Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria

Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem. Multidrug‐resistant (MDR) bacteria are becoming harder to treat as the antibiotics used to treat them become less effective. Therefore, it is nec...

Full description

Saved in:
Bibliographic Details
Published inJournal of basic microbiology Vol. 61; no. 6; pp. 557 - 568
Main Authors Shaaban, Mohamed T., Ghaly, Mohamed F., Fahmi, Sara M.
Format Journal Article
LanguageEnglish
Published Germany 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem. Multidrug‐resistant (MDR) bacteria are becoming harder to treat as the antibiotics used to treat them become less effective. Therefore, it is necessary to evaluate novel methods to control MDR bacteria. In this study, 40 bacterial isolates were collected from diabetic patients. The sensitivity of 40 bacterial isolates to seven antibiotics was evaluated. Four bacterial isolates were resistant to all antibiotic groups. The MDR pathogenic bacteria were selected and identified morphologically and biochemically and confirmed by VITEK® 2 system as follows: Staphylococcus aureus W35, Pseudomonas aeruginosa D31, Klebsiella pneumoniae DF30, and K. pneumoniae B40. Identification of the most resistant P. aeruginosa D31 was confirmed by the sequencing of a 16S ribosomal RNA gene with an accession number (MW241596). The inhibitory activity of eight types of native grown plant extracts against MDR bacteria was studied. Clove alcoholic extract (CAE) showed the highest inhibitory activity against MDR bacteria. Gas chromatography–mass spectrometry analysis of partially purified CAE at 0.9 Rf detected by thin‐layer chromatography showed an active compound named hexadecenoic acid methyl ester with the highest antimicrobial effect against clinical pathogenic bacteria. The formation of silver nanoparticles (AgNPs) by CAE was studied. Evaluation of AgNPs was investigated by X‐ray diffraction, UV–Vis, and transmission electron microscopy. The antibacterial effect of AgNPs after 2, 4, and 6 days in light and dark conditions was evaluated. Finally, the AgNPs synthesized using CAE possess good inhibition activity against the tested pathogenic bacteria. As a result, the bactericidal components listed above were promising in reducing MDR bacteria and can be used for treatments of bacterial infection and in the development of safe products with a natural base.
AbstractList Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem. Multidrug‐resistant (MDR) bacteria are becoming harder to treat as the antibiotics used to treat them become less effective. Therefore, it is necessary to evaluate novel methods to control MDR bacteria. In this study, 40 bacterial isolates were collected from diabetic patients. The sensitivity of 40 bacterial isolates to seven antibiotics was evaluated. Four bacterial isolates were resistant to all antibiotic groups. The MDR pathogenic bacteria were selected and identified morphologically and biochemically and confirmed by VITEK® 2 system as follows: Staphylococcus aureus W35, Pseudomonas aeruginosa D31, Klebsiella pneumoniae DF30, and K. pneumoniae B40. Identification of the most resistant P. aeruginosa D31 was confirmed by the sequencing of a 16S ribosomal RNA gene with an accession number (MW241596). The inhibitory activity of eight types of native grown plant extracts against MDR bacteria was studied. Clove alcoholic extract (CAE) showed the highest inhibitory activity against MDR bacteria. Gas chromatography–mass spectrometry analysis of partially purified CAE at 0.9 Rf detected by thin‐layer chromatography showed an active compound named hexadecenoic acid methyl ester with the highest antimicrobial effect against clinical pathogenic bacteria. The formation of silver nanoparticles (AgNPs) by CAE was studied. Evaluation of AgNPs was investigated by X‐ray diffraction, UV–Vis, and transmission electron microscopy. The antibacterial effect of AgNPs after 2, 4, and 6 days in light and dark conditions was evaluated. Finally, the AgNPs synthesized using CAE possess good inhibition activity against the tested pathogenic bacteria. As a result, the bactericidal components listed above were promising in reducing MDR bacteria and can be used for treatments of bacterial infection and in the development of safe products with a natural base.
Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem. Multidrug‐resistant (MDR) bacteria are becoming harder to treat as the antibiotics used to treat them become less effective. Therefore, it is necessary to evaluate novel methods to control MDR bacteria. In this study, 40 bacterial isolates were collected from diabetic patients. The sensitivity of 40 bacterial isolates to seven antibiotics was evaluated. Four bacterial isolates were resistant to all antibiotic groups. The MDR pathogenic bacteria were selected and identified morphologically and biochemically and confirmed by VITEK® 2 system as follows: Staphylococcus aureus W35, Pseudomonas aeruginosa D31, Klebsiella pneumoniae DF30, and K. pneumoniae B40. Identification of the most resistant P. aeruginosa D31 was confirmed by the sequencing of a 16S ribosomal RNA gene with an accession number (MW241596). The inhibitory activity of eight types of native grown plant extracts against MDR bacteria was studied. Clove alcoholic extract (CAE) showed the highest inhibitory activity against MDR bacteria. Gas chromatography–mass spectrometry analysis of partially purified CAE at 0.9 Rf detected by thin‐layer chromatography showed an active compound named hexadecenoic acid methyl ester with the highest antimicrobial effect against clinical pathogenic bacteria. The formation of silver nanoparticles (AgNPs) by CAE was studied. Evaluation of AgNPs was investigated by X‐ray diffraction, UV–Vis, and transmission electron microscopy. The antibacterial effect of AgNPs after 2, 4, and 6 days in light and dark conditions was evaluated. Finally, the AgNPs synthesized using CAE possess good inhibition activity against the tested pathogenic bacteria. As a result, the bactericidal components listed above were promising in reducing MDR bacteria and can be used for treatments of bacterial infection and in the development of safe products with a natural base.
Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem. Multidrug-resistant (MDR) bacteria are becoming harder to treat as the antibiotics used to treat them become less effective. Therefore, it is necessary to evaluate novel methods to control MDR bacteria. In this study, 40 bacterial isolates were collected from diabetic patients. The sensitivity of 40 bacterial isolates to seven antibiotics was evaluated. Four bacterial isolates were resistant to all antibiotic groups. The MDR pathogenic bacteria were selected and identified morphologically and biochemically and confirmed by VITEK® 2 system as follows: Staphylococcus aureus W35, Pseudomonas aeruginosa D31, Klebsiella pneumoniae DF30, and K. pneumoniae B40. Identification of the most resistant P. aeruginosa D31 was confirmed by the sequencing of a 16S ribosomal RNA gene with an accession number (MW241596). The inhibitory activity of eight types of native grown plant extracts against MDR bacteria was studied. Clove alcoholic extract (CAE) showed the highest inhibitory activity against MDR bacteria. Gas chromatography-mass spectrometry analysis of partially purified CAE at 0.9 Rf detected by thin-layer chromatography showed an active compound named hexadecenoic acid methyl ester with the highest antimicrobial effect against clinical pathogenic bacteria. The formation of silver nanoparticles (AgNPs) by CAE was studied. Evaluation of AgNPs was investigated by X-ray diffraction, UV-Vis, and transmission electron microscopy. The antibacterial effect of AgNPs after 2, 4, and 6 days in light and dark conditions was evaluated. Finally, the AgNPs synthesized using CAE possess good inhibition activity against the tested pathogenic bacteria. As a result, the bactericidal components listed above were promising in reducing MDR bacteria and can be used for treatments of bacterial infection and in the development of safe products with a natural base.Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem. Multidrug-resistant (MDR) bacteria are becoming harder to treat as the antibiotics used to treat them become less effective. Therefore, it is necessary to evaluate novel methods to control MDR bacteria. In this study, 40 bacterial isolates were collected from diabetic patients. The sensitivity of 40 bacterial isolates to seven antibiotics was evaluated. Four bacterial isolates were resistant to all antibiotic groups. The MDR pathogenic bacteria were selected and identified morphologically and biochemically and confirmed by VITEK® 2 system as follows: Staphylococcus aureus W35, Pseudomonas aeruginosa D31, Klebsiella pneumoniae DF30, and K. pneumoniae B40. Identification of the most resistant P. aeruginosa D31 was confirmed by the sequencing of a 16S ribosomal RNA gene with an accession number (MW241596). The inhibitory activity of eight types of native grown plant extracts against MDR bacteria was studied. Clove alcoholic extract (CAE) showed the highest inhibitory activity against MDR bacteria. Gas chromatography-mass spectrometry analysis of partially purified CAE at 0.9 Rf detected by thin-layer chromatography showed an active compound named hexadecenoic acid methyl ester with the highest antimicrobial effect against clinical pathogenic bacteria. The formation of silver nanoparticles (AgNPs) by CAE was studied. Evaluation of AgNPs was investigated by X-ray diffraction, UV-Vis, and transmission electron microscopy. The antibacterial effect of AgNPs after 2, 4, and 6 days in light and dark conditions was evaluated. Finally, the AgNPs synthesized using CAE possess good inhibition activity against the tested pathogenic bacteria. As a result, the bactericidal components listed above were promising in reducing MDR bacteria and can be used for treatments of bacterial infection and in the development of safe products with a natural base.
Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem. Multidrug‐resistant (MDR) bacteria are becoming harder to treat as the antibiotics used to treat them become less effective. Therefore, it is necessary to evaluate novel methods to control MDR bacteria. In this study, 40 bacterial isolates were collected from diabetic patients. The sensitivity of 40 bacterial isolates to seven antibiotics was evaluated. Four bacterial isolates were resistant to all antibiotic groups. The MDR pathogenic bacteria were selected and identified morphologically and biochemically and confirmed by VITEK® 2 system as follows: Staphylococcus aureus W35, Pseudomonas aeruginosa D31, Klebsiella pneumoniae DF30, and K. pneumoniae B40. Identification of the most resistant P. aeruginosa D31 was confirmed by the sequencing of a 16S ribosomal RNA gene with an accession number (MW241596). The inhibitory activity of eight types of native grown plant extracts against MDR bacteria was studied. Clove alcoholic extract (CAE) showed the highest inhibitory activity against MDR bacteria. Gas chromatography–mass spectrometry analysis of partially purified CAE at 0.9 Rf detected by thin‐layer chromatography showed an active compound named hexadecenoic acid methyl ester with the highest antimicrobial effect against clinical pathogenic bacteria. The formation of silver nanoparticles (AgNPs) by CAE was studied. Evaluation of AgNPs was investigated by X‐ray diffraction, UV–Vis, and transmission electron microscopy. The antibacterial effect of AgNPs after 2, 4, and 6 days in light and dark conditions was evaluated. Finally, the AgNPs synthesized using CAE possess good inhibition activity against the tested pathogenic bacteria. As a result, the bactericidal components listed above were promising in reducing MDR bacteria and can be used for treatments of bacterial infection and in the development of safe products with a natural base.
Author Shaaban, Mohamed T.
Fahmi, Sara M.
Ghaly, Mohamed F.
Author_xml – sequence: 1
  givenname: Mohamed T.
  surname: Shaaban
  fullname: Shaaban, Mohamed T.
  organization: Menoufia University
– sequence: 2
  givenname: Mohamed F.
  surname: Ghaly
  fullname: Ghaly, Mohamed F.
  organization: Zagazig University
– sequence: 3
  givenname: Sara M.
  orcidid: 0000-0002-0079-0343
  surname: Fahmi
  fullname: Fahmi, Sara M.
  email: rody.sheref_2013@yahoo.com
  organization: Menoufia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33871873$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEYRS0URDaBlhK5pJmNf-enDFECREFpQKKzvrE9u448nsX2BDYVT4B4Rp4ER5sFCQmlsq3vnCvb9wgdhClYhF5SsqSEsJObqR-XjLByIDV9ghZUMloJwtoDtCCM84pS-vkQHaV0U5CuY90zdMh529C24Qv04zRk14PONjrwuGzcrcvOJjwNeG2_gbEawuR0GTmDR5vXW49tKjyGYPAqWht-ff-ZtiGvbXJ31uDk_G0Zh-JtIGanfYmDFbiQMh5nn52J86pIsQgpQ8h4f4Pn6OkAPtkXD-sx-nRx_vHsXXV1_fb92elVpXnT0qo1rWRNU5vaaApAhCG85lJCD0Q2RtRABdS0l73QrBGMaCsaVphBSj4Iw4_R613uJk5f5vIcNbqkrfcQ7DQnxaSkHeOkOI-jVJJGCNEV9NUDOvejNWoT3Qhxq_bfXQCxA3ScUop2UNplyG4KOYLzihJ136q6b1X9abVoy3-0ffJ_hW4nfHXebh-h1eX1mw9_3d_QfLmR
CitedBy_id crossref_primary_10_1021_acsomega_3c06069
crossref_primary_10_1007_s11356_024_35833_y
crossref_primary_10_1080_1354750X_2021_2016974
crossref_primary_10_1016_j_matpr_2023_11_106
crossref_primary_10_6066_jtip_2024_35_1_10
crossref_primary_10_1177_1934578X241257377
crossref_primary_10_2147_IJN_S474299
crossref_primary_10_3389_fmicb_2023_1137611
crossref_primary_10_1039_D1RA08277A
crossref_primary_10_3389_fphar_2025_1555542
crossref_primary_10_3390_plants13131753
crossref_primary_10_3390_plants12213780
crossref_primary_10_1007_s42535_024_01142_5
crossref_primary_10_1016_j_jep_2024_119149
crossref_primary_10_1186_s43088_023_00392_7
crossref_primary_10_1515_chem_2023_0213
crossref_primary_10_1016_j_sajb_2024_12_027
crossref_primary_10_1515_chem_2022_0325
crossref_primary_10_1038_s41598_022_23831_4
crossref_primary_10_1590_fst_94721
crossref_primary_10_1016_j_indcrop_2022_115764
crossref_primary_10_1007_s12010_022_04145_7
crossref_primary_10_3390_antibiotics10121491
crossref_primary_10_1016_j_rechem_2024_101849
crossref_primary_10_1155_2023_2848198
crossref_primary_10_22207_JPAM_18_4_24
crossref_primary_10_1016_j_fbio_2024_105639
crossref_primary_10_3390_antibiotics11121826
crossref_primary_10_1016_j_jbiotec_2024_06_010
crossref_primary_10_26672_anatolianbryology_1576833
crossref_primary_10_1016_j_jafr_2024_101297
crossref_primary_10_1016_j_foohum_2024_100296
crossref_primary_10_3390_molecules28227556
crossref_primary_10_4103_apjtb_apjtb_394_24
crossref_primary_10_1016_j_kjs_2024_100229
crossref_primary_10_3389_fphar_2024_1359815
crossref_primary_10_3390_biomedicines11102832
crossref_primary_10_1155_2023_2411555
crossref_primary_10_3390_molecules28093847
crossref_primary_10_3389_fpls_2022_937946
crossref_primary_10_1007_s10570_024_05918_5
crossref_primary_10_1016_j_rsma_2025_104120
crossref_primary_10_18311_jnr_2024_36164
crossref_primary_10_1080_01480545_2022_2150206
crossref_primary_10_1039_D3AY00704A
crossref_primary_10_3389_fphar_2024_1347069
crossref_primary_10_3389_fmed_2023_1132695
crossref_primary_10_1016_j_lfs_2022_121044
crossref_primary_10_1186_s12906_023_03914_z
crossref_primary_10_3390_nano12213888
crossref_primary_10_1007_s42770_024_01599_1
crossref_primary_10_3390_antibiotics12050889
crossref_primary_10_1021_acsomega_3c08494
crossref_primary_10_1371_journal_pone_0305691
crossref_primary_10_1016_j_algal_2024_103851
crossref_primary_10_1016_j_indcrop_2024_120334
crossref_primary_10_1007_s00284_023_03182_7
crossref_primary_10_4103_jdras_jdras_57_23
crossref_primary_10_1016_j_jics_2024_101362
crossref_primary_10_1080_17518253_2024_2412601
crossref_primary_10_3390_life13081660
crossref_primary_10_3390_metabo13080905
crossref_primary_10_1155_2022_7148511
crossref_primary_10_1016_j_hermed_2024_100948
crossref_primary_10_3390_ph17070915
crossref_primary_10_1089_can_2023_0168
crossref_primary_10_3390_separations10070395
crossref_primary_10_1080_10826068_2023_2175366
crossref_primary_10_1186_s43094_022_00455_z
crossref_primary_10_1016_j_biopha_2023_114856
crossref_primary_10_1016_j_foodchem_2023_138270
crossref_primary_10_3390_horticulturae9030385
crossref_primary_10_1016_j_arabjc_2023_104990
crossref_primary_10_25259_AJPPS_2024_004
crossref_primary_10_1016_j_jafr_2025_101821
crossref_primary_10_1016_j_sajb_2023_07_033
crossref_primary_10_1016_j_jwpe_2024_106785
crossref_primary_10_3390_horticulturae9020201
crossref_primary_10_1016_j_fbio_2024_104511
crossref_primary_10_1371_journal_pone_0287080
crossref_primary_10_69569_jip_2024_0469
crossref_primary_10_3390_antiox13010075
crossref_primary_10_1016_j_ijbiomac_2024_135789
crossref_primary_10_1002_cbdv_202402444
crossref_primary_10_1007_s42161_024_01688_y
crossref_primary_10_1111_jfs_13174
crossref_primary_10_1186_s12917_024_04115_7
crossref_primary_10_1016_j_heliyon_2025_e41839
crossref_primary_10_5155_eurjchem_14_2_254_263_2404
crossref_primary_10_3390_microorganisms12020405
crossref_primary_10_1080_19490976_2024_2347725
crossref_primary_10_1186_s41936_024_00365_x
crossref_primary_10_3390_life13061358
crossref_primary_10_1007_s10904_023_02749_y
crossref_primary_10_3390_agriculture12101590
crossref_primary_10_17656_sdj_10160
crossref_primary_10_1016_j_biopha_2023_115532
crossref_primary_10_1080_09603123_2023_2271844
crossref_primary_10_1007_s12088_024_01323_5
crossref_primary_10_1007_s13197_024_06047_4
crossref_primary_10_3390_plants11040567
crossref_primary_10_1016_j_actatropica_2024_107224
crossref_primary_10_1007_s44371_025_00102_5
crossref_primary_10_14202_vetworld_2024_2211_2224
crossref_primary_10_1080_23311932_2024_2442667
crossref_primary_10_1515_biol_2022_0962
crossref_primary_10_52711_0974_360X_2023_00909
crossref_primary_10_1016_j_phytochem_2025_114442
crossref_primary_10_3389_fsufs_2024_1497536
crossref_primary_10_1155_2022_7767940
crossref_primary_10_3390_plants11192621
crossref_primary_10_1007_s11274_025_04311_z
crossref_primary_10_1016_j_sajb_2023_02_013
crossref_primary_10_1002_cbdv_202401935
crossref_primary_10_1186_s12866_025_03747_5
crossref_primary_10_3390_microorganisms10030568
crossref_primary_10_1016_j_foodres_2024_115437
crossref_primary_10_1007_s00284_024_04050_8
crossref_primary_10_1080_10496475_2023_2211288
crossref_primary_10_3390_nano14161327
crossref_primary_10_5586_aa_186878
Cites_doi 10.1016/j.colsurfb.2012.04.006
10.1016/S2222-1808(14)60769-6
10.1186/2228-5326-2-32
10.1002/ptr.2650030302
10.1002/14356007.a10_245.pub2
10.1177/1535370216689828
10.3390/plants6020016
10.1128/JCM.02303-15
10.1089/mdr.2018.0380
10.1016/S2221-1691(14)60215-X
10.1016/j.apjtb.2015.09.010
10.1016/j.ijbiomac.2020.05.197
10.2147/IJN.S121956
10.1111/1750-3841.14180
10.1093/molbev/mst197
10.1016/S1473-3099(13)70318-9
10.1093/ajcp/45.4_ts.493
10.3390/molecules25194583
10.1586/eri.11.121
10.1016/j.micpath.2017.12.049
10.7573/dic.212527
10.3923/biotech.2013.65.73
10.7324/JAPS.2019.91216
10.1002/aoc.4867
10.2478/s11756-013-0276-1
10.3389/fmicb.2016.01831
10.1016/j.colsurfb.2009.06.005
10.3923/jbs.2008.1051.1056
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1002/jobm.202100061
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1521-4028
EndPage 568
ExternalDocumentID 33871873
10_1002_jobm_202100061
JOBM202100061
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
ID FETCH-LOGICAL-c3781-8d852776d6dc1aa04d036355aba057d46a14a61b5b4c27420ce472036f553f4d3
IEDL.DBID DR2
ISSN 0233-111X
1521-4028
IngestDate Fri Jul 11 18:27:37 EDT 2025
Fri Jul 11 14:04:22 EDT 2025
Wed Feb 19 02:28:59 EST 2025
Thu Apr 24 22:54:13 EDT 2025
Tue Jul 01 00:43:52 EDT 2025
Wed Jan 22 16:30:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords multidrug-resistant bacteria
silver nanoparticles
antibacterial activities
hexadecanoic acid methyl ester
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3781-8d852776d6dc1aa04d036355aba057d46a14a61b5b4c27420ce472036f553f4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0079-0343
PMID 33871873
PQID 2515074449
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2551923020
proquest_miscellaneous_2515074449
pubmed_primary_33871873
crossref_citationtrail_10_1002_jobm_202100061
crossref_primary_10_1002_jobm_202100061
wiley_primary_10_1002_jobm_202100061_JOBM202100061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Journal of basic microbiology
PublicationTitleAlternate J Basic Microbiol
PublicationYear 2021
References 1989; 3
2017; 6
2019; 9
2015; 5
2019; 73
2013; 65
2013; 68
2019; 33
2015; 53
2020; 160
1997
2008; 8
2006
2018; 83
2020; 10
2011; 6
2012; 98
2011; 9
2018; 7
2016; 4
2016; 5
2016; 7
2012; 2
2014; 4
2012; 3
2014; 3
2013; 13
2017; 54
2018; 115
2017; 12
2013; 30
2019; 25
2019
2014
2017; 242
1966; 45
Koneman EW (e_1_2_9_12_1) 1997
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_33_1
Prakash D (e_1_2_9_18_1) 2014; 3
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
World Health Organization (e_1_2_9_23_1) 2014
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
Mallikarjuna K (e_1_2_9_36_1) 2011; 6
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
Ismail M (e_1_2_9_29_1) 2012; 3
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
Reddy PS (e_1_2_9_25_1) 2016; 5
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Shakya AK (e_1_2_9_6_1) 2016; 4
Clinical and Laboratory Standards Institute (e_1_2_9_13_1) 2019
Mahrous H (e_1_2_9_30_1) 2017; 54
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – volume: 68
  start-page: 1048
  year: 2013
  end-page: 53
  article-title: Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity
  publication-title: Biologia
– volume: 73
  start-page: 332
  year: 2019
  end-page: 8
  article-title: bark extract and powder mediated green synthesis of nano‐crystalline silver particles and its bactericidal activity
  publication-title: Colloids Surf
– volume: 10
  start-page: 4583
  year: 2020
  article-title: Inhibition of LC554891 by seed extract either singly or in combination with antibiotics
  publication-title: Molecules
– volume: 8
  start-page: 1051
  year: 2008
  end-page: 6
  article-title: Biological investigation of Linn. extracts against some pathogens
  publication-title: J Biol Sci
– volume: 25
  start-page: 371
  year: 2019
  end-page: 85
  article-title: High prevalence of antimicrobial resistance in Gram‐negative bacteria isolated from clinical settings in Egypt: recalling for judicious use of conventional antimicrobials in developing nations
  publication-title: Micro Drug Resist
– volume: 160
  start-page: 934
  year: 2020
  end-page: 43
  article-title: Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles
  publication-title: Int J Biol Macromol
– volume: 5
  start-page: 21
  year: 2016
  end-page: 7
  article-title: Nosocomial infections among patients admitted in general ICU: study from a tertiary care hospital in South India
  publication-title: Int J Med Sci Pub Health
– volume: 54
  start-page: 29
  year: 2017
  end-page: 39
  article-title: Effects of different levels of clove bud ( ) dietary supplementation on immunity, antioxidant status, and performance in broiler chickens
  publication-title: Alex J Vet Sci
– volume: 7
  start-page: 212
  year: 2018
  end-page: 527
  article-title: How to manage infections
  publication-title: Drugs Context
– volume: 4
  start-page: 90
  year: 2014
  end-page: 6
  article-title: Clove ( ): a precious spice
  publication-title: Asian Pac J Trop Biomed
– volume: 33
  start-page: 4867
  year: 2019
  article-title: Biomimetic synthesis of silver nanoparticles using (clove) extract: catalytic and antimicrobial effects
  publication-title: Appl Organometal Chem
– volume: 98
  start-page: 112
  year: 2012
  end-page: 9
  article-title: The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from leaf aqueous extracts
  publication-title: Colloids Surf B Biointerfaces
– volume: 9
  start-page: 1035
  year: 2011
  end-page: 52
  article-title: Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents
  publication-title: Expert Rev Anti‐Infect Ther
– year: 2014
– volume: 6
  start-page: 181
  year: 2011
  end-page: 6
  article-title: Green synthesis of silver nanoparticles using leaf extract and their characterization
  publication-title: Dig J Nanomater Bios
– volume: 4
  start-page: 979
  year: 2014
  end-page: 84
  article-title: Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity
  publication-title: Asian Pacific J Trop Dis
– volume: 65
  start-page: 65
  year: 2013
  end-page: 73
  article-title: Characterization and identification of multidrug resistant bacteria from some Egyptian patients
  publication-title: Biotechnology
– year: 2019
  article-title: Performance standards for antimicrobial susceptibility testing
  publication-title: CLSI document
– volume: 45
  start-page: 493
  year: 1966
  end-page: 6
  article-title: Antibiotic susceptibility testing by a standardized single disk method
  publication-title: Am J Clin Pathol
– volume: 115
  start-page: 233
  year: 2018
  end-page: 8
  article-title: An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property
  publication-title: Microb Pathog
– volume: 242
  start-page: 731
  year: 2017
  end-page: 43
  article-title: Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin‐resistant : a computational and experimental study
  publication-title: Exp Biol Med (Maywood)
– volume: 12
  start-page: 1227
  year: 2017
  end-page: 49
  article-title: The antimicrobial activity of nanoparticles: present situation and prospects for the future
  publication-title: Int J Nanomed
– volume: 7
  start-page: 1831
  year: 2016
  article-title: Mechanistic basis of antimicrobial actions of silver nanoparticles
  publication-title: Front Microbiol
– year: 2006
– volume: 53
  start-page: 3646
  year: 2015
  end-page: 49
  article-title: Quality assurance for antimicrobial susceptibility testing of in Canada, 2003 to 2012
  publication-title: J Clin Microbiol
– volume: 3
  start-page: 155
  year: 2014
  end-page: 7
  article-title: Antibacterial efficacy of extracts on multi‐drug resistant isolated from dental plaque samples
  publication-title: J Biochem Technol
– volume: 6
  start-page: 16
  year: 2017
  article-title: Antimicrobial resistance and the alternative resources with special emphasis on plant‐based antimicrobials—a review
  publication-title: Plants (Basel)
– volume: 9
  start-page: 117
  year: 2019
  end-page: 21
  article-title: Chemical profiling, antibacterial and antiparasitic studies of
  publication-title: J Appl Pharm Sci
– volume: 13
  start-page: 1057
  year: 2013
  end-page: 98
  article-title: Antibiotic resistance—the need for global solutions
  publication-title: Lancet Infect Dis
– start-page: 69
  year: 1997
  end-page: 120
– volume: 5
  start-page: 1033
  year: 2015
  end-page: 6
  article-title: Gas chromatography mass spectrometry analysis and in vitro antibacterial activity of essential oil from
  publication-title: Asian Pacific J Tropic Biomed
– volume: 2
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects
  publication-title: Int Nano Lett
– volume: 3
  start-page: 77
  year: 1989
  end-page: 80
  article-title: Antimicrobial activity of selected plants employed in Spanish Mediterranean area. Part II
  publication-title: Phytother Res
– volume: 4
  start-page: 59
  year: 2016
  end-page: 64
  article-title: Medicinal plants: future source of new drugs
  publication-title: Int J Herb Med
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 9
  article-title: MEGA6: molecular evolutionary genetics analysis version 6.0
  publication-title: Mol Biol Evol
– volume: 83
  start-page: 1476
  year: 2018
  end-page: 83
  article-title: Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field
  publication-title: J Food Sci
– volume: 3
  start-page: 200
  year: 2012
  end-page: 7
  article-title: Screening for the antimicrobial activities of alcoholic and aqueous extracts of some common spices in Egypt
  publication-title: Microbiol Res
– ident: e_1_2_9_21_1
  doi: 10.1016/j.colsurfb.2012.04.006
– ident: e_1_2_9_34_1
  doi: 10.1016/S2222-1808(14)60769-6
– ident: e_1_2_9_9_1
  doi: 10.1186/2228-5326-2-32
– year: 2019
  ident: e_1_2_9_13_1
  article-title: Performance standards for antimicrobial susceptibility testing
  publication-title: CLSI document
– ident: e_1_2_9_17_1
  doi: 10.1002/ptr.2650030302
– ident: e_1_2_9_33_1
  doi: 10.1002/14356007.a10_245.pub2
– volume: 6
  start-page: 181
  year: 2011
  ident: e_1_2_9_36_1
  article-title: Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization
  publication-title: Dig J Nanomater Bios
– ident: e_1_2_9_27_1
  doi: 10.1177/1535370216689828
– ident: e_1_2_9_2_1
  doi: 10.3390/plants6020016
– ident: e_1_2_9_15_1
  doi: 10.1128/JCM.02303-15
– ident: e_1_2_9_24_1
  doi: 10.1089/mdr.2018.0380
– ident: e_1_2_9_7_1
  doi: 10.1016/S2221-1691(14)60215-X
– ident: e_1_2_9_19_1
  doi: 10.1016/j.apjtb.2015.09.010
– ident: e_1_2_9_35_1
  doi: 10.1016/j.ijbiomac.2020.05.197
– ident: e_1_2_9_11_1
  doi: 10.2147/IJN.S121956
– volume: 4
  start-page: 59
  year: 2016
  ident: e_1_2_9_6_1
  article-title: Medicinal plants: future source of new drugs
  publication-title: Int J Herb Med
– ident: e_1_2_9_28_1
  doi: 10.1111/1750-3841.14180
– volume: 3
  start-page: 200
  year: 2012
  ident: e_1_2_9_29_1
  article-title: Screening for the antimicrobial activities of alcoholic and aqueous extracts of some common spices in Egypt
  publication-title: Microbiol Res
– ident: e_1_2_9_16_1
  doi: 10.1093/molbev/mst197
– ident: e_1_2_9_5_1
  doi: 10.1016/S1473-3099(13)70318-9
– ident: e_1_2_9_14_1
  doi: 10.1093/ajcp/45.4_ts.493
– ident: e_1_2_9_3_1
  doi: 10.3390/molecules25194583
– ident: e_1_2_9_8_1
  doi: 10.1586/eri.11.121
– volume: 54
  start-page: 29
  year: 2017
  ident: e_1_2_9_30_1
  article-title: Effects of different levels of clove bud (Syzygium aromaticum) dietary supplementation on immunity, antioxidant status, and performance in broiler chickens
  publication-title: Alex J Vet Sci
– ident: e_1_2_9_32_1
  doi: 10.1016/j.micpath.2017.12.049
– ident: e_1_2_9_4_1
  doi: 10.7573/dic.212527
– start-page: 69
  volume-title: Introduction to Microbiology. I. The Role of the Microbiology Laboratory in the Diagnosis of Infectious Diseases. Guidelines to Practice and Management in “Color Atlas and Text Book of Diagnosis Microbiology”
  year: 1997
  ident: e_1_2_9_12_1
– volume-title: Antimicrobial Resistance: Global Report on Surveillance
  year: 2014
  ident: e_1_2_9_23_1
– ident: e_1_2_9_26_1
  doi: 10.3923/biotech.2013.65.73
– volume: 5
  start-page: 21
  year: 2016
  ident: e_1_2_9_25_1
  article-title: Nosocomial infections among patients admitted in general ICU: study from a tertiary care hospital in South India
  publication-title: Int J Med Sci Pub Health
– ident: e_1_2_9_31_1
  doi: 10.7324/JAPS.2019.91216
– ident: e_1_2_9_37_1
  doi: 10.1002/aoc.4867
– ident: e_1_2_9_20_1
  doi: 10.2478/s11756-013-0276-1
– volume: 3
  start-page: 155
  year: 2014
  ident: e_1_2_9_18_1
  article-title: Antibacterial efficacy of Syzygium aromaticum extracts on multi‐drug resistant Streptococcus mutans isolated from dental plaque samples
  publication-title: J Biochem Technol
– ident: e_1_2_9_10_1
  doi: 10.3389/fmicb.2016.01831
– ident: e_1_2_9_38_1
  doi: 10.1016/j.colsurfb.2009.06.005
– ident: e_1_2_9_22_1
  doi: 10.3923/jbs.2008.1051.1056
SSID ssj0009929
Score 2.5820894
Snippet Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem....
Antibacterial drug resistance is considered one of the biggest threats to human health worldwide, and the overuse of antibiotics accelerates this problem....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 557
SubjectTerms active ingredients
antibacterial activities
antibacterial properties
antibiotic resistance
bacterial infections
gas chromatography-mass spectrometry
genes
hexadecanoic acid methyl ester
hexadecenoic acid
human health
Klebsiella pneumoniae
multidrug‐resistant bacteria
multiple drug resistance
nanosilver
palmitic acid
Pseudomonas aeruginosa
ribosomal RNA
silver nanoparticles
Staphylococcus aureus
thin layer chromatography
transmission electron microscopy
X-ray diffraction
Title Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjobm.202100061
https://www.ncbi.nlm.nih.gov/pubmed/33871873
https://www.proquest.com/docview/2515074449
https://www.proquest.com/docview/2551923020
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB6kIPripd6ON1YQfEp7stnN5bEWSylUQSyct7C3HFNLUk5yxNMnf4H4G_0lzuyepB5FBX1LyA7Z7M7sfpuZ-QbgeaXSSlshIhlbHokCba7gtoi4o6xJXhnpaRePX6eHJ-JoJmc_ZPEHfojxhxtZhl-vycCV7nYvSUNPW02Z5Dz22zAuwhSwRajo7SV_VFH4MmW4LyURGvVsYG2c8t1N8c1d6ReouYlc_dZzcBPU0OkQcfJhZ9nrHXPxE5_j_3zVLbixxqVsLyjSbbjimm24GipVrrbh2v5QGO4OfNlr-loHlmcUocyIj56XlbUVe-8-Ketwvtra4KPaMqpRvTpjnpGBqcayOYX6fPv8tVs1iD67-sJZ1tUUoc0alDsfYvWYmqsa0SvzQY92sZyj0AIFCND2bOjBXTg5ePVu_zBal3WITJLlcZTbXPIsS21qTazUVFhyJkuptELwaEWqYqHSWEstDDmSp8YJchanlZRJJWxyD7aatnEPgOHJQBe5QgiWWpER0fhU2gKPQChmcLmaQDRMa2nWnOdUeuOsDGzNvKTxLsfxnsCLsf15YPv4bctng5aUOPzkZVGNa5ddiYARMbYQovhTG0nIGqH6BO4HFRvflyR4hs2zZALcK8pfOlIevXl5PN49_BehR3CdrkMA3GPY6hdL9wShVq-fenP6DrYRIx0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BESoXHoXC8jQSEqe0G8fO41gK1VK6RUKt1FvkR7IEqqTazSK2J34B4jfyS5ixN6kWBEhwTOJRHHsm_uyZ-QbgWaniUlshAhlaHogMbS7jNgt4QVmTvDTS0S6OD-PRsdg_kV00IeXCeH6I_sCNLMP9r8nA6UB6-4I19EOjKZWch24dvgxXqKw30ee_fHfBIJVlrlAZrkxRgGZ90vE2Dvn2qvzquvQL2FzFrm7x2bsBuuu2jzn5uDVv9ZY5_4nR8b--6yZcX0JTtuN16RZcKuoNuOqLVS42YH23qw13G77u1G2lPdEzilByxCdHzcqakr0vPitb4JQ1lcFHlWVUpnpxyhwpA1O1ZROK9vn-5dtsUSMAnVXnhWWzioK0WY1yZ124HlMTVSGAZS7u0U7nExSaogBh2pZ1PbgDx3uvjnZHwbKyQ2CiJA2D1KaSJ0lsY2tCpYbCkj9ZSqUV4kcrYhUKFYdaamHIlzw0hSB_cVxKGZXCRpuwVjd1cQ8Ybg50lipEYbEVCXGND6XNcBeEYgb_WAMIunnNzZL2nKpvnOaesJnnNN55P94DeN63P_OEH79t-bRTkxyHnxwtqi6a-SxHzIgwWwiR_amNJHCNaH0Ad72O9e-LItzGpkk0AO405S8dyfffvhj3V_f_RegJrI-Oxgf5wevDNw_gGt338XAPYa2dzotHiLxa_djZ1g_SyCc5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEY8Lj_JankZC4pQ2cWwnOZaWVSm0IESlvUWOnSxpq2S1m0VsT_wCxG_klzDjbFIWBEhwTOJRHHvG_pyZ-QbgaaFVkVkhPBlY7okEbS7hNvF4TlmTvDDS0S7uH6jdQ7E3kqMfsvhbfoj-hxtZhluvycAnttg8Iw09qjPKJOeB24bPwwWh_ISKN-y8OyOQShJXpww3ptBDqx51tI0-31yVX92WfsGaq9DV7T3Da6C7XrchJ8cb8ybbMKc_ETr-z2ddh6tLYMq2Wk26Aefyah0utqUqF-tweburDHcTvmxVTZm1NM8oQqkRHx0xK6sL9iH_pG2OE1aXBh-VllGR6sUJc5QMTFeWjSnW59vnr7NFhfBzVp7mls1KCtFmFcpNumA9pse6RPjKXNSjnc7HKDRFAUK0Det6cAsOhy_eb-96y7oOngmjOPBiG0seRcoqawKtfWHJmyylzjSiRyuUDoRWQSYzYciT7JtckLdYFVKGhbDhbVir6iq_CwyPBlkSa8RgyoqImMZ9aRM8A6GYwfVqAF43ralZkp5T7Y2TtKVr5imNd9qP9wCe9e0nLd3Hb1s-6bQkxeEnN4uu8no-SxExIsgWQiR_aiMJWiNWH8CdVsX694UhHmLjKBwAd4ryl46ke2-e7_dX9_5F6DFcerszTF-_PHh1H67Q7TYY7gGsNdN5_hBhV5M9cpb1HT_NJeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+activities+of+hexadecanoic+acid+methyl+ester+and+green-synthesized+silver+nanoparticles+against+multidrug-resistant+bacteria&rft.jtitle=Journal+of+basic+microbiology&rft.au=Shaaban%2C+Mohamed+T&rft.au=Ghaly%2C+Mohamed+F&rft.au=Fahmi%2C+Sara+M&rft.date=2021-06-01&rft.issn=1521-4028&rft.eissn=1521-4028&rft.volume=61&rft.issue=6&rft.spage=557&rft_id=info:doi/10.1002%2Fjobm.202100061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-111X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-111X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-111X&client=summon