56 Nikolopoulos (10.1016/j.dsm.2022.07.002_bib38) 2011; 62 Sorjamaa (10.1016/j.dsm.2022.07.002_bib42) 2007; 70 Werbos (10.1016/j.dsm.2022.07.002_bib54) 1990; 78 Taieb (10.1016/j.dsm.2022.07.002_bib47) 2009 An (10.1016/j.dsm.2022.07.002_bib3) 2015 Winters (10.1016/j.dsm.2022.07.002_bib55) 1960; 6 Talarico (10.1016/j.dsm.2022.07.002_bib49) 2015; 82 Wolpert (10.1016/j.dsm.2022.07.002_bib56) 1992; 5 Syntetos (10.1016/j.dsm.2022.07.002_bib44) 2001; 71 Taieb (10.1016/j.dsm.2022.07.002_bib48) 2012; 39 Chatfield (10.1016/j.dsm.2022.07.002_bib9) 1978; 27 Christ (10.1016/j.dsm.2022.07.002_bib11) Bontempi (10.1016/j.dsm.2022.07.002_bib8) 2013; 138 Tofallis (10.1016/j.dsm.2022.07.002_bib53) 2015; 66 Mahrouf (10.1016/j.dsm.2022.07.002_bib36) 2021; 10 Sorjamaa (10.1016/j.dsm.2022.07.002_bib41) 2006 Suthaharan (10.1016/j.dsm.2022.07.002_bib43) 2016 |
References_xml | – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: bib56 article-title: Stacked generalization publication-title: Neural Network. – volume: 20 start-page: 5 year: 2004 end-page: 10 ident: bib23 article-title: Forecasting seasonals and trends by exponentially weighted moving averages publication-title: Int. J. Forecast. – volume: 74 start-page: 427 year: 1979 end-page: 431 ident: bib19 article-title: Distribution of the estimators for autoregressive time series with a unit root publication-title: J. Am. Stat. Assoc. – volume: 2 start-page: 387 year: 1986 end-page: 390 ident: bib40 article-title: Long-range forecasting: from crystal ball to computer: J. scott armstrong, 2nd ed. (wiley, New York, 1985) [UK pound]22.95 (paper) publication-title: Int. J. Forecast. – volume: 36 start-page: 739 year: 2020 end-page: 760 ident: bib35 article-title: Forecasting third-party mobile payments with implications for customer flow prediction publication-title: Int. J. Forecast. – volume: 62 start-page: 544 year: 2011 end-page: 554 ident: bib38 article-title: An aggregate-disaggregate intermittent demand approach (adida) to forecasting: an empirical proposition and analysis publication-title: JORS – volume: 106 start-page: 1513 year: 2011 end-page: 1527 ident: bib17 article-title: Forecasting time series with complex seasonal patterns using exponential smoothing publication-title: J. Am. Stat. Assoc. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib24 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network. – start-page: 1885 year: 2018 end-page: 1890 ident: bib1 article-title: Using real-world store data for foot traffic forecasting publication-title: 2018 IEEE International Conference on Big Data (Big Data) – start-page: 145 year: 2008 end-page: 154 ident: bib6 article-title: Long term time series prediction with multi-input multi-output local learning publication-title: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP08 – volume: 54 start-page: 799 year: 2003 end-page: 805 ident: bib50 article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing publication-title: J. Oper. Res. Soc. – volume: 32 start-page: 669 year: 2016 end-page: 679 ident: bib32 article-title: A new metric of absolute percentage error for intermittent demand forecasts publication-title: Int. J. Forecast. – start-page: 226 year: 2004 end-page: 250 ident: bib34 article-title: Methods for multi-step time series forecasting with neural networks publication-title: Neural Networks in Business Forecasting – volume: 72 start-page: 37 year: 2018 end-page: 45 ident: bib51 article-title: Forecasting at scale publication-title: Am. Statistician – year: 2021 ident: bib15 article-title: Autofits: automatic feature engineering for irregular time series – volume: 6 start-page: 324 year: 1960 end-page: 342 ident: bib55 article-title: Forecasting sales by exponentially weighted moving averages publication-title: Manag. Sci. – year: 2016 ident: bib11 article-title: Distributed and parallel time series feature extraction for Industrial big data applications – start-page: 250 year: 2013 end-page: 259 ident: bib46 article-title: Modeling and forecasting the urban volume using stochastic differential equations publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 5 start-page: 43 year: 2022 end-page: 56 ident: bib58 article-title: A combined forecasting method for intermittent demand using the automotive aftermarket data publication-title: Data Sci. Manag. – volume: 9 start-page: 527 year: 1993 end-page: 529 ident: bib37 article-title: Accuracy measures: theoretical and practical concerns publication-title: Int. J. Forecast. – volume: 20 start-page: 451 year: 1969 end-page: 468 ident: bib4 article-title: The combination of forecasts publication-title: J. Oper. Res. Soc. – start-page: 149 year: 1996 end-page: 182 ident: bib39 article-title: The Backpropagation Algorithm – volume: 66 start-page: 1352 year: 2015 end-page: 1362 ident: bib53 article-title: A better measure of relative prediction accuracy for model selection and model estimation publication-title: J. Oper. Res. Soc. – volume: 10 start-page: 18 year: 2021 ident: bib36 article-title: Modeling and forecasting of COVID-19 spreading by delayed stochastic differential equations publication-title: Axioms – volume: 214 start-page: 606 year: 2011 end-page: 615 ident: bib52 article-title: Intermittent demand: linking forecasting to inventory obsolescence publication-title: Eur. J. Oper. Res. – volume: 56 start-page: 495 year: 2005 end-page: 503 ident: bib45 article-title: On the categorization of demand patterns publication-title: J. Oper. Res. Soc. – volume: 25 start-page: 152 year: 2014 end-page: 164 ident: bib29 article-title: Probabilistic forecasts of solar irradiance using stochastic differential equations publication-title: Environmetrics – volume: 192 start-page: 38 year: 2016 end-page: 48 ident: bib18 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing – start-page: 237 year: 2016 end-page: 269 ident: bib43 article-title: Decision tree learning publication-title: Machine Learning Models and Algorithms for Big Data Classification – year: 2012 ident: bib5 article-title: Recursive and direct multi-step forecasting: the best of both worlds publication-title: Monash Econometrics and Business Statistics Working Papers 19/12 – start-page: 142 year: 2015 end-page: 149 ident: bib3 article-title: Comparison of strategies for multi-step-ahead prediction of time series using neural network publication-title: 2015 International Conference on Advanced Computing and Applications (ACOMP), – start-page: 267 year: 2017 end-page: 276 ident: bib14 article-title: Forecasting store foot traffic using facial recognition, time series and support vector machines publication-title: International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 – year: 2014 ident: bib33 article-title: Adam: a method for stochastic optimization – volume: 23 start-page: 289 year: 1972 end-page: 303 ident: bib16 article-title: Forecasting and stock control for intermittent demands publication-title: Oper. Res. Q. – start-page: 3054 year: 2009 end-page: 3061 ident: bib47 article-title: Long-term prediction of time series by combining direct and mimo strategies publication-title: 2009 International Joint Conference on Neural Networks – start-page: 241 year: 2021 end-page: 262 ident: bib31 article-title: Time series forecasting in retail sales using lstm and prophet publication-title: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: bib27 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. – volume: 78 start-page: 1550 year: 1990 end-page: 1560 ident: bib54 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE – year: 2018 ident: bib26 publication-title: Forecasting: Principles and Practice – volume: 4 start-page: 43 year: 2006 end-page: 46 ident: bib25 article-title: Another look at forecast accuracy metrics for intermittent demand, Foresight publication-title: Int. J. Appl. Forecast. – volume: 71 start-page: 457 year: 2001 end-page: 466 ident: bib44 article-title: On the bias of intermittent demand estimates publication-title: Int. J. Prod. Econ. – year: 2016 ident: bib21 article-title: Deep Learning – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib22 article-title: Long short-term memory publication-title: Neural Comput. – volume: 44 start-page: 385 year: 2008 end-page: 399 ident: bib12 article-title: Exponential smoothing for irregular time series publication-title: Kybernetika – volume: 39 start-page: 7067 year: 2012 end-page: 7083 ident: bib48 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst. Appl. – start-page: 143 year: 2006 end-page: 148 ident: bib41 article-title: Time series prediction using DiRrec strategy publication-title: Proceedings of European Symposium on Artificial Neural Networks – volume: 82 start-page: 65 year: 2015 end-page: 77 ident: bib49 article-title: An optimization algorithm for the workforce management in a retail chain publication-title: Comput. Ind. Eng. – volume: 49 start-page: 1057 year: 1981 end-page: 1072 ident: bib20 article-title: Likelihood ratio statistics for autoregressive time series with a unit root publication-title: Econometrica – volume: 27 start-page: 264 year: 1978 end-page: 279 ident: bib9 article-title: The holt-winters forecasting procedure publication-title: J. Roy. Stat. Soc. Ser. C. (Appl. Stat.) – year: 2008 ident: bib28 article-title: Simulation and inference for stochastic differential equations: with R examples – volume: 138 start-page: 62 year: 2013 end-page: 77 ident: bib8 article-title: Machine learning strategies for time series forecasting publication-title: Business Intelligence – volume: 40 start-page: 405 year: 2013 end-page: 415 ident: bib57 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. – start-page: 38 year: 2012 end-page: 49 ident: bib2 article-title: A novel weighted ensemble technique for time series forecasting publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: 5 start-page: 559 year: 1989 end-page: 583 ident: bib13 article-title: Combining forecasts: a review and annotated bibliography publication-title: Int. J. Forecast. – volume: 7 start-page: e623 year: 2021 ident: bib10 article-title: The coefficient of determination publication-title: PeerJ Comput. Sci. – volume: 27 start-page: 689 year: 2011 end-page: 699 ident: bib7 article-title: Conditionally dependent strategies for multiple-step-ahead prediction in local learning publication-title: Int. J. Forecast. – volume: 70 start-page: 2861 year: 2007 end-page: 2869 ident: bib42 article-title: Methodology for long-term prediction of time series publication-title: Neurocomputing – volume: 32 start-page: 981 year: 2016 end-page: 990 ident: bib30 article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations publication-title: Int. J. Forecast. – volume: 20 start-page: 451 issue: 4 year: 1969 ident: 10.1016/j.dsm.2022.07.002_bib4 article-title: The combination of forecasts publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1969.103 – volume: 36 start-page: 739 issue: 3 year: 2020 ident: 10.1016/j.dsm.2022.07.002_bib35 article-title: Forecasting third-party mobile payments with implications for customer flow prediction publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.08.012 – volume: 6 start-page: 324 issue: 3 year: 1960 ident: 10.1016/j.dsm.2022.07.002_bib55 article-title: Forecasting sales by exponentially weighted moving averages publication-title: Manag. Sci. doi: 10.1287/mnsc.6.3.324 – volume: 20 start-page: 5 issue: 1 year: 2004 ident: 10.1016/j.dsm.2022.07.002_bib23 article-title: Forecasting seasonals and trends by exponentially weighted moving averages publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2003.09.015 – start-page: 142 year: 2015 ident: 10.1016/j.dsm.2022.07.002_bib3 article-title: Comparison of strategies for multi-step-ahead prediction of time series using neural network – volume: 106 start-page: 1513 issue: 496 year: 2011 ident: 10.1016/j.dsm.2022.07.002_bib17 article-title: Forecasting time series with complex seasonal patterns using exponential smoothing publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.tm09771 – volume: 23 start-page: 289 issue: 3 year: 1972 ident: 10.1016/j.dsm.2022.07.002_bib16 article-title: Forecasting and stock control for intermittent demands publication-title: Oper. Res. Q. doi: 10.1057/jors.1972.50 – volume: 56 start-page: 495 issue: May year: 2005 ident: 10.1016/j.dsm.2022.07.002_bib45 article-title: On the categorization of demand patterns publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601841 – volume: 9 start-page: 527 issue: 4 year: 1993 ident: 10.1016/j.dsm.2022.07.002_bib37 article-title: Accuracy measures: theoretical and practical concerns publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(93)90079-3 – start-page: 226 year: 2004 ident: 10.1016/j.dsm.2022.07.002_bib34 article-title: Methods for multi-step time series forecasting with neural networks – volume: 71 start-page: 457 issue: 1–3 year: 2001 ident: 10.1016/j.dsm.2022.07.002_bib44 article-title: On the bias of intermittent demand estimates publication-title: Int. J. Prod. Econ. doi: 10.1016/S0925-5273(00)00143-2 – volume: 10 start-page: 18 issue: 1 year: 2021 ident: 10.1016/j.dsm.2022.07.002_bib36 article-title: Modeling and forecasting of COVID-19 spreading by delayed stochastic differential equations publication-title: Axioms doi: 10.3390/axioms10010018 – volume: 44 start-page: 385 issue: 3 year: 2008 ident: 10.1016/j.dsm.2022.07.002_bib12 article-title: Exponential smoothing for irregular time series publication-title: Kybernetika – start-page: 145 year: 2008 ident: 10.1016/j.dsm.2022.07.002_bib6 article-title: Long term time series prediction with multi-input multi-output local learning – year: 2016 ident: 10.1016/j.dsm.2022.07.002_bib21 – volume: 32 start-page: 669 issue: 3 year: 2016 ident: 10.1016/j.dsm.2022.07.002_bib32 article-title: A new metric of absolute percentage error for intermittent demand forecasts publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.12.003 – start-page: 250 year: 2013 ident: 10.1016/j.dsm.2022.07.002_bib46 article-title: Modeling and forecasting the urban volume using stochastic differential equations – volume: 40 start-page: 405 issue: Nov. year: 2013 ident: 10.1016/j.dsm.2022.07.002_bib57 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.07.028 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.dsm.2022.07.002_bib22 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 143 year: 2006 ident: 10.1016/j.dsm.2022.07.002_bib41 article-title: Time series prediction using DiRrec strategy – volume: 25 start-page: 152 issue: Oct. year: 2014 ident: 10.1016/j.dsm.2022.07.002_bib29 article-title: Probabilistic forecasts of solar irradiance using stochastic differential equations publication-title: Environmetrics doi: 10.1002/env.2267 – volume: 5 start-page: 43 issue: 2 year: 2022 ident: 10.1016/j.dsm.2022.07.002_bib58 article-title: A combined forecasting method for intermittent demand using the automotive aftermarket data publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2022.04.001 – volume: 66 start-page: 1352 issue: Nov. year: 2015 ident: 10.1016/j.dsm.2022.07.002_bib53 article-title: A better measure of relative prediction accuracy for model selection and model estimation publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2014.103 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.dsm.2022.07.002_bib24 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network. doi: 10.1016/0893-6080(89)90020-8 – volume: 54 start-page: 799 issue: Jul. year: 2003 ident: 10.1016/j.dsm.2022.07.002_bib50 article-title: Short-term electricity demand forecasting using double seasonal exponential smoothing publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601589 – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.dsm.2022.07.002_bib27 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – volume: 2 start-page: 387 issue: 3 year: 1986 ident: 10.1016/j.dsm.2022.07.002_bib40 article-title: Long-range forecasting: from crystal ball to computer: J. scott armstrong, 2nd ed. (wiley, New York, 1985) [UK pound]22.95 (paper) publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(86)90059-2 – volume: 74 start-page: 427 issue: Nov. year: 1979 ident: 10.1016/j.dsm.2022.07.002_bib19 article-title: Distribution of the estimators for autoregressive time series with a unit root publication-title: J. Am. Stat. Assoc. – volume: 72 start-page: 37 issue: Apr. year: 2018 ident: 10.1016/j.dsm.2022.07.002_bib51 article-title: Forecasting at scale publication-title: Am. Statistician doi: 10.1080/00031305.2017.1380080 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.dsm.2022.07.002_bib56 article-title: Stacked generalization publication-title: Neural Network. doi: 10.1016/S0893-6080(05)80023-1 – year: 2012 ident: 10.1016/j.dsm.2022.07.002_bib5 article-title: Recursive and direct multi-step forecasting: the best of both worlds – start-page: 3054 year: 2009 ident: 10.1016/j.dsm.2022.07.002_bib47 article-title: Long-term prediction of time series by combining direct and mimo strategies – volume: 32 start-page: 981 issue: 3 year: 2016 ident: 10.1016/j.dsm.2022.07.002_bib30 article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.03.001 – volume: 49 start-page: 1057 issue: Jul. year: 1981 ident: 10.1016/j.dsm.2022.07.002_bib20 article-title: Likelihood ratio statistics for autoregressive time series with a unit root publication-title: Econometrica doi: 10.2307/1912517 – start-page: 149 year: 1996 ident: 10.1016/j.dsm.2022.07.002_bib39 – volume: 214 start-page: 606 issue: 3 year: 2011 ident: 10.1016/j.dsm.2022.07.002_bib52 article-title: Intermittent demand: linking forecasting to inventory obsolescence publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2011.05.018 – ident: 10.1016/j.dsm.2022.07.002_bib28 – start-page: 267 year: 2017 ident: 10.1016/j.dsm.2022.07.002_bib14 article-title: Forecasting store foot traffic using facial recognition, time series and support vector machines – start-page: 38 year: 2012 ident: 10.1016/j.dsm.2022.07.002_bib2 article-title: A novel weighted ensemble technique for time series forecasting – volume: 192 start-page: 38 issue: Jun. year: 2016 ident: 10.1016/j.dsm.2022.07.002_bib18 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.114 – volume: 5 start-page: 559 issue: 4 year: 1989 ident: 10.1016/j.dsm.2022.07.002_bib13 article-title: Combining forecasts: a review and annotated bibliography publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(89)90012-5 – ident: 10.1016/j.dsm.2022.07.002_bib15 – volume: 62 start-page: 544 issue: 3 year: 2011 ident: 10.1016/j.dsm.2022.07.002_bib38 article-title: An aggregate-disaggregate intermittent demand approach (adida) to forecasting: an empirical proposition and analysis publication-title: JORS – volume: 4 start-page: 43 issue: 4 year: 2006 ident: 10.1016/j.dsm.2022.07.002_bib25 article-title: Another look at forecast accuracy metrics for intermittent demand, Foresight publication-title: Int. J. Appl. Forecast. – volume: 27 start-page: 689 issue: 3 year: 2011 ident: 10.1016/j.dsm.2022.07.002_bib7 article-title: Conditionally dependent strategies for multiple-step-ahead prediction in local learning publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2010.09.004 – volume: 27 start-page: 264 issue: 3 year: 1978 ident: 10.1016/j.dsm.2022.07.002_bib9 article-title: The holt-winters forecasting procedure publication-title: J. Roy. Stat. Soc. Ser. C. (Appl. Stat.) – volume: 39 start-page: 7067 issue: 8 year: 2012 ident: 10.1016/j.dsm.2022.07.002_bib48 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.039 – volume: 82 start-page: 65 issue: Apr. year: 2015 ident: 10.1016/j.dsm.2022.07.002_bib49 article-title: An optimization algorithm for the workforce management in a retail chain publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.01.014 – ident: 10.1016/j.dsm.2022.07.002_bib11 – year: 2018 ident: 10.1016/j.dsm.2022.07.002_bib26 – volume: 70 start-page: 2861 issue: 16–18 year: 2007 ident: 10.1016/j.dsm.2022.07.002_bib42 article-title: Methodology for long-term prediction of time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.06.015 – volume: 7 start-page: e623 issue: Jul. year: 2021 ident: 10.1016/j.dsm.2022.07.002_bib10 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.623 – ident: 10.1016/j.dsm.2022.07.002_bib33 – start-page: 1885 year: 2018 ident: 10.1016/j.dsm.2022.07.002_bib1 article-title: Using real-world store data for foot traffic forecasting – start-page: 241 year: 2021 ident: 10.1016/j.dsm.2022.07.002_bib31 article-title: Time series forecasting in retail sales using lstm and prophet – start-page: 237 year: 2016 ident: 10.1016/j.dsm.2022.07.002_bib43 article-title: Decision tree learning – volume: 138 start-page: 62 year: 2013 ident: 10.1016/j.dsm.2022.07.002_bib8 article-title: Machine learning strategies for time series forecasting publication-title: Business Intelligence doi: 10.1007/978-3-642-36318-4_3 – volume: 78 start-page: 1550 issue: 10 year: 1990 ident: 10.1016/j.dsm.2022.07.002_bib54 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 |
SSID | ssj0002811256 |
Score | 2.3225753 |
Snippet | In this study, we address a demanding time series forecasting problem that deals simultaneously with the following: (1) intermittent time series, (2)... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 137 |
SubjectTerms | Multi-step ahead forecasting Neural networks Prophet Scale-independent performance measures TBATS Weighted average ensemble |
Title | Long-term forecasting of hourly retail customer flow on intermittent time series with multiple seasonality |
URI | https://dx.doi.org/10.1016/j.dsm.2022.07.002 https://doaj.org/article/16767e5e15d24a9cb874fcf368aa6eaa |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXgSgk2TJu1RxWUR8eTC3kqe6rK2sg_Ef28mbZde1IvXkkeZDJkvky_fIHRJbSap8UU4m-SWcC0p0SbLifFKFMYBYo5siycxGvOHSTbplfoCTlgjD9wY7pqCopjLHM1sylVhdC65N56JXCnhVIRGIeb1DlPTmDIKOCKWbg0BSBApeNFdaUZyl13AK_Q0jcKdbUqlC0pRu78Xm3rxZriLdlqgiG-aH9xDG67aR9s9-cADNH2sqxcCeysO0NMZtQAOM649fg29Z194Hvmh2KwCwnt3c-xn9SeuKwwaEfCQP-DlJYbq8hgc0S0wZGVxxzHEkD9sgfohGg_vn-9GpK2dQAwLQZ8YKUHo1IIeoM6LLM19nnCvnePKG5swqaX3sF8qw7in0hWZZakSzANilOwIbVZ15Y4RThRNrShsZqniPhEqIAwjFBcMqlEleoCSznilaYXFob7FrOwYZNMy2LsEe5cJXHenA3S17vLRqGr81vgWVmTdEASx44fgJmXrJuVfbjJAvFvPssUWDWYIQ739PPfJf8x9irZgyIaZdoY2l_OVOw9QZqkvotd-Axvx8eY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+forecasting+of+hourly+retail+customer+flow+on+intermittent+time+series+with+multiple+seasonality&rft.jtitle=Data+science+and+management&rft.au=Sousa%2C+Martim&rft.au=Tom%C3%A9%2C+Ana+Maria&rft.au=Moreira%2C+Jos%C3%A9&rft.date=2022-09-01&rft.issn=2666-7649&rft.eissn=2666-7649&rft.volume=5&rft.issue=3&rft.spage=137&rft.epage=148&rft_id=info:doi/10.1016%2Fj.dsm.2022.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsm_2022_07_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon |