Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning
The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring, surveillance, and healthcare. To address the limitations imposed by inadequate resources, energy, and network scalability, this type of n...
Saved in:
Published in | Data science and management Vol. 7; no. 3; pp. 189 - 196 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2666-7649 2666-7649 |
DOI | 10.1016/j.dsm.2024.02.001 |
Cover
Abstract | The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring, surveillance, and healthcare. To address the limitations imposed by inadequate resources, energy, and network scalability, this type of network relies heavily on data aggregation and clustering algorithms. Although various conventional studies have aimed to enhance the lifespan of a network through robust systems, they do not always provide optimal efficiency for real-time applications. This paper presents an approach based on state-of-the-art machine-learning methods. In this study, we employed a novel approach that combines an extended version of principal component analysis (PCA) and a reinforcement learning algorithm to achieve efficient clustering and data reduction. The primary objectives of this study are to enhance the service life of a network, reduce energy usage, and improve data aggregation efficiency. We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring. Our proposed approach (PQL) was compared to previous studies that utilized adaptive Q-learning (AQL) and regional energy-aware clustering (REAC). Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network. |
---|---|
AbstractList | The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring, surveillance, and healthcare. To address the limitations imposed by inadequate resources, energy, and network scalability, this type of network relies heavily on data aggregation and clustering algorithms. Although various conventional studies have aimed to enhance the lifespan of a network through robust systems, they do not always provide optimal efficiency for real-time applications. This paper presents an approach based on state-of-the-art machine-learning methods. In this study, we employed a novel approach that combines an extended version of principal component analysis (PCA) and a reinforcement learning algorithm to achieve efficient clustering and data reduction. The primary objectives of this study are to enhance the service life of a network, reduce energy usage, and improve data aggregation efficiency. We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring. Our proposed approach (PQL) was compared to previous studies that utilized adaptive Q-learning (AQL) and regional energy-aware clustering (REAC). Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network. |
Author | Verma, Harshita Yadav, Anita Bajpai, Abhishek |
Author_xml | – sequence: 1 givenname: Abhishek orcidid: 0000-0003-2815-2092 surname: Bajpai fullname: Bajpai, Abhishek email: abhishek@reck.ac.in organization: Department of Computer Science, Rajkiya Engineering College, Kannauj, 209732, India – sequence: 2 givenname: Harshita surname: Verma fullname: Verma, Harshita organization: Department of Computer Science, Rajkiya Engineering College, Kannauj, 209732, India – sequence: 3 givenname: Anita surname: Yadav fullname: Yadav, Anita organization: Department of Computer Science and Engineering, School of Engineering, Harcourt Butler Technical University, Kanpur, 208001, India |
BookMark | eNp9UV2LFDEQDHKC53k_wLf8gRk7mZnMBp_k8GPh4BD0OXQynTHrbGZJcsrpn7_sroL4cPRDOt1VRdH1kl3ENRJjrwW0AoR6s2unvG8lyL4F2QKIZ-xSKqWaUfX64p_-BbvOeQcAciOEHNQl-313KGEffoU48wkLcpznRDOWsEaOceJuuc-F0nEfIt_G2kcqfPW8fKvDzOvv55q-Z36fj6BDhbpwwIW7dX-oPmOpOrg85JBPgp-bhTDFin3FnntcMl3_ea_Y1w_vv9x8am7vPm5v3t02rhs3otFOgbI4Cm0dUC1ButdqtBs7DT1p54g65TfKWVB-6sF6KTQOQzdYoF53V2x71p1W3JlqcI_pwawYzGmwptlgKsEtZKQdyEqPE3rswXd6lNahE73wEpweq9Z41nJpzTmRNy6U07VKwrAYAeYYidmZGok5RmJAmhpJZYr_mH-dPMV5e-ZQPc-PQMlkFyg6mkIiV6r_8AT7EUaVqYo |
CitedBy_id | crossref_primary_10_1007_s00607_025_01455_6 crossref_primary_10_1038_s41598_025_87454_1 crossref_primary_10_1016_j_dsm_2024_09_002 |
Cites_doi | 10.4018/IJMCMC.297964 10.1109/ACCESS.2021.3051360 10.1016/j.proeng.2012.01.253 10.1109/JSEN.2013.2293093 10.1007/s11277-017-4674-5 10.1007/s11227-020-03236-8 10.3233/JIFS-201756 10.1016/j.comnet.2009.02.023 10.1016/j.procs.2016.07.393 10.1109/TII.2021.3064351 10.1504/IJWMC.2019.101422 10.1016/j.compind.2019.01.004 10.1016/j.comcom.2020.03.004 10.1109/TWC.2016.2531041 |
ContentType | Journal Article |
Copyright | 2024 Xi’an Jiaotong University |
Copyright_xml | – notice: 2024 Xi’an Jiaotong University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.dsm.2024.02.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Openly Available Collection - DOAJ |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2666-7649 |
EndPage | 196 |
ExternalDocumentID | oai_doaj_org_article_2b5eb2fadafa40f3972bcac141f20c97 10_1016_j_dsm_2024_02_001 S2666764924000110 |
GroupedDBID | 0R~ 0SF 6I. AAEDW AAFTH AALRI AAXUO ADVLN AEXQZ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 ROL AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c3781-9c606ba719bc0e0e01e94967b8bd54e9ccee36f86cb06fd40bf219a5535b0e493 |
IEDL.DBID | DOA |
ISSN | 2666-7649 |
IngestDate | Wed Aug 27 01:20:39 EDT 2025 Tue Jul 01 01:06:46 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 Sat Oct 05 15:36:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Wireless sensor network Data aggregation Principal component analysis (PCA) Reinforcement learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3781-9c606ba719bc0e0e01e94967b8bd54e9ccee36f86cb06fd40bf219a5535b0e493 |
ORCID | 0000-0003-2815-2092 |
OpenAccessLink | https://doaj.org/article/2b5eb2fadafa40f3972bcac141f20c97 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2b5eb2fadafa40f3972bcac141f20c97 crossref_citationtrail_10_1016_j_dsm_2024_02_001 crossref_primary_10_1016_j_dsm_2024_02_001 elsevier_sciencedirect_doi_10_1016_j_dsm_2024_02_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Data science and management |
PublicationYear | 2024 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Ozdemir, Xiao (bib12) 2009; 53 Sinha, Lobiyal (bib17) 2013; 3 (Aug.) Morell, Correa, Barceló, et al. (bib11) 2016; 15 Sachan, Nigam, Bajpai (bib15) 2018 Ullah, Youn (bib18) 2020; 76 (Mar.) Goyal, Dave, Verma (bib7) 2019; 31 Bajpai, Nigam (bib2) 2019; 17 Bajpai, Yadav, Tiwari (bib3) 2022; 13 Kotary, Nanda (bib9) 2020; 87 (Jan.) Dhanaraj, Lalitha, Anitha, et al. (bib4) 2021; 40 Wang, Luo, Zhou (bib20) 2020; 142 (Aug.) Priyanka, Udayaraju, Koppireddy, et al. (bib13) 2023; 27 (Jun.) William, Badholia, Verma, et al. (bib21) 2022 Zhang, Wang, Jiang (bib26) 2021; 17 Yuan, Zhan, Wang (bib23) 2013; 14 Ghate, Vijayakumar (bib6) 2018; 118 Miao, Lin, Wang, et al. (bib10) 2021; 197 (Oct.) Yun, Yoo (bib25) 2021; 9 (Jan.) Yao, Wang, Zhou (bib22) 2020; 96 (Sep.) Yuea, Zhang, Xiao, et al. (bib24) 2012; 29 (Jan.) Randhawa, Jain (bib14) 2017; 97 (Jul.) Alarifi, Tolba (bib1) 2019; 106 (Apr.) Vimal, Khari, Crespo, et al. (bib19) 2020; 154 (Mar.) He, Liu, Nguyen, et al. (bib8) 2007 Shahina, Vaidehi (bib16) 2018 Dhand, Tyagi (bib5) 2016; 92 (Jan.) Bajpai (10.1016/j.dsm.2024.02.001_bib2) 2019; 17 Sinha (10.1016/j.dsm.2024.02.001_bib17) 2013; 3 (Aug.) Yuea (10.1016/j.dsm.2024.02.001_bib24) 2012; 29 (Jan.) Vimal (10.1016/j.dsm.2024.02.001_bib19) 2020; 154 (Mar.) Yuan (10.1016/j.dsm.2024.02.001_bib23) 2013; 14 Kotary (10.1016/j.dsm.2024.02.001_bib9) 2020; 87 (Jan.) Morell (10.1016/j.dsm.2024.02.001_bib11) 2016; 15 William (10.1016/j.dsm.2024.02.001_bib21) 2022 Ullah (10.1016/j.dsm.2024.02.001_bib18) 2020; 76 (Mar.) Ghate (10.1016/j.dsm.2024.02.001_bib6) 2018; 118 Randhawa (10.1016/j.dsm.2024.02.001_bib14) 2017; 97 (Jul.) Ozdemir (10.1016/j.dsm.2024.02.001_bib12) 2009; 53 Alarifi (10.1016/j.dsm.2024.02.001_bib1) 2019; 106 (Apr.) He (10.1016/j.dsm.2024.02.001_bib8) 2007 Shahina (10.1016/j.dsm.2024.02.001_bib16) 2018 Miao (10.1016/j.dsm.2024.02.001_bib10) 2021; 197 (Oct.) Wang (10.1016/j.dsm.2024.02.001_bib20) 2020; 142 (Aug.) Zhang (10.1016/j.dsm.2024.02.001_bib26) 2021; 17 Bajpai (10.1016/j.dsm.2024.02.001_bib3) 2022; 13 Yao (10.1016/j.dsm.2024.02.001_bib22) 2020; 96 (Sep.) Sachan (10.1016/j.dsm.2024.02.001_bib15) 2018 Priyanka (10.1016/j.dsm.2024.02.001_bib13) 2023; 27 (Jun.) Goyal (10.1016/j.dsm.2024.02.001_bib7) 2019; 31 Dhand (10.1016/j.dsm.2024.02.001_bib5) 2016; 92 (Jan.) Yun (10.1016/j.dsm.2024.02.001_bib25) 2021; 9 (Jan.) Dhanaraj (10.1016/j.dsm.2024.02.001_bib4) 2021; 40 |
References_xml | – volume: 15 start-page: 3908 year: 2016 end-page: 3919 ident: bib11 article-title: Data aggregation and principal component analysis in wsns publication-title: IEEE Trans. Wireless Commun. – start-page: 2045 year: 2007 end-page: 2053 ident: bib8 article-title: Pda: privacy-preserving data aggregation in wireless sensor networks publication-title: IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications – volume: 118 start-page: 1 year: 2018 end-page: 12 ident: bib6 article-title: Machine learning for data aggregation in wsn: a survey publication-title: Int. J. Pure Appl. Math. – volume: 106 (Apr.) start-page: 133 year: 2019 end-page: 141 ident: bib1 article-title: Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks publication-title: Comput. Ind. – volume: 97 (Jul.) start-page: 3355 year: 2017 end-page: 3425 ident: bib14 article-title: Data aggregation in wireless sensor networks: previous research, current status and future directions publication-title: Wireless Pers. Commun. – volume: 13 start-page: 1 year: 2022 end-page: 14 ident: bib3 article-title: A novel power-efficient data aggregation scheme for cloud-based sensor networks publication-title: Int. J. Mobile Comput. Multimed. Commun. – start-page: 1 year: 2018 end-page: 6 ident: bib15 article-title: An energy efficient virtual-mimo communication for cluster based cooperative wireless sensor network publication-title: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT) – start-page: 925 year: 2022 end-page: 939 ident: bib21 article-title: Analysis of data aggregation and clustering protocol in wireless sensor networks using machine learning publication-title: Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2021 – volume: 9 (Jan.) start-page: 10737 year: 2021 end-page: 10750 ident: bib25 article-title: Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks publication-title: IEEE Access – volume: 92 (Jan.) start-page: 378 year: 2016 end-page: 384 ident: bib5 article-title: Data aggregation techniques in wsn: survey publication-title: Procedia Comput. Sci. – volume: 87 (Jan.) year: 2020 ident: bib9 article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization publication-title: Eng. Appl. Artif. Intell. – volume: 27 (Jun.) year: 2023 ident: bib13 article-title: Developing a region-based energy-efficient iot agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment publication-title: Measurement: Sensors – volume: 3 (Aug.) start-page: 1 year: 2013 end-page: 17 ident: bib17 article-title: Performance evaluation of data aggregation for cluster-based wireless sensor network publication-title: Human-Centric Comput. Inform. Sci. – volume: 29 (Jan.) start-page: 2009 year: 2012 end-page: 2015 ident: bib24 article-title: Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks publication-title: Procedia Eng. – volume: 96 (Sep.) year: 2020 ident: bib22 article-title: Privacy-preserving and energy efficient task offloading for collaborative mobile computing in iot: an admm approach publication-title: Comput. Secur. – volume: 17 start-page: 8475 year: 2021 end-page: 8484 ident: bib26 article-title: Deep reinforcement learning assisted federated learning algorithm for data management of iiot publication-title: IEEE Trans. Ind. Inf. – volume: 17 start-page: 136 year: 2019 end-page: 141 ident: bib2 article-title: An effective computing service provider using virtual cloud in ad-hoc network publication-title: Int. J. Wireless Mobile Comput. – volume: 76 (Mar.) start-page: 10009 year: 2020 end-page: 10035 ident: bib18 article-title: Efficient data aggregation with node clustering and extreme learning machine for wsn publication-title: J. Supercomput. – volume: 197 (Oct.) year: 2021 ident: bib10 article-title: Federated deep reinforcement learning based secure data sharing for internet of things publication-title: Comput. Network. – volume: 31 start-page: 275 year: 2019 end-page: 286 ident: bib7 article-title: Data aggregation in underwater wireless sensor network: recent approaches and issues publication-title: J. King Saud Univer.-Computer and Inform. Sci. – volume: 40 start-page: 10751 year: 2021 end-page: 10765 ident: bib4 article-title: Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks publication-title: J. Intell. Fuzzy Syst. – volume: 154 (Mar.) start-page: 481 year: 2020 end-page: 490 ident: bib19 article-title: Energy enhancement using multiobjective ant colony optimization with double q learning algorithm for iot based cognitive radio networks publication-title: Comput. Commun. – volume: 142 (Aug.) start-page: 1 year: 2020 end-page: 12 ident: bib20 article-title: Guardhealth: blockchain empowered secure data management and graph convolutional network enabled anomaly detection in smart healthcare publication-title: J. Parallel Distr. Comput. – volume: 14 start-page: 1089 year: 2013 end-page: 1098 ident: bib23 article-title: Data density correlation degree clustering method for data aggregation in wsn publication-title: IEEE Sensor. J. – start-page: 109 year: 2018 end-page: 115 ident: bib16 article-title: Clustering and data aggregation in wireless sensor networks using machine learning algorithms publication-title: 2018 International Conference on Recent Trends in Advance Computing (ICRTAC) – volume: 53 start-page: 2022 year: 2009 end-page: 2037 ident: bib12 article-title: Secure data aggregation in wireless sensor networks: a comprehensive overview publication-title: Comput. Network. – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.dsm.2024.02.001_bib3 article-title: A novel power-efficient data aggregation scheme for cloud-based sensor networks publication-title: Int. J. Mobile Comput. Multimed. Commun. doi: 10.4018/IJMCMC.297964 – volume: 9 (Jan.) start-page: 10737 year: 2021 ident: 10.1016/j.dsm.2024.02.001_bib25 article-title: Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051360 – volume: 142 (Aug.) start-page: 1 year: 2020 ident: 10.1016/j.dsm.2024.02.001_bib20 article-title: Guardhealth: blockchain empowered secure data management and graph convolutional network enabled anomaly detection in smart healthcare publication-title: J. Parallel Distr. Comput. – volume: 29 (Jan.) start-page: 2009 year: 2012 ident: 10.1016/j.dsm.2024.02.001_bib24 article-title: Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.01.253 – volume: 31 start-page: 275 issue: 3 year: 2019 ident: 10.1016/j.dsm.2024.02.001_bib7 article-title: Data aggregation in underwater wireless sensor network: recent approaches and issues publication-title: J. King Saud Univer.-Computer and Inform. Sci. – volume: 14 start-page: 1089 issue: 4 year: 2013 ident: 10.1016/j.dsm.2024.02.001_bib23 article-title: Data density correlation degree clustering method for data aggregation in wsn publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2013.2293093 – start-page: 2045 year: 2007 ident: 10.1016/j.dsm.2024.02.001_bib8 article-title: Pda: privacy-preserving data aggregation in wireless sensor networks – start-page: 109 year: 2018 ident: 10.1016/j.dsm.2024.02.001_bib16 article-title: Clustering and data aggregation in wireless sensor networks using machine learning algorithms – volume: 97 (Jul.) start-page: 3355 year: 2017 ident: 10.1016/j.dsm.2024.02.001_bib14 article-title: Data aggregation in wireless sensor networks: previous research, current status and future directions publication-title: Wireless Pers. Commun. doi: 10.1007/s11277-017-4674-5 – volume: 76 (Mar.) start-page: 10009 year: 2020 ident: 10.1016/j.dsm.2024.02.001_bib18 article-title: Efficient data aggregation with node clustering and extreme learning machine for wsn publication-title: J. Supercomput. doi: 10.1007/s11227-020-03236-8 – volume: 87 (Jan.) year: 2020 ident: 10.1016/j.dsm.2024.02.001_bib9 article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2018 ident: 10.1016/j.dsm.2024.02.001_bib15 article-title: An energy efficient virtual-mimo communication for cluster based cooperative wireless sensor network – volume: 40 start-page: 10751 issue: 6 year: 2021 ident: 10.1016/j.dsm.2024.02.001_bib4 article-title: Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-201756 – volume: 3 (Aug.) start-page: 1 year: 2013 ident: 10.1016/j.dsm.2024.02.001_bib17 article-title: Performance evaluation of data aggregation for cluster-based wireless sensor network publication-title: Human-Centric Comput. Inform. Sci. – volume: 53 start-page: 2022 issue: 12 year: 2009 ident: 10.1016/j.dsm.2024.02.001_bib12 article-title: Secure data aggregation in wireless sensor networks: a comprehensive overview publication-title: Comput. Network. doi: 10.1016/j.comnet.2009.02.023 – volume: 92 (Jan.) start-page: 378 year: 2016 ident: 10.1016/j.dsm.2024.02.001_bib5 article-title: Data aggregation techniques in wsn: survey publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.393 – volume: 96 (Sep.) year: 2020 ident: 10.1016/j.dsm.2024.02.001_bib22 article-title: Privacy-preserving and energy efficient task offloading for collaborative mobile computing in iot: an admm approach publication-title: Comput. Secur. – start-page: 925 year: 2022 ident: 10.1016/j.dsm.2024.02.001_bib21 article-title: Analysis of data aggregation and clustering protocol in wireless sensor networks using machine learning – volume: 17 start-page: 8475 issue: 12 year: 2021 ident: 10.1016/j.dsm.2024.02.001_bib26 article-title: Deep reinforcement learning assisted federated learning algorithm for data management of iiot publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3064351 – volume: 17 start-page: 136 issue: 2 year: 2019 ident: 10.1016/j.dsm.2024.02.001_bib2 article-title: An effective computing service provider using virtual cloud in ad-hoc network publication-title: Int. J. Wireless Mobile Comput. doi: 10.1504/IJWMC.2019.101422 – volume: 27 (Jun.) year: 2023 ident: 10.1016/j.dsm.2024.02.001_bib13 article-title: Developing a region-based energy-efficient iot agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment publication-title: Measurement: Sensors – volume: 106 (Apr.) start-page: 133 year: 2019 ident: 10.1016/j.dsm.2024.02.001_bib1 article-title: Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.01.004 – volume: 197 (Oct.) year: 2021 ident: 10.1016/j.dsm.2024.02.001_bib10 article-title: Federated deep reinforcement learning based secure data sharing for internet of things publication-title: Comput. Network. – volume: 154 (Mar.) start-page: 481 year: 2020 ident: 10.1016/j.dsm.2024.02.001_bib19 article-title: Energy enhancement using multiobjective ant colony optimization with double q learning algorithm for iot based cognitive radio networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.03.004 – volume: 15 start-page: 3908 issue: 6 year: 2016 ident: 10.1016/j.dsm.2024.02.001_bib11 article-title: Data aggregation and principal component analysis in wsns publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2016.2531041 – volume: 118 start-page: 1 issue: 24 year: 2018 ident: 10.1016/j.dsm.2024.02.001_bib6 article-title: Machine learning for data aggregation in wsn: a survey publication-title: Int. J. Pure Appl. Math. |
SSID | ssj0002811256 |
Score | 2.2804751 |
Snippet | The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 189 |
SubjectTerms | Data aggregation Principal component analysis (PCA) Reinforcement learning Wireless sensor network |
Title | Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning |
URI | https://dx.doi.org/10.1016/j.dsm.2024.02.001 https://doaj.org/article/2b5eb2fadafa40f3972bcac141f20c97 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5OBJKCZt0m2OKi6LoCK4sLeSR1N2Wbvidi_6550k7VIP6kV66mumZKadmfTLNwhdpAyCsKEsYlKmEROJjDIjVaR5bJmgSifErXd-eExHY3Y_4ZNOqy-HCQv0wGHgrmLFofiz0kgrGbEQPmOlpaaM2pho4deRE0E6xdTMTxlBHsHT9jemB3SZpVt5HrPA0Um_BSLP19-JR50YM9xB201yiK_DQ-2ijaLaQ1sdysB99PkE7_jr9AN2sEN3YllCxVz68cWyMljPV477wJ2fVjhM-BU1Xlhc-xaduArA7yV2kPcSv4XZdlDr0OWLCoIQyAlMJV7gc9R0ligP0Hh493I7ipoGCpFOBhmNhIbyRMkBFUqTAjZaCCbSgcqU4awQGiJkktos1Yqk1jCiLHzAJOcJV6QAwx2iXgWKjxCOZaapoZDc6QEjBZheCAPVZcIlRPiM9hFpRzPXDbu4a3Ixz1sY2SwHA-TOADmJHZSujy7Xt7wFao3fLr5xJlpf6Fix_QHwlbzxlfwvX-kj1ho4bxKMkDiAqOnPuo__Q_cJ2nQiAzztFPXq91VxBvlMrc69634BRpr2zg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+data+aggregation+and+clustering+in+Internet+of+things+networks+using+principal+component+analysis+and+Q-learning&rft.jtitle=Data+science+and+management&rft.au=Abhishek+Bajpai&rft.au=Harshita+Verma&rft.au=Anita+Yadav&rft.date=2024-09-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.eissn=2666-7649&rft.volume=7&rft.issue=3&rft.spage=189&rft.epage=196&rft_id=info:doi/10.1016%2Fj.dsm.2024.02.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2b5eb2fadafa40f3972bcac141f20c97 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon |