China futures price forecasting based on online search and information transfer

The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focu...

Full description

Saved in:
Bibliographic Details
Published inData science and management Vol. 5; no. 4; pp. 187 - 198
Main Authors Liang, Jingyi, Jia, Guozhu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text
ISSN2666-7649
2666-7649
DOI10.1016/j.dsm.2022.09.002

Cover

Loading…
Abstract The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focus on China. A forecasting model based on a hybrid gray wolf optimizer (GWO), convolutional neural network (CNN), and long short-term memory (LSTM) is developed. First, Baidu and Google dual-platform search data were selected and constructed as Internet-based consumer price index (ICPI) using principal component analysis. Second, TE is used to quantify the information between online behavior and futures markets. Finally, the effective Internet-based consumer price index (ICPI) and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn, soybean, polyvinyl chloride (PVC), egg, and rebar futures. The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices. Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data. Our proposed framework can provide predictive decision support for government leaders, market investors, and production activities.
AbstractList The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study combines data from the Baidu index (BDI), Google trends (GT), and transfer entropy (TE) to forecast a wide range of futures prices with a focus on China. A forecasting model based on a hybrid gray wolf optimizer (GWO), convolutional neural network (CNN), and long short-term memory (LSTM) is developed. First, Baidu and Google dual-platform search data were selected and constructed as Internet-based consumer price index (ICPI) using principal component analysis. Second, TE is used to quantify the information between online behavior and futures markets. Finally, the effective Internet-based consumer price index (ICPI) and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn, soybean, polyvinyl chloride (PVC), egg, and rebar futures. The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices. Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data. Our proposed framework can provide predictive decision support for government leaders, market investors, and production activities.
Author Jia, Guozhu
Liang, Jingyi
Author_xml – sequence: 1
  givenname: Jingyi
  surname: Liang
  fullname: Liang, Jingyi
– sequence: 2
  givenname: Guozhu
  orcidid: 0000-0002-1650-4276
  surname: Jia
  fullname: Jia, Guozhu
  email: 309739124@qq.com
BookMark eNp9kNtKxDAQhoMoeHwA7_oCWydpOk3xShZPIHij12GaTjTLbipJFXx7oysiXgiBCTPz_QzfodiNU2QhTiXUEiSereoxb2oFStXQ1wBqRxwoRFx0qPvdX_99cZLzCsqGkVK1eCDul88hUuVf59fEuXpJwXHlp8SO8hziUzVQ5rGaYnnrELnKTMk9VxTHKsSyuKE5lOmcKGbP6VjseVpnPvmuR-Lx6vJhebO4u7--XV7cLVzTGbXQCI1WSEY7TTD2YAgGhMFoZoTWNeDbFmlQ2PYOlVHYIHca5WgG37m-ORK329xxopUtZ28ovduJgv1qTOnJUpqDW7M1ShvSjP0oQTMp0k661rfN4Hr2hCVLbrNcmnJO7H_yJNhPwXZli2D7KdhCb4u-wnR_GBfmLxXFRFj_S55vSS563gInm13g6HgMxfpc7g__0B-uhZcC
CitedBy_id crossref_primary_10_1016_j_eiar_2023_107324
crossref_primary_10_1016_j_energy_2023_128075
crossref_primary_10_1016_j_eneco_2023_107269
crossref_primary_10_1016_j_resourpol_2023_103780
crossref_primary_10_3390_math11092077
crossref_primary_10_1016_j_resourpol_2023_104319
crossref_primary_10_1016_j_swevo_2025_101874
crossref_primary_10_3390_info15120817
crossref_primary_10_1016_j_energy_2024_131352
crossref_primary_10_1016_j_fraope_2023_100053
crossref_primary_10_1016_j_eap_2023_03_002
crossref_primary_10_1016_j_marpetgeo_2023_106095
crossref_primary_10_1109_ACCESS_2023_3314514
crossref_primary_10_1007_s13132_023_01520_5
crossref_primary_10_3390_forecast6010005
crossref_primary_10_1007_s11356_023_28771_8
crossref_primary_10_1016_j_eneco_2023_106786
crossref_primary_10_1016_j_heliyon_2024_e33328
crossref_primary_10_1016_j_asoc_2025_112748
crossref_primary_10_1016_j_eneco_2023_107177
crossref_primary_10_1016_j_eneco_2023_107179
crossref_primary_10_1371_journal_pone_0285015
crossref_primary_10_1016_j_worlddev_2023_106444
crossref_primary_10_1109_TII_2023_3245196
crossref_primary_10_1080_13504509_2024_2367113
Cites_doi 10.1016/j.resourpol.2020.101934
10.1016/j.procs.2021.01.031
10.1016/j.engappai.2017.05.003
10.1109/ACCESS.2020.3002174
10.1016/j.ijforecast.2017.11.005
10.1016/j.inffus.2016.11.006
10.1016/j.frl.2016.03.005
10.1016/j.chaos.2022.111990
10.1016/j.resourpol.2016.07.005
10.1016/j.eswa.2020.113481
10.1016/j.ijforecast.2021.04.001
10.17582/journal.pjz/2018.50.6.2199.2207
10.1103/PhysRevLett.85.461
10.1016/j.tourman.2017.10.014
10.1016/j.renene.2020.03.042
10.1016/j.econmod.2017.08.032
10.1016/j.advengsoft.2013.12.007
10.1016/j.elerap.2015.01.001
10.1016/j.soildyn.2015.04.004
10.1016/j.bir.2019.01.001
10.1016/j.compbiomed.2018.06.002
10.1016/j.dss.2018.11.004
10.1016/j.ijforecast.2016.01.002
10.1016/j.energy.2018.12.016
10.1016/j.knosys.2018.12.025
10.1016/j.neucom.2018.01.038
10.1016/j.isatra.2020.09.016
10.1016/j.isatra.2020.01.012
10.1016/j.procs.2019.11.254
10.1111/j.1540-6261.2004.00662.x
10.1016/j.chaos.2014.08.007
10.3390/su132413770
10.1016/j.egypro.2017.03.880
10.1016/j.eswa.2019.03.029
10.1016/j.knosys.2019.03.013
ContentType Journal Article
Copyright 2022 Xi’an Jiaotong University
Copyright_xml – notice: 2022 Xi’an Jiaotong University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.dsm.2022.09.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-7649
EndPage 198
ExternalDocumentID oai_doaj_org_article_8248a4e69d104ea2a4c1c5f53bc9efa6
10_1016_j_dsm_2022_09_002
S2666764922000376
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c3782-4603426a84c4a0d908a0b60b84ee605c30f556ab2659c6282636e7461d8bf7c93
IEDL.DBID DOA
ISSN 2666-7649
IngestDate Wed Aug 27 01:20:26 EDT 2025
Tue Jul 01 01:06:46 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Fri Feb 23 02:37:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Futures price forecasting
Consumer price index
Google trends
Convolutional neural network
Gray wolf optimizer
Long short-term memory
Transfer entropy
Baidu index
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3782-4603426a84c4a0d908a0b60b84ee605c30f556ab2659c6282636e7461d8bf7c93
ORCID 0000-0002-1650-4276
OpenAccessLink https://doaj.org/article/8248a4e69d104ea2a4c1c5f53bc9efa6
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8248a4e69d104ea2a4c1c5f53bc9efa6
crossref_primary_10_1016_j_dsm_2022_09_002
crossref_citationtrail_10_1016_j_dsm_2022_09_002
elsevier_sciencedirect_doi_10_1016_j_dsm_2022_09_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Data science and management
PublicationYear 2022
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Barak, Arjmand, Ortobelli (bib7) 2017; 36
Sensoy, Sobaci, Sensoy (bib48) 2014; 68
Cao, Wang (bib10) 2019; 32
Deng, Ma, Zeng (bib16) 2021; 13
Lu, Li, Li (bib34) 2020; 2020
Vidal, Kristjanpoller (bib52) 2020; 157
Ye, Guo, Deschamps (bib59) 2020; 94
Schreiber (bib47) 2000; 85
Xu, Bo, Jiang (bib56) 2019; 166
Cen, Wang (bib11) 2019; 169
González-Fernández, González-Velasco (bib22) 2020; 35
Zhao, Gao, Li (bib63) 2021; 182
Aaronson, Brave, Butters (bib1) 2021; 38
Li, Zhu, Shi (bib31) 2020; 94
Qiu, Yang (bib43) 2020; 559
Abdollahi, Ebrahimi (bib2) 2020; 200
Dave, Leonardo, Jeanice (bib15) 2021; 179
Kim, Ku, Chang (bib28) 2020; 8
Aksoy, Ertürk, Erdoğan (bib4) 2018; 50
Pradhan, Hall, du Toit (bib41) 2021; 70
Salisu, Ogbonna, Adewuyi (bib46) 2020; 65
Yao, Zhang (bib57) 2017; 105
Husaini, Lean (bib26) 2021; 73
Li, Shen, Wang (bib33) 2020; 35
Antweiler, Frank (bib6) 2004; 59
Dai, Zhu (bib14) 2021; 57
Song, Tang, Zhao (bib49) 2015; 75
Ji, Zou, He (bib27) 2019; 162
Wang, Chen, Li (bib53) 2017; 63
Wei, Guo, Yu (bib54) 2021; 74
Fernandez (bib20) 2016; 49
Hoseinzade, Haratizadeh (bib23) 2019; 129
Mirjalili, Mirjalili, Lewis (bib36) 2014; 69
Tripathi, Shrivastava, Jana (bib50) 2020; 101
Ciner (bib12) 2021; 38
Mehtab, Sen (bib35) 2020
Roache (bib45) 2016
García Petit, Vaquero Lafuente, Rúa Vieites (bib21) 2019; 19
Devarapalli, Bhattacharyya, Sinha (bib18) 2021; 109
Li, Shang, Wang (bib32) 2015; 14
Li, Zhu, Sun (bib30) 2021; 69
Ahumada, Cornejo (bib3) 2016; 32
Zhang, Chu, Shen (bib62) 2021; 38
Zhaunerchyk, Haghighi, Oliver (bib64) 2020; 61
Öztunç Kaymak, Kaymak (bib40) 2022; 158
Ullah, Ahmad, Muhammad (bib51) 2017; 6
Yu, Zhao, Tang (bib60) 2019; 35
Oh, Ng, Tan (bib39) 2018; 102
Xu, Du, Zhang (bib55) 2019; 175
Hu, Tang, Zhang (bib24) 2018; 285
Ben Jabeur, Khalfaoui, Ben Arfi (bib8) 2021; 298
Bilgin, Demir, Gozgor (bib9) 2019; 184
Antoniades, Karakatsanis, Pavlos (bib5) 2021; 578
Dai, Kang, Hu (bib13) 2021; 74
Yarovaya, Brzeszczyński, Lau (bib58) 2016; 17
Zhang, Wang, Wang (bib61) 2020; 211
Li, Wang (bib29) 2020; 213
Hu, Wang, Lv (bib25) 2020; 154
Nam, Seong (bib38) 2019; 117
Mo, Gupta, Li (bib37) 2018; 70
Dergiades, Mavragani, Pan (bib17) 2018; 66
Rezaei, Faaljou, Mansourfar (bib44) 2021; 169
Fang, Gozgor, Lau (bib19) 2020; 32
Prasanth, Singh, Kumar (bib42) 2021; 142
García Petit (10.1016/j.dsm.2022.09.002_bib21) 2019; 19
Aksoy (10.1016/j.dsm.2022.09.002_bib4) 2018; 50
Barak (10.1016/j.dsm.2022.09.002_bib7) 2017; 36
Dave (10.1016/j.dsm.2022.09.002_bib15) 2021; 179
Hoseinzade (10.1016/j.dsm.2022.09.002_bib23) 2019; 129
Rezaei (10.1016/j.dsm.2022.09.002_bib44) 2021; 169
Hu (10.1016/j.dsm.2022.09.002_bib25) 2020; 154
Vidal (10.1016/j.dsm.2022.09.002_bib52) 2020; 157
Xu (10.1016/j.dsm.2022.09.002_bib55) 2019; 175
Cao (10.1016/j.dsm.2022.09.002_bib10) 2019; 32
Li (10.1016/j.dsm.2022.09.002_bib29) 2020; 213
Dai (10.1016/j.dsm.2022.09.002_bib14) 2021; 57
Mo (10.1016/j.dsm.2022.09.002_bib37) 2018; 70
Fang (10.1016/j.dsm.2022.09.002_bib19) 2020; 32
Sensoy (10.1016/j.dsm.2022.09.002_bib48) 2014; 68
Ciner (10.1016/j.dsm.2022.09.002_bib12) 2021; 38
Ahumada (10.1016/j.dsm.2022.09.002_bib3) 2016; 32
Deng (10.1016/j.dsm.2022.09.002_bib16) 2021; 13
Mehtab (10.1016/j.dsm.2022.09.002_bib35) 2020
Cen (10.1016/j.dsm.2022.09.002_bib11) 2019; 169
Dai (10.1016/j.dsm.2022.09.002_bib13) 2021; 74
Ji (10.1016/j.dsm.2022.09.002_bib27) 2019; 162
Wei (10.1016/j.dsm.2022.09.002_bib54) 2021; 74
Song (10.1016/j.dsm.2022.09.002_bib49) 2015; 75
Yao (10.1016/j.dsm.2022.09.002_bib57) 2017; 105
Yu (10.1016/j.dsm.2022.09.002_bib60) 2019; 35
Bilgin (10.1016/j.dsm.2022.09.002_bib9) 2019; 184
Zhang (10.1016/j.dsm.2022.09.002_bib62) 2021; 38
Zhao (10.1016/j.dsm.2022.09.002_bib63) 2021; 182
Nam (10.1016/j.dsm.2022.09.002_bib38) 2019; 117
Devarapalli (10.1016/j.dsm.2022.09.002_bib18) 2021; 109
Antoniades (10.1016/j.dsm.2022.09.002_bib5) 2021; 578
Fernandez (10.1016/j.dsm.2022.09.002_bib20) 2016; 49
Pradhan (10.1016/j.dsm.2022.09.002_bib41) 2021; 70
Aaronson (10.1016/j.dsm.2022.09.002_bib1) 2021; 38
Antweiler (10.1016/j.dsm.2022.09.002_bib6) 2004; 59
Kim (10.1016/j.dsm.2022.09.002_bib28) 2020; 8
Ye (10.1016/j.dsm.2022.09.002_bib59) 2020; 94
Husaini (10.1016/j.dsm.2022.09.002_bib26) 2021; 73
Roache (10.1016/j.dsm.2022.09.002_bib45) 2016
Li (10.1016/j.dsm.2022.09.002_bib32) 2015; 14
Oh (10.1016/j.dsm.2022.09.002_bib39) 2018; 102
Lu (10.1016/j.dsm.2022.09.002_bib34) 2020; 2020
Mirjalili (10.1016/j.dsm.2022.09.002_bib36) 2014; 69
Wang (10.1016/j.dsm.2022.09.002_bib53) 2017; 63
Zhang (10.1016/j.dsm.2022.09.002_bib61) 2020; 211
Yarovaya (10.1016/j.dsm.2022.09.002_bib58) 2016; 17
Abdollahi (10.1016/j.dsm.2022.09.002_bib2) 2020; 200
Schreiber (10.1016/j.dsm.2022.09.002_bib47) 2000; 85
Zhaunerchyk (10.1016/j.dsm.2022.09.002_bib64) 2020; 61
González-Fernández (10.1016/j.dsm.2022.09.002_bib22) 2020; 35
Hu (10.1016/j.dsm.2022.09.002_bib24) 2018; 285
Qiu (10.1016/j.dsm.2022.09.002_bib43) 2020; 559
Tripathi (10.1016/j.dsm.2022.09.002_bib50) 2020; 101
Ullah (10.1016/j.dsm.2022.09.002_bib51) 2017; 6
Öztunç Kaymak (10.1016/j.dsm.2022.09.002_bib40) 2022; 158
Li (10.1016/j.dsm.2022.09.002_bib33) 2020; 35
Dergiades (10.1016/j.dsm.2022.09.002_bib17) 2018; 66
Li (10.1016/j.dsm.2022.09.002_bib31) 2020; 94
Li (10.1016/j.dsm.2022.09.002_bib30) 2021; 69
Xu (10.1016/j.dsm.2022.09.002_bib56) 2019; 166
Ben Jabeur (10.1016/j.dsm.2022.09.002_bib8) 2021; 298
Prasanth (10.1016/j.dsm.2022.09.002_bib42) 2021; 142
Salisu (10.1016/j.dsm.2022.09.002_bib46) 2020; 65
References_xml – volume: 74
  year: 2021
  ident: bib13
  article-title: Efficient predictability of oil price: the role of number of IPOs and U.S. dollar index
  publication-title: Resour. Pol.
– volume: 38
  year: 2021
  ident: bib62
  article-title: The role of investor attention in predicting stock prices: the long short-term memory networks perspective
  publication-title: Finance Res. Lett.
– volume: 14
  start-page: 112
  year: 2015
  end-page: 125
  ident: bib32
  article-title: A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data
  publication-title: Electron. Commer. Res. Appl.
– volume: 6
  start-page: 1155
  year: 2017
  end-page: 1166
  ident: bib51
  article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features
  publication-title: IEEE Access
– year: 2016
  ident: bib45
  publication-title: China: credit , collateral , and commodity prices
– volume: 13
  start-page: 13770
  year: 2021
  ident: bib16
  article-title: Crude oil price forecast based on deep transfer learning: Shanghai crude oil as an example
  publication-title: Sustain. Times
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib34
  article-title: A CNN-LSTM-based model to forecast stock prices
  publication-title: Complexity
– volume: 85
  start-page: 461
  year: 2000
  end-page: 464
  ident: bib47
  article-title: Measuring information transfer
  publication-title: Phys. Rev. Lett.
– volume: 166
  start-page: 170
  year: 2019
  end-page: 185
  ident: bib56
  article-title: Does Google search index really help predicting stock market volatility? evidence from a modified mixed data sampling model on volatility
  publication-title: Knowl. Base Syst.
– volume: 157
  start-page: 113481
  year: 2020
  ident: bib52
  article-title: Gold volatility prediction using a CNN-LSTM approach
  publication-title: Expert Syst. Appl.
– volume: 32
  year: 2020
  ident: bib19
  article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets
  publication-title: Finance Res. Lett.
– volume: 154
  start-page: 598
  year: 2020
  end-page: 613
  ident: bib25
  article-title: Forecasting energy consumption and wind power generation using deep echo state network
  publication-title: Renew. Energy
– volume: 158
  start-page: 111990
  year: 2022
  ident: bib40
  article-title: Prediction of crude oil prices in COVID-19 outbreak using real data
  publication-title: Chaos, Solit. Fractals
– volume: 38
  start-page: 567
  year: 2021
  end-page: 581
  ident: bib1
  article-title: Forecasting unemployment insurance claims in realtime with Google trends
  publication-title: Int. J. Forecast.
– volume: 8
  start-page: 111660
  year: 2020
  end-page: 111682
  ident: bib28
  article-title: Predicting the direction of US stock prices using effective transfer entropy and machine learning techniques
  publication-title: IEEE Access
– volume: 35
  year: 2020
  ident: bib33
  article-title: Does intraday time-series momentum exist in Chinese stock index futures market?
  publication-title: Finance Res. Lett.
– volume: 70
  start-page: 101934
  year: 2021
  ident: bib41
  article-title: The lead-lag relationship between spot and futures prices: empirical evidence from the Indian commodity market
  publication-title: Resour. Pol.
– volume: 57
  year: 2021
  ident: bib14
  article-title: Indicator selection and stock return predictability
  publication-title: N. Am. J. Econ. Finance
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib36
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
– volume: 35
  start-page: 213
  year: 2019
  end-page: 223
  ident: bib60
  article-title: Online big data-driven oil consumption forecasting with Google trends
  publication-title: Int. J. Forecast.
– volume: 169
  start-page: 160
  year: 2019
  end-page: 171
  ident: bib11
  article-title: Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer
  publication-title: Energy
– volume: 35
  year: 2020
  ident: bib22
  article-title: An alternative approach to predicting bank credit risk in Europe with Google data
  publication-title: Finance Res. Lett.
– volume: 142
  year: 2021
  ident: bib42
  article-title: Forecasting spread of COVID-19 using Google trends: a hybrid GWO-deep learning approach
  publication-title: Chaos, Solit. Fractals
– volume: 109
  start-page: 152
  year: 2021
  end-page: 174
  ident: bib18
  article-title: Amended GWO approach based multi-machine power system stability enhancement
  publication-title: ISA Trans.
– volume: 63
  start-page: 54
  year: 2017
  end-page: 68
  ident: bib53
  article-title: Grey wolf optimization evolving kernel extreme learning machine: application to bankruptcy prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 559
  year: 2020
  ident: bib43
  article-title: Transfer entropy calculation for short time sequences with application to stock markets
  publication-title: Phys. A Stat. Mech. its Appl.
– volume: 49
  start-page: 368
  year: 2016
  end-page: 371
  ident: bib20
  article-title: Further evidence on the relationship between spot and futures prices
  publication-title: Resour. Pol.
– volume: 32
  start-page: 838
  year: 2016
  end-page: 848
  ident: bib3
  article-title: Forecasting food prices: the case of corn, soybeans and wheat
  publication-title: Int. J. Forecast.
– volume: 175
  start-page: 50
  year: 2019
  end-page: 61
  ident: bib55
  article-title: Predicting pipeline leakage in petrochemical system through GAN and LSTM
  publication-title: Knowl. Base Syst.
– volume: 179
  start-page: 480
  year: 2021
  end-page: 487
  ident: bib15
  article-title: Forecasting Indonesia exports using a hybrid model ARIMA-LSTM
  publication-title: Procedia Comput. Sci.
– volume: 94
  start-page: 981
  year: 2020
  end-page: 994
  ident: bib59
  article-title: Macroeconomic forecasts and commodity futures volatility
  publication-title: Econ. Modell.
– volume: 19
  start-page: 95
  year: 2019
  end-page: 105
  ident: bib21
  article-title: How information technologies shape investor sentiment: a web-based investor sentiment index
  publication-title: Borsa Istanbul Rev.
– volume: 38
  year: 2021
  ident: bib12
  article-title: Stock return predictability in the time of COVID-19
  publication-title: Finance Res. Lett.
– volume: 74
  year: 2021
  ident: bib54
  article-title: The impact of events on metal futures based on the perspective of Google trends
  publication-title: Resour. Pol.
– volume: 117
  start-page: 100
  year: 2019
  end-page: 112
  ident: bib38
  article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market
  publication-title: Decis. Support Syst.
– volume: 75
  start-page: 147
  year: 2015
  end-page: 157
  ident: bib49
  article-title: Grey wolf optimizer for parameter estimation in surface waves
  publication-title: Soil Dynam. Earthq. Eng.
– start-page: 447
  year: 2020
  end-page: 453
  ident: bib35
  article-title: Stock price prediction using CNN and LSTM-based deep learning models
  publication-title: In: 2020 International Conference on Decision Aid Sciences and Application (DASA)
– volume: 36
  start-page: 90
  year: 2017
  end-page: 102
  ident: bib7
  article-title: Fusion of multiple diverse predictors in stock market
  publication-title: Inf. Fusion
– volume: 129
  start-page: 273
  year: 2019
  end-page: 285
  ident: bib23
  article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables
  publication-title: Expert Syst. Appl.
– volume: 169
  year: 2021
  ident: bib44
  article-title: Stock price prediction using deep learning and frequency decomposition
  publication-title: Expert Syst. Appl.
– volume: 578
  year: 2021
  ident: bib5
  article-title: Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents
  publication-title: Physica A
– volume: 105
  start-page: 3772
  year: 2017
  end-page: 3776
  ident: bib57
  article-title: Forecasting crude oil prices with the google index
  publication-title: Energy Proc.
– volume: 70
  start-page: 543
  year: 2018
  end-page: 560
  ident: bib37
  article-title: The macroeconomic determinants of commodity futures volatility: evidence from Chinese and Indian markets
  publication-title: Econ. Modell.
– volume: 61
  year: 2020
  ident: bib64
  article-title: Distraction effects on stock return co-movements: confirmation from the Shenzhen and Shanghai stock markets
  publication-title: Pac. Basin Finance J.
– volume: 200
  year: 2020
  ident: bib2
  article-title: A new hybrid model for forecasting Brent crude oil price
  publication-title: Energy
– volume: 162
  start-page: 33
  year: 2019
  end-page: 38
  ident: bib27
  article-title: Carbon futures price forecasting based with ARIMA-CNN-LSTM model
  publication-title: Procedia Comput. Sci.
– volume: 182
  year: 2021
  ident: bib63
  article-title: A similarity measurement for time series and its application to the stock market
  publication-title: Expert Syst. Appl.
– volume: 213
  year: 2020
  ident: bib29
  article-title: Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model
  publication-title: Energy
– volume: 211
  year: 2020
  ident: bib61
  article-title: Energy market prediction with novel long short-term memory network: case study of energy futures index volatility
  publication-title: Energy
– volume: 73
  year: 2021
  ident: bib26
  article-title: Asymmetric impact of oil price and exchange rate on disaggregation price inflation
  publication-title: Resour. Pol.
– volume: 65
  year: 2020
  ident: bib46
  article-title: Google trends and the predictability of precious metals
  publication-title: Resour. Pol.
– volume: 68
  start-page: 180
  year: 2014
  end-page: 185
  ident: bib48
  article-title: Effective transfer entropy approach to information flow between exchange rates and stock markets
  publication-title: Chaos, Solit. Fractals
– volume: 32
  year: 2019
  ident: bib10
  article-title: Stock price forecasting model based on modified convolution neural network and financial time series analysis
  publication-title: Int. J. Commun. Syst.
– volume: 59
  start-page: 1259
  year: 2004
  end-page: 1294
  ident: bib6
  article-title: Is all that talk just noise? The information content of Internet stock message boards
  publication-title: J. Finance
– volume: 69
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib30
  article-title: Multi-source information fusion and deep-learning-based characteristics measurement for exploring the effects of peer engagement on stock price synchronicity
  publication-title: Inf. Fusion
– volume: 50
  start-page: 2199
  year: 2018
  end-page: 2207
  ident: bib4
  article-title: Estimation of honey production in beekeeping enterprises from eastern part of Turkey through some data mining algorithms
  publication-title: Pakistan J. Zool.
– volume: 184
  year: 2019
  ident: bib9
  article-title: A novel index of macroeconomic uncertainty for Turkey based on Google-trends
  publication-title: Econ. Lett.
– volume: 285
  start-page: 188
  year: 2018
  end-page: 195
  ident: bib24
  article-title: Predicting the direction of stock markets using optimized neural networks with Google trends
  publication-title: Neurocomputing
– volume: 94
  year: 2020
  ident: bib31
  article-title: User reviews: sentiment analysis using lexicon integrated two-channel CNN-LSTM family models
  publication-title: Appl. Soft Comput. J.
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: bib39
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– volume: 298
  year: 2021
  ident: bib8
  article-title: The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: evidence from explainable machine learning
  publication-title: J. Environ. Manag.
– volume: 17
  start-page: 158
  year: 2016
  end-page: 166
  ident: bib58
  article-title: Volatility spillovers across stock index futures in Asian markets: evidence from range volatility estimators
  publication-title: Finance Res. Lett.
– volume: 66
  start-page: 108
  year: 2018
  end-page: 120
  ident: bib17
  article-title: Google trends and tourists’ arrivals: emerging biases and proposed corrections
  publication-title: Tourism Manag.
– volume: 101
  start-page: 50
  year: 2020
  end-page: 59
  ident: bib50
  article-title: Self-Tuning fuzzy controller for sun-tracker system using gray wolf optimization (GWO) technique
  publication-title: ISA Trans.
– volume: 70
  start-page: 101934
  issue: Mar.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib41
  article-title: The lead-lag relationship between spot and futures prices: empirical evidence from the Indian commodity market
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2020.101934
– volume: 142
  issue: Jan.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib42
  article-title: Forecasting spread of COVID-19 using Google trends: a hybrid GWO-deep learning approach
  publication-title: Chaos, Solit. Fractals
– volume: 179
  start-page: 480
  issue: 1
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib15
  article-title: Forecasting Indonesia exports using a hybrid model ARIMA-LSTM
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.01.031
– volume: 63
  start-page: 54
  issue: Aug.
  year: 2017
  ident: 10.1016/j.dsm.2022.09.002_bib53
  article-title: Grey wolf optimization evolving kernel extreme learning machine: application to bankruptcy prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.05.003
– volume: 8
  start-page: 111660
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib28
  article-title: Predicting the direction of US stock prices using effective transfer entropy and machine learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002174
– volume: 69
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib30
  article-title: Multi-source information fusion and deep-learning-based characteristics measurement for exploring the effects of peer engagement on stock price synchronicity
  publication-title: Inf. Fusion
– volume: 2020
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib34
  article-title: A CNN-LSTM-based model to forecast stock prices
  publication-title: Complexity
– volume: 35
  start-page: 213
  issue: 1
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib60
  article-title: Online big data-driven oil consumption forecasting with Google trends
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2017.11.005
– volume: 36
  start-page: 90
  issue: Jul.
  year: 2017
  ident: 10.1016/j.dsm.2022.09.002_bib7
  article-title: Fusion of multiple diverse predictors in stock market
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.11.006
– volume: 211
  issue: Nov.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib61
  article-title: Energy market prediction with novel long short-term memory network: case study of energy futures index volatility
  publication-title: Energy
– volume: 61
  issue: Jun.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib64
  article-title: Distraction effects on stock return co-movements: confirmation from the Shenzhen and Shanghai stock markets
  publication-title: Pac. Basin Finance J.
– volume: 17
  start-page: 158
  issue: May
  year: 2016
  ident: 10.1016/j.dsm.2022.09.002_bib58
  article-title: Volatility spillovers across stock index futures in Asian markets: evidence from range volatility estimators
  publication-title: Finance Res. Lett.
  doi: 10.1016/j.frl.2016.03.005
– volume: 184
  issue: C
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib9
  article-title: A novel index of macroeconomic uncertainty for Turkey based on Google-trends
  publication-title: Econ. Lett.
– volume: 32
  issue: 1
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib10
  article-title: Stock price forecasting model based on modified convolution neural network and financial time series analysis
  publication-title: Int. J. Commun. Syst.
– volume: 182
  issue: Nov.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib63
  article-title: A similarity measurement for time series and its application to the stock market
  publication-title: Expert Syst. Appl.
– volume: 169
  issue: May
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib44
  article-title: Stock price prediction using deep learning and frequency decomposition
  publication-title: Expert Syst. Appl.
– volume: 158
  start-page: 111990
  issue: May
  year: 2022
  ident: 10.1016/j.dsm.2022.09.002_bib40
  article-title: Prediction of crude oil prices in COVID-19 outbreak using real data
  publication-title: Chaos, Solit. Fractals
  doi: 10.1016/j.chaos.2022.111990
– volume: 74
  issue: Dec.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib54
  article-title: The impact of events on metal futures based on the perspective of Google trends
  publication-title: Resour. Pol.
– volume: 578
  issue: Sep.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib5
  article-title: Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents
  publication-title: Physica A
– volume: 200
  issue: Apr.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib2
  article-title: A new hybrid model for forecasting Brent crude oil price
  publication-title: Energy
– volume: 49
  start-page: 368
  issue: Sep.
  year: 2016
  ident: 10.1016/j.dsm.2022.09.002_bib20
  article-title: Further evidence on the relationship between spot and futures prices
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2016.07.005
– volume: 74
  issue: Dec.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib13
  article-title: Efficient predictability of oil price: the role of number of IPOs and U.S. dollar index
  publication-title: Resour. Pol.
– volume: 157
  start-page: 113481
  issue: Nov.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib52
  article-title: Gold volatility prediction using a CNN-LSTM approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113481
– volume: 38
  start-page: 567
  issue: 2
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib1
  article-title: Forecasting unemployment insurance claims in realtime with Google trends
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.04.001
– volume: 50
  start-page: 2199
  issue: 6
  year: 2018
  ident: 10.1016/j.dsm.2022.09.002_bib4
  article-title: Estimation of honey production in beekeeping enterprises from eastern part of Turkey through some data mining algorithms
  publication-title: Pakistan J. Zool.
  doi: 10.17582/journal.pjz/2018.50.6.2199.2207
– volume: 85
  start-page: 461
  issue: 2
  year: 2000
  ident: 10.1016/j.dsm.2022.09.002_bib47
  article-title: Measuring information transfer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.461
– volume: 66
  start-page: 108
  issue: Jun.
  year: 2018
  ident: 10.1016/j.dsm.2022.09.002_bib17
  article-title: Google trends and tourists’ arrivals: emerging biases and proposed corrections
  publication-title: Tourism Manag.
  doi: 10.1016/j.tourman.2017.10.014
– volume: 154
  start-page: 598
  issue: Jul.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib25
  article-title: Forecasting energy consumption and wind power generation using deep echo state network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.042
– volume: 32
  issue: C
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib19
  article-title: The impact of Baidu Index sentiment on the volatility of China’s stock markets
  publication-title: Finance Res. Lett.
– volume: 70
  start-page: 543
  issue: Apr.
  year: 2018
  ident: 10.1016/j.dsm.2022.09.002_bib37
  article-title: The macroeconomic determinants of commodity futures volatility: evidence from Chinese and Indian markets
  publication-title: Econ. Modell.
  doi: 10.1016/j.econmod.2017.08.032
– volume: 69
  start-page: 46
  issue: Mar.
  year: 2014
  ident: 10.1016/j.dsm.2022.09.002_bib36
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 14
  start-page: 112
  issue: 2
  year: 2015
  ident: 10.1016/j.dsm.2022.09.002_bib32
  article-title: A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2015.01.001
– volume: 75
  start-page: 147
  issue: Aug.
  year: 2015
  ident: 10.1016/j.dsm.2022.09.002_bib49
  article-title: Grey wolf optimizer for parameter estimation in surface waves
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2015.04.004
– volume: 19
  start-page: 95
  issue: 2
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib21
  article-title: How information technologies shape investor sentiment: a web-based investor sentiment index
  publication-title: Borsa Istanbul Rev.
  doi: 10.1016/j.bir.2019.01.001
– volume: 102
  start-page: 278
  issue: Nov.
  year: 2018
  ident: 10.1016/j.dsm.2022.09.002_bib39
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– year: 2016
  ident: 10.1016/j.dsm.2022.09.002_bib45
– volume: 117
  start-page: 100
  issue: Feb.
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib38
  article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.11.004
– volume: 298
  issue: Nov.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib8
  article-title: The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: evidence from explainable machine learning
  publication-title: J. Environ. Manag.
– volume: 57
  issue: Jul.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib14
  article-title: Indicator selection and stock return predictability
  publication-title: N. Am. J. Econ. Finance
– volume: 35
  issue: 3
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib33
  article-title: Does intraday time-series momentum exist in Chinese stock index futures market?
  publication-title: Finance Res. Lett.
– volume: 65
  issue: 2
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib46
  article-title: Google trends and the predictability of precious metals
  publication-title: Resour. Pol.
– volume: 35
  issue: C
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib22
  article-title: An alternative approach to predicting bank credit risk in Europe with Google data
  publication-title: Finance Res. Lett.
– volume: 38
  issue: Jan.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib62
  article-title: The role of investor attention in predicting stock prices: the long short-term memory networks perspective
  publication-title: Finance Res. Lett.
– volume: 32
  start-page: 838
  issue: 3
  year: 2016
  ident: 10.1016/j.dsm.2022.09.002_bib3
  article-title: Forecasting food prices: the case of corn, soybeans and wheat
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.01.002
– volume: 169
  start-page: 160
  issue: Feb.
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib11
  article-title: Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.016
– volume: 6
  start-page: 1155
  issue: Nov.
  year: 2017
  ident: 10.1016/j.dsm.2022.09.002_bib51
  article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features
  publication-title: IEEE Access
– volume: 166
  start-page: 170
  issue: Feb.
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib56
  article-title: Does Google search index really help predicting stock market volatility? evidence from a modified mixed data sampling model on volatility
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2018.12.025
– volume: 285
  start-page: 188
  issue: Apr.
  year: 2018
  ident: 10.1016/j.dsm.2022.09.002_bib24
  article-title: Predicting the direction of stock markets using optimized neural networks with Google trends
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.038
– volume: 109
  start-page: 152
  issue: 1B
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib18
  article-title: Amended GWO approach based multi-machine power system stability enhancement
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.09.016
– volume: 38
  issue: Jan.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib12
  article-title: Stock return predictability in the time of COVID-19
  publication-title: Finance Res. Lett.
– volume: 94
  start-page: 981
  issue: Jan.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib59
  article-title: Macroeconomic forecasts and commodity futures volatility
  publication-title: Econ. Modell.
– volume: 101
  start-page: 50
  issue: Jun.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib50
  article-title: Self-Tuning fuzzy controller for sun-tracker system using gray wolf optimization (GWO) technique
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.01.012
– volume: 559
  issue: Dec.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib43
  article-title: Transfer entropy calculation for short time sequences with application to stock markets
  publication-title: Phys. A Stat. Mech. its Appl.
– volume: 73
  issue: Oct.
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib26
  article-title: Asymmetric impact of oil price and exchange rate on disaggregation price inflation
  publication-title: Resour. Pol.
– volume: 94
  issue: Sep.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib31
  article-title: User reviews: sentiment analysis using lexicon integrated two-channel CNN-LSTM family models
  publication-title: Appl. Soft Comput. J.
– volume: 162
  start-page: 33
  issue: 12
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib27
  article-title: Carbon futures price forecasting based with ARIMA-CNN-LSTM model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.11.254
– volume: 213
  issue: Dec.
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib29
  article-title: Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model
  publication-title: Energy
– volume: 59
  start-page: 1259
  issue: 3
  year: 2004
  ident: 10.1016/j.dsm.2022.09.002_bib6
  article-title: Is all that talk just noise? The information content of Internet stock message boards
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.2004.00662.x
– volume: 68
  start-page: 180
  issue: Nov.
  year: 2014
  ident: 10.1016/j.dsm.2022.09.002_bib48
  article-title: Effective transfer entropy approach to information flow between exchange rates and stock markets
  publication-title: Chaos, Solit. Fractals
  doi: 10.1016/j.chaos.2014.08.007
– volume: 13
  start-page: 13770
  issue: 24
  year: 2021
  ident: 10.1016/j.dsm.2022.09.002_bib16
  article-title: Crude oil price forecast based on deep transfer learning: Shanghai crude oil as an example
  publication-title: Sustain. Times
  doi: 10.3390/su132413770
– start-page: 447
  year: 2020
  ident: 10.1016/j.dsm.2022.09.002_bib35
  article-title: Stock price prediction using CNN and LSTM-based deep learning models
– volume: 105
  start-page: 3772
  issue: May
  year: 2017
  ident: 10.1016/j.dsm.2022.09.002_bib57
  article-title: Forecasting crude oil prices with the google index
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.03.880
– volume: 129
  start-page: 273
  issue: Sep.
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib23
  article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.029
– volume: 175
  start-page: 50
  issue: Jul.
  year: 2019
  ident: 10.1016/j.dsm.2022.09.002_bib55
  article-title: Predicting pipeline leakage in petrochemical system through GAN and LSTM
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2019.03.013
SSID ssj0002811256
Score 2.3563273
Snippet The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications. This study...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms Baidu index
Consumer price index
Convolutional neural network
Futures price forecasting
Google trends
Gray wolf optimizer
Long short-term memory
Transfer entropy
Title China futures price forecasting based on online search and information transfer
URI https://dx.doi.org/10.1016/j.dsm.2022.09.002
https://doaj.org/article/8248a4e69d104ea2a4c1c5f53bc9efa6
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOXgSFtPsbDY5qliKoF4s9BaSbBYssi1t_f9Okt2yF_XiNeSxTGb5vkkm3xByoySrYGRFxq30GRThklBxn9WAf5fhIwcQHji_vIrJFJ5nxaxX6ivkhCV54GS4O8lBGvBCVRg4eMMNuJEr6iK3TvnaRLFtxLxeMDWPR0bII2LpVgQgkZUCVHelGZO7qnV4hc551Dhtj1Q6UIra_T1s6uHN-IDst0SR3qcPPCQ7vjkiez35wGPyFotf0yQLsqbLoA9EkYR6Z9Yhm5kGiKrooqFJD4Mmt6amqWgrmBq2hW4iefWrEzIdP70_TrK2QELmckT2DEQQ8BNGggPDKsWkYVYwK8F7DFNczuqiEMZyUSgnMLgSufAliFElbV06lZ-SQbNo_BmhJeJ8IVme196DEspaXiK6I7tADuFlOSSss5B2rXp4KGLxqbs0sblGo-pgVM2URqMOye12yDJJZ_zW-SGYfdsxqF7HBvQF3fqC_ssXhgS6TdMtgUjEAKf6-Hnt8_9Y-4LshilTpsslGWxWX_4K-crGXkfX_AayueRk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=China+futures+price+forecasting+based+on+online+search+and+information+transfer&rft.jtitle=Data+science+and+management&rft.au=Liang%2C+Jingyi&rft.au=Jia%2C+Guozhu&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=2666-7649&rft.eissn=2666-7649&rft.volume=5&rft.issue=4&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1016%2Fj.dsm.2022.09.002&rft.externalDocID=S2666764922000376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon