China futures price forecasting based on online search and information transfer
The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focu...
Saved in:
Published in | Data science and management Vol. 5; no. 4; pp. 187 - 198 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2666-7649 2666-7649 |
DOI | 10.1016/j.dsm.2022.09.002 |
Cover
Loading…
Abstract | The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focus on China. A forecasting model based on a hybrid gray wolf optimizer (GWO), convolutional neural network (CNN), and long short-term memory (LSTM) is developed. First, Baidu and Google dual-platform search data were selected and constructed as Internet-based consumer price index (ICPI) using principal component analysis. Second, TE is used to quantify the information between online behavior and futures markets. Finally, the effective Internet-based consumer price index (ICPI) and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn, soybean, polyvinyl chloride (PVC), egg, and rebar futures. The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices. Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data. Our proposed framework can provide predictive decision support for government leaders, market investors, and production activities. |
---|---|
AbstractList | The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focus on China. A forecasting model based on a hybrid gray wolf optimizer (GWO), convolutional neural network (CNN), and long short-term memory (LSTM) is developed. First, Baidu and Google dual-platform search data were selected and constructed as Internet-based consumer price index (ICPI) using principal component analysis. Second, TE is used to quantify the information between online behavior and futures markets. Finally, the effective Internet-based consumer price index (ICPI) and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn, soybean, polyvinyl chloride (PVC), egg, and rebar futures. The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices. Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data. Our proposed framework can provide predictive decision support for government leaders, market investors, and production activities. |
Author | Jia, Guozhu Liang, Jingyi |
Author_xml | – sequence: 1 givenname: Jingyi surname: Liang fullname: Liang, Jingyi – sequence: 2 givenname: Guozhu orcidid: 0000-0002-1650-4276 surname: Jia fullname: Jia, Guozhu email: 309739124@qq.com |
BookMark | eNp9kNtKxDAQhoMoeHwA7_oCWydpOk3xShZPIHij12GaTjTLbipJFXx7oysiXgiBCTPz_QzfodiNU2QhTiXUEiSereoxb2oFStXQ1wBqRxwoRFx0qPvdX_99cZLzCsqGkVK1eCDul88hUuVf59fEuXpJwXHlp8SO8hziUzVQ5rGaYnnrELnKTMk9VxTHKsSyuKE5lOmcKGbP6VjseVpnPvmuR-Lx6vJhebO4u7--XV7cLVzTGbXQCI1WSEY7TTD2YAgGhMFoZoTWNeDbFmlQ2PYOlVHYIHca5WgG37m-ORK329xxopUtZ28ovduJgv1qTOnJUpqDW7M1ShvSjP0oQTMp0k661rfN4Hr2hCVLbrNcmnJO7H_yJNhPwXZli2D7KdhCb4u-wnR_GBfmLxXFRFj_S55vSS563gInm13g6HgMxfpc7g__0B-uhZcC |
CitedBy_id | crossref_primary_10_1016_j_eiar_2023_107324 crossref_primary_10_1016_j_energy_2023_128075 crossref_primary_10_1016_j_eneco_2023_107269 crossref_primary_10_1016_j_resourpol_2023_103780 crossref_primary_10_3390_math11092077 crossref_primary_10_1016_j_resourpol_2023_104319 crossref_primary_10_1016_j_swevo_2025_101874 crossref_primary_10_3390_info15120817 crossref_primary_10_1016_j_energy_2024_131352 crossref_primary_10_1016_j_fraope_2023_100053 crossref_primary_10_1016_j_eap_2023_03_002 crossref_primary_10_1016_j_marpetgeo_2023_106095 crossref_primary_10_1109_ACCESS_2023_3314514 crossref_primary_10_1007_s13132_023_01520_5 crossref_primary_10_3390_forecast6010005 crossref_primary_10_1007_s11356_023_28771_8 crossref_primary_10_1016_j_eneco_2023_106786 crossref_primary_10_1016_j_heliyon_2024_e33328 crossref_primary_10_1016_j_asoc_2025_112748 crossref_primary_10_1016_j_eneco_2023_107177 crossref_primary_10_1016_j_eneco_2023_107179 crossref_primary_10_1371_journal_pone_0285015 crossref_primary_10_1016_j_worlddev_2023_106444 crossref_primary_10_1109_TII_2023_3245196 crossref_primary_10_1080_13504509_2024_2367113 |
Cites_doi | 10.1016/j.resourpol.2020.101934 10.1016/j.procs.2021.01.031 10.1016/j.engappai.2017.05.003 10.1109/ACCESS.2020.3002174 10.1016/j.ijforecast.2017.11.005 10.1016/j.inffus.2016.11.006 10.1016/j.frl.2016.03.005 10.1016/j.chaos.2022.111990 10.1016/j.resourpol.2016.07.005 10.1016/j.eswa.2020.113481 10.1016/j.ijforecast.2021.04.001 10.17582/journal.pjz/2018.50.6.2199.2207 10.1103/PhysRevLett.85.461 10.1016/j.tourman.2017.10.014 10.1016/j.renene.2020.03.042 10.1016/j.econmod.2017.08.032 10.1016/j.advengsoft.2013.12.007 10.1016/j.elerap.2015.01.001 10.1016/j.soildyn.2015.04.004 10.1016/j.bir.2019.01.001 10.1016/j.compbiomed.2018.06.002 10.1016/j.dss.2018.11.004 10.1016/j.ijforecast.2016.01.002 10.1016/j.energy.2018.12.016 10.1016/j.knosys.2018.12.025 10.1016/j.neucom.2018.01.038 10.1016/j.isatra.2020.09.016 10.1016/j.isatra.2020.01.012 10.1016/j.procs.2019.11.254 10.1111/j.1540-6261.2004.00662.x 10.1016/j.chaos.2014.08.007 10.3390/su132413770 10.1016/j.egypro.2017.03.880 10.1016/j.eswa.2019.03.029 10.1016/j.knosys.2019.03.013 |
ContentType | Journal Article |
Copyright | 2022 Xi’an Jiaotong University |
Copyright_xml | – notice: 2022 Xi’an Jiaotong University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.dsm.2022.09.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2666-7649 |
EndPage | 198 |
ExternalDocumentID | oai_doaj_org_article_8248a4e69d104ea2a4c1c5f53bc9efa6 10_1016_j_dsm_2022_09_002 S2666764922000376 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c3782-4603426a84c4a0d908a0b60b84ee605c30f556ab2659c6282636e7461d8bf7c93 |
IEDL.DBID | DOA |
ISSN | 2666-7649 |
IngestDate | Wed Aug 27 01:20:26 EDT 2025 Tue Jul 01 01:06:46 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Fri Feb 23 02:37:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Futures price forecasting Consumer price index Google trends Convolutional neural network Gray wolf optimizer Long short-term memory Transfer entropy Baidu index |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3782-4603426a84c4a0d908a0b60b84ee605c30f556ab2659c6282636e7461d8bf7c93 |
ORCID | 0000-0002-1650-4276 |
OpenAccessLink | https://doaj.org/article/8248a4e69d104ea2a4c1c5f53bc9efa6 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8248a4e69d104ea2a4c1c5f53bc9efa6 crossref_primary_10_1016_j_dsm_2022_09_002 crossref_citationtrail_10_1016_j_dsm_2022_09_002 elsevier_sciencedirect_doi_10_1016_j_dsm_2022_09_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Data science and management |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Barak, Arjmand, Ortobelli (bib7) 2017; 36 Sensoy, Sobaci, Sensoy (bib48) 2014; 68 Cao, Wang (bib10) 2019; 32 Deng, Ma, Zeng (bib16) 2021; 13 Lu, Li, Li (bib34) 2020; 2020 Vidal, Kristjanpoller (bib52) 2020; 157 Ye, Guo, Deschamps (bib59) 2020; 94 Schreiber (bib47) 2000; 85 Xu, Bo, Jiang (bib56) 2019; 166 Cen, Wang (bib11) 2019; 169 González-Fernández, González-Velasco (bib22) 2020; 35 Zhao, Gao, Li (bib63) 2021; 182 Aaronson, Brave, Butters (bib1) 2021; 38 Li, Zhu, Shi (bib31) 2020; 94 Qiu, Yang (bib43) 2020; 559 Abdollahi, Ebrahimi (bib2) 2020; 200 Dave, Leonardo, Jeanice (bib15) 2021; 179 Kim, Ku, Chang (bib28) 2020; 8 Aksoy, Ertürk, Erdoğan (bib4) 2018; 50 Pradhan, Hall, du Toit (bib41) 2021; 70 Salisu, Ogbonna, Adewuyi (bib46) 2020; 65 Yao, Zhang (bib57) 2017; 105 Husaini, Lean (bib26) 2021; 73 Li, Shen, Wang (bib33) 2020; 35 Antweiler, Frank (bib6) 2004; 59 Dai, Zhu (bib14) 2021; 57 Song, Tang, Zhao (bib49) 2015; 75 Ji, Zou, He (bib27) 2019; 162 Wang, Chen, Li (bib53) 2017; 63 Wei, Guo, Yu (bib54) 2021; 74 Fernandez (bib20) 2016; 49 Hoseinzade, Haratizadeh (bib23) 2019; 129 Mirjalili, Mirjalili, Lewis (bib36) 2014; 69 Tripathi, Shrivastava, Jana (bib50) 2020; 101 Ciner (bib12) 2021; 38 Mehtab, Sen (bib35) 2020 Roache (bib45) 2016 García Petit, Vaquero Lafuente, Rúa Vieites (bib21) 2019; 19 Devarapalli, Bhattacharyya, Sinha (bib18) 2021; 109 Li, Shang, Wang (bib32) 2015; 14 Li, Zhu, Sun (bib30) 2021; 69 Ahumada, Cornejo (bib3) 2016; 32 Zhang, Chu, Shen (bib62) 2021; 38 Zhaunerchyk, Haghighi, Oliver (bib64) 2020; 61 Öztunç Kaymak, Kaymak (bib40) 2022; 158 Ullah, Ahmad, Muhammad (bib51) 2017; 6 Yu, Zhao, Tang (bib60) 2019; 35 Oh, Ng, Tan (bib39) 2018; 102 Xu, Du, Zhang (bib55) 2019; 175 Hu, Tang, Zhang (bib24) 2018; 285 Ben Jabeur, Khalfaoui, Ben Arfi (bib8) 2021; 298 Bilgin, Demir, Gozgor (bib9) 2019; 184 Antoniades, Karakatsanis, Pavlos (bib5) 2021; 578 Dai, Kang, Hu (bib13) 2021; 74 Yarovaya, Brzeszczyński, Lau (bib58) 2016; 17 Zhang, Wang, Wang (bib61) 2020; 211 Li, Wang (bib29) 2020; 213 Hu, Wang, Lv (bib25) 2020; 154 Nam, Seong (bib38) 2019; 117 Mo, Gupta, Li (bib37) 2018; 70 Dergiades, Mavragani, Pan (bib17) 2018; 66 Rezaei, Faaljou, Mansourfar (bib44) 2021; 169 Fang, Gozgor, Lau (bib19) 2020; 32 Prasanth, Singh, Kumar (bib42) 2021; 142 García Petit (10.1016/j.dsm.2022.09.002_bib21) 2019; 19 Aksoy (10.1016/j.dsm.2022.09.002_bib4) 2018; 50 Barak (10.1016/j.dsm.2022.09.002_bib7) 2017; 36 Dave (10.1016/j.dsm.2022.09.002_bib15) 2021; 179 Hoseinzade (10.1016/j.dsm.2022.09.002_bib23) 2019; 129 Rezaei (10.1016/j.dsm.2022.09.002_bib44) 2021; 169 Hu (10.1016/j.dsm.2022.09.002_bib25) 2020; 154 Vidal (10.1016/j.dsm.2022.09.002_bib52) 2020; 157 Xu (10.1016/j.dsm.2022.09.002_bib55) 2019; 175 Cao (10.1016/j.dsm.2022.09.002_bib10) 2019; 32 Li (10.1016/j.dsm.2022.09.002_bib29) 2020; 213 Dai (10.1016/j.dsm.2022.09.002_bib14) 2021; 57 Mo (10.1016/j.dsm.2022.09.002_bib37) 2018; 70 Fang (10.1016/j.dsm.2022.09.002_bib19) 2020; 32 Sensoy (10.1016/j.dsm.2022.09.002_bib48) 2014; 68 Ciner (10.1016/j.dsm.2022.09.002_bib12) 2021; 38 Ahumada (10.1016/j.dsm.2022.09.002_bib3) 2016; 32 Deng (10.1016/j.dsm.2022.09.002_bib16) 2021; 13 Mehtab (10.1016/j.dsm.2022.09.002_bib35) 2020 Cen (10.1016/j.dsm.2022.09.002_bib11) 2019; 169 Dai (10.1016/j.dsm.2022.09.002_bib13) 2021; 74 Ji (10.1016/j.dsm.2022.09.002_bib27) 2019; 162 Wei (10.1016/j.dsm.2022.09.002_bib54) 2021; 74 Song (10.1016/j.dsm.2022.09.002_bib49) 2015; 75 Yao (10.1016/j.dsm.2022.09.002_bib57) 2017; 105 Yu (10.1016/j.dsm.2022.09.002_bib60) 2019; 35 Bilgin (10.1016/j.dsm.2022.09.002_bib9) 2019; 184 Zhang (10.1016/j.dsm.2022.09.002_bib62) 2021; 38 Zhao (10.1016/j.dsm.2022.09.002_bib63) 2021; 182 Nam (10.1016/j.dsm.2022.09.002_bib38) 2019; 117 Devarapalli (10.1016/j.dsm.2022.09.002_bib18) 2021; 109 Antoniades (10.1016/j.dsm.2022.09.002_bib5) 2021; 578 Fernandez (10.1016/j.dsm.2022.09.002_bib20) 2016; 49 Pradhan (10.1016/j.dsm.2022.09.002_bib41) 2021; 70 Aaronson (10.1016/j.dsm.2022.09.002_bib1) 2021; 38 Antweiler (10.1016/j.dsm.2022.09.002_bib6) 2004; 59 Kim (10.1016/j.dsm.2022.09.002_bib28) 2020; 8 Ye (10.1016/j.dsm.2022.09.002_bib59) 2020; 94 Husaini (10.1016/j.dsm.2022.09.002_bib26) 2021; 73 Roache (10.1016/j.dsm.2022.09.002_bib45) 2016 Li (10.1016/j.dsm.2022.09.002_bib32) 2015; 14 Oh (10.1016/j.dsm.2022.09.002_bib39) 2018; 102 Lu (10.1016/j.dsm.2022.09.002_bib34) 2020; 2020 Mirjalili (10.1016/j.dsm.2022.09.002_bib36) 2014; 69 Wang (10.1016/j.dsm.2022.09.002_bib53) 2017; 63 Zhang (10.1016/j.dsm.2022.09.002_bib61) 2020; 211 Yarovaya (10.1016/j.dsm.2022.09.002_bib58) 2016; 17 Abdollahi (10.1016/j.dsm.2022.09.002_bib2) 2020; 200 Schreiber (10.1016/j.dsm.2022.09.002_bib47) 2000; 85 Zhaunerchyk (10.1016/j.dsm.2022.09.002_bib64) 2020; 61 González-Fernández (10.1016/j.dsm.2022.09.002_bib22) 2020; 35 Hu (10.1016/j.dsm.2022.09.002_bib24) 2018; 285 Qiu (10.1016/j.dsm.2022.09.002_bib43) 2020; 559 Tripathi (10.1016/j.dsm.2022.09.002_bib50) 2020; 101 Ullah (10.1016/j.dsm.2022.09.002_bib51) 2017; 6 Öztunç Kaymak (10.1016/j.dsm.2022.09.002_bib40) 2022; 158 Li (10.1016/j.dsm.2022.09.002_bib33) 2020; 35 Dergiades (10.1016/j.dsm.2022.09.002_bib17) 2018; 66 Li (10.1016/j.dsm.2022.09.002_bib31) 2020; 94 Li (10.1016/j.dsm.2022.09.002_bib30) 2021; 69 Xu (10.1016/j.dsm.2022.09.002_bib56) 2019; 166 Ben Jabeur (10.1016/j.dsm.2022.09.002_bib8) 2021; 298 Prasanth (10.1016/j.dsm.2022.09.002_bib42) 2021; 142 Salisu (10.1016/j.dsm.2022.09.002_bib46) 2020; 65 |
References_xml | – volume: 74 year: 2021 ident: bib13 article-title: Efficient predictability of oil price: the role of number of IPOs and U.S. dollar index publication-title: Resour. Pol. – volume: 38 year: 2021 ident: bib62 article-title: The role of investor attention in predicting stock prices: the long short-term memory networks perspective publication-title: Finance Res. Lett. – volume: 14 start-page: 112 year: 2015 end-page: 125 ident: bib32 article-title: A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data publication-title: Electron. Commer. Res. Appl. – volume: 6 start-page: 1155 year: 2017 end-page: 1166 ident: bib51 article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features publication-title: IEEE Access – year: 2016 ident: bib45 publication-title: China: credit , collateral , and commodity prices – volume: 13 start-page: 13770 year: 2021 ident: bib16 article-title: Crude oil price forecast based on deep transfer learning: Shanghai crude oil as an example publication-title: Sustain. Times – volume: 2020 start-page: 1 year: 2020 end-page: 10 ident: bib34 article-title: A CNN-LSTM-based model to forecast stock prices publication-title: Complexity – volume: 85 start-page: 461 year: 2000 end-page: 464 ident: bib47 article-title: Measuring information transfer publication-title: Phys. Rev. Lett. – volume: 166 start-page: 170 year: 2019 end-page: 185 ident: bib56 article-title: Does Google search index really help predicting stock market volatility? evidence from a modified mixed data sampling model on volatility publication-title: Knowl. Base Syst. – volume: 157 start-page: 113481 year: 2020 ident: bib52 article-title: Gold volatility prediction using a CNN-LSTM approach publication-title: Expert Syst. Appl. – volume: 32 year: 2020 ident: bib19 article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets publication-title: Finance Res. Lett. – volume: 154 start-page: 598 year: 2020 end-page: 613 ident: bib25 article-title: Forecasting energy consumption and wind power generation using deep echo state network publication-title: Renew. Energy – volume: 158 start-page: 111990 year: 2022 ident: bib40 article-title: Prediction of crude oil prices in COVID-19 outbreak using real data publication-title: Chaos, Solit. Fractals – volume: 38 start-page: 567 year: 2021 end-page: 581 ident: bib1 article-title: Forecasting unemployment insurance claims in realtime with Google trends publication-title: Int. J. Forecast. – volume: 8 start-page: 111660 year: 2020 end-page: 111682 ident: bib28 article-title: Predicting the direction of US stock prices using effective transfer entropy and machine learning techniques publication-title: IEEE Access – volume: 35 year: 2020 ident: bib33 article-title: Does intraday time-series momentum exist in Chinese stock index futures market? publication-title: Finance Res. Lett. – volume: 70 start-page: 101934 year: 2021 ident: bib41 article-title: The lead-lag relationship between spot and futures prices: empirical evidence from the Indian commodity market publication-title: Resour. Pol. – volume: 57 year: 2021 ident: bib14 article-title: Indicator selection and stock return predictability publication-title: N. Am. J. Econ. Finance – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib36 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software – volume: 35 start-page: 213 year: 2019 end-page: 223 ident: bib60 article-title: Online big data-driven oil consumption forecasting with Google trends publication-title: Int. J. Forecast. – volume: 169 start-page: 160 year: 2019 end-page: 171 ident: bib11 article-title: Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer publication-title: Energy – volume: 35 year: 2020 ident: bib22 article-title: An alternative approach to predicting bank credit risk in Europe with Google data publication-title: Finance Res. Lett. – volume: 142 year: 2021 ident: bib42 article-title: Forecasting spread of COVID-19 using Google trends: a hybrid GWO-deep learning approach publication-title: Chaos, Solit. Fractals – volume: 109 start-page: 152 year: 2021 end-page: 174 ident: bib18 article-title: Amended GWO approach based multi-machine power system stability enhancement publication-title: ISA Trans. – volume: 63 start-page: 54 year: 2017 end-page: 68 ident: bib53 article-title: Grey wolf optimization evolving kernel extreme learning machine: application to bankruptcy prediction publication-title: Eng. Appl. Artif. Intell. – volume: 559 year: 2020 ident: bib43 article-title: Transfer entropy calculation for short time sequences with application to stock markets publication-title: Phys. A Stat. Mech. its Appl. – volume: 49 start-page: 368 year: 2016 end-page: 371 ident: bib20 article-title: Further evidence on the relationship between spot and futures prices publication-title: Resour. Pol. – volume: 32 start-page: 838 year: 2016 end-page: 848 ident: bib3 article-title: Forecasting food prices: the case of corn, soybeans and wheat publication-title: Int. J. Forecast. – volume: 175 start-page: 50 year: 2019 end-page: 61 ident: bib55 article-title: Predicting pipeline leakage in petrochemical system through GAN and LSTM publication-title: Knowl. Base Syst. – volume: 179 start-page: 480 year: 2021 end-page: 487 ident: bib15 article-title: Forecasting Indonesia exports using a hybrid model ARIMA-LSTM publication-title: Procedia Comput. Sci. – volume: 94 start-page: 981 year: 2020 end-page: 994 ident: bib59 article-title: Macroeconomic forecasts and commodity futures volatility publication-title: Econ. Modell. – volume: 19 start-page: 95 year: 2019 end-page: 105 ident: bib21 article-title: How information technologies shape investor sentiment: a web-based investor sentiment index publication-title: Borsa Istanbul Rev. – volume: 38 year: 2021 ident: bib12 article-title: Stock return predictability in the time of COVID-19 publication-title: Finance Res. Lett. – volume: 74 year: 2021 ident: bib54 article-title: The impact of events on metal futures based on the perspective of Google trends publication-title: Resour. Pol. – volume: 117 start-page: 100 year: 2019 end-page: 112 ident: bib38 article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market publication-title: Decis. Support Syst. – volume: 75 start-page: 147 year: 2015 end-page: 157 ident: bib49 article-title: Grey wolf optimizer for parameter estimation in surface waves publication-title: Soil Dynam. Earthq. Eng. – start-page: 447 year: 2020 end-page: 453 ident: bib35 article-title: Stock price prediction using CNN and LSTM-based deep learning models publication-title: In: 2020 International Conference on Decision Aid Sciences and Application (DASA) – volume: 36 start-page: 90 year: 2017 end-page: 102 ident: bib7 article-title: Fusion of multiple diverse predictors in stock market publication-title: Inf. Fusion – volume: 129 start-page: 273 year: 2019 end-page: 285 ident: bib23 article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables publication-title: Expert Syst. Appl. – volume: 169 year: 2021 ident: bib44 article-title: Stock price prediction using deep learning and frequency decomposition publication-title: Expert Syst. Appl. – volume: 578 year: 2021 ident: bib5 article-title: Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents publication-title: Physica A – volume: 105 start-page: 3772 year: 2017 end-page: 3776 ident: bib57 article-title: Forecasting crude oil prices with the google index publication-title: Energy Proc. – volume: 70 start-page: 543 year: 2018 end-page: 560 ident: bib37 article-title: The macroeconomic determinants of commodity futures volatility: evidence from Chinese and Indian markets publication-title: Econ. Modell. – volume: 61 year: 2020 ident: bib64 article-title: Distraction effects on stock return co-movements: confirmation from the Shenzhen and Shanghai stock markets publication-title: Pac. Basin Finance J. – volume: 200 year: 2020 ident: bib2 article-title: A new hybrid model for forecasting Brent crude oil price publication-title: Energy – volume: 162 start-page: 33 year: 2019 end-page: 38 ident: bib27 article-title: Carbon futures price forecasting based with ARIMA-CNN-LSTM model publication-title: Procedia Comput. Sci. – volume: 182 year: 2021 ident: bib63 article-title: A similarity measurement for time series and its application to the stock market publication-title: Expert Syst. Appl. – volume: 213 year: 2020 ident: bib29 article-title: Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model publication-title: Energy – volume: 211 year: 2020 ident: bib61 article-title: Energy market prediction with novel long short-term memory network: case study of energy futures index volatility publication-title: Energy – volume: 73 year: 2021 ident: bib26 article-title: Asymmetric impact of oil price and exchange rate on disaggregation price inflation publication-title: Resour. Pol. – volume: 65 year: 2020 ident: bib46 article-title: Google trends and the predictability of precious metals publication-title: Resour. Pol. – volume: 68 start-page: 180 year: 2014 end-page: 185 ident: bib48 article-title: Effective transfer entropy approach to information flow between exchange rates and stock markets publication-title: Chaos, Solit. Fractals – volume: 32 year: 2019 ident: bib10 article-title: Stock price forecasting model based on modified convolution neural network and financial time series analysis publication-title: Int. J. Commun. Syst. – volume: 59 start-page: 1259 year: 2004 end-page: 1294 ident: bib6 article-title: Is all that talk just noise? The information content of Internet stock message boards publication-title: J. Finance – volume: 69 start-page: 1 year: 2021 end-page: 21 ident: bib30 article-title: Multi-source information fusion and deep-learning-based characteristics measurement for exploring the effects of peer engagement on stock price synchronicity publication-title: Inf. Fusion – volume: 50 start-page: 2199 year: 2018 end-page: 2207 ident: bib4 article-title: Estimation of honey production in beekeeping enterprises from eastern part of Turkey through some data mining algorithms publication-title: Pakistan J. Zool. – volume: 184 year: 2019 ident: bib9 article-title: A novel index of macroeconomic uncertainty for Turkey based on Google-trends publication-title: Econ. Lett. – volume: 285 start-page: 188 year: 2018 end-page: 195 ident: bib24 article-title: Predicting the direction of stock markets using optimized neural networks with Google trends publication-title: Neurocomputing – volume: 94 year: 2020 ident: bib31 article-title: User reviews: sentiment analysis using lexicon integrated two-channel CNN-LSTM family models publication-title: Appl. Soft Comput. J. – volume: 102 start-page: 278 year: 2018 end-page: 287 ident: bib39 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – volume: 298 year: 2021 ident: bib8 article-title: The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: evidence from explainable machine learning publication-title: J. Environ. Manag. – volume: 17 start-page: 158 year: 2016 end-page: 166 ident: bib58 article-title: Volatility spillovers across stock index futures in Asian markets: evidence from range volatility estimators publication-title: Finance Res. Lett. – volume: 66 start-page: 108 year: 2018 end-page: 120 ident: bib17 article-title: Google trends and tourists’ arrivals: emerging biases and proposed corrections publication-title: Tourism Manag. – volume: 101 start-page: 50 year: 2020 end-page: 59 ident: bib50 article-title: Self-Tuning fuzzy controller for sun-tracker system using gray wolf optimization (GWO) technique publication-title: ISA Trans. – volume: 70 start-page: 101934 issue: Mar. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib41 article-title: The lead-lag relationship between spot and futures prices: empirical evidence from the Indian commodity market publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2020.101934 – volume: 142 issue: Jan. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib42 article-title: Forecasting spread of COVID-19 using Google trends: a hybrid GWO-deep learning approach publication-title: Chaos, Solit. Fractals – volume: 179 start-page: 480 issue: 1 year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib15 article-title: Forecasting Indonesia exports using a hybrid model ARIMA-LSTM publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.01.031 – volume: 63 start-page: 54 issue: Aug. year: 2017 ident: 10.1016/j.dsm.2022.09.002_bib53 article-title: Grey wolf optimization evolving kernel extreme learning machine: application to bankruptcy prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.05.003 – volume: 8 start-page: 111660 year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib28 article-title: Predicting the direction of US stock prices using effective transfer entropy and machine learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002174 – volume: 69 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib30 article-title: Multi-source information fusion and deep-learning-based characteristics measurement for exploring the effects of peer engagement on stock price synchronicity publication-title: Inf. Fusion – volume: 2020 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib34 article-title: A CNN-LSTM-based model to forecast stock prices publication-title: Complexity – volume: 35 start-page: 213 issue: 1 year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib60 article-title: Online big data-driven oil consumption forecasting with Google trends publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2017.11.005 – volume: 36 start-page: 90 issue: Jul. year: 2017 ident: 10.1016/j.dsm.2022.09.002_bib7 article-title: Fusion of multiple diverse predictors in stock market publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.11.006 – volume: 211 issue: Nov. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib61 article-title: Energy market prediction with novel long short-term memory network: case study of energy futures index volatility publication-title: Energy – volume: 61 issue: Jun. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib64 article-title: Distraction effects on stock return co-movements: confirmation from the Shenzhen and Shanghai stock markets publication-title: Pac. Basin Finance J. – volume: 17 start-page: 158 issue: May year: 2016 ident: 10.1016/j.dsm.2022.09.002_bib58 article-title: Volatility spillovers across stock index futures in Asian markets: evidence from range volatility estimators publication-title: Finance Res. Lett. doi: 10.1016/j.frl.2016.03.005 – volume: 184 issue: C year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib9 article-title: A novel index of macroeconomic uncertainty for Turkey based on Google-trends publication-title: Econ. Lett. – volume: 32 issue: 1 year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib10 article-title: Stock price forecasting model based on modified convolution neural network and financial time series analysis publication-title: Int. J. Commun. Syst. – volume: 182 issue: Nov. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib63 article-title: A similarity measurement for time series and its application to the stock market publication-title: Expert Syst. Appl. – volume: 169 issue: May year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib44 article-title: Stock price prediction using deep learning and frequency decomposition publication-title: Expert Syst. Appl. – volume: 158 start-page: 111990 issue: May year: 2022 ident: 10.1016/j.dsm.2022.09.002_bib40 article-title: Prediction of crude oil prices in COVID-19 outbreak using real data publication-title: Chaos, Solit. Fractals doi: 10.1016/j.chaos.2022.111990 – volume: 74 issue: Dec. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib54 article-title: The impact of events on metal futures based on the perspective of Google trends publication-title: Resour. Pol. – volume: 578 issue: Sep. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib5 article-title: Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents publication-title: Physica A – volume: 200 issue: Apr. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib2 article-title: A new hybrid model for forecasting Brent crude oil price publication-title: Energy – volume: 49 start-page: 368 issue: Sep. year: 2016 ident: 10.1016/j.dsm.2022.09.002_bib20 article-title: Further evidence on the relationship between spot and futures prices publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2016.07.005 – volume: 74 issue: Dec. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib13 article-title: Efficient predictability of oil price: the role of number of IPOs and U.S. dollar index publication-title: Resour. Pol. – volume: 157 start-page: 113481 issue: Nov. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib52 article-title: Gold volatility prediction using a CNN-LSTM approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113481 – volume: 38 start-page: 567 issue: 2 year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib1 article-title: Forecasting unemployment insurance claims in realtime with Google trends publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2021.04.001 – volume: 50 start-page: 2199 issue: 6 year: 2018 ident: 10.1016/j.dsm.2022.09.002_bib4 article-title: Estimation of honey production in beekeeping enterprises from eastern part of Turkey through some data mining algorithms publication-title: Pakistan J. Zool. doi: 10.17582/journal.pjz/2018.50.6.2199.2207 – volume: 85 start-page: 461 issue: 2 year: 2000 ident: 10.1016/j.dsm.2022.09.002_bib47 article-title: Measuring information transfer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.461 – volume: 66 start-page: 108 issue: Jun. year: 2018 ident: 10.1016/j.dsm.2022.09.002_bib17 article-title: Google trends and tourists’ arrivals: emerging biases and proposed corrections publication-title: Tourism Manag. doi: 10.1016/j.tourman.2017.10.014 – volume: 154 start-page: 598 issue: Jul. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib25 article-title: Forecasting energy consumption and wind power generation using deep echo state network publication-title: Renew. Energy doi: 10.1016/j.renene.2020.03.042 – volume: 32 issue: C year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib19 article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets publication-title: Finance Res. Lett. – volume: 70 start-page: 543 issue: Apr. year: 2018 ident: 10.1016/j.dsm.2022.09.002_bib37 article-title: The macroeconomic determinants of commodity futures volatility: evidence from Chinese and Indian markets publication-title: Econ. Modell. doi: 10.1016/j.econmod.2017.08.032 – volume: 69 start-page: 46 issue: Mar. year: 2014 ident: 10.1016/j.dsm.2022.09.002_bib36 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 14 start-page: 112 issue: 2 year: 2015 ident: 10.1016/j.dsm.2022.09.002_bib32 article-title: A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2015.01.001 – volume: 75 start-page: 147 issue: Aug. year: 2015 ident: 10.1016/j.dsm.2022.09.002_bib49 article-title: Grey wolf optimizer for parameter estimation in surface waves publication-title: Soil Dynam. Earthq. Eng. doi: 10.1016/j.soildyn.2015.04.004 – volume: 19 start-page: 95 issue: 2 year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib21 article-title: How information technologies shape investor sentiment: a web-based investor sentiment index publication-title: Borsa Istanbul Rev. doi: 10.1016/j.bir.2019.01.001 – volume: 102 start-page: 278 issue: Nov. year: 2018 ident: 10.1016/j.dsm.2022.09.002_bib39 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.002 – year: 2016 ident: 10.1016/j.dsm.2022.09.002_bib45 – volume: 117 start-page: 100 issue: Feb. year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib38 article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2018.11.004 – volume: 298 issue: Nov. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib8 article-title: The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: evidence from explainable machine learning publication-title: J. Environ. Manag. – volume: 57 issue: Jul. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib14 article-title: Indicator selection and stock return predictability publication-title: N. Am. J. Econ. Finance – volume: 35 issue: 3 year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib33 article-title: Does intraday time-series momentum exist in Chinese stock index futures market? publication-title: Finance Res. Lett. – volume: 65 issue: 2 year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib46 article-title: Google trends and the predictability of precious metals publication-title: Resour. Pol. – volume: 35 issue: C year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib22 article-title: An alternative approach to predicting bank credit risk in Europe with Google data publication-title: Finance Res. Lett. – volume: 38 issue: Jan. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib62 article-title: The role of investor attention in predicting stock prices: the long short-term memory networks perspective publication-title: Finance Res. Lett. – volume: 32 start-page: 838 issue: 3 year: 2016 ident: 10.1016/j.dsm.2022.09.002_bib3 article-title: Forecasting food prices: the case of corn, soybeans and wheat publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2016.01.002 – volume: 169 start-page: 160 issue: Feb. year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib11 article-title: Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer publication-title: Energy doi: 10.1016/j.energy.2018.12.016 – volume: 6 start-page: 1155 issue: Nov. year: 2017 ident: 10.1016/j.dsm.2022.09.002_bib51 article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features publication-title: IEEE Access – volume: 166 start-page: 170 issue: Feb. year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib56 article-title: Does Google search index really help predicting stock market volatility? evidence from a modified mixed data sampling model on volatility publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2018.12.025 – volume: 285 start-page: 188 issue: Apr. year: 2018 ident: 10.1016/j.dsm.2022.09.002_bib24 article-title: Predicting the direction of stock markets using optimized neural networks with Google trends publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.038 – volume: 109 start-page: 152 issue: 1B year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib18 article-title: Amended GWO approach based multi-machine power system stability enhancement publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.09.016 – volume: 38 issue: Jan. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib12 article-title: Stock return predictability in the time of COVID-19 publication-title: Finance Res. Lett. – volume: 94 start-page: 981 issue: Jan. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib59 article-title: Macroeconomic forecasts and commodity futures volatility publication-title: Econ. Modell. – volume: 101 start-page: 50 issue: Jun. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib50 article-title: Self-Tuning fuzzy controller for sun-tracker system using gray wolf optimization (GWO) technique publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.01.012 – volume: 559 issue: Dec. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib43 article-title: Transfer entropy calculation for short time sequences with application to stock markets publication-title: Phys. A Stat. Mech. its Appl. – volume: 73 issue: Oct. year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib26 article-title: Asymmetric impact of oil price and exchange rate on disaggregation price inflation publication-title: Resour. Pol. – volume: 94 issue: Sep. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib31 article-title: User reviews: sentiment analysis using lexicon integrated two-channel CNN-LSTM family models publication-title: Appl. Soft Comput. J. – volume: 162 start-page: 33 issue: 12 year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib27 article-title: Carbon futures price forecasting based with ARIMA-CNN-LSTM model publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.11.254 – volume: 213 issue: Dec. year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib29 article-title: Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model publication-title: Energy – volume: 59 start-page: 1259 issue: 3 year: 2004 ident: 10.1016/j.dsm.2022.09.002_bib6 article-title: Is all that talk just noise? The information content of Internet stock message boards publication-title: J. Finance doi: 10.1111/j.1540-6261.2004.00662.x – volume: 68 start-page: 180 issue: Nov. year: 2014 ident: 10.1016/j.dsm.2022.09.002_bib48 article-title: Effective transfer entropy approach to information flow between exchange rates and stock markets publication-title: Chaos, Solit. Fractals doi: 10.1016/j.chaos.2014.08.007 – volume: 13 start-page: 13770 issue: 24 year: 2021 ident: 10.1016/j.dsm.2022.09.002_bib16 article-title: Crude oil price forecast based on deep transfer learning: Shanghai crude oil as an example publication-title: Sustain. Times doi: 10.3390/su132413770 – start-page: 447 year: 2020 ident: 10.1016/j.dsm.2022.09.002_bib35 article-title: Stock price prediction using CNN and LSTM-based deep learning models – volume: 105 start-page: 3772 issue: May year: 2017 ident: 10.1016/j.dsm.2022.09.002_bib57 article-title: Forecasting crude oil prices with the google index publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.03.880 – volume: 129 start-page: 273 issue: Sep. year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib23 article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.029 – volume: 175 start-page: 50 issue: Jul. year: 2019 ident: 10.1016/j.dsm.2022.09.002_bib55 article-title: Predicting pipeline leakage in petrochemical system through GAN and LSTM publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2019.03.013 |
SSID | ssj0002811256 |
Score | 2.3563273 |
Snippet | The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 187 |
SubjectTerms | Baidu index Consumer price index Convolutional neural network Futures price forecasting Google trends Gray wolf optimizer Long short-term memory Transfer entropy |
Title | China futures price forecasting based on online search and information transfer |
URI | https://dx.doi.org/10.1016/j.dsm.2022.09.002 https://doaj.org/article/8248a4e69d104ea2a4c1c5f53bc9efa6 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOXgSFtPsbDY5qliKoF4s9BaSbBYssi1t_f9Okt2yF_XiNeSxTGb5vkkm3xByoySrYGRFxq30GRThklBxn9WAf5fhIwcQHji_vIrJFJ5nxaxX6ivkhCV54GS4O8lBGvBCVRg4eMMNuJEr6iK3TvnaRLFtxLxeMDWPR0bII2LpVgQgkZUCVHelGZO7qnV4hc551Dhtj1Q6UIra_T1s6uHN-IDst0SR3qcPPCQ7vjkiez35wGPyFotf0yQLsqbLoA9EkYR6Z9Yhm5kGiKrooqFJD4Mmt6amqWgrmBq2hW4iefWrEzIdP70_TrK2QELmckT2DEQQ8BNGggPDKsWkYVYwK8F7DFNczuqiEMZyUSgnMLgSufAliFElbV06lZ-SQbNo_BmhJeJ8IVme196DEspaXiK6I7tADuFlOSSss5B2rXp4KGLxqbs0sblGo-pgVM2URqMOye12yDJJZ_zW-SGYfdsxqF7HBvQF3fqC_ssXhgS6TdMtgUjEAKf6-Hnt8_9Y-4LshilTpsslGWxWX_4K-crGXkfX_AayueRk |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=China+futures+price+forecasting+based+on+online+search+and+information+transfer&rft.jtitle=Data+science+and+management&rft.au=Liang%2C+Jingyi&rft.au=Jia%2C+Guozhu&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=2666-7649&rft.eissn=2666-7649&rft.volume=5&rft.issue=4&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1016%2Fj.dsm.2022.09.002&rft.externalDocID=S2666764922000376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon |