A unified model for optimizing riverscape conservation

1. Spatial prioritization tools provide a means of finding efficient trade-offs between biodiversity protection and the delivery of ecosystem services. Although a large number of prioritization approaches have been proposed in the literature, most are specifically designed for terrestrial systems. W...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of applied ecology Vol. 55; no. 4; pp. 1871 - 1883
Main Authors Erős, Tibor, O'Hanley, Jesse R., Czeglédi, István, Mac Nally, Ralph
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.07.2018
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. Spatial prioritization tools provide a means of finding efficient trade-offs between biodiversity protection and the delivery of ecosystem services. Although a large number of prioritization approaches have been proposed in the literature, most are specifically designed for terrestrial systems. When applied to river ecosystems, they often fail to adequately account for the essential role that landscape connectivity plays in maintaining both biodiversity and ecosystem services. This is particularly true of longitudinal connectivity, which in many river catchments is highly altered by the presence of dams, stream-road crossings, and other artificial structures. 2. We propose a novel framework for coordinating river conservation and connectivity restoration. As part of this, we formulate an optimization model for deciding which subcatchments to designate for ecosystem services and which to include in a river protected area (RPA) network, while also deciding which existing river barriers to remove in order to maximize longitudinal connectivity within the RPA network. In addition to constraints on the size and makeup of the RPA network, the model also considers the suitability of sites for conservation, based on a biological integrity index, and connectivity to multiple habitat types. We demonstrate the usefulness of our approach using a case study involving four managed river catchments located in Hungary. 3. Results show that large increases in connectivity-weighted habitat can be achieved through targeted selection of barrier removals and that the benefits of barrier removal are strongly depend on RPA network size. We find that (i) highly suboptimal solutions are produced if habitat conservation planning and connectivity restoration are done separately and (ii) RPA acquisition provides substantially greater marginal benefits than barrier removal given limited resources. 4. Synthesis and applications. Finding a balance between conservation and ecosystem services provision should give more consideration to connectivity restoration planning, especially in multi-use riverscapes. We present the first modelling framework to directly integrate and optimize river conservation and connectivity restoration planning. This framework can help conservation managers to account better for connectivity, resulting in more effective catchment scale maintenance of biological integrity and ecosystem services delivery.
AbstractList Abstract Spatial prioritization tools provide a means of finding efficient trade‐offs between biodiversity protection and the delivery of ecosystem services. Although a large number of prioritization approaches have been proposed in the literature, most are specifically designed for terrestrial systems. When applied to river ecosystems, they often fail to adequately account for the essential role that landscape connectivity plays in maintaining both biodiversity and ecosystem services. This is particularly true of longitudinal connectivity, which in many river catchments is highly altered by the presence of dams, stream‐road crossings, and other artificial structures. We propose a novel framework for coordinating river conservation and connectivity restoration. As part of this, we formulate an optimization model for deciding which subcatchments to designate for ecosystem services and which to include in a river protected area (RPA) network, while also deciding which existing river barriers to remove in order to maximize longitudinal connectivity within the RPA network. In addition to constraints on the size and makeup of the RPA network, the model also considers the suitability of sites for conservation, based on a biological integrity index, and connectivity to multiple habitat types. We demonstrate the usefulness of our approach using a case study involving four managed river catchments located in Hungary. Results show that large increases in connectivity‐weighted habitat can be achieved through targeted selection of barrier removals and that the benefits of barrier removal are strongly depend on RPA network size. We find that (i) highly suboptimal solutions are produced if habitat conservation planning and connectivity restoration are done separately and (ii) RPA acquisition provides substantially greater marginal benefits than barrier removal given limited resources. Synthesis and applications . Finding a balance between conservation and ecosystem services provision should give more consideration to connectivity restoration planning, especially in multi‐use riverscapes. We present the first modelling framework to directly integrate and optimize river conservation and connectivity restoration planning. This framework can help conservation managers to account better for connectivity, resulting in more effective catchment scale maintenance of biological integrity and ecosystem services delivery. Finding a balance between conservation and ecosystem services provision should give more consideration to connectivity restoration planning, especially in multi‐use riverscapes. We present the first modelling framework to directly integrate and optimize river conservation and connectivity restoration planning. This framework can help conservation managers to account better for connectivity, resulting in more effective catchment scale maintenance of biological integrity and ecosystem services delivery.
Spatial prioritization tools provide a means of finding efficient trade‐offs between biodiversity protection and the delivery of ecosystem services. Although a large number of prioritization approaches have been proposed in the literature, most are specifically designed for terrestrial systems. When applied to river ecosystems, they often fail to adequately account for the essential role that landscape connectivity plays in maintaining both biodiversity and ecosystem services. This is particularly true of longitudinal connectivity, which in many river catchments is highly altered by the presence of dams, stream‐road crossings, and other artificial structures. We propose a novel framework for coordinating river conservation and connectivity restoration. As part of this, we formulate an optimization model for deciding which subcatchments to designate for ecosystem services and which to include in a river protected area (RPA) network, while also deciding which existing river barriers to remove in order to maximize longitudinal connectivity within the RPA network. In addition to constraints on the size and makeup of the RPA network, the model also considers the suitability of sites for conservation, based on a biological integrity index, and connectivity to multiple habitat types. We demonstrate the usefulness of our approach using a case study involving four managed river catchments located in Hungary. Results show that large increases in connectivity‐weighted habitat can be achieved through targeted selection of barrier removals and that the benefits of barrier removal are strongly depend on RPA network size. We find that (i) highly suboptimal solutions are produced if habitat conservation planning and connectivity restoration are done separately and (ii) RPA acquisition provides substantially greater marginal benefits than barrier removal given limited resources. Synthesis and applications. Finding a balance between conservation and ecosystem services provision should give more consideration to connectivity restoration planning, especially in multi‐use riverscapes. We present the first modelling framework to directly integrate and optimize river conservation and connectivity restoration planning. This framework can help conservation managers to account better for connectivity, resulting in more effective catchment scale maintenance of biological integrity and ecosystem services delivery. Finding a balance between conservation and ecosystem services provision should give more consideration to connectivity restoration planning, especially in multi‐use riverscapes. We present the first modelling framework to directly integrate and optimize river conservation and connectivity restoration planning. This framework can help conservation managers to account better for connectivity, resulting in more effective catchment scale maintenance of biological integrity and ecosystem services delivery.
Spatial prioritization tools provide a means of finding efficient trade‐offs between biodiversity protection and the delivery of ecosystem services. Although a large number of prioritization approaches have been proposed in the literature, most are specifically designed for terrestrial systems. When applied to river ecosystems, they often fail to adequately account for the essential role that landscape connectivity plays in maintaining both biodiversity and ecosystem services. This is particularly true of longitudinal connectivity, which in many river catchments is highly altered by the presence of dams, stream‐road crossings, and other artificial structures.We propose a novel framework for coordinating river conservation and connectivity restoration. As part of this, we formulate an optimization model for deciding which subcatchments to designate for ecosystem services and which to include in a river protected area (RPA) network, while also deciding which existing river barriers to remove in order to maximize longitudinal connectivity within the RPA network. In addition to constraints on the size and makeup of the RPA network, the model also considers the suitability of sites for conservation, based on a biological integrity index, and connectivity to multiple habitat types. We demonstrate the usefulness of our approach using a case study involving four managed river catchments located in Hungary.Results show that large increases in connectivity‐weighted habitat can be achieved through targeted selection of barrier removals and that the benefits of barrier removal are strongly depend on RPA network size. We find that (i) highly suboptimal solutions are produced if habitat conservation planning and connectivity restoration are done separately and (ii) RPA acquisition provides substantially greater marginal benefits than barrier removal given limited resources.Synthesis and applications. Finding a balance between conservation and ecosystem services provision should give more consideration to connectivity restoration planning, especially in multi‐use riverscapes. We present the first modelling framework to directly integrate and optimize river conservation and connectivity restoration planning. This framework can help conservation managers to account better for connectivity, resulting in more effective catchment scale maintenance of biological integrity and ecosystem services delivery.
1. Spatial prioritization tools provide a means of finding efficient trade-offs between biodiversity protection and the delivery of ecosystem services. Although a large number of prioritization approaches have been proposed in the literature, most are specifically designed for terrestrial systems. When applied to river ecosystems, they often fail to adequately account for the essential role that landscape connectivity plays in maintaining both biodiversity and ecosystem services. This is particularly true of longitudinal connectivity, which in many river catchments is highly altered by the presence of dams, stream-road crossings, and other artificial structures. 2. We propose a novel framework for coordinating river conservation and connectivity restoration. As part of this, we formulate an optimization model for deciding which subcatchments to designate for ecosystem services and which to include in a river protected area (RPA) network, while also deciding which existing river barriers to remove in order to maximize longitudinal connectivity within the RPA network. In addition to constraints on the size and makeup of the RPA network, the model also considers the suitability of sites for conservation, based on a biological integrity index, and connectivity to multiple habitat types. We demonstrate the usefulness of our approach using a case study involving four managed river catchments located in Hungary. 3. Results show that large increases in connectivity-weighted habitat can be achieved through targeted selection of barrier removals and that the benefits of barrier removal are strongly depend on RPA network size. We find that (i) highly suboptimal solutions are produced if habitat conservation planning and connectivity restoration are done separately and (ii) RPA acquisition provides substantially greater marginal benefits than barrier removal given limited resources. 4. Synthesis and applications. Finding a balance between conservation and ecosystem services provision should give more consideration to connectivity restoration planning, especially in multi-use riverscapes. We present the first modelling framework to directly integrate and optimize river conservation and connectivity restoration planning. This framework can help conservation managers to account better for connectivity, resulting in more effective catchment scale maintenance of biological integrity and ecosystem services delivery.
Author Czeglédi, István
Erős, Tibor
O'Hanley, Jesse R.
Author_xml – sequence: 1
  givenname: Tibor
  orcidid: 0000-0002-2252-3115
  surname: Erős
  fullname: Erős, Tibor
  email: eros.tibor@okologia.mta.hu
  organization: GINOP Sustainable Ecosystems Group
– sequence: 2
  givenname: Jesse R.
  surname: O'Hanley
  fullname: O'Hanley, Jesse R.
  organization: University of Kent
– sequence: 3
  givenname: István
  surname: Czeglédi
  fullname: Czeglédi, István
  organization: Balaton Limnological Institute
– sequence: 4
  givenname: Ralph
  surname: Mac Nally
  fullname: Mac Nally, Ralph
BookMark eNqFkEtLAzEURoNUsK2uXQkDrqfNOzPLUuqLgi50HWbSG0lpkzGZVuqvd-pot2ZzIXznPs4IDXzwgNA1wRPSvSlhUuRUSj4hjHB6hoannwEaYkxJXpSYXKBRSmuMcSkYGyI5y3beWQerbBtWsMlsiFloWrd1X86_Z9HtISZTNZCZ4BPEfdW64C_Rua02Ca5-6xi93S1e5w_58vn-cT5b5oapguZSCcuK2lJRC1mrAqsKG2MUBagtZlYJXotus7IowNRYgC1tLa3iVhEBmLExuu37NjF87CC1eh120XcjNcWCUSVKSbvUtE-ZGFKKYHUT3baKB02wPsrRRxX6qEL_yOkI0ROfbgOH_-L66WXxx9303Dq1IZ443h3BC8LZN2ezcI4
CitedBy_id crossref_primary_10_1002_lol2_10123
crossref_primary_10_1002_wat2_1645
crossref_primary_10_1016_j_scitotenv_2018_11_263
crossref_primary_10_1007_s13280_021_01556_4
crossref_primary_10_1016_j_ecohyd_2021_10_003
crossref_primary_10_1016_j_scitotenv_2020_141407
crossref_primary_10_2139_ssrn_4193543
crossref_primary_10_1002_aqc_3261
crossref_primary_10_1016_j_scitotenv_2021_152160
crossref_primary_10_1016_j_scitotenv_2020_141943
crossref_primary_10_1111_fwb_13252
crossref_primary_10_1002_ecs2_4350
crossref_primary_10_1016_j_scitotenv_2020_138441
crossref_primary_10_1016_j_scitotenv_2020_141112
crossref_primary_10_1038_s41598_020_71915_w
crossref_primary_10_2139_ssrn_4159582
crossref_primary_10_1139_cjfas_2020_0090
crossref_primary_10_1002_aqc_3049
crossref_primary_10_1002_ecs2_2596
crossref_primary_10_1002_aqc_3108
crossref_primary_10_1111_conl_12719
crossref_primary_10_1016_j_biocon_2021_109043
crossref_primary_10_1002_aqc_3768
crossref_primary_10_2139_ssrn_4096555
crossref_primary_10_1002_fee_2417
crossref_primary_10_1016_j_jenvman_2024_120899
crossref_primary_10_1016_j_scitotenv_2021_145240
crossref_primary_10_1002_aqc_3090
crossref_primary_10_1186_s40693_019_0081_5
crossref_primary_10_1002_wat2_1717
crossref_primary_10_1016_j_landurbplan_2023_104837
crossref_primary_10_1016_j_scitotenv_2021_148317
crossref_primary_10_1007_s10980_019_00915_7
crossref_primary_10_1016_j_landurbplan_2019_103725
crossref_primary_10_1086_711710
crossref_primary_10_1016_j_ecolind_2020_106673
crossref_primary_10_1016_j_landusepol_2024_107185
crossref_primary_10_1016_j_gecco_2022_e02301
crossref_primary_10_1016_j_scitotenv_2023_162143
crossref_primary_10_1016_j_landurbplan_2020_103860
crossref_primary_10_1111_csp2_12973
crossref_primary_10_1016_j_envsoft_2022_105470
crossref_primary_10_1016_j_ecolecon_2020_106892
crossref_primary_10_1016_j_scitotenv_2020_137369
crossref_primary_10_1016_j_softx_2023_101469
crossref_primary_10_1016_j_ecolind_2018_11_026
Cites_doi 10.1139/cjfas-2013-0646
10.1890/09-0822.1
10.1002/fee.1296
10.1073/pnas.1423812112
10.1111/j.1469-1795.2005.00009.x
10.1002/rra.3021
10.1111/j.1461-0248.2006.01007.x
10.1016/S0921-8009(99)00015-4
10.1111/1365-2664.12706
10.1080/03632415.2016.1263195
10.1046/j.1365-2427.1999.00427.x
10.1016/S0075-9511(04)80010-0
10.1007/s10980-008-9283-y
10.1016/j.jenvman.2011.07.027
10.1002/rra.3135
10.1111/j.1523-1739.2005.00504.x
10.1016/j.jenvman.2003.11.009
10.1016/j.cosust.2015.03.007
10.1046/j.1523-1739.2000.98362.x
10.2307/1312512
10.1002/fee.1432
10.1023/A:1015649716111
10.1007/s10021-013-9647-2
10.1016/j.ecoser.2015.10.023
10.1016/j.ecolind.2011.10.009
10.1890/1051-0761(2000)010[1456:DAEOPM]2.0.CO;2
10.1111/j.1365-2664.2012.02177.x
10.1111/j.1365-2427.2007.01906.x
10.1016/j.biocon.2010.08.013
10.1126/science.266.5186.753
10.1111/j.1365-2427.2007.01777.x
10.1111/j.1467-2979.2011.00445.x
10.1111/j.1523-1739.2004.00620.x
10.1525/bio.2012.62.5.12
10.1111/1365-2664.12545
10.1016/j.biocon.2013.06.023
10.1093/biosci/biv120
10.1016/j.landusepol.2011.06.012
10.1890/08-0599.1
10.1890/06-1253.1
10.1038/nature09440
10.1016/j.gloenvcha.2014.07.005
10.1093/biosci/bit033
10.1111/1365-2664.12613
10.1002/rra.2859
10.1111/j.1365-2664.2005.01126.x
10.2307/3544927
10.1111/j.1365-2400.2007.00589.x
10.1525/bio.2010.60.1.11
10.1016/j.ecolecon.2013.06.008
10.1016/j.envsci.2016.04.008
10.1073/pnas.1217689110
10.1007/s10980-011-9659-2
10.1890/120168
10.1016/j.ecolind.2012.09.004
10.1093/forestscience/48.1.59
10.1525/bio.2010.60.3.7
10.1111/j.1365-2427.2009.02390.x
10.1007/s00267-016-0674-6
10.1890/080023
10.1111/1365-2664.12317
10.1016/j.ecoser.2014.07.005
10.1002/aqc.2826
10.1007/s10980-015-0258-5
ContentType Journal Article
Copyright 2018 British Ecological Society
2018 The Authors. Journal of Applied Ecology © 2018 British Ecological Society
Journal of Applied Ecology © 2018 British Ecological Society
Copyright_xml – notice: 2018 British Ecological Society
– notice: 2018 The Authors. Journal of Applied Ecology © 2018 British Ecological Society
– notice: Journal of Applied Ecology © 2018 British Ecological Society
DBID AAYXX
CITATION
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
DOI 10.1111/1365-2664.13142
DatabaseName CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Entomology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1365-2664
Editor Mac Nally, Ralph
Editor_xml – sequence: 1
  givenname: Ralph
  surname: Mac Nally
  fullname: Mac Nally, Ralph
EndPage 1883
ExternalDocumentID 10_1111_1365_2664_13142
JPE13142
45024814
Genre article
GrantInformation_xml – fundername: Országos Tudományos Kutatási Alapprogramok
  funderid: K‐104279
– fundername: GINOP
  funderid: 2.3.3‐15‐2016‐00019
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
24P
29J
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPLY
ABPPZ
ABPVW
ABTLG
ABWRO
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IX1
J0M
JBS
JLS
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
2AX
31~
42X
53G
AAHBH
AAISJ
AAYJJ
ABBHK
ABEFU
ABTAH
ADACV
ADULT
AEUPB
AGUYK
AI.
AITYG
ANHSF
AQVQM
AS~
CAG
CBGCD
COF
CUYZI
DEVKO
DOOOF
EQZMY
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
IPSME
JAAYA
JBMMH
JEB
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
OIG
SA0
VH1
VOH
WHG
WIN
XIH
YYP
ZY4
AAYXX
CITATION
7SN
7SS
7T7
7U7
8FD
ADMHG
C1K
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c3782-675f38bf25b56b7807a0ccc72eebf03f754b5021988ecb05ef9fb6f74f715e033
IEDL.DBID DR2
ISSN 0021-8901
IngestDate Thu Oct 10 19:30:26 EDT 2024
Fri Aug 23 04:52:36 EDT 2024
Sat Aug 24 00:39:43 EDT 2024
Fri Feb 02 07:05:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3782-675f38bf25b56b7807a0ccc72eebf03f754b5021988ecb05ef9fb6f74f715e033
ORCID 0000-0002-2252-3115
OpenAccessLink http://real.mtak.hu/90339/1/ErosT_JAPPL_ms.pdf
PQID 2053275962
PQPubID 37791
PageCount 13
ParticipantIDs proquest_journals_2053275962
crossref_primary_10_1111_1365_2664_13142
wiley_primary_10_1111_1365_2664_13142_JPE13142
jstor_primary_45024814
PublicationCentury 2000
PublicationDate 20180701
July 2018
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 7
  year: 2018
  text: 20180701
  day: 1
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of applied ecology
PublicationYear 2018
Publisher John Wiley & Sons Ltd
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons Ltd
– name: Blackwell Publishing Ltd
References 2017; 42
1993; 68
2013; 25
2010; 467
2016; 32
2013; 166
2016; 31
2012; 18
2011; 56
1999; 41
2014; 28
2012; 13
2007; 77
2010; 60
2014; 64
1994; 266
2010; 20
2002; 48
2004; 70
2004; 71
2013; 16
2000; 14
2013; 11
2000; 10
2017; 33
2004; 34
2012; 29
2012; 27
2013; 110
2014; 51
2009; 19
2014; 10
2012; 62
2015; 14
2009; 24
2017; 28
1999; 29
2006; 9
2002; 7
2016; 10
1994; 44
2016; 53
2013; 93
1992
2007; 52
2008; 53
2015; 9
2007; 10
2016; 17
2016; 14
2007; 14
2016; 57
2004; 18
2004; 19
2006; 43
2017; 54
2015; 112
2011; 92
2015; 65
2018
2016; 61
2009; 7
2012; 49
2011; 144
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Antal L. (e_1_2_8_4_1) 2015; 9
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Erős T. (e_1_2_8_17_1) 2018
e_1_2_8_29_1
Sály P. (e_1_2_8_61_1) 2016; 10
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Gordon N. D. (e_1_2_8_22_1) 1992
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
Nalle D. J. (e_1_2_8_49_1) 2002; 48
e_1_2_8_50_1
References_xml – volume: 44
  start-page: 690
  year: 1994
  end-page: 697
  article-title: Biological integrity versus biological diversity as policy directives: Protecting biotic resources
  publication-title: BioScience
– year: 2018
  article-title: Data from: A unified model for optimizing riverscape conservation
  publication-title: Dryad Digital Repository
– volume: 57
  start-page: 1139
  year: 2016
  end-page: 1152
  article-title: Exploring the capacity of Water Framework Directive indices to assess ecosystem services in fluvial and riparian systems: Towards a second implementation phase
  publication-title: Environmental Management
– volume: 51
  start-page: 1197
  year: 2014
  end-page: 1206
  article-title: Prioritizing barrier removal to improve functional connectivity of rivers
  publication-title: Journal of Applied Ecology
– volume: 31
  start-page: 431
  year: 2016
  end-page: 450
  article-title: Spatial prioritization for conserving ecosystem services: Comparing hotspots with heuristic optimization
  publication-title: Landscape Ecology
– volume: 166
  start-page: 144
  year: 2013
  end-page: 154
  article-title: Fostering synergies between ecosystem services and biodiversity in conservation planning: A review
  publication-title: Biological Conservation
– volume: 14
  start-page: 373
  year: 2000
  end-page: 381
  article-title: The natural imperative for biological conservation
  publication-title: Conservation Biology
– volume: 266
  start-page: 753
  year: 1994
  end-page: 762
  article-title: Fragmentation and flow regulation of river systems in the northern third of the world
  publication-title: Science
– volume: 65
  start-page: 1057
  year: 2015
  end-page: 1065
  article-title: Ecological simplification: Human influences on riverscape complexity
  publication-title: BioScience
– volume: 144
  start-page: 184
  year: 2011
  end-page: 192
  article-title: Network thinking in riverscape conservation – A graph‐based approach
  publication-title: Biological Conservation
– volume: 17
  start-page: 14
  year: 2016
  end-page: 23
  article-title: An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020
  publication-title: Ecosystem Services
– volume: 14
  start-page: 325
  year: 2016
  end-page: 332
  article-title: Optimizing land use for the delivery of catchment ecosystem services
  publication-title: Frontiers in Ecology and the Environment
– volume: 18
  start-page: 31
  year: 2012
  end-page: 41
  article-title: Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive
  publication-title: Ecological Indicators
– volume: 14
  start-page: 393
  year: 2007
  end-page: 405
  article-title: A review of existing fish assemblage indicators and methodologies
  publication-title: Fisheries Management and Ecology
– volume: 10
  start-page: 1
  year: 2014
  end-page: 5
  article-title: Beyond the concrete: Accounting for ecosystem services from free‐flowing rivers
  publication-title: Ecosystem Services
– volume: 10
  start-page: 1456
  year: 2000
  end-page: 1477
  article-title: Development and evaluation of predictive models for measuring the biological integrity of streams
  publication-title: Ecological Applications
– volume: 32
  start-page: 418
  year: 2016
  end-page: 428
  article-title: Optimal fish passage barrier removal – Revisited
  publication-title: River Research and Applications
– volume: 43
  start-page: 70
  year: 2006
  end-page: 80
  article-title: Assessing river biotic condition at a continental scale: A European approach using functional metrics and fish assemblages
  publication-title: Journal of Applied Ecology
– volume: 13
  start-page: 450
  year: 2012
  end-page: 464
  article-title: A quantitative assessment of fish passage efficiency
  publication-title: Fish and Fisheries
– volume: 53
  start-page: 865
  year: 2016
  end-page: 875
  article-title: Integrating ecosystem services in river basin management plans
  publication-title: Journal of Applied Ecology
– volume: 93
  start-page: 260
  year: 2013
  end-page: 268
  article-title: Ecosystem services and ethics
  publication-title: Ecological Economics
– volume: 16
  start-page: 894
  year: 2013
  end-page: 908
  article-title: Linking landscape connectivity and ecosystem service provision: Current knowledge and research gaps
  publication-title: Ecosystems
– volume: 71
  start-page: 1852
  year: 2004
  end-page: 1863
  article-title: Assessing the biological relevance of aquatic connectivity to stream fish communities
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 60
  start-page: 67
  year: 2010
  end-page: 74
  article-title: Linking ecosystem services, rehabilitation, and river hydrogeomorphology
  publication-title: BioScience
– volume: 34
  start-page: 416
  year: 2004
  end-page: 432
  article-title: Assessing streams in Germany with benthic invertebrates: Development of a multimetric invertebrate based assessment system
  publication-title: Limnologica
– volume: 64
  start-page: 181
  year: 2014
  end-page: 191
  article-title: Incorporating the socio‐ecological approach in protected areas in the Anthropocene
  publication-title: BioScience
– volume: 10
  start-page: 15
  year: 2016
  end-page: 45
  article-title: Ecological assessment of running waters in Hungary: Compilation of biotic indices based on fish
  publication-title: Pisces Hungarici
– volume: 52
  start-page: 1400
  year: 2007
  end-page: 1415
  article-title: Partitioning the diversity of riverine fish: The roles of habitat types and non‐native species
  publication-title: Freshwater Biology
– volume: 11
  start-page: 211
  year: 2013
  end-page: 217
  article-title: Restoring aquatic ecosystem connectivity requires expanding inventories of both dams and road crossings
  publication-title: Frontiers in Ecology and the Environment
– volume: 41
  start-page: 221
  year: 1999
  end-page: 234
  article-title: Defining and measuring river health
  publication-title: Freshwater Biology
– volume: 33
  start-page: 788
  year: 2017
  end-page: 795
  article-title: Local‐scale benefits of river connectivity restoration planning beyond jurisdictional boundaries
  publication-title: River Research and Applications
– volume: 62
  start-page: 503
  year: 2012
  end-page: 507
  article-title: Finding common ground for biodiversity and ecosystem services
  publication-title: BioScience
– volume: 33
  start-page: 847
  year: 2017
  end-page: 862
  article-title: Informing watershed connectivity barrier prioritization decisions: A synthesis
  publication-title: River Research and Applications
– volume: 42
  start-page: 57
  year: 2017
  end-page: 65
  article-title: Pet project or best project? Online decision support tools for prioritizing barrier removals in the Great Lakes and beyond
  publication-title: Fisheries
– volume: 48
  start-page: 59
  year: 2002
  end-page: 68
  article-title: Designing compact and contiguous reserve networks with a hybrid heuristic approach
  publication-title: Forest Science
– volume: 70
  start-page: 165
  year: 2004
  end-page: 180
  article-title: Quantitative review of riparian buffer width guidelines from Canada and the United States
  publication-title: Journal of Environmental Management
– volume: 9
  start-page: 71
  year: 2015
  end-page: 72
  article-title: TAR: Software to evaluate the conservation value of fish fauna
  publication-title: Pisces Hungarici
– volume: 28
  start-page: 263
  year: 2014
  end-page: 275
  article-title: Creating win‐wins from tradeoffs? Ecosystem services for human well‐being: A meta‐analysis of ecosystem service tradeoffs and synergies in the real world
  publication-title: Global Environmental Change
– volume: 20
  start-page: 1350
  year: 2010
  end-page: 1371
  article-title: Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network
  publication-title: Ecological Applications
– volume: 29
  start-page: 244
  year: 2012
  end-page: 249
  article-title: Encouraging collaboration for the provision of ecosystem services at a landscape scale – Rethinking agri‐environmental payments
  publication-title: Land Use Policy
– volume: 18
  start-page: 189
  year: 2004
  end-page: 200
  article-title: Selection of priority areas for fish conservation in Guadiana river basin, Iberian Peninsula
  publication-title: Conservation Biology
– volume: 28
  start-page: 17
  year: 2017
  end-page: 25
  article-title: Freshwater conservation in a fragmented world: Dealing with barriers in a systematic planning framework
  publication-title: Aquatic Conservation: Marine and Freshwater Ecosystems
– year: 1992
– volume: 10
  start-page: 165
  year: 2007
  end-page: 175
  article-title: Living in the branches: Population dynamics and ecological processes in dendritic networks
  publication-title: Ecology Letters
– volume: 27
  start-page: 303
  year: 2012
  end-page: 317
  article-title: Characterizing connectivity relationships in freshwaters using patch‐based graphs
  publication-title: Landscape Ecology
– volume: 77
  start-page: 301
  year: 2007
  end-page: 334
  article-title: A GAP analysis and comprehensive conservation strategy for riverine ecosystems of Missouri
  publication-title: Ecological Monographs
– volume: 25
  start-page: 45
  year: 2013
  end-page: 57
  article-title: Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness
  publication-title: Ecological Indicators
– volume: 112
  start-page: 6236
  year: 2015
  end-page: 6241
  article-title: Enhancing ecosystem restoration efficiency through spatial and temporal coordination
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 29
  start-page: 253
  year: 1999
  end-page: 258
  article-title: Ecosystem services generated by fish populations
  publication-title: Ecological Economics
– volume: 467
  start-page: 555
  year: 2010
  end-page: 561
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
– volume: 68
  start-page: 571
  year: 1993
  end-page: 573
  article-title: Connectivity is a vital element of landscape structure
  publication-title: Oikos
– volume: 14
  start-page: 76
  year: 2015
  end-page: 85
  article-title: Linking biodiversity, ecosystem services, and human well‐being: Three challenges for designing research for sustainability
  publication-title: Current Opinion in Environmental Sustainability
– volume: 24
  start-page: 101
  year: 2009
  end-page: 113
  article-title: A new measure of longitudinal connectivity for stream networks
  publication-title: Landscape Ecology
– volume: 53
  start-page: 96
  year: 2016
  end-page: 105
  article-title: Can landscape‐scale approaches to conservation management resolve biodiversity ecosystem services trade‐offs?
  publication-title: Journal of Applied Ecology
– volume: 14
  start-page: 527
  year: 2016
  end-page: 532
  article-title: Using ecosystem service trade‐offs to inform water conservation policies and management practices
  publication-title: Frontiers in Ecology and the Environment
– volume: 54
  start-page: 599
  year: 2017
  end-page: 611
  article-title: A toolkit for optimizing barrier mitigation actions
  publication-title: Journal of Applied Ecology
– volume: 49
  start-page: 1036
  year: 2012
  end-page: 1045
  article-title: Merging connectivity rules and large‐scale condition assessment improves conservation adequacy in river systems
  publication-title: Journal of Applied Ecology
– volume: 60
  start-page: 209
  year: 2010
  end-page: 222
  article-title: Process‐based principles for restoring river ecosystems
  publication-title: BioScience
– volume: 19
  start-page: 432
  year: 2004
  end-page: 445
  article-title: A freshwater classification approach for biodiversity conservation planning
  publication-title: Conservation Biology
– volume: 61
  start-page: 194
  year: 2016
  end-page: 203
  article-title: Assessing water ecosystem services for water resource management
  publication-title: Environmental Science & Policy
– volume: 53
  start-page: 577
  year: 2008
  end-page: 592
  article-title: A method for spatial freshwater conservation prioritization
  publication-title: Freshwater Biology
– volume: 7
  start-page: 4
  year: 2009
  end-page: 11
  article-title: Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales
  publication-title: Frontiers in Ecology and Environment
– volume: 19
  start-page: 1774
  year: 2009
  end-page: 1790
  article-title: Prioritizing conservation activities using reserve site selection methods and population viability analysis
  publication-title: Ecological Applications
– volume: 56
  start-page: 57
  year: 2011
  end-page: 70
  article-title: Addressing longitudinal connectivity in the systematic conservation planning of fresh waters
  publication-title: Freshwater Biology
– volume: 9
  start-page: 75
  year: 2006
  end-page: 83
  article-title: A new method to identify important conservation areas applied to the butterflies of the Aegean Islands (Greece)
  publication-title: Animal Conservation
– volume: 92
  start-page: 3112
  year: 2011
  end-page: 3120
  article-title: Open rivers: Barrier removal planning and the restoration of free‐flowing rivers
  publication-title: Journal of Environmental Management
– volume: 7
  start-page: 107
  year: 2002
  end-page: 114
  article-title: Mathematical methods for spatially cohesive reserve design
  publication-title: Environmental Modeling and Assessment
– volume: 110
  start-page: 6229
  year: 2013
  end-page: 6234
  article-title: Achieving the triple bottom line in the face of inherent trade‐offs among social equity, economic return, and conservation
  publication-title: Proceedings of National Academy of Sciences of the United States of America
– ident: e_1_2_8_42_1
  doi: 10.1139/cjfas-2013-0646
– ident: e_1_2_8_32_1
  doi: 10.1890/09-0822.1
– ident: e_1_2_8_14_1
  doi: 10.1002/fee.1296
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.1423812112
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1469-1795.2005.00009.x
– ident: e_1_2_8_44_1
  doi: 10.1002/rra.3021
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1461-0248.2006.01007.x
– ident: e_1_2_8_30_1
  doi: 10.1016/S0921-8009(99)00015-4
– ident: e_1_2_8_37_1
  doi: 10.1111/1365-2664.12706
– ident: e_1_2_8_48_1
  doi: 10.1080/03632415.2016.1263195
– ident: e_1_2_8_35_1
  doi: 10.1046/j.1365-2427.1999.00427.x
– ident: e_1_2_8_9_1
  doi: 10.1016/S0075-9511(04)80010-0
– ident: e_1_2_8_13_1
  doi: 10.1007/s10980-008-9283-y
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jenvman.2011.07.027
– ident: e_1_2_8_45_1
  doi: 10.1002/rra.3135
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1523-1739.2005.00504.x
– volume-title: Stream hydrology: An introduction for ecologists
  year: 1992
  ident: e_1_2_8_22_1
  contributor:
    fullname: Gordon N. D.
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jenvman.2003.11.009
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cosust.2015.03.007
– ident: e_1_2_8_2_1
  doi: 10.1046/j.1523-1739.2000.98362.x
– ident: e_1_2_8_3_1
  doi: 10.2307/1312512
– ident: e_1_2_8_69_1
  doi: 10.1002/fee.1432
– ident: e_1_2_8_43_1
  doi: 10.1023/A:1015649716111
– ident: e_1_2_8_46_1
  doi: 10.1007/s10021-013-9647-2
– ident: e_1_2_8_41_1
  doi: 10.1016/j.ecoser.2015.10.023
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ecolind.2011.10.009
– ident: e_1_2_8_26_1
  doi: 10.1890/1051-0761(2000)010[1456:DAEOPM]2.0.CO;2
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1365-2664.2012.02177.x
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1365-2427.2007.01906.x
– ident: e_1_2_8_19_1
  doi: 10.1016/j.biocon.2010.08.013
– ident: e_1_2_8_15_1
  doi: 10.1126/science.266.5186.753
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1365-2427.2007.01777.x
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1467-2979.2011.00445.x
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1523-1739.2004.00620.x
– ident: e_1_2_8_59_1
  doi: 10.1525/bio.2012.62.5.12
– volume: 10
  start-page: 15
  year: 2016
  ident: e_1_2_8_61_1
  article-title: Ecological assessment of running waters in Hungary: Compilation of biotic indices based on fish
  publication-title: Pisces Hungarici
  contributor:
    fullname: Sály P.
– ident: e_1_2_8_12_1
  doi: 10.1111/1365-2664.12545
– ident: e_1_2_8_11_1
  doi: 10.1016/j.biocon.2013.06.023
– ident: e_1_2_8_56_1
  doi: 10.1093/biosci/biv120
– ident: e_1_2_8_58_1
  doi: 10.1016/j.landusepol.2011.06.012
– ident: e_1_2_8_52_1
  doi: 10.1890/08-0599.1
– ident: e_1_2_8_63_1
  doi: 10.1890/06-1253.1
– ident: e_1_2_8_68_1
  doi: 10.1038/nature09440
– ident: e_1_2_8_31_1
  doi: 10.1016/j.gloenvcha.2014.07.005
– ident: e_1_2_8_55_1
  doi: 10.1093/biosci/bit033
– ident: e_1_2_8_65_1
  doi: 10.1111/1365-2664.12613
– ident: e_1_2_8_36_1
  doi: 10.1002/rra.2859
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1365-2664.2005.01126.x
– ident: e_1_2_8_64_1
  doi: 10.2307/3544927
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-2400.2007.00589.x
– ident: e_1_2_8_66_1
  doi: 10.1525/bio.2010.60.1.11
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ecolecon.2013.06.008
– volume: 9
  start-page: 71
  year: 2015
  ident: e_1_2_8_4_1
  article-title: TAR: Software to evaluate the conservation value of fish fauna
  publication-title: Pisces Hungarici
  contributor:
    fullname: Antal L.
– year: 2018
  ident: e_1_2_8_17_1
  article-title: Data from: A unified model for optimizing riverscape conservation
  publication-title: Dryad Digital Repository
  contributor:
    fullname: Erős T.
– ident: e_1_2_8_24_1
  doi: 10.1016/j.envsci.2016.04.008
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.1217689110
– ident: e_1_2_8_18_1
  doi: 10.1007/s10980-011-9659-2
– ident: e_1_2_8_33_1
  doi: 10.1890/120168
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ecolind.2012.09.004
– volume: 48
  start-page: 59
  year: 2002
  ident: e_1_2_8_49_1
  article-title: Designing compact and contiguous reserve networks with a hybrid heuristic approach
  publication-title: Forest Science
  doi: 10.1093/forestscience/48.1.59
  contributor:
    fullname: Nalle D. J.
– ident: e_1_2_8_6_1
  doi: 10.1525/bio.2010.60.3.7
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1365-2427.2009.02390.x
– ident: e_1_2_8_67_1
  doi: 10.1007/s00267-016-0674-6
– ident: e_1_2_8_51_1
  doi: 10.1890/080023
– ident: e_1_2_8_10_1
  doi: 10.1111/1365-2664.12317
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ecoser.2014.07.005
– ident: e_1_2_8_27_1
  doi: 10.1002/aqc.2826
– ident: e_1_2_8_62_1
  doi: 10.1007/s10980-015-0258-5
SSID ssj0009533
Score 2.5080316
Snippet 1. Spatial prioritization tools provide a means of finding efficient trade-offs between biodiversity protection and the delivery of ecosystem services....
Spatial prioritization tools provide a means of finding efficient trade‐offs between biodiversity protection and the delivery of ecosystem services. Although a...
Abstract Spatial prioritization tools provide a means of finding efficient trade‐offs between biodiversity protection and the delivery of ecosystem services....
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Publisher
StartPage 1871
SubjectTerms Aquatic ecosystems
Barriers
Biodiversity
Case studies
Catchment scale
Catchments
connectivity restoration
Conservation
Ecosystem services
habitat fragmentation
Habitats
Integrity
land use planning
Landscape
Optimization
protected area networks
Protected areas
Resource conservation
Restoration
river barriers
River catchments
River ecology
Rivers
spatial prioritization
Terrestrial environments
Title A unified model for optimizing riverscape conservation
URI https://www.jstor.org/stable/45024814
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.13142
https://www.proquest.com/docview/2053275962
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAGP2QgqAHl2oxWiUHD15SksyaY1FL6UFELHgLmcmMFDGVLgf7650lKW0vIt5yyITkW98ML-8DuMUGFZu6iCJUUh3hsqRRgTCPhDLBwgvKMunUPp_ocIxHb6RhE9p_Ybw-xPrAzWaGq9c2wQsx30jymp9FcS9BCbZVOEHMkroeXtIN2V0_TN4SEbhpfbW4j-Xy7Kzf6kuemrgFOjehq-s9g2MQzVt7yslHb7kQPbnaEXT812edwFGNTMO-D6VT2FNVGw7777NanUO1Yd9Prvw-A9oPl9VEG_waulk6ocG-4dSUn8_JyjTDcOboHpZcFUrL165Pfs9hPHh8vR9G9QiGSBpjppHZTmjEhU6JIFQwHrMillKyVCmhY6QZwYIY42acKylionSmBdUMa5YQFSPUgVY1rdQFhClB1Ozck0QyigkTGVIMUVMBYpqZmCgDuGsckH95pY282aFYo-TWKLkzSgAd56D1fZhYabYEB9BtPJbXuTjPUzv8gtkpQwF40__2_Hz0_OguLv-64AoODKLins_bhdZitlTXBrUsxI0LzB8-KtzO
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFL0xGqMufKBEfHbhwk1J23m1S6ISRCTGQMKuYYYZQ4xgEBb69d6ZKQbYGOOui3bS3ueZyem5AFcUUTHWRRKSATchHQx42Cc0DaXGYEn7XGTKqX22eaNLmz3WW_gXxutD_By42cxw9domuD2QXsjygqDFaTUmMcUyvIFJT-wUg9vnZEF414-Tt1SEFJtfIe9j2TwrCyx1Jk9OXIKdi-DVdZ_6Hqj5e3vSyWt1NpVV9bUi6fi_D9uH3QKcBjUfTQewpkcl2Km9TAqBDl2CTT-88vMQeC2YjYYGIWzgxukECH-DMVagt-EX9sNg4hgfll8VKEvZLg5_j6Bbv-vcNMJiCkOoCMKHEHcUhqTSJEwyLkUaiX6klBKJ1tJExAhGJUPrZmmqlYyYNpmR3AhqRMx0REgZ1kfjkT6GIGGE4-Y9jpXglAmZES0IxyIQ8QzDYlCB67kH8ncvtpHPNynWKLk1Su6MUoGy89DPfZRZdbaYVuBs7rK8SMePPLHzL4QdNFQBb_vf1s-bT3fu4uSvD1zCVqPz2Mpb9-2HU9hGgJV6eu8ZrE8nM32OIGYqL1yUfgMuSuDo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5IRdGDe7GuOXjwkpJktuRYbIsbpYiCt9CZzEgRq9T2YH-9b2aSUnsR8ZZDMiRv_Wb48j2AC4qoGOsiCUnBTUiLgocDQtNQagyWdMBFppzaZ49fP9HbZ1axCe2_MF4fYn7gZjPD1Wub4B-FWUjykp_FaTMmMcUqvEo5iSyrq_2QLOju-mnylomQYu8r1X0smWdpgR-NyXMTf6DORezqmk93G2T12p5z8tqcTmRTzZYUHf_1XTuwVULToOVjaRdW9GgPNlsv41KeQ-_Bmh9d-bUPvBVMR0ODADZww3QCBL_BO9aft-EMu2EwdnwPy64KlCVsl0e_B_DU7TxeXYflDIZQEQQPIe4nDEmlSZhkXIo0EoNIKSUSraWJiBGMSobGzdJUKxkxbTIjuRHUiJjpiJA61EbvI30IQcIIx617HCvBKRMyI1oQjiUg4hkGRdGAy8oB-YeX2sirLYo1Sm6NkjujNKDuHDS_jzKrzRbTBpxUHsvLZPzMEzv9QtgxQw3wpv9t_fy233EXR3994BzW--1ufn_TuzuGDURXqef2nkBtMp7qU0QwE3nmYvQbkSzflw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+model+for+optimizing+riverscape+conservation&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Er%C5%91s%2C+Tibor&rft.au=O%27Hanley%2C+Jesse+R.&rft.au=Czegl%C3%A9di%2C+Istv%C3%A1n&rft.date=2018-07-01&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=55&rft.issue=4&rft.spage=1871&rft.epage=1883&rft_id=info:doi/10.1111%2F1365-2664.13142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2664_13142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon