Dual-stage ensemble approach using online knowledge distillation for forecasting carbon emissions in the electric power industry
The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power industry can aid in the prompt adjustment of power generation policies and the early achievement of carbon reduction targets. This study propose...
Saved in:
Published in | Data science and management Vol. 6; no. 4; pp. 227 - 238 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2023
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2666-7649 2666-7649 |
DOI | 10.1016/j.dsm.2023.09.001 |
Cover
Abstract | The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power industry can aid in the prompt adjustment of power generation policies and the early achievement of carbon reduction targets. This study proposes a new approach that combines the decomposition-ensemble paradigm with knowledge distillation to forecast daily carbon emissions. First, Seasonal and Trend decomposition using Locally weighted scatterplot smoothing (STL) is used to decompose the data into three subcomponents. Second, two heterogeneous deep neural network models are jointly trained to predict each subcomponent based on online knowledge distillation. During training, the two models learn and provide feedback to each other. The first model-ensemble stage is performed by synthesizing the predictions for each subcomponent of the two models. Finally, the second model-ensemble stage is performed. The predictions for each subcomponent are integrated using linear addition to obtain the final results. In addition, to avoid leakage of test data caused by decomposing the entire time series, a recursive forecasting strategy is applied. Multistep predictions are obtained by forecasting 7, 15, and 30 days in the future. Experimental results using metaheuristic algorithms to optimize hyperparameters show that the proposed method evaluated on the daily carbon emissions dataset has better forecasting performance than all baselines. |
---|---|
AbstractList | The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power industry can aid in the prompt adjustment of power generation policies and the early achievement of carbon reduction targets. This study proposes a new approach that combines the decomposition-ensemble paradigm with knowledge distillation to forecast daily carbon emissions. First, seasonal and trend decomposition using locally weighted scatterplot smoothing (STL) is used to decompose the data into three subcomponents. Second, two heterogeneous deep neural network models are jointly trained to predict each subcomponent based on online knowledge distillation. During training, the two models learn and provide feedback to each other. The first model-ensemble stage is performed by synthesizing the predictions for each subcomponent of the two models. Finally, the second model-ensemble stage is performed. The predictions for each subcomponent are integrated using linear addition to obtain the final results. In addition, to avoid leakage of test data caused by decomposing the entire time series, a recursive forecasting strategy is applied. Multistep predictions are obtained by forecasting 7, 15, and 30 days in the future. Experimental results using metaheuristic algorithms to optimize hyperparameters show that the proposed method evaluated on the daily carbon emissions dataset has better forecasting performance than all baselines. |
Author | Lin, Ruibin Zhang, Dabin Lv, Xing Ling, Liwen Yu, Zehui Hu, Huanling |
Author_xml | – sequence: 1 givenname: Ruibin orcidid: 0000-0001-5618-5444 surname: Lin fullname: Lin, Ruibin – sequence: 2 givenname: Xing surname: Lv fullname: Lv, Xing – sequence: 3 givenname: Huanling surname: Hu fullname: Hu, Huanling – sequence: 4 givenname: Liwen surname: Ling fullname: Ling, Liwen – sequence: 5 givenname: Zehui surname: Yu fullname: Yu, Zehui – sequence: 6 givenname: Dabin surname: Zhang fullname: Zhang, Dabin email: zdbff@aliyun.com |
BookMark | eNp9kc1uHCEQhEeRLcWx_QC58QIzaZiB2VFOkZPYliz5kpwRP82aDQsrYGP5lkc367WiKAcfEK2i6xOq-tCdxBSx6z5SGChQ8Wkz2LIdGLBxgGUAoO-6MyaE6GcxLSf_zO-7y1I2AMBWlDIuzro_X_cq9KWqNRKMBbc6IFG7XU7KPJB98XFNUgw-IvkV02NA2xatL9WHoKpPkbiUDweNamLbNirrJuPWl9LeC_GR1IdGD2hq9obs0iPmptp9qfnpojt1KhS8fL3Pu5_fv_24uunv7q9vr77c9WacV7S32jENjHOttIaZj0ABl1GwBRxnk-N8cmJa2dE5TqkBrbmjszFO82Wh8zied7dHrk1qI3fZb1V-kkl5-SKkvJYqV28CSgbTaBe-0hNVk6NmmRy2cbaz1gI4NhY9skxOpWR0f3kU5KERuZGtEXloRMIiWyPNM__nMb6-JFiz8uFN5-ejE1s8vz1mWYzHaND6lnpt__dvuJ8BPzmqig |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119155 crossref_primary_10_3390_en16248105 crossref_primary_10_3390_en17020347 crossref_primary_10_1016_j_engappai_2024_109510 crossref_primary_10_1016_j_energy_2024_130662 crossref_primary_10_3390_math11224630 crossref_primary_10_1016_j_eneco_2023_107285 crossref_primary_10_1016_j_envres_2024_118662 crossref_primary_10_1016_j_mlwa_2024_100605 |
Cites_doi | 10.1016/j.ecolind.2016.06.060 10.1007/s11356-021-14591-1 10.3390/su15097615 10.1007/s00521-021-05960-5 10.3390/land10121380 10.1016/j.compag.2018.04.022 10.1038/nature14539 10.3390/en14248466 10.1198/073500102753410444 10.1016/j.neucom.2021.04.139 10.1016/j.procir.2019.04.095 10.1016/j.eswa.2012.01.039 10.1016/j.enbuild.2016.06.032 10.1162/neco.1997.9.8.1735 10.1016/j.apenergy.2018.06.078 10.1007/s11356-022-20393-w 10.1007/s12517-023-11321-4 10.1007/s11356-018-2738-z 10.1007/s11356-022-21277-9 10.1016/j.dsm.2023.02.002 10.1016/j.jclepro.2019.03.352 10.1256/004316502320517344 10.1002/jtr.2445 10.1016/j.enpol.2016.03.038 |
ContentType | Journal Article |
Copyright | 2023 Xi’an Jiaotong University |
Copyright_xml | – notice: 2023 Xi’an Jiaotong University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.dsm.2023.09.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2666-7649 |
EndPage | 238 |
ExternalDocumentID | oai_doaj_org_article_2043d958b41a4f1c94fe41a7d7bb605e 10_1016_j_dsm_2023_09_001 S2666764923000395 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c3781-dbf2b0255babb0753010e936290f524f554f648d3ff511c0bb5f17ccfb5991733 |
IEDL.DBID | DOA |
ISSN | 2666-7649 |
IngestDate | Wed Aug 27 01:24:42 EDT 2025 Tue Jul 01 01:06:46 EDT 2025 Thu Apr 24 22:51:34 EDT 2025 Fri Feb 23 02:36:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Time series forecasting Deep neural network Knowledge distillation Electric power Carbon emissions |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3781-dbf2b0255babb0753010e936290f524f554f648d3ff511c0bb5f17ccfb5991733 |
ORCID | 0000-0001-5618-5444 |
OpenAccessLink | https://doaj.org/article/2043d958b41a4f1c94fe41a7d7bb605e |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2043d958b41a4f1c94fe41a7d7bb605e crossref_primary_10_1016_j_dsm_2023_09_001 crossref_citationtrail_10_1016_j_dsm_2023_09_001 elsevier_sciencedirect_doi_10_1016_j_dsm_2023_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Data science and management |
PublicationYear | 2023 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Cai, Zhang, Chai (bib5) 2023; 6 Ang, Su (bib4) 2016; 94 Zhang, Xiang, Hospedales (bib40) 2018 Yu, Ma, Ma (bib37) 2021; 222 Gurriaran, Tanaka, Bayram (bib10) 2023; 382 Zhang, Jiang, Wang (bib39) 2021; 23 Al-Nefaie, Aldhyani (bib3) 2023; 15 Luo (bib20) 2023; 129 Li, Jin, Sun (bib19) 2021; 214 Kong, Song, Yang (bib16) 2022; 29 LeCun, Bengio, Hinton (bib18) 2015; 521 Sun, Wang, Ren (bib30) 2016; 22 Ren, Long (bib24) 2021; 317 Taieb, Bontempi, Atiya (bib31) 2012; 39 Griggs, Noguer (bib9) 2002; 57 Kaur, Singh, Parmar (bib15) 2023; 16 Romero, Ballas, Kahou (bib26) 2014 Wei, Yuwei, Chongchong (bib32) 2018; 25 Acheampong, Boateng (bib2) 2019; 225 Xu, Chen, Ragab (bib34) 2022; 485 Huan, Cao, Qin (bib13) 2018; 150 Yao, Sun, Li (bib35) 2023; 138 Modise, Mpofu, Adenuga (bib22) 2021; 14 Saputra, De Gusmao, Almalioglu (bib27) 2019 Abd Elaziz, Dahou, Abualigah (bib1) 2021; 33 Yim, Joo, Bae (bib36) 2017 Kong, Song, Yang (bib17) 2022; 29 Hinton, Vinyals, Dean (bib11) 2015 Zhang, Ji (bib38) 2019; 83 Hochreiter, Schmidhuber (bib12) 1997; 9 Cleveland, Cleveland, McRae (bib7) 1990; 6 Chung, Gulcehre, Cho (bib6) 2014 Huang, Wu, Cheng (bib14) 2021; 10 Ndez, Salinas, Torres (bib23) 2018; 49 Sim, Sim (bib28) 2016; 127 Xiao, Niu, Guo (bib33) 2016; 71 Luo, Guo, Liu (bib21) 2021; 38 Sun, Ren (bib29) 2021; 28 Diebold, Mariano (bib8) 2002; 20 Roberts, Foran, Axon (bib25) 2018; 228 Al-Nefaie (10.1016/j.dsm.2023.09.001_bib3) 2023; 15 Kong (10.1016/j.dsm.2023.09.001_bib16) 2022; 29 Zhang (10.1016/j.dsm.2023.09.001_bib40) 2018 Sun (10.1016/j.dsm.2023.09.001_bib29) 2021; 28 Cai (10.1016/j.dsm.2023.09.001_bib5) 2023; 6 Li (10.1016/j.dsm.2023.09.001_bib19) 2021; 214 Zhang (10.1016/j.dsm.2023.09.001_bib39) 2021; 23 Yu (10.1016/j.dsm.2023.09.001_bib37) 2021; 222 Ren (10.1016/j.dsm.2023.09.001_bib24) 2021; 317 Chung (10.1016/j.dsm.2023.09.001_bib6) 2014 Cleveland (10.1016/j.dsm.2023.09.001_bib7) 1990; 6 Xu (10.1016/j.dsm.2023.09.001_bib34) 2022; 485 Abd Elaziz (10.1016/j.dsm.2023.09.001_bib1) 2021; 33 Wei (10.1016/j.dsm.2023.09.001_bib32) 2018; 25 Yao (10.1016/j.dsm.2023.09.001_bib35) 2023; 138 LeCun (10.1016/j.dsm.2023.09.001_bib18) 2015; 521 Acheampong (10.1016/j.dsm.2023.09.001_bib2) 2019; 225 Griggs (10.1016/j.dsm.2023.09.001_bib9) 2002; 57 Taieb (10.1016/j.dsm.2023.09.001_bib31) 2012; 39 Diebold (10.1016/j.dsm.2023.09.001_bib8) 2002; 20 Luo (10.1016/j.dsm.2023.09.001_bib20) 2023; 129 Huan (10.1016/j.dsm.2023.09.001_bib13) 2018; 150 Zhang (10.1016/j.dsm.2023.09.001_bib38) 2019; 83 Xiao (10.1016/j.dsm.2023.09.001_bib33) 2016; 71 Sun (10.1016/j.dsm.2023.09.001_bib30) 2016; 22 Saputra (10.1016/j.dsm.2023.09.001_bib27) 2019 Yim (10.1016/j.dsm.2023.09.001_bib36) 2017 Hochreiter (10.1016/j.dsm.2023.09.001_bib12) 1997; 9 Ndez (10.1016/j.dsm.2023.09.001_bib23) 2018; 49 Kaur (10.1016/j.dsm.2023.09.001_bib15) 2023; 16 Kong (10.1016/j.dsm.2023.09.001_bib17) 2022; 29 Modise (10.1016/j.dsm.2023.09.001_bib22) 2021; 14 Hinton (10.1016/j.dsm.2023.09.001_bib11) 2015 Ang (10.1016/j.dsm.2023.09.001_bib4) 2016; 94 Luo (10.1016/j.dsm.2023.09.001_bib21) 2021; 38 Roberts (10.1016/j.dsm.2023.09.001_bib25) 2018; 228 Romero (10.1016/j.dsm.2023.09.001_bib26) 2014 Gurriaran (10.1016/j.dsm.2023.09.001_bib10) 2023; 382 Sim (10.1016/j.dsm.2023.09.001_bib28) 2016; 127 Huang (10.1016/j.dsm.2023.09.001_bib14) 2021; 10 |
References_xml | – volume: 28 start-page: 56580 year: 2021 end-page: 56594 ident: bib29 article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model publication-title: Environ. Sci. Pollut. Res. – volume: 138 year: 2023 ident: bib35 article-title: CarbonVCA: a cadastral parcel-scale carbon emission forecasting framework for peak carbon emissions publication-title: Cities – volume: 23 start-page: 832 year: 2021 end-page: 845 ident: bib39 article-title: A new decomposition ensemble approach for tourism demand forecasting: evidence from major source countries in Asia-Pacific region publication-title: Int. J. Tourism Res. – volume: 57 start-page: 267 year: 2002 end-page: 269 ident: bib9 article-title: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change publication-title: Weather – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib12 article-title: Long short-term memory publication-title: Neural Comput. – volume: 150 start-page: 257 year: 2018 end-page: 265 ident: bib13 article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework publication-title: Comput. Electron. Agric. – start-page: 4133 year: 2017 end-page: 4141 ident: bib36 article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 33 start-page: 14079 year: 2021 end-page: 14099 ident: bib1 article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review publication-title: Neural Comput. Appl. – volume: 382 year: 2023 ident: bib10 article-title: Warming-induced increase in power demand and CO2 emissions in Qatar and the Middle East publication-title: J. Clean. Prod. – volume: 15 start-page: 7615 year: 2023 ident: bib3 article-title: Predicting CO2 emissions from traffic vehicles for sustainable and smart environment using a deep learning model publication-title: Sustainability – volume: 49 start-page: 532 year: 2018 end-page: 554 ident: bib23 article-title: A meta extreme learning machine method for forecasting financial time series publication-title: Appl. Intell. – volume: 228 start-page: 409 year: 2018 end-page: 425 ident: bib25 article-title: Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom publication-title: Appl. Energy – volume: 225 start-page: 833 year: 2019 end-page: 856 ident: bib2 article-title: Modelling carbon emission intensity: application of artificial neural network publication-title: J. Clean. Prod. – volume: 29 start-page: 64983 year: 2022 end-page: 64998 ident: bib17 article-title: A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network publication-title: Environ. Sci. Pollut. Res. – start-page: 4320 year: 2018 end-page: 4328 ident: bib40 article-title: Deep mutual learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 22 start-page: 423 year: 2016 end-page: 439 ident: bib30 article-title: Research on CO2 emissions from China's electric power industry based on system dynamics model publication-title: Int. J. Ind. Syst. Eng. – volume: 16 start-page: 258 year: 2023 ident: bib15 article-title: Development of a mathematical model to forecast black carbon concentration using ARIMA and soft computing publication-title: Arabian J. Geosci. – year: 2014 ident: bib6 article-title: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling – volume: 485 start-page: 242 year: 2022 end-page: 251 ident: bib34 article-title: Contrastive adversarial knowledge distillation for deep model compression in time-series regression tasks publication-title: Neurocomputing – volume: 20 start-page: 134 year: 2002 end-page: 144 ident: bib8 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. – volume: 214 year: 2021 ident: bib19 article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting publication-title: Knowl. Base Syst. – volume: 129 year: 2023 ident: bib20 article-title: Simulation of tourism carbon emissions based on system dynamics model publication-title: Phys. Chem. Earth – volume: 317 year: 2021 ident: bib24 article-title: Carbon emission forecasting and scenario analysis in Guangdong Province based on optimized Fast Learning Network publication-title: J. Clean. Prod. – volume: 94 start-page: 56 year: 2016 end-page: 63 ident: bib4 article-title: Carbon emission intensity in electricity production: a global analysis publication-title: Energy Pol. – volume: 6 start-page: 46 year: 2023 end-page: 54 ident: bib5 article-title: Forecasting hourly PM2. 5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms publication-title: Data Sci. Manag. – year: 2015 ident: bib11 article-title: Distilling the Knowledge in a Neural Network – volume: 14 start-page: 8466 year: 2021 ident: bib22 article-title: Energy and carbon emission efficiency prediction: applications in future transport manufacturing publication-title: Energies – volume: 29 start-page: 87983 year: 2022 end-page: 87997 ident: bib16 article-title: A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine publication-title: Environ. Sci. Pollut. Res. – volume: 6 start-page: 3 year: 1990 end-page: 73 ident: bib7 article-title: STL: a seasonal-trend decomposition publication-title: J. Off. Stat – volume: 10 start-page: 1380 year: 2021 ident: bib14 article-title: The prediction of carbon emission information in Yangtze River Economic Zone by deep learning publication-title: Land – start-page: 263 year: 2019 end-page: 272 ident: bib27 article-title: Distilling knowledge from a deep pose regressor network publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 127 start-page: 637 year: 2016 end-page: 647 ident: bib28 article-title: The effect of new carbon emission reduction targets on an apartment building in South Korea publication-title: Energy Build. – volume: 83 start-page: 624 year: 2019 end-page: 629 ident: bib38 article-title: Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop publication-title: Proc. CIRP – volume: 25 start-page: 28985 year: 2018 end-page: 28997 ident: bib32 article-title: Forecasting CO 2 emissions in Hebei, China, through moth-flame optimization based on the random forest and extreme learning machine publication-title: Environ. Sci. Pollut. Res. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib18 article-title: Deep learning publication-title: Nature – volume: 39 start-page: 7067 year: 2012 end-page: 7083 ident: bib31 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst. Appl. – volume: 71 start-page: 99 year: 2016 end-page: 112 ident: bib33 article-title: Can China achieve its 2020 carbon intensity target? A scenario analysis based on system dynamics approach publication-title: Ecol. Indicat. – volume: 38 year: 2021 ident: bib21 article-title: A hybrid model for financial time-series forecasting based on mixed methodologies publication-title: Expet Syst. – volume: 222 year: 2021 ident: bib37 article-title: An effective rolling decomposition-ensemble model for gasoline consumption forecasting publication-title: Energy – year: 2014 ident: bib26 article-title: Fitnets: Hints for Thin Deep Nets – volume: 71 start-page: 99 issue: Dec. year: 2016 ident: 10.1016/j.dsm.2023.09.001_bib33 article-title: Can China achieve its 2020 carbon intensity target? A scenario analysis based on system dynamics approach publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.06.060 – volume: 28 start-page: 56580 issue: 40 year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib29 article-title: Short-term prediction of carbon emissions based on the EEMD-PSOBP model publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-14591-1 – volume: 317 issue: Oct. year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib24 article-title: Carbon emission forecasting and scenario analysis in Guangdong Province based on optimized Fast Learning Network publication-title: J. Clean. Prod. – volume: 15 start-page: 7615 issue: 9 year: 2023 ident: 10.1016/j.dsm.2023.09.001_bib3 article-title: Predicting CO2 emissions from traffic vehicles for sustainable and smart environment using a deep learning model publication-title: Sustainability doi: 10.3390/su15097615 – start-page: 4320 year: 2018 ident: 10.1016/j.dsm.2023.09.001_bib40 article-title: Deep mutual learning – volume: 33 start-page: 14079 issue: 21 year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib1 article-title: Advanced metaheuristic optimization techniques in applications of deep neural networks: a review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05960-5 – volume: 10 start-page: 1380 issue: 12 year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib14 article-title: The prediction of carbon emission information in Yangtze River Economic Zone by deep learning publication-title: Land doi: 10.3390/land10121380 – volume: 49 start-page: 532 issue: 2 year: 2018 ident: 10.1016/j.dsm.2023.09.001_bib23 article-title: A meta extreme learning machine method for forecasting financial time series publication-title: Appl. Intell. – volume: 382 issue: Jan. year: 2023 ident: 10.1016/j.dsm.2023.09.001_bib10 article-title: Warming-induced increase in power demand and CO2 emissions in Qatar and the Middle East publication-title: J. Clean. Prod. – volume: 150 start-page: 257 issue: Jul. year: 2018 ident: 10.1016/j.dsm.2023.09.001_bib13 article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.04.022 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.dsm.2023.09.001_bib18 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 14 start-page: 8466 issue: 24 year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib22 article-title: Energy and carbon emission efficiency prediction: applications in future transport manufacturing publication-title: Energies doi: 10.3390/en14248466 – volume: 222 issue: May year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib37 article-title: An effective rolling decomposition-ensemble model for gasoline consumption forecasting publication-title: Energy – volume: 20 start-page: 134 issue: 1 year: 2002 ident: 10.1016/j.dsm.2023.09.001_bib8 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. doi: 10.1198/073500102753410444 – volume: 485 start-page: 242 issue: May year: 2022 ident: 10.1016/j.dsm.2023.09.001_bib34 article-title: Contrastive adversarial knowledge distillation for deep model compression in time-series regression tasks publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.139 – volume: 83 start-page: 624 issue: Jul. year: 2019 ident: 10.1016/j.dsm.2023.09.001_bib38 article-title: Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop publication-title: Proc. CIRP doi: 10.1016/j.procir.2019.04.095 – volume: 129 issue: Feb. year: 2023 ident: 10.1016/j.dsm.2023.09.001_bib20 article-title: Simulation of tourism carbon emissions based on system dynamics model publication-title: Phys. Chem. Earth – volume: 39 start-page: 7067 issue: 8 year: 2012 ident: 10.1016/j.dsm.2023.09.001_bib31 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.039 – volume: 127 start-page: 637 issue: Sep. year: 2016 ident: 10.1016/j.dsm.2023.09.001_bib28 article-title: The effect of new carbon emission reduction targets on an apartment building in South Korea publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.06.032 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.dsm.2023.09.001_bib12 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 6 start-page: 3 issue: 1 year: 1990 ident: 10.1016/j.dsm.2023.09.001_bib7 article-title: STL: a seasonal-trend decomposition publication-title: J. Off. Stat. – year: 2014 ident: 10.1016/j.dsm.2023.09.001_bib26 – volume: 228 start-page: 409 issue: Oct. year: 2018 ident: 10.1016/j.dsm.2023.09.001_bib25 article-title: Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.078 – volume: 29 start-page: 64983 issue: 43 year: 2022 ident: 10.1016/j.dsm.2023.09.001_bib17 article-title: A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-20393-w – volume: 138 issue: Jul. year: 2023 ident: 10.1016/j.dsm.2023.09.001_bib35 article-title: CarbonVCA: a cadastral parcel-scale carbon emission forecasting framework for peak carbon emissions publication-title: Cities – volume: 16 start-page: 258 issue: 4 year: 2023 ident: 10.1016/j.dsm.2023.09.001_bib15 article-title: Development of a mathematical model to forecast black carbon concentration using ARIMA and soft computing publication-title: Arabian J. Geosci. doi: 10.1007/s12517-023-11321-4 – volume: 25 start-page: 28985 issue: 29 year: 2018 ident: 10.1016/j.dsm.2023.09.001_bib32 article-title: Forecasting CO2 emissions in Hebei, China, through moth-flame optimization based on the random forest and extreme learning machine publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2738-z – volume: 29 start-page: 87983 issue: 58 year: 2022 ident: 10.1016/j.dsm.2023.09.001_bib16 article-title: A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-21277-9 – year: 2014 ident: 10.1016/j.dsm.2023.09.001_bib6 – volume: 214 issue: Feb. year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib19 article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting publication-title: Knowl. Base Syst. – volume: 6 start-page: 46 issue: 1 year: 2023 ident: 10.1016/j.dsm.2023.09.001_bib5 article-title: Forecasting hourly PM 2.5 concentrations based on decomposition-ensemble-reconstruction framework incorporating deep learning algorithms publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2023.02.002 – volume: 225 start-page: 833 issue: Jul. year: 2019 ident: 10.1016/j.dsm.2023.09.001_bib2 article-title: Modelling carbon emission intensity: application of artificial neural network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.352 – year: 2015 ident: 10.1016/j.dsm.2023.09.001_bib11 – volume: 22 start-page: 423 issue: 4 year: 2016 ident: 10.1016/j.dsm.2023.09.001_bib30 article-title: Research on CO2 emissions from China’s electric power industry based on system dynamics model publication-title: Int. J. Ind. Syst. Eng. – volume: 57 start-page: 267 issue: 8 year: 2002 ident: 10.1016/j.dsm.2023.09.001_bib9 article-title: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change publication-title: Weather doi: 10.1256/004316502320517344 – start-page: 263 year: 2019 ident: 10.1016/j.dsm.2023.09.001_bib27 article-title: Distilling knowledge from a deep pose regressor network – volume: 38 issue: 2 year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib21 article-title: A hybrid model for financial time-series forecasting based on mixed methodologies publication-title: Expet Syst. – start-page: 4133 year: 2017 ident: 10.1016/j.dsm.2023.09.001_bib36 article-title: A gift from knowledge distillation: fast optimization, network minimization and transfer learning – volume: 23 start-page: 832 issue: 5 year: 2021 ident: 10.1016/j.dsm.2023.09.001_bib39 article-title: A new decomposition ensemble approach for tourism demand forecasting: evidence from major source countries in Asia-Pacific region publication-title: Int. J. Tourism Res. doi: 10.1002/jtr.2445 – volume: 94 start-page: 56 issue: Jul. year: 2016 ident: 10.1016/j.dsm.2023.09.001_bib4 article-title: Carbon emission intensity in electricity production: a global analysis publication-title: Energy Pol. doi: 10.1016/j.enpol.2016.03.038 |
SSID | ssj0002811256 |
Score | 2.2797937 |
Snippet | The electric power industry is the key to achieving the goals of carbon peak and neutrality. Accurate forecasting of carbon emissions in the electric power... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 227 |
SubjectTerms | Carbon emissions Deep neural network Electric power Knowledge distillation Time series forecasting |
Title | Dual-stage ensemble approach using online knowledge distillation for forecasting carbon emissions in the electric power industry |
URI | https://dx.doi.org/10.1016/j.dsm.2023.09.001 https://doaj.org/article/2043d958b41a4f1c94fe41a7d7bb605e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQkrQhmxc69FRwK1vy65gnS6E9dWFvRiNpwobNJuzjkFt_emcse3EOaS45GIyQJaMZWd_In74R4qvFqoLS2CQDilUNWEisxTzByitti1pjK1b963cxnpif03w6SPXFnLAoDxwH7gef3fR1XoFJrcHU1QYD3Za-BCAoHvjrq2o1CKbu2y0jwhF50f_GbAldfsUnzzP9PUpUvliIWr3-wXo0WGNu98SnDhzKi_hS--JDWByIjwPJwM_i7_XGzhOCdHdBUgQaHmAeZC8MLpnFfiej-oXcbpdJzxN5HllvklAqX8HZFVOepbNLoGLO-8Y7Zys5W0hChTImyJk5-cSJ1Ki0zfHx_EVMbm_-XI2TLotC4nRZpYkHJDtQ5EB2AAIINKNVqGndqhXmmUHCE1iYymtEAl9OAeSYls4h5IQdS60Pxc7icRGOhESd6lCAwYx1DK0CY2oPRZn5rCBnwJFQ_ZA2rpMY50wX86bnkt03ZIWGrdComvl0I_Ft-8hT1Nf4X-VLttO2IktjtwXkME3nMM1bDjMSprdy06GMiB6oqdnrfR-_R98nYpebjHSYU7GzXm7CGYGaNZy3_vsPTI33ew |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-stage+ensemble+approach+using+online+knowledge+distillation+for+forecasting+carbon+emissions+in+the+electric+power+industry&rft.jtitle=Data+science+and+management&rft.au=Lin%2C+Ruibin&rft.au=Lv%2C+Xing&rft.au=Hu%2C+Huanling&rft.au=Ling%2C+Liwen&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=2666-7649&rft.eissn=2666-7649&rft_id=info:doi/10.1016%2Fj.dsm.2023.09.001&rft.externalDocID=S2666764923000395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon |