Dual-stage ensemble approach using online knowledge distillation for forecasting carbon emissions in the electric power industry

The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power industry can aid in the prompt adjustment of power generation policies and the early achievement of carbon reduction targets. This study propose...

Full description

Saved in:
Bibliographic Details
Published inData science and management Vol. 6; no. 4; pp. 227 - 238
Main Authors Lin, Ruibin, Lv, Xing, Hu, Huanling, Ling, Liwen, Yu, Zehui, Zhang, Dabin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text
ISSN2666-7649
2666-7649
DOI10.1016/j.dsm.2023.09.001

Cover

Abstract The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power industry can aid in the prompt adjustment of power generation policies and the early achievement of carbon reduction targets. This study proposes a new approach that combines the decomposition-ensemble paradigm with knowledge distillation to forecast daily carbon emissions. First, Seasonal and Trend decomposition using Locally weighted scatterplot smoothing (STL) is used to decompose the data into three subcomponents. Second, two heterogeneous deep neural network models are jointly trained to predict each subcomponent based on online knowledge distillation. During training, the two models learn and provide feedback to each other. The first model-ensemble stage is performed by synthesizing the predictions for each subcomponent of the two models. Finally, the second model-ensemble stage is performed. The predictions for each subcomponent are integrated using linear addition to obtain the final results. In addition, to avoid leakage of test data caused by decomposing the entire time series, a recursive forecasting strategy is applied. Multistep predictions are obtained by forecasting 7, 15, and 30 days in the future. Experimental results using metaheuristic algorithms to optimize hyperparameters show that the proposed method evaluated on the daily carbon emissions dataset has better forecasting performance than all baselines.
AbstractList The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power industry can aid in the prompt adjustment of power generation policies and the early achievement of carbon reduction targets. This study proposes a new approach that combines the decomposition-ensemble paradigm with knowledge distillation to forecast daily carbon emissions. First, seasonal and trend decomposition using locally weighted scatterplot smoothing (STL) is used to decompose the data into three subcomponents. Second, two heterogeneous deep neural network models are jointly trained to predict each subcomponent based on online knowledge distillation. During training, the two models learn and provide feedback to each other. The first model-ensemble stage is performed by synthesizing the predictions for each subcomponent of the two models. Finally, the second model-ensemble stage is performed. The predictions for each subcomponent are integrated using linear addition to obtain the final results. In addition, to avoid leakage of test data caused by decomposing the entire time series, a recursive forecasting strategy is applied. Multistep predictions are obtained by forecasting 7, 15, and 30 days in the future. Experimental results using metaheuristic algorithms to optimize hyperparameters show that the proposed method evaluated on the daily carbon emissions dataset has better forecasting performance than all baselines.
Author Lin, Ruibin
Zhang, Dabin
Lv, Xing
Ling, Liwen
Yu, Zehui
Hu, Huanling
Author_xml – sequence: 1
  givenname: Ruibin
  orcidid: 0000-0001-5618-5444
  surname: Lin
  fullname: Lin, Ruibin
– sequence: 2
  givenname: Xing
  surname: Lv
  fullname: Lv, Xing
– sequence: 3
  givenname: Huanling
  surname: Hu
  fullname: Hu, Huanling
– sequence: 4
  givenname: Liwen
  surname: Ling
  fullname: Ling, Liwen
– sequence: 5
  givenname: Zehui
  surname: Yu
  fullname: Yu, Zehui
– sequence: 6
  givenname: Dabin
  surname: Zhang
  fullname: Zhang, Dabin
  email: zdbff@aliyun.com
BookMark eNp9kc1uHCEQhEeRLcWx_QC58QIzaZiB2VFOkZPYliz5kpwRP82aDQsrYGP5lkc367WiKAcfEK2i6xOq-tCdxBSx6z5SGChQ8Wkz2LIdGLBxgGUAoO-6MyaE6GcxLSf_zO-7y1I2AMBWlDIuzro_X_cq9KWqNRKMBbc6IFG7XU7KPJB98XFNUgw-IvkV02NA2xatL9WHoKpPkbiUDweNamLbNirrJuPWl9LeC_GR1IdGD2hq9obs0iPmptp9qfnpojt1KhS8fL3Pu5_fv_24uunv7q9vr77c9WacV7S32jENjHOttIaZj0ABl1GwBRxnk-N8cmJa2dE5TqkBrbmjszFO82Wh8zied7dHrk1qI3fZb1V-kkl5-SKkvJYqV28CSgbTaBe-0hNVk6NmmRy2cbaz1gI4NhY9skxOpWR0f3kU5KERuZGtEXloRMIiWyPNM__nMb6-JFiz8uFN5-ejE1s8vz1mWYzHaND6lnpt__dvuJ8BPzmqig
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119155
crossref_primary_10_3390_en16248105
crossref_primary_10_3390_en17020347
crossref_primary_10_1016_j_engappai_2024_109510
crossref_primary_10_1016_j_energy_2024_130662
crossref_primary_10_3390_math11224630
crossref_primary_10_1016_j_eneco_2023_107285
crossref_primary_10_1016_j_envres_2024_118662
crossref_primary_10_1016_j_mlwa_2024_100605
Cites_doi 10.1016/j.ecolind.2016.06.060
10.1007/s11356-021-14591-1
10.3390/su15097615
10.1007/s00521-021-05960-5
10.3390/land10121380
10.1016/j.compag.2018.04.022
10.1038/nature14539
10.3390/en14248466
10.1198/073500102753410444
10.1016/j.neucom.2021.04.139
10.1016/j.procir.2019.04.095
10.1016/j.eswa.2012.01.039
10.1016/j.enbuild.2016.06.032
10.1162/neco.1997.9.8.1735
10.1016/j.apenergy.2018.06.078
10.1007/s11356-022-20393-w
10.1007/s12517-023-11321-4
10.1007/s11356-018-2738-z
10.1007/s11356-022-21277-9
10.1016/j.dsm.2023.02.002
10.1016/j.jclepro.2019.03.352
10.1256/004316502320517344
10.1002/jtr.2445
10.1016/j.enpol.2016.03.038
ContentType Journal Article
Copyright 2023 Xi’an Jiaotong University
Copyright_xml – notice: 2023 Xi’an Jiaotong University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.dsm.2023.09.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-7649
EndPage 238
ExternalDocumentID oai_doaj_org_article_2043d958b41a4f1c94fe41a7d7bb605e
10_1016_j_dsm_2023_09_001
S2666764923000395
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c3781-dbf2b0255babb0753010e936290f524f554f648d3ff511c0bb5f17ccfb5991733
IEDL.DBID DOA
ISSN 2666-7649
IngestDate Wed Aug 27 01:24:42 EDT 2025
Tue Jul 01 01:06:46 EDT 2025
Thu Apr 24 22:51:34 EDT 2025
Fri Feb 23 02:36:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Time series forecasting
Deep neural network
Knowledge distillation
Electric power
Carbon emissions
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3781-dbf2b0255babb0753010e936290f524f554f648d3ff511c0bb5f17ccfb5991733
ORCID 0000-0001-5618-5444
OpenAccessLink https://doaj.org/article/2043d958b41a4f1c94fe41a7d7bb605e
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2043d958b41a4f1c94fe41a7d7bb605e
crossref_primary_10_1016_j_dsm_2023_09_001
crossref_citationtrail_10_1016_j_dsm_2023_09_001
elsevier_sciencedirect_doi_10_1016_j_dsm_2023_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Data science and management
PublicationYear 2023
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Cai, Zhang, Chai (bib5) 2023; 6
Ang, Su (bib4) 2016; 94
Zhang, Xiang, Hospedales (bib40) 2018
Yu, Ma, Ma (bib37) 2021; 222
Gurriaran, Tanaka, Bayram (bib10) 2023; 382
Zhang, Jiang, Wang (bib39) 2021; 23
Al-Nefaie, Aldhyani (bib3) 2023; 15
Luo (bib20) 2023; 129
Li, Jin, Sun (bib19) 2021; 214
Kong, Song, Yang (bib16) 2022; 29
LeCun, Bengio, Hinton (bib18) 2015; 521
Sun, Wang, Ren (bib30) 2016; 22
Ren, Long (bib24) 2021; 317
Taieb, Bontempi, Atiya (bib31) 2012; 39
Griggs, Noguer (bib9) 2002; 57
Kaur, Singh, Parmar (bib15) 2023; 16
Romero, Ballas, Kahou (bib26) 2014
Wei, Yuwei, Chongchong (bib32) 2018; 25
Acheampong, Boateng (bib2) 2019; 225
Xu, Chen, Ragab (bib34) 2022; 485
Huan, Cao, Qin (bib13) 2018; 150
Yao, Sun, Li (bib35) 2023; 138
Modise, Mpofu, Adenuga (bib22) 2021; 14
Saputra, De Gusmao, Almalioglu (bib27) 2019
Abd Elaziz, Dahou, Abualigah (bib1) 2021; 33
Yim, Joo, Bae (bib36) 2017
Kong, Song, Yang (bib17) 2022; 29
Hinton, Vinyals, Dean (bib11) 2015
Zhang, Ji (bib38) 2019; 83
Hochreiter, Schmidhuber (bib12) 1997; 9
Cleveland, Cleveland, McRae (bib7) 1990; 6
Chung, Gulcehre, Cho (bib6) 2014
Huang, Wu, Cheng (bib14) 2021; 10
Ndez, Salinas, Torres (bib23) 2018; 49
Sim, Sim (bib28) 2016; 127
Xiao, Niu, Guo (bib33) 2016; 71
Luo, Guo, Liu (bib21) 2021; 38
Sun, Ren (bib29) 2021; 28
Diebold, Mariano (bib8) 2002; 20
Roberts, Foran, Axon (bib25) 2018; 228
Al-Nefaie (10.1016/j.dsm.2023.09.001_bib3) 2023; 15
Kong (10.1016/j.dsm.2023.09.001_bib16) 2022; 29
Zhang (10.1016/j.dsm.2023.09.001_bib40) 2018
Sun (10.1016/j.dsm.2023.09.001_bib29) 2021; 28
Cai (10.1016/j.dsm.2023.09.001_bib5) 2023; 6
Li (10.1016/j.dsm.2023.09.001_bib19) 2021; 214
Zhang (10.1016/j.dsm.2023.09.001_bib39) 2021; 23
Yu (10.1016/j.dsm.2023.09.001_bib37) 2021; 222
Ren (10.1016/j.dsm.2023.09.001_bib24) 2021; 317
Chung (10.1016/j.dsm.2023.09.001_bib6) 2014
Cleveland (10.1016/j.dsm.2023.09.001_bib7) 1990; 6
Xu (10.1016/j.dsm.2023.09.001_bib34) 2022; 485
Abd Elaziz (10.1016/j.dsm.2023.09.001_bib1) 2021; 33
Wei (10.1016/j.dsm.2023.09.001_bib32) 2018; 25
Yao (10.1016/j.dsm.2023.09.001_bib35) 2023; 138
LeCun (10.1016/j.dsm.2023.09.001_bib18) 2015; 521
Acheampong (10.1016/j.dsm.2023.09.001_bib2) 2019; 225
Griggs (10.1016/j.dsm.2023.09.001_bib9) 2002; 57
Taieb (10.1016/j.dsm.2023.09.001_bib31) 2012; 39
Diebold (10.1016/j.dsm.2023.09.001_bib8) 2002; 20
Luo (10.1016/j.dsm.2023.09.001_bib20) 2023; 129
Huan (10.1016/j.dsm.2023.09.001_bib13) 2018; 150
Zhang (10.1016/j.dsm.2023.09.001_bib38) 2019; 83
Xiao (10.1016/j.dsm.2023.09.001_bib33) 2016; 71
Sun (10.1016/j.dsm.2023.09.001_bib30) 2016; 22
Saputra (10.1016/j.dsm.2023.09.001_bib27) 2019
Yim (10.1016/j.dsm.2023.09.001_bib36) 2017
Hochreiter (10.1016/j.dsm.2023.09.001_bib12) 1997; 9
Ndez (10.1016/j.dsm.2023.09.001_bib23) 2018; 49
Kaur (10.1016/j.dsm.2023.09.001_bib15) 2023; 16
Kong (10.1016/j.dsm.2023.09.001_bib17) 2022; 29
Modise (10.1016/j.dsm.2023.09.001_bib22) 2021; 14
Hinton (10.1016/j.dsm.2023.09.001_bib11) 2015
Ang (10.1016/j.dsm.2023.09.001_bib4) 2016; 94
Luo (10.1016/j.dsm.2023.09.001_bib21) 2021; 38
Roberts (10.1016/j.dsm.2023.09.001_bib25) 2018; 228
Romero (10.1016/j.dsm.2023.09.001_bib26) 2014
Gurriaran (10.1016/j.dsm.2023.09.001_bib10) 2023; 382
Sim (10.1016/j.dsm.2023.09.001_bib28) 2016; 127
Huang (10.1016/j.dsm.2023.09.001_bib14) 2021; 10
References_xml – volume: 28
  start-page: 56580
  year: 2021
  end-page: 56594
  ident: bib29
  article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model
  publication-title: Environ. Sci. Pollut. Res.
– volume: 138
  year: 2023
  ident: bib35
  article-title: CarbonVCA: a cadastral parcel-scale carbon emission forecasting framework for peak carbon emissions
  publication-title: Cities
– volume: 23
  start-page: 832
  year: 2021
  end-page: 845
  ident: bib39
  article-title: A new decomposition ensemble approach for tourism demand forecasting: evidence from major source countries in Asia-Pacific region
  publication-title: Int. J. Tourism Res.
– volume: 57
  start-page: 267
  year: 2002
  end-page: 269
  ident: bib9
  article-title: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change
  publication-title: Weather
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib12
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 150
  start-page: 257
  year: 2018
  end-page: 265
  ident: bib13
  article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework
  publication-title: Comput. Electron. Agric.
– start-page: 4133
  year: 2017
  end-page: 4141
  ident: bib36
  article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 14079
  year: 2021
  end-page: 14099
  ident: bib1
  article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review
  publication-title: Neural Comput. Appl.
– volume: 382
  year: 2023
  ident: bib10
  article-title: Warming-induced increase in power demand and CO2 emissions in Qatar and the Middle East
  publication-title: J. Clean. Prod.
– volume: 15
  start-page: 7615
  year: 2023
  ident: bib3
  article-title: Predicting CO2 emissions from traffic vehicles for sustainable and smart environment using a deep learning model
  publication-title: Sustainability
– volume: 49
  start-page: 532
  year: 2018
  end-page: 554
  ident: bib23
  article-title: A meta extreme learning machine method for forecasting financial time series
  publication-title: Appl. Intell.
– volume: 228
  start-page: 409
  year: 2018
  end-page: 425
  ident: bib25
  article-title: Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom
  publication-title: Appl. Energy
– volume: 225
  start-page: 833
  year: 2019
  end-page: 856
  ident: bib2
  article-title: Modelling carbon emission intensity: application of artificial neural network
  publication-title: J. Clean. Prod.
– volume: 29
  start-page: 64983
  year: 2022
  end-page: 64998
  ident: bib17
  article-title: A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network
  publication-title: Environ. Sci. Pollut. Res.
– start-page: 4320
  year: 2018
  end-page: 4328
  ident: bib40
  article-title: Deep mutual learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 423
  year: 2016
  end-page: 439
  ident: bib30
  article-title: Research on CO2 emissions from China's electric power industry based on system dynamics model
  publication-title: Int. J. Ind. Syst. Eng.
– volume: 16
  start-page: 258
  year: 2023
  ident: bib15
  article-title: Development of a mathematical model to forecast black carbon concentration using ARIMA and soft computing
  publication-title: Arabian J. Geosci.
– year: 2014
  ident: bib6
  article-title: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
– volume: 485
  start-page: 242
  year: 2022
  end-page: 251
  ident: bib34
  article-title: Contrastive adversarial knowledge distillation for deep model compression in time-series regression tasks
  publication-title: Neurocomputing
– volume: 20
  start-page: 134
  year: 2002
  end-page: 144
  ident: bib8
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
– volume: 214
  year: 2021
  ident: bib19
  article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting
  publication-title: Knowl. Base Syst.
– volume: 129
  year: 2023
  ident: bib20
  article-title: Simulation of tourism carbon emissions based on system dynamics model
  publication-title: Phys. Chem. Earth
– volume: 317
  year: 2021
  ident: bib24
  article-title: Carbon emission forecasting and scenario analysis in Guangdong Province based on optimized Fast Learning Network
  publication-title: J. Clean. Prod.
– volume: 94
  start-page: 56
  year: 2016
  end-page: 63
  ident: bib4
  article-title: Carbon emission intensity in electricity production: a global analysis
  publication-title: Energy Pol.
– volume: 6
  start-page: 46
  year: 2023
  end-page: 54
  ident: bib5
  article-title: Forecasting hourly PM2. 5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms
  publication-title: Data Sci. Manag.
– year: 2015
  ident: bib11
  article-title: Distilling the Knowledge in a Neural Network
– volume: 14
  start-page: 8466
  year: 2021
  ident: bib22
  article-title: Energy and carbon emission efficiency prediction: applications in future transport manufacturing
  publication-title: Energies
– volume: 29
  start-page: 87983
  year: 2022
  end-page: 87997
  ident: bib16
  article-title: A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine
  publication-title: Environ. Sci. Pollut. Res.
– volume: 6
  start-page: 3
  year: 1990
  end-page: 73
  ident: bib7
  article-title: STL: a seasonal-trend decomposition
  publication-title: J. Off. Stat
– volume: 10
  start-page: 1380
  year: 2021
  ident: bib14
  article-title: The prediction of carbon emission information in Yangtze River Economic Zone by deep learning
  publication-title: Land
– start-page: 263
  year: 2019
  end-page: 272
  ident: bib27
  article-title: Distilling knowledge from a deep pose regressor network
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 127
  start-page: 637
  year: 2016
  end-page: 647
  ident: bib28
  article-title: The effect of new carbon emission reduction targets on an apartment building in South Korea
  publication-title: Energy Build.
– volume: 83
  start-page: 624
  year: 2019
  end-page: 629
  ident: bib38
  article-title: Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop
  publication-title: Proc. CIRP
– volume: 25
  start-page: 28985
  year: 2018
  end-page: 28997
  ident: bib32
  article-title: Forecasting CO 2 emissions in Hebei, China, through moth-flame optimization based on the random forest and extreme learning machine
  publication-title: Environ. Sci. Pollut. Res.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib18
  article-title: Deep learning
  publication-title: Nature
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: bib31
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
– volume: 71
  start-page: 99
  year: 2016
  end-page: 112
  ident: bib33
  article-title: Can China achieve its 2020 carbon intensity target? A scenario analysis based on system dynamics approach
  publication-title: Ecol. Indicat.
– volume: 38
  year: 2021
  ident: bib21
  article-title: A hybrid model for financial time-series forecasting based on mixed methodologies
  publication-title: Expet Syst.
– volume: 222
  year: 2021
  ident: bib37
  article-title: An effective rolling decomposition-ensemble model for gasoline consumption forecasting
  publication-title: Energy
– year: 2014
  ident: bib26
  article-title: Fitnets: Hints for Thin Deep Nets
– volume: 71
  start-page: 99
  issue: Dec.
  year: 2016
  ident: 10.1016/j.dsm.2023.09.001_bib33
  article-title: Can China achieve its 2020 carbon intensity target? A scenario analysis based on system dynamics approach
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2016.06.060
– volume: 28
  start-page: 56580
  issue: 40
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib29
  article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-14591-1
– volume: 317
  issue: Oct.
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib24
  article-title: Carbon emission forecasting and scenario analysis in Guangdong Province based on optimized Fast Learning Network
  publication-title: J. Clean. Prod.
– volume: 15
  start-page: 7615
  issue: 9
  year: 2023
  ident: 10.1016/j.dsm.2023.09.001_bib3
  article-title: Predicting CO2 emissions from traffic vehicles for sustainable and smart environment using a deep learning model
  publication-title: Sustainability
  doi: 10.3390/su15097615
– start-page: 4320
  year: 2018
  ident: 10.1016/j.dsm.2023.09.001_bib40
  article-title: Deep mutual learning
– volume: 33
  start-page: 14079
  issue: 21
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib1
  article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05960-5
– volume: 10
  start-page: 1380
  issue: 12
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib14
  article-title: The prediction of carbon emission information in Yangtze River Economic Zone by deep learning
  publication-title: Land
  doi: 10.3390/land10121380
– volume: 49
  start-page: 532
  issue: 2
  year: 2018
  ident: 10.1016/j.dsm.2023.09.001_bib23
  article-title: A meta extreme learning machine method for forecasting financial time series
  publication-title: Appl. Intell.
– volume: 382
  issue: Jan.
  year: 2023
  ident: 10.1016/j.dsm.2023.09.001_bib10
  article-title: Warming-induced increase in power demand and CO2 emissions in Qatar and the Middle East
  publication-title: J. Clean. Prod.
– volume: 150
  start-page: 257
  issue: Jul.
  year: 2018
  ident: 10.1016/j.dsm.2023.09.001_bib13
  article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.04.022
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.dsm.2023.09.001_bib18
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 8466
  issue: 24
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib22
  article-title: Energy and carbon emission efficiency prediction: applications in future transport manufacturing
  publication-title: Energies
  doi: 10.3390/en14248466
– volume: 222
  issue: May
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib37
  article-title: An effective rolling decomposition-ensemble model for gasoline consumption forecasting
  publication-title: Energy
– volume: 20
  start-page: 134
  issue: 1
  year: 2002
  ident: 10.1016/j.dsm.2023.09.001_bib8
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1198/073500102753410444
– volume: 485
  start-page: 242
  issue: May
  year: 2022
  ident: 10.1016/j.dsm.2023.09.001_bib34
  article-title: Contrastive adversarial knowledge distillation for deep model compression in time-series regression tasks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.139
– volume: 83
  start-page: 624
  issue: Jul.
  year: 2019
  ident: 10.1016/j.dsm.2023.09.001_bib38
  article-title: Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2019.04.095
– volume: 129
  issue: Feb.
  year: 2023
  ident: 10.1016/j.dsm.2023.09.001_bib20
  article-title: Simulation of tourism carbon emissions based on system dynamics model
  publication-title: Phys. Chem. Earth
– volume: 39
  start-page: 7067
  issue: 8
  year: 2012
  ident: 10.1016/j.dsm.2023.09.001_bib31
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.039
– volume: 127
  start-page: 637
  issue: Sep.
  year: 2016
  ident: 10.1016/j.dsm.2023.09.001_bib28
  article-title: The effect of new carbon emission reduction targets on an apartment building in South Korea
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.06.032
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.dsm.2023.09.001_bib12
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  ident: 10.1016/j.dsm.2023.09.001_bib7
  article-title: STL: a seasonal-trend decomposition
  publication-title: J. Off. Stat.
– year: 2014
  ident: 10.1016/j.dsm.2023.09.001_bib26
– volume: 228
  start-page: 409
  issue: Oct.
  year: 2018
  ident: 10.1016/j.dsm.2023.09.001_bib25
  article-title: Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.078
– volume: 29
  start-page: 64983
  issue: 43
  year: 2022
  ident: 10.1016/j.dsm.2023.09.001_bib17
  article-title: A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-20393-w
– volume: 138
  issue: Jul.
  year: 2023
  ident: 10.1016/j.dsm.2023.09.001_bib35
  article-title: CarbonVCA: a cadastral parcel-scale carbon emission forecasting framework for peak carbon emissions
  publication-title: Cities
– volume: 16
  start-page: 258
  issue: 4
  year: 2023
  ident: 10.1016/j.dsm.2023.09.001_bib15
  article-title: Development of a mathematical model to forecast black carbon concentration using ARIMA and soft computing
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-023-11321-4
– volume: 25
  start-page: 28985
  issue: 29
  year: 2018
  ident: 10.1016/j.dsm.2023.09.001_bib32
  article-title: Forecasting CO2 emissions in Hebei, China, through moth-flame optimization based on the random forest and extreme learning machine
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2738-z
– volume: 29
  start-page: 87983
  issue: 58
  year: 2022
  ident: 10.1016/j.dsm.2023.09.001_bib16
  article-title: A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-21277-9
– year: 2014
  ident: 10.1016/j.dsm.2023.09.001_bib6
– volume: 214
  issue: Feb.
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib19
  article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting
  publication-title: Knowl. Base Syst.
– volume: 6
  start-page: 46
  issue: 1
  year: 2023
  ident: 10.1016/j.dsm.2023.09.001_bib5
  article-title: Forecasting hourly PM 2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms
  publication-title: Data Sci. Manag.
  doi: 10.1016/j.dsm.2023.02.002
– volume: 225
  start-page: 833
  issue: Jul.
  year: 2019
  ident: 10.1016/j.dsm.2023.09.001_bib2
  article-title: Modelling carbon emission intensity: application of artificial neural network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.352
– year: 2015
  ident: 10.1016/j.dsm.2023.09.001_bib11
– volume: 22
  start-page: 423
  issue: 4
  year: 2016
  ident: 10.1016/j.dsm.2023.09.001_bib30
  article-title: Research on CO2 emissions from China’s electric power industry based on system dynamics model
  publication-title: Int. J. Ind. Syst. Eng.
– volume: 57
  start-page: 267
  issue: 8
  year: 2002
  ident: 10.1016/j.dsm.2023.09.001_bib9
  article-title: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change
  publication-title: Weather
  doi: 10.1256/004316502320517344
– start-page: 263
  year: 2019
  ident: 10.1016/j.dsm.2023.09.001_bib27
  article-title: Distilling knowledge from a deep pose regressor network
– volume: 38
  issue: 2
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib21
  article-title: A hybrid model for financial time-series forecasting based on mixed methodologies
  publication-title: Expet Syst.
– start-page: 4133
  year: 2017
  ident: 10.1016/j.dsm.2023.09.001_bib36
  article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning
– volume: 23
  start-page: 832
  issue: 5
  year: 2021
  ident: 10.1016/j.dsm.2023.09.001_bib39
  article-title: A new decomposition ensemble approach for tourism demand forecasting: evidence from major source countries in Asia-Pacific region
  publication-title: Int. J. Tourism Res.
  doi: 10.1002/jtr.2445
– volume: 94
  start-page: 56
  issue: Jul.
  year: 2016
  ident: 10.1016/j.dsm.2023.09.001_bib4
  article-title: Carbon emission intensity in electricity production: a global analysis
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2016.03.038
SSID ssj0002811256
Score 2.2797937
Snippet The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Carbon emissions
Deep neural network
Electric power
Knowledge distillation
Time series forecasting
Title Dual-stage ensemble approach using online knowledge distillation for forecasting carbon emissions in the electric power industry
URI https://dx.doi.org/10.1016/j.dsm.2023.09.001
https://doaj.org/article/2043d958b41a4f1c94fe41a7d7bb605e
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQkrQhmxc69FRwK1vy65gnS6E9dWFvRiNpwobNJuzjkFt_emcse3EOaS45GIyQJaMZWd_In74R4qvFqoLS2CQDilUNWEisxTzByitti1pjK1b963cxnpif03w6SPXFnLAoDxwH7gef3fR1XoFJrcHU1QYD3Za-BCAoHvjrq2o1CKbu2y0jwhF50f_GbAldfsUnzzP9PUpUvliIWr3-wXo0WGNu98SnDhzKi_hS--JDWByIjwPJwM_i7_XGzhOCdHdBUgQaHmAeZC8MLpnFfiej-oXcbpdJzxN5HllvklAqX8HZFVOepbNLoGLO-8Y7Zys5W0hChTImyJk5-cSJ1Ki0zfHx_EVMbm_-XI2TLotC4nRZpYkHJDtQ5EB2AAIINKNVqGndqhXmmUHCE1iYymtEAl9OAeSYls4h5IQdS60Pxc7icRGOhESd6lCAwYx1DK0CY2oPRZn5rCBnwJFQ_ZA2rpMY50wX86bnkt03ZIWGrdComvl0I_Ft-8hT1Nf4X-VLttO2IktjtwXkME3nMM1bDjMSprdy06GMiB6oqdnrfR-_R98nYpebjHSYU7GzXm7CGYGaNZy3_vsPTI33ew
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-stage+ensemble+approach+using+online+knowledge+distillation+for+forecasting+carbon+emissions+in+the+electric+power+industry&rft.jtitle=Data+science+and+management&rft.au=Lin%2C+Ruibin&rft.au=Lv%2C+Xing&rft.au=Hu%2C+Huanling&rft.au=Ling%2C+Liwen&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=2666-7649&rft.eissn=2666-7649&rft_id=info:doi/10.1016%2Fj.dsm.2023.09.001&rft.externalDocID=S2666764923000395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon