Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning

The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring, surveillance, and healthcare. To address the limitations imposed by inadequate resources, energy, and network scalability, this type of n...

Full description

Saved in:
Bibliographic Details
Published inData science and management Vol. 7; no. 3; pp. 189 - 196
Main Authors Bajpai, Abhishek, Verma, Harshita, Yadav, Anita
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text
ISSN2666-7649
2666-7649
DOI10.1016/j.dsm.2024.02.001

Cover

Abstract The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring, surveillance, and healthcare. To address the limitations imposed by inadequate resources, energy, and network scalability, this type of network relies heavily on data aggregation and clustering algorithms. Although various conventional studies have aimed to enhance the lifespan of a network through robust systems, they do not always provide optimal efficiency for real-time applications. This paper presents an approach based on state-of-the-art machine-learning methods. In this study, we employed a novel approach that combines an extended version of principal component analysis (PCA) and a reinforcement learning algorithm to achieve efficient clustering and data reduction. The primary objectives of this study are to enhance the service life of a network, reduce energy usage, and improve data aggregation efficiency. We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring. Our proposed approach (PQL) was compared to previous studies that utilized adaptive Q-learning (AQL) and regional energy-aware clustering (REAC). Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
AbstractList The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring, surveillance, and healthcare. To address the limitations imposed by inadequate resources, energy, and network scalability, this type of network relies heavily on data aggregation and clustering algorithms. Although various conventional studies have aimed to enhance the lifespan of a network through robust systems, they do not always provide optimal efficiency for real-time applications. This paper presents an approach based on state-of-the-art machine-learning methods. In this study, we employed a novel approach that combines an extended version of principal component analysis (PCA) and a reinforcement learning algorithm to achieve efficient clustering and data reduction. The primary objectives of this study are to enhance the service life of a network, reduce energy usage, and improve data aggregation efficiency. We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring. Our proposed approach (PQL) was compared to previous studies that utilized adaptive Q-learning (AQL) and regional energy-aware clustering (REAC). Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
Author Verma, Harshita
Yadav, Anita
Bajpai, Abhishek
Author_xml – sequence: 1
  givenname: Abhishek
  orcidid: 0000-0003-2815-2092
  surname: Bajpai
  fullname: Bajpai, Abhishek
  email: abhishek@reck.ac.in
  organization: Department of Computer Science, Rajkiya Engineering College, Kannauj, 209732, India
– sequence: 2
  givenname: Harshita
  surname: Verma
  fullname: Verma, Harshita
  organization: Department of Computer Science, Rajkiya Engineering College, Kannauj, 209732, India
– sequence: 3
  givenname: Anita
  surname: Yadav
  fullname: Yadav, Anita
  organization: Department of Computer Science and Engineering, School of Engineering, Harcourt Butler Technical University, Kanpur, 208001, India
BookMark eNp9UV2LFDEQDHKC53k_wLf8gRk7mZnMBp_k8GPh4BD0OXQynTHrbGZJcsrpn7_sroL4cPRDOt1VRdH1kl3ENRJjrwW0AoR6s2unvG8lyL4F2QKIZ-xSKqWaUfX64p_-BbvOeQcAciOEHNQl-313KGEffoU48wkLcpznRDOWsEaOceJuuc-F0nEfIt_G2kcqfPW8fKvDzOvv55q-Z36fj6BDhbpwwIW7dX-oPmOpOrg85JBPgp-bhTDFin3FnntcMl3_ea_Y1w_vv9x8am7vPm5v3t02rhs3otFOgbI4Cm0dUC1ButdqtBs7DT1p54g65TfKWVB-6sF6KTQOQzdYoF53V2x71p1W3JlqcI_pwawYzGmwptlgKsEtZKQdyEqPE3rswXd6lNahE73wEpweq9Z41nJpzTmRNy6U07VKwrAYAeYYidmZGok5RmJAmhpJZYr_mH-dPMV5e-ZQPc-PQMlkFyg6mkIiV6r_8AT7EUaVqYo
CitedBy_id crossref_primary_10_1007_s00607_025_01455_6
crossref_primary_10_1038_s41598_025_87454_1
crossref_primary_10_1016_j_dsm_2024_09_002
Cites_doi 10.4018/IJMCMC.297964
10.1109/ACCESS.2021.3051360
10.1016/j.proeng.2012.01.253
10.1109/JSEN.2013.2293093
10.1007/s11277-017-4674-5
10.1007/s11227-020-03236-8
10.3233/JIFS-201756
10.1016/j.comnet.2009.02.023
10.1016/j.procs.2016.07.393
10.1109/TII.2021.3064351
10.1504/IJWMC.2019.101422
10.1016/j.compind.2019.01.004
10.1016/j.comcom.2020.03.004
10.1109/TWC.2016.2531041
ContentType Journal Article
Copyright 2024 Xi’an Jiaotong University
Copyright_xml – notice: 2024 Xi’an Jiaotong University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.dsm.2024.02.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-7649
EndPage 196
ExternalDocumentID oai_doaj_org_article_2b5eb2fadafa40f3972bcac141f20c97
10_1016_j_dsm_2024_02_001
S2666764924000110
GroupedDBID 0R~
0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADVLN
AEXQZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c3781-9c606ba719bc0e0e01e94967b8bd54e9ccee36f86cb06fd40bf219a5535b0e493
IEDL.DBID DOA
ISSN 2666-7649
IngestDate Wed Aug 27 01:20:39 EDT 2025
Tue Jul 01 01:06:46 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
Sat Oct 05 15:36:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wireless sensor network
Data aggregation
Principal component analysis (PCA)
Reinforcement learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3781-9c606ba719bc0e0e01e94967b8bd54e9ccee36f86cb06fd40bf219a5535b0e493
ORCID 0000-0003-2815-2092
OpenAccessLink https://doaj.org/article/2b5eb2fadafa40f3972bcac141f20c97
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_2b5eb2fadafa40f3972bcac141f20c97
crossref_citationtrail_10_1016_j_dsm_2024_02_001
crossref_primary_10_1016_j_dsm_2024_02_001
elsevier_sciencedirect_doi_10_1016_j_dsm_2024_02_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Data science and management
PublicationYear 2024
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Ozdemir, Xiao (bib12) 2009; 53
Sinha, Lobiyal (bib17) 2013; 3 (Aug.)
Morell, Correa, Barceló, et al. (bib11) 2016; 15
Sachan, Nigam, Bajpai (bib15) 2018
Ullah, Youn (bib18) 2020; 76 (Mar.)
Goyal, Dave, Verma (bib7) 2019; 31
Bajpai, Nigam (bib2) 2019; 17
Bajpai, Yadav, Tiwari (bib3) 2022; 13
Kotary, Nanda (bib9) 2020; 87 (Jan.)
Dhanaraj, Lalitha, Anitha, et al. (bib4) 2021; 40
Wang, Luo, Zhou (bib20) 2020; 142 (Aug.)
Priyanka, Udayaraju, Koppireddy, et al. (bib13) 2023; 27 (Jun.)
William, Badholia, Verma, et al. (bib21) 2022
Zhang, Wang, Jiang (bib26) 2021; 17
Yuan, Zhan, Wang (bib23) 2013; 14
Ghate, Vijayakumar (bib6) 2018; 118
Miao, Lin, Wang, et al. (bib10) 2021; 197 (Oct.)
Yun, Yoo (bib25) 2021; 9 (Jan.)
Yao, Wang, Zhou (bib22) 2020; 96 (Sep.)
Yuea, Zhang, Xiao, et al. (bib24) 2012; 29 (Jan.)
Randhawa, Jain (bib14) 2017; 97 (Jul.)
Alarifi, Tolba (bib1) 2019; 106 (Apr.)
Vimal, Khari, Crespo, et al. (bib19) 2020; 154 (Mar.)
He, Liu, Nguyen, et al. (bib8) 2007
Shahina, Vaidehi (bib16) 2018
Dhand, Tyagi (bib5) 2016; 92 (Jan.)
Bajpai (10.1016/j.dsm.2024.02.001_bib2) 2019; 17
Sinha (10.1016/j.dsm.2024.02.001_bib17) 2013; 3 (Aug.)
Yuea (10.1016/j.dsm.2024.02.001_bib24) 2012; 29 (Jan.)
Vimal (10.1016/j.dsm.2024.02.001_bib19) 2020; 154 (Mar.)
Yuan (10.1016/j.dsm.2024.02.001_bib23) 2013; 14
Kotary (10.1016/j.dsm.2024.02.001_bib9) 2020; 87 (Jan.)
Morell (10.1016/j.dsm.2024.02.001_bib11) 2016; 15
William (10.1016/j.dsm.2024.02.001_bib21) 2022
Ullah (10.1016/j.dsm.2024.02.001_bib18) 2020; 76 (Mar.)
Ghate (10.1016/j.dsm.2024.02.001_bib6) 2018; 118
Randhawa (10.1016/j.dsm.2024.02.001_bib14) 2017; 97 (Jul.)
Ozdemir (10.1016/j.dsm.2024.02.001_bib12) 2009; 53
Alarifi (10.1016/j.dsm.2024.02.001_bib1) 2019; 106 (Apr.)
He (10.1016/j.dsm.2024.02.001_bib8) 2007
Shahina (10.1016/j.dsm.2024.02.001_bib16) 2018
Miao (10.1016/j.dsm.2024.02.001_bib10) 2021; 197 (Oct.)
Wang (10.1016/j.dsm.2024.02.001_bib20) 2020; 142 (Aug.)
Zhang (10.1016/j.dsm.2024.02.001_bib26) 2021; 17
Bajpai (10.1016/j.dsm.2024.02.001_bib3) 2022; 13
Yao (10.1016/j.dsm.2024.02.001_bib22) 2020; 96 (Sep.)
Sachan (10.1016/j.dsm.2024.02.001_bib15) 2018
Priyanka (10.1016/j.dsm.2024.02.001_bib13) 2023; 27 (Jun.)
Goyal (10.1016/j.dsm.2024.02.001_bib7) 2019; 31
Dhand (10.1016/j.dsm.2024.02.001_bib5) 2016; 92 (Jan.)
Yun (10.1016/j.dsm.2024.02.001_bib25) 2021; 9 (Jan.)
Dhanaraj (10.1016/j.dsm.2024.02.001_bib4) 2021; 40
References_xml – volume: 15
  start-page: 3908
  year: 2016
  end-page: 3919
  ident: bib11
  article-title: Data aggregation and principal component analysis in wsns
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 2045
  year: 2007
  end-page: 2053
  ident: bib8
  article-title: Pda: privacy-preserving data aggregation in wireless sensor networks
  publication-title: IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications
– volume: 118
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib6
  article-title: Machine learning for data aggregation in wsn: a survey
  publication-title: Int. J. Pure Appl. Math.
– volume: 106 (Apr.)
  start-page: 133
  year: 2019
  end-page: 141
  ident: bib1
  article-title: Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks
  publication-title: Comput. Ind.
– volume: 97 (Jul.)
  start-page: 3355
  year: 2017
  end-page: 3425
  ident: bib14
  article-title: Data aggregation in wireless sensor networks: previous research, current status and future directions
  publication-title: Wireless Pers. Commun.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib3
  article-title: A novel power-efficient data aggregation scheme for cloud-based sensor networks
  publication-title: Int. J. Mobile Comput. Multimed. Commun.
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib15
  article-title: An energy efficient virtual-mimo communication for cluster based cooperative wireless sensor network
  publication-title: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT)
– start-page: 925
  year: 2022
  end-page: 939
  ident: bib21
  article-title: Analysis of data aggregation and clustering protocol in wireless sensor networks using machine learning
  publication-title: Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2021
– volume: 9 (Jan.)
  start-page: 10737
  year: 2021
  end-page: 10750
  ident: bib25
  article-title: Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks
  publication-title: IEEE Access
– volume: 92 (Jan.)
  start-page: 378
  year: 2016
  end-page: 384
  ident: bib5
  article-title: Data aggregation techniques in wsn: survey
  publication-title: Procedia Comput. Sci.
– volume: 87 (Jan.)
  year: 2020
  ident: bib9
  article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 27 (Jun.)
  year: 2023
  ident: bib13
  article-title: Developing a region-based energy-efficient iot agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment
  publication-title: Measurement: Sensors
– volume: 3 (Aug.)
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib17
  article-title: Performance evaluation of data aggregation for cluster-based wireless sensor network
  publication-title: Human-Centric Comput. Inform. Sci.
– volume: 29 (Jan.)
  start-page: 2009
  year: 2012
  end-page: 2015
  ident: bib24
  article-title: Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks
  publication-title: Procedia Eng.
– volume: 96 (Sep.)
  year: 2020
  ident: bib22
  article-title: Privacy-preserving and energy efficient task offloading for collaborative mobile computing in iot: an admm approach
  publication-title: Comput. Secur.
– volume: 17
  start-page: 8475
  year: 2021
  end-page: 8484
  ident: bib26
  article-title: Deep reinforcement learning assisted federated learning algorithm for data management of iiot
  publication-title: IEEE Trans. Ind. Inf.
– volume: 17
  start-page: 136
  year: 2019
  end-page: 141
  ident: bib2
  article-title: An effective computing service provider using virtual cloud in ad-hoc network
  publication-title: Int. J. Wireless Mobile Comput.
– volume: 76 (Mar.)
  start-page: 10009
  year: 2020
  end-page: 10035
  ident: bib18
  article-title: Efficient data aggregation with node clustering and extreme learning machine for wsn
  publication-title: J. Supercomput.
– volume: 197 (Oct.)
  year: 2021
  ident: bib10
  article-title: Federated deep reinforcement learning based secure data sharing for internet of things
  publication-title: Comput. Network.
– volume: 31
  start-page: 275
  year: 2019
  end-page: 286
  ident: bib7
  article-title: Data aggregation in underwater wireless sensor network: recent approaches and issues
  publication-title: J. King Saud Univer.-Computer and Inform. Sci.
– volume: 40
  start-page: 10751
  year: 2021
  end-page: 10765
  ident: bib4
  article-title: Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks
  publication-title: J. Intell. Fuzzy Syst.
– volume: 154 (Mar.)
  start-page: 481
  year: 2020
  end-page: 490
  ident: bib19
  article-title: Energy enhancement using multiobjective ant colony optimization with double q learning algorithm for iot based cognitive radio networks
  publication-title: Comput. Commun.
– volume: 142 (Aug.)
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib20
  article-title: Guardhealth: blockchain empowered secure data management and graph convolutional network enabled anomaly detection in smart healthcare
  publication-title: J. Parallel Distr. Comput.
– volume: 14
  start-page: 1089
  year: 2013
  end-page: 1098
  ident: bib23
  article-title: Data density correlation degree clustering method for data aggregation in wsn
  publication-title: IEEE Sensor. J.
– start-page: 109
  year: 2018
  end-page: 115
  ident: bib16
  article-title: Clustering and data aggregation in wireless sensor networks using machine learning algorithms
  publication-title: 2018 International Conference on Recent Trends in Advance Computing (ICRTAC)
– volume: 53
  start-page: 2022
  year: 2009
  end-page: 2037
  ident: bib12
  article-title: Secure data aggregation in wireless sensor networks: a comprehensive overview
  publication-title: Comput. Network.
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.dsm.2024.02.001_bib3
  article-title: A novel power-efficient data aggregation scheme for cloud-based sensor networks
  publication-title: Int. J. Mobile Comput. Multimed. Commun.
  doi: 10.4018/IJMCMC.297964
– volume: 9 (Jan.)
  start-page: 10737
  year: 2021
  ident: 10.1016/j.dsm.2024.02.001_bib25
  article-title: Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051360
– volume: 142 (Aug.)
  start-page: 1
  year: 2020
  ident: 10.1016/j.dsm.2024.02.001_bib20
  article-title: Guardhealth: blockchain empowered secure data management and graph convolutional network enabled anomaly detection in smart healthcare
  publication-title: J. Parallel Distr. Comput.
– volume: 29 (Jan.)
  start-page: 2009
  year: 2012
  ident: 10.1016/j.dsm.2024.02.001_bib24
  article-title: Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.01.253
– volume: 31
  start-page: 275
  issue: 3
  year: 2019
  ident: 10.1016/j.dsm.2024.02.001_bib7
  article-title: Data aggregation in underwater wireless sensor network: recent approaches and issues
  publication-title: J. King Saud Univer.-Computer and Inform. Sci.
– volume: 14
  start-page: 1089
  issue: 4
  year: 2013
  ident: 10.1016/j.dsm.2024.02.001_bib23
  article-title: Data density correlation degree clustering method for data aggregation in wsn
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2013.2293093
– start-page: 2045
  year: 2007
  ident: 10.1016/j.dsm.2024.02.001_bib8
  article-title: Pda: privacy-preserving data aggregation in wireless sensor networks
– start-page: 109
  year: 2018
  ident: 10.1016/j.dsm.2024.02.001_bib16
  article-title: Clustering and data aggregation in wireless sensor networks using machine learning algorithms
– volume: 97 (Jul.)
  start-page: 3355
  year: 2017
  ident: 10.1016/j.dsm.2024.02.001_bib14
  article-title: Data aggregation in wireless sensor networks: previous research, current status and future directions
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-017-4674-5
– volume: 76 (Mar.)
  start-page: 10009
  year: 2020
  ident: 10.1016/j.dsm.2024.02.001_bib18
  article-title: Efficient data aggregation with node clustering and extreme learning machine for wsn
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03236-8
– volume: 87 (Jan.)
  year: 2020
  ident: 10.1016/j.dsm.2024.02.001_bib9
  article-title: Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2018
  ident: 10.1016/j.dsm.2024.02.001_bib15
  article-title: An energy efficient virtual-mimo communication for cluster based cooperative wireless sensor network
– volume: 40
  start-page: 10751
  issue: 6
  year: 2021
  ident: 10.1016/j.dsm.2024.02.001_bib4
  article-title: Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-201756
– volume: 3 (Aug.)
  start-page: 1
  year: 2013
  ident: 10.1016/j.dsm.2024.02.001_bib17
  article-title: Performance evaluation of data aggregation for cluster-based wireless sensor network
  publication-title: Human-Centric Comput. Inform. Sci.
– volume: 53
  start-page: 2022
  issue: 12
  year: 2009
  ident: 10.1016/j.dsm.2024.02.001_bib12
  article-title: Secure data aggregation in wireless sensor networks: a comprehensive overview
  publication-title: Comput. Network.
  doi: 10.1016/j.comnet.2009.02.023
– volume: 92 (Jan.)
  start-page: 378
  year: 2016
  ident: 10.1016/j.dsm.2024.02.001_bib5
  article-title: Data aggregation techniques in wsn: survey
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.07.393
– volume: 96 (Sep.)
  year: 2020
  ident: 10.1016/j.dsm.2024.02.001_bib22
  article-title: Privacy-preserving and energy efficient task offloading for collaborative mobile computing in iot: an admm approach
  publication-title: Comput. Secur.
– start-page: 925
  year: 2022
  ident: 10.1016/j.dsm.2024.02.001_bib21
  article-title: Analysis of data aggregation and clustering protocol in wireless sensor networks using machine learning
– volume: 17
  start-page: 8475
  issue: 12
  year: 2021
  ident: 10.1016/j.dsm.2024.02.001_bib26
  article-title: Deep reinforcement learning assisted federated learning algorithm for data management of iiot
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3064351
– volume: 17
  start-page: 136
  issue: 2
  year: 2019
  ident: 10.1016/j.dsm.2024.02.001_bib2
  article-title: An effective computing service provider using virtual cloud in ad-hoc network
  publication-title: Int. J. Wireless Mobile Comput.
  doi: 10.1504/IJWMC.2019.101422
– volume: 27 (Jun.)
  year: 2023
  ident: 10.1016/j.dsm.2024.02.001_bib13
  article-title: Developing a region-based energy-efficient iot agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment
  publication-title: Measurement: Sensors
– volume: 106 (Apr.)
  start-page: 133
  year: 2019
  ident: 10.1016/j.dsm.2024.02.001_bib1
  article-title: Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.004
– volume: 197 (Oct.)
  year: 2021
  ident: 10.1016/j.dsm.2024.02.001_bib10
  article-title: Federated deep reinforcement learning based secure data sharing for internet of things
  publication-title: Comput. Network.
– volume: 154 (Mar.)
  start-page: 481
  year: 2020
  ident: 10.1016/j.dsm.2024.02.001_bib19
  article-title: Energy enhancement using multiobjective ant colony optimization with double q learning algorithm for iot based cognitive radio networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.03.004
– volume: 15
  start-page: 3908
  issue: 6
  year: 2016
  ident: 10.1016/j.dsm.2024.02.001_bib11
  article-title: Data aggregation and principal component analysis in wsns
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2016.2531041
– volume: 118
  start-page: 1
  issue: 24
  year: 2018
  ident: 10.1016/j.dsm.2024.02.001_bib6
  article-title: Machine learning for data aggregation in wsn: a survey
  publication-title: Int. J. Pure Appl. Math.
SSID ssj0002811256
Score 2.2804751
Snippet The Internet of things (IoT) is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Data aggregation
Principal component analysis (PCA)
Reinforcement learning
Wireless sensor network
Title Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning
URI https://dx.doi.org/10.1016/j.dsm.2024.02.001
https://doaj.org/article/2b5eb2fadafa40f3972bcac141f20c97
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5OBJKCZt0m2OKi6LoCK4sLeSR1N2Wbvidi_6550k7VIP6kV66mumZKadmfTLNwhdpAyCsKEsYlKmEROJjDIjVaR5bJmgSifErXd-eExHY3Y_4ZNOqy-HCQv0wGHgrmLFofiz0kgrGbEQPmOlpaaM2pho4deRE0E6xdTMTxlBHsHT9jemB3SZpVt5HrPA0Um_BSLP19-JR50YM9xB201yiK_DQ-2ijaLaQ1sdysB99PkE7_jr9AN2sEN3YllCxVz68cWyMljPV477wJ2fVjhM-BU1Xlhc-xaduArA7yV2kPcSv4XZdlDr0OWLCoIQyAlMJV7gc9R0ligP0Hh493I7ipoGCpFOBhmNhIbyRMkBFUqTAjZaCCbSgcqU4awQGiJkktos1Yqk1jCiLHzAJOcJV6QAwx2iXgWKjxCOZaapoZDc6QEjBZheCAPVZcIlRPiM9hFpRzPXDbu4a3Ixz1sY2SwHA-TOADmJHZSujy7Xt7wFao3fLr5xJlpf6Fix_QHwlbzxlfwvX-kj1ho4bxKMkDiAqOnPuo__Q_cJ2nQiAzztFPXq91VxBvlMrc69634BRpr2zg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+data+aggregation+and+clustering+in+Internet+of+things+networks+using+principal+component+analysis+and+Q-learning&rft.jtitle=Data+science+and+management&rft.au=Abhishek+Bajpai&rft.au=Harshita+Verma&rft.au=Anita+Yadav&rft.date=2024-09-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.eissn=2666-7649&rft.volume=7&rft.issue=3&rft.spage=189&rft.epage=196&rft_id=info:doi/10.1016%2Fj.dsm.2024.02.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2b5eb2fadafa40f3972bcac141f20c97
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon