Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation
Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aimin...
Saved in:
Published in | Pest management science Vol. 78; no. 1; pp. 30 - 42 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1526-498X 1526-4998 1526-4998 |
DOI | 10.1002/ps.6600 |
Cover
Loading…
Abstract | Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV‐resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress‐responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV‐induced DNA lesions and photoreactivation of UV‐impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair‐required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV‐resistant fungal insecticides. © 2021 Society of Chemical Industry.
Photoreactivation of fungal cells impaired by solar UV irradiation relies upon DNA lesion photorepair by one or two photolyases localized exclusively in the nucleus. |
---|---|
AbstractList | Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV‐resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress‐responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV‐induced DNA lesions and photoreactivation of UV‐impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair‐required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV‐resistant fungal insecticides. © 2021 Society of Chemical Industry. Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry. Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV‐resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress‐responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV‐induced DNA lesions and photoreactivation of UV‐impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair‐required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV‐resistant fungal insecticides. © 2021 Society of Chemical Industry. Photoreactivation of fungal cells impaired by solar UV irradiation relies upon DNA lesion photorepair by one or two photolyases localized exclusively in the nucleus. |
Author | Tong, Sen‐Miao Feng, Ming‐Guang |
Author_xml | – sequence: 1 givenname: Sen‐Miao orcidid: 0000-0002-7029-6084 surname: Tong fullname: Tong, Sen‐Miao email: tongsm@zafu.edu.cn organization: Zhejiang A & F University – sequence: 2 givenname: Ming‐Guang orcidid: 0000-0002-2657-0293 surname: Feng fullname: Feng, Ming‐Guang email: mgfeng@zju.edu.cn organization: Institute of Microbiology, College of Life Sciences, Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34397162$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0V1rHCEUBmApCU2yLf0HRehFCmXSM-rqeBlCvyChhbbQO3HU3Roc3arTsv--bjbJRUrJlSLPOep7TtBBTNEh9KKHsx6AvN2UM84BnqDjfkl4x6QcDu73w48jdFLKNQBIKclTdEQZlaLn5BjNVyk4Mwed8aiLL1hHi7Nbt5Oa8hZPzvzU0Zep4Dlal8PWxzVezXGtA_axOFO98daV01bV6quOxuGacEm7nnOoWf_27Y6Kfc7ael19is_Q4UqH4p7frgv0_f27bxcfu8vPHz5dnF92hooBunHlCDAQozWESUuWZKCEAxdLqnU_EseACgZjb-1o6MgEBQGaAx1BcCY1XaDX-76bnH7NrlQ1-WJcCDq6NBdFOG2xCRjgcbrkvSScEdHoqwf0Os05to-0hiCIBNZeuEAvb9U8Ts6qTfaTzlt1l30D3R6YnErJbqWMrzfxtMx8UD2o3WzVpqjdbJs_feDvWv4r3-zlHx_c9n9Mffl6o_8CsjOxIQ |
CitedBy_id | crossref_primary_10_3390_jof9030290 crossref_primary_10_1007_s43630_023_00376_7 crossref_primary_10_1128_msystems_00166_24 crossref_primary_10_1002_ps_7291 crossref_primary_10_3390_jof10060420 crossref_primary_10_1111_1758_2229_13107 crossref_primary_10_1016_j_jphotobiol_2024_112849 crossref_primary_10_3390_jof8111124 crossref_primary_10_1016_j_jip_2023_107892 crossref_primary_10_3390_molecules27185998 crossref_primary_10_1016_j_biocontrol_2023_105352 crossref_primary_10_3390_ijerph19116614 crossref_primary_10_3390_nu17050792 crossref_primary_10_1128_aem_00994_23 crossref_primary_10_3390_jof8060558 crossref_primary_10_3390_jof7110956 crossref_primary_10_1002_ps_7086 crossref_primary_10_1128_spectrum_00070_23 crossref_primary_10_3390_jof8040394 crossref_primary_10_1021_acs_jafc_4c04400 crossref_primary_10_3389_fmicb_2024_1507931 crossref_primary_10_1007_s11274_022_03301_9 crossref_primary_10_1016_j_jip_2024_108071 crossref_primary_10_3390_jof8101110 crossref_primary_10_1016_j_micres_2023_127589 crossref_primary_10_3390_jof8060606 crossref_primary_10_3390_jof9020154 crossref_primary_10_1016_j_micres_2024_127622 crossref_primary_10_1002_ps_7889 crossref_primary_10_3390_jof7110895 crossref_primary_10_1007_s10340_023_01622_8 crossref_primary_10_1111_php_13752 crossref_primary_10_1128_msystems_00318_22 crossref_primary_10_3390_insects14040307 |
Cites_doi | 10.1007/s00294-015-0492-z 10.1126/science.1072795 10.1111/1462-2920.15398 10.1128/EC.00208-06 10.1016/j.cub.2005.01.001 10.1016/j.fgb.2020.103437 10.1007/s10526-017-9816-x 10.1038/srep03086 10.1177/0748730406288338 10.1007/s10340-020-01313-8 10.1371/journal.pone.0043069 10.1080/21505594.2021.1923232 10.1016/j.jip.2018.01.007 10.1016/0092-8674(94)90153-8 10.1007/s00253-020-10659-z 10.1007/s00253-014-5577-y 10.1007/s00253-015-6823-7 10.1016/j.jip.2005.05.005 10.1007/s00253-018-9148-5 10.1007/s00294-019-00957-z 10.1016/j.biocontrol.2006.06.016 10.1016/bs.adgen.2015.11.002 10.1111/j.1574-6976.2011.00288.x 10.1016/j.funbio.2021.06.003 10.1080/15572536.2003.11833149 10.1126/science.272.5258.48 10.1007/s00253-018-9020-7 10.1016/j.cropro.2003.10.004 10.1186/gb-2011-12-11-r116 10.1007/s00253-016-7757-4 10.1111/cmi.12839 10.1016/j.funbio.2017.08.003 10.1007/s00253-018-9302-0 10.1016/j.biocontrol.2007.11.006 10.1007/s00253-017-8155-2 10.1016/j.funbio.2014.03.001 10.1007/s11046-009-9207-7 10.1016/j.pestbp.2019.11.016 10.1007/s10340-020-01223-9 10.1007/s00253-017-8390-6 10.3390/jof6020060 10.1111/1462-2920.12044 10.1128/AEM.00812-17 10.1016/j.fgb.2015.01.008 10.1007/s00294-014-0439-9 10.1017/S0953756201004270 10.1093/glycob/cwg047 10.1007/s00253-014-6124-6 10.1038/srep20566 10.1002/mbo3.322 10.1007/s00253-017-8290-9 10.1093/nar/28.10.2060 10.1093/femsle/fnw036 10.1007/s10340-017-0846-z 10.1111/1462-2920.13197 10.1016/j.fgb.2015.07.002 10.1007/s10526-017-9818-8 10.1016/j.molcel.2017.04.024 10.1093/jipm/pmz012 10.1111/1744-7917.12233 10.1007/s00253-014-5876-3 10.1111/1462-2920.13727 10.1016/j.tibs.2016.07.009 10.1016/S0065-2164(04)54001-7 10.1016/j.fgb.2014.06.010 10.1128/MCB.16.5.2361 10.1111/1462-2920.12530 10.1146/annurev-arplant-042110-103759 10.1016/j.fgb.2013.02.008 10.1016/j.jip.2006.06.008 10.1111/febs.12362 10.1016/0092-8674(90)90479-X 10.1007/s00294-015-0477-y 10.1016/j.funbio.2016.01.007 10.1111/1462-2920.13671 10.1111/j.1462-2920.2011.02643.x 10.1016/j.fgb.2014.09.006 10.1038/srep00483 10.1016/j.funbio.2018.01.003 10.1007/s00253-017-8434-y 10.1111/1462-2920.12450 10.1016/j.mycres.2008.04.013 10.1021/cr0204348 10.1111/j.1462-2920.2012.02848.x 10.1007/s00253-016-7688-0 10.1007/s10526-009-9248-3 10.1007/s00253-017-8703-9 10.1080/09583159409355309 10.1146/annurev-ento-031616-035509 10.1002/ps.5803 10.3852/07-202 10.1093/glycob/cwu028 10.1016/j.cropro.2004.07.006 10.1007/s00253-018-9033-2 10.1128/EC.2.4.690-698.2003 10.1016/j.biocontrol.2011.07.005 10.3389/fmicb.2018.01677 10.1007/s00253-009-2083-8 10.1006/jipa.2001.5048 10.1006/fgbi.1999.1158 10.1562/0031-8655(2001)0740734BSUAUR2.0.CO2 10.1016/j.jip.2018.07.011 10.1093/gbe/evw082 10.1099/mic.0.27346-0 10.1073/pnas.1514637112 10.1007/s00253-018-9516-1 10.1016/j.fgb.2016.05.005 10.1016/j.jip.2004.06.007 10.1111/j.1574-6968.2010.02168.x 10.1016/j.fgb.2016.12.004 10.1038/s41598-017-01570-1 10.1080/10408369891234192 10.1007/s10526-009-9265-2 10.1128/AEM.02459-18 10.1007/s10340-019-01161-1 10.1534/g3.119.400430 10.1002/ps.5054 10.1111/j.1462-2920.2012.02871.x 10.1007/s00253-016-7420-0 10.1038/nsmb1152 10.1562/2005-05-08-RA-52 10.1016/j.biocontrol.2007.08.001 10.1111/cmi.13100 10.1007/s00253-010-2437-2 10.1016/S0092-8674(00)80566-8 10.1128/AEM.00287-20 10.1002/j.1460-2075.1994.tb06961.x 10.1016/j.fgb.2019.02.009 10.1038/s41579-018-0109-x 10.1371/journal.pgen.1001264 10.1111/1462-2920.13851 10.1128/mSystems.00098-21 10.1016/j.cub.2020.08.051 10.1242/jcs.202622 10.1111/1462-2920.15500 10.1016/bs.adgen.2016.01.006 10.1007/s10526-019-09990-w 10.1101/gad.13.7.768 10.1111/1462-2920.12634 10.1126/science.1073681 10.1111/j.1462-2920.2011.02654.x 10.1080/21505594.2018.1518089 10.1562/0031-8655(2001)0730140EOUIOC2.0.CO2 10.1371/journal.pone.0087948 10.1080/09583150410001682269 10.1371/journal.pone.0030298 10.1002/ps.2026 10.1016/j.mib.2012.09.006 10.1016/j.biocontrol.2013.06.017 10.1007/s00294-015-0483-0 10.1016/S0261-2194(98)00074-X 10.1016/j.fgb.2015.08.011 10.1139/w03-097 10.1111/1758-2229.12380 |
ContentType | Journal Article |
Copyright | 2021 Society of Chemical Industry. Copyright © 2022 Society of Chemical Industry |
Copyright_xml | – notice: 2021 Society of Chemical Industry. – notice: Copyright © 2022 Society of Chemical Industry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7SS 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1002/ps.6600 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1526-4998 |
EndPage | 42 |
ExternalDocumentID | 34397162 10_1002_ps_6600 PS6600 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China – fundername: Ministry of Science and Technology of the People's Republic of China |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 29O 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QR 7SS 7ST 7T7 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3780-bfe20407bdc249d252832606753aa1b2e403740b1ddbc3b473070a603b07649a3 |
IEDL.DBID | DR2 |
ISSN | 1526-498X 1526-4998 |
IngestDate | Fri Jul 11 18:34:56 EDT 2025 Fri Jul 11 11:51:25 EDT 2025 Wed Aug 13 04:37:23 EDT 2025 Thu Apr 03 07:06:11 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 Tue Jul 01 01:22:34 EDT 2025 Wed Jan 22 16:28:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | biological control entomopathogenic fungi DNA photorepair UV resistance cell photoreactivation |
Language | English |
License | 2021 Society of Chemical Industry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3780-bfe20407bdc249d252832606753aa1b2e403740b1ddbc3b473070a603b07649a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2657-0293 0000-0002-7029-6084 |
PMID | 34397162 |
PQID | 2607290475 |
PQPubID | 46069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2636607080 proquest_miscellaneous_2561926427 proquest_journals_2607290475 pubmed_primary_34397162 crossref_citationtrail_10_1002_ps_6600 crossref_primary_10_1002_ps_6600 wiley_primary_10_1002_ps_6600_PS6600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 2022-Jan 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: London |
PublicationTitle | Pest management science |
PublicationTitleAlternate | Pest Manag Sci |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2017; 83 2013; 3 2020; 163 2002; 94 2019; 10 2006; 39 2004; 23 2011; 62 2015; 76 2019; 17 2014; 24 2011; 59 2012; 15 2012; 14 1990; 61 2018; 9 1998; 17 2015; 82 2015; 81 2013; 54 2006; 21 2019; 21 2015; 83 2020; 93 2014; 16 1994; 77 2007; 6 2016; 41 2011; 67 2008; 112 2014; 98 2017; 62 2019; 9 2005; 90 2018; 102 2018; 740 2017; 66 1999; 28 2019; 103 2016; 94 2020; 144 1993 2016; 93 2017; 130 2016; 18 2012; 36 1996; 16 2018; 20 2011; 7 2004; 54 2016; 5 2016; 6 2004; 50 2020; 30 2015; 61 2015; 112 2004; 150 2008; 45 2009; 101 1994; 13 2005; 15 2003; 103 2016; 8 2016; 23 2010; 55 2018; 122 2017; 7 2014; 70 2011; 315 2003; 13 2019; 127 2016; 100 2014; 68 2011; 12 2013; 280 2005; 24 2001; 105 2020; 6 2013; 15 2019; 65 1999; 13 2003; 2 2009; 168 1999; 96 2017; 121 2014; 9 2004; 87 2014; 118 2006; 93 2021; 6 2015; 17 2000; 28 2020; 86 2006; 13 2002; 297 2015; 99 2020; 104 2016; 363 2020; 76 2021; 94 2016; 120 2010; 85 2006; 82 2018; 152 2010; 86 2012; 2 2017; 90 2021; 12 2019; 85 2021 2004; 14 2018; 157 2017; 98 1996; 272 2017; 19 2020; 65 2007; 43 2017; 101 2001; 78 2012; 7 2001; 73 1994; 4 2001; 74 1998; 35 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 Madronich S (e_1_2_10_40_1) 1993 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 82 start-page: 418 year: 2006 end-page: 422 article-title: Conidial pigmentation is important to tolerance against solar‐simulated radiation in the entomopathogenic fungus publication-title: Photochem Photobiol – volume: 59 start-page: 255 year: 2011 end-page: 260 article-title: Integration of thioredoxin (trxA) into enhances the fungal tolerance to the stresses of oxidation, heat and UVB irradiation publication-title: Biol Control – volume: 144 year: 2020 article-title: Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of publication-title: Fungal Genet Biol – volume: 43 start-page: 237 year: 2007 end-page: 256 article-title: Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types publication-title: Biol Control – volume: 90 start-page: 947 year: 2017 end-page: 960 article-title: Efficacy of entomopathogenic fungi against adult from laboratory to field applications publication-title: J Pest Sci – year: 2021 article-title: Conidiation under illumination enhances conidial tolerance of insectpathogenic fungi to environmental stresses publication-title: Fungal Biol – volume: 24 start-page: 167 year: 2005 end-page: 175 article-title: Impact of three application methods on the field efficacy of a ‐based mycoinsecticide against the false‐eye leafhopper, (Homoptera: Cicadellidae) in tea canopy publication-title: Crop Prot – volume: 15 start-page: 967 year: 2013 end-page: 979 article-title: P‐type calcium ATPase functions as a core regulator of growth, conidiation and responses to multiple stressful stimuli through cross‐talk with signaling networks publication-title: Environ Microbiol – volume: 272 start-page: 48 year: 1996 end-page: 49 article-title: No “end of history” for photolyases publication-title: Science – volume: 103 start-page: 577 year: 2019 end-page: 587 article-title: Insights into regulatory roles of MAPK‐cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens publication-title: Appl Microbiol Biotechnol – volume: 163 start-page: 85 year: 2020 end-page: 192 article-title: Characterization of trehalose‐6‐phosphate phosphatase in trehalose biosynthesis, asexual development, stress resistance and virulence of an insect mycopathogen publication-title: Pestic Biochem Physiol – volume: 8 start-page: 295 year: 2016 end-page: 304 article-title: Subcellular localization of five singular WSC domain‐containing proteins and their roles in responses to stress cues and metal ions publication-title: Environ Microbiol Rep – volume: 130 start-page: 3336 year: 2017 end-page: 3346 article-title: The deubiquitylating enzyme Ubp12 regulates Rad23‐dependent proteasomal degradation publication-title: J Cell Sci – volume: 12 start-page: R116 year: 2011 article-title: Genome sequence of the insect pathogenic fungus , a valued traditional Chinese medicine publication-title: Genome Biol – volume: 93 start-page: 1 year: 2016 end-page: 9 article-title: Miro GTPase controls mitochondrial behavior affecting stress tolerance and virulence of a fungal insect pathogen publication-title: Fungal Genet Biol – volume: 150 start-page: 3561 year: 2004 end-page: 3569 article-title: BLR‐1 and BLR‐2, key regulatory elements of photoconidiation and mycelial growth in publication-title: Microbiology – volume: 6 start-page: 60 year: 2020 article-title: Integrated management of in cowpea using intercropping and entomopathogenic fungi under field conditions publication-title: J Fungi – volume: 28 start-page: 2060 year: 2000 end-page: 2068 article-title: DNA repair in a yeast origin of replication: contributions of photolyase and nucleotide excision repair publication-title: Nucleic Acids Res – volume: 104 start-page: 5711 year: 2020 end-page: 5724 article-title: Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides publication-title: Appl Microbiol Biotechnol – volume: 10 start-page: 13 year: 2019 article-title: Biological control of spotted‐wing (Diptera: Drosophilidae) ‐ current and pending tactics publication-title: J Integr Pest Manag – volume: 21 start-page: 159 year: 2006 end-page: 168 article-title: Two circadian timing circuits in cells share components and regulate distinct rhythmic processes publication-title: J Biol Rhythms – volume: 101 start-page: 512 year: 2009 end-page: 530 article-title: A multilocus phylogeny of the lineage publication-title: Mycologia – volume: 7 year: 2012 article-title: Additive contributions of two manganese‐cored superoxide dismutases (MnSODs) to anti‐oxidation, UV tolerance and virulence of publication-title: PLoS One – volume: 28 start-page: 12 year: 1999 end-page: 20 article-title: Characterization of a photolyase‐deficient mutant generated by repeat induced point mutation of the gene publication-title: Fungal Genet Biol – volume: 101 start-page: 6941 year: 2017 end-page: 6949 article-title: The Hog1‐like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen publication-title: Appl Microbiol Biotechnol – volume: 67 start-page: 36 year: 2011 end-page: 43 article-title: Evaluation of alternative rice planthopper control by the combined action of oil‐formulated and low‐rate buprofezin publication-title: Pest Manag Sci – volume: 14 start-page: 2139 year: 2012 end-page: 2150 article-title: Primary roles of two dehydrogenases in the mannitol metabolism and multi‐stress tolerance of entomopathogenic fungus publication-title: Environ Microbiol – volume: 10 start-page: 429 year: 2019 end-page: 437 article-title: Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes publication-title: Virulence – volume: 101 start-page: 6793 year: 2017 end-page: 6807 article-title: Application of the entomogenous fungus, , for leafroller ( ) control and its effect on rice phyllosphere microbial diversity publication-title: Appl Microbiol Biotechnol – volume: 93 start-page: 275 year: 2020 end-page: 290 article-title: Impact of granular carriers to improve the efficacy of entomopathogenic fungi against wireworms in spring wheat publication-title: J Pest Sci – volume: 168 start-page: 145 year: 2009 end-page: 152 article-title: Comparative tolerances of various isolates to UVB irradiation with a description of a modeling method to assess lethal dose publication-title: Mycopathologia – volume: 7 year: 2012 article-title: Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi publication-title: PLoS One – volume: 99 start-page: 10069 year: 2015 end-page: 10081 article-title: WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen publication-title: Appl Microbiol Biotechnol – volume: 62 start-page: 335 year: 2011 end-page: 364 article-title: The cryptochromes: blue light photoreceptors in plants and animals publication-title: Annu Rev Plant Biol – volume: 24 start-page: 638 year: 2014 end-page: 648 article-title: The connection of protein ‐mannosyltransferase family to the biocontrol potential of , a fungal entomopathogen publication-title: Glycobiology – volume: 102 start-page: 9221 year: 2018 end-page: 9230 article-title: Antioxidant activities of four superoxide dismutases in and their contributions to pest control potential publication-title: Appl Microbiol Biotechnol – volume: 54 start-page: 1 year: 2004 end-page: 70 article-title: spp., cosmopolitan insect pathogenic fungi: mycological aspects publication-title: Adv Appl Microbiol – volume: 315 start-page: 81 year: 2011 end-page: 86 article-title: Visible light during mycelial growth and conidiation of produces conidia with increased stress tolerance publication-title: FEMS Microbiol Lett – volume: 17 start-page: 1444 year: 2015 end-page: 1462 article-title: Unveiling equal importance of two 14‐3‐3 proteins for morphogenesis, conidiation, multistress tolerance and virulence of an insect pathogen publication-title: Environ Microbiol – volume: 4 start-page: 3 year: 1994 end-page: 34 article-title: Production, formulation and application of the entomopathogenic fungus for insect control: current status publication-title: Biocontrol Sci Technol – volume: 7 year: 2011 article-title: Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi and publication-title: PLoS Genet – volume: 68 start-page: 129 year: 2014 end-page: 135 article-title: Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests publication-title: Biol Control – volume: 62 start-page: 639 year: 2017 end-page: 648 article-title: Entomopathogenic Beauveria bassiana granules to control soil‐dwelling stage of western flower thrips, (Thysanoptera: Thripidae) publication-title: BioConrol – volume: 78 start-page: 98 year: 2001 end-page: 108 article-title: Variability in response to UVB among species and strains of isolated from sites at latitudes from 61°N to 54°S publication-title: J Invertebr Pathol – volume: 61 start-page: 239 year: 2015 end-page: 249 article-title: Stress response signaling and virulence: insights from entomopathogenic fungi publication-title: Curr Genet – volume: 35 start-page: 189 year: 1998 end-page: 237 article-title: Molecular and cellular effects of ultraviolet light‐induced genotoxicity publication-title: Crit Rev Clin Lab Sci – volume: 15 start-page: 447 year: 2013 end-page: 462 article-title: Differentiated functions of Ras1 and Ras2 proteins in regulating the germination, growth, conidiation, multi‐stress tolerance and virulence of publication-title: Environ Microbiol – volume: 82 start-page: 85 year: 2015 end-page: 94 article-title: A novel Ras GTPase (Ras3) regulates conidiation, multi‐stress tolerance and virulence by acting upstream of Hog1 signaling pathway in publication-title: Fungal Genet Biol – volume: 83 start-page: 68 year: 2015 end-page: 77 article-title: ATPase, MaENA1, of influences the Na ‐, thermo‐ and UV‐tolerances of conidia and is involved in multiple mechanisms of stress tolerance publication-title: Fungal Genet Biol – volume: 94 start-page: 307 year: 2016 end-page: 364 article-title: Entomopathogenic fungi: new insights into host‐pathogen interactions publication-title: Adv Genet – volume: 112 start-page: 1362 year: 2008 end-page: 1372 article-title: Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UVB radiation in conidia publication-title: Mycol Res – volume: 127 start-page: 1 year: 2019 end-page: 11 article-title: The velvet protein VeA functions in asexual cycle, stress tolerance and transcriptional regulation of publication-title: Fungal Genet Biol – volume: 121 start-page: 956 year: 2017 end-page: 965 article-title: Lysyl‐tRNA synthetase (Krs) acts a virulence factor of by its vital role in conidial germination and dimorphic transition publication-title: Fungal Biol – volume: 66 start-page: 488 year: 2017 end-page: 502 article-title: ubiquitin linkage‐type analysis reveals that the Cdc48‐Rad23/Dsk2 axis contributes to K48‐linked chain specificity of the proteasome publication-title: Mol Cell – volume: 23 start-page: 489 year: 2004 end-page: 496 article-title: Field trials of an oil‐based emulsifiable formulation of conidia and low application rates of imidacloprid for control of false‐eye leafhopper in southern China publication-title: Crop Prot – volume: 76 start-page: 1 year: 2015 end-page: 9 article-title: Subcellular localization of six thioredoxins and their antioxidant activity and contributions to biological control potential in publication-title: Fungal Genet Biol – volume: 62 start-page: 73 year: 2017 end-page: 90 article-title: Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements publication-title: Annu Rev Entomol – volume: 87 start-page: 73 year: 2004 end-page: 83 article-title: Variations in UVB tolerance and germination speed of conidia produced on insects and artificial substrates publication-title: J Invertebr Pathol – volume: 103 start-page: 2203 year: 2003 end-page: 2237 article-title: Structure and function of DNA photolyase and cryptochrome blue‐light photoreceptors publication-title: Chem Rev – volume: 297 start-page: 840 year: 2002 end-page: 843 article-title: White collar‐1, a DNA binding transcription factor and a light sensor publication-title: Science – volume: 363 year: 2016 article-title: Exposure of mycelium to light induces tolerance to UVB radiation publication-title: FEMS Microbiol Lett – volume: 65 start-page: 1025 year: 2019 end-page: 1040 article-title: MaPmt4, a protein ‐mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in publication-title: Curr Genet – volume: 19 start-page: 4091 year: 2017 end-page: 4102 article-title: Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 cascade in a fungal insect pathogen publication-title: Environ Microbiol – volume: 112 start-page: 15130 year: 2015 end-page: 15135 article-title: Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution publication-title: Proc Natl Acad Sci U S A – volume: 102 start-page: 6973 year: 2018 end-page: 6986 article-title: C‐terminal Ser/Thr residues are vital for the regulatory role of Ste7 in the asexual cycle and virulence of publication-title: Appl Microbiol Biotechnol – volume: 15 start-page: 409 year: 2013 end-page: 418 article-title: Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses publication-title: Environ Microbiol – start-page: 17 year: 1993 end-page: 69 – volume: 76 start-page: 2627 year: 2020 end-page: 2634 article-title: Colony heating protects honey bee populations from a risk of contact with wide‐spectrum insecticides applied in the field publication-title: Pest Manag Sci – volume: 96 start-page: 271 year: 1999 end-page: 290 article-title: Molecular bases for circadian clocks publication-title: Cell – volume: 15 start-page: 669 year: 2012 end-page: 677 article-title: Genetic control of asexual sporulation in filamentous fungi publication-title: Curr Opin Microbiol – volume: 8 start-page: 1374 year: 2016 end-page: 1387 article-title: Divergent and convergent evolution of fungal pathogenicity publication-title: Genome Biol Evol – volume: 101 start-page: 3637 year: 2017 end-page: 3651 article-title: Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen publication-title: Appl Microbiol Biotechnol – volume: 12 start-page: 1306 year: 2021 end-page: 1322 article-title: DIM5/KMT1 controls fungal insect pathogenicity and genome stability by methylation of histone H3K4, H3K9 and H3K36 publication-title: Virulence – volume: 19 start-page: 1808 year: 2017 end-page: 1821 article-title: Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus publication-title: Environ Microbiol – volume: 102 start-page: 4995 year: 2018 end-page: 5004 article-title: Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens publication-title: Appl Microbiol Biotechnol – volume: 13 start-page: 17 year: 2003 end-page: 27 article-title: New insights on trehalose: a multifunctional molecule publication-title: Glycobiology – volume: 7 start-page: 1420 year: 2017 article-title: Differential roles of six P‐type calcium ATPases in sustaining intracellular Ca homeostasis, asexual cycle and environmental fitness of publication-title: Sci Rep – volume: 3 start-page: 3086 year: 2013 article-title: Cytokinesis‐required Cdc14 is a signaling hub of asexual development and multi‐stress tolerance in publication-title: Sci Rep – volume: 20 year: 2018 article-title: Pleiotropic effects of the histone deacetylase Hos2 linked to H4‐K16 deacetylation, H3‐K56 acetylation and H2A‐S129 phosphorylation in publication-title: Cell Microbiol – year: 2021 article-title: Two white collar proteins protect fungal cells from solar UV damage by their interactions with two photolyases in publication-title: Environ Microbiol – volume: 36 start-page: 95 year: 2012 end-page: 110 article-title: The circadian clock of publication-title: FEMS Microbiol Rev – volume: 297 start-page: 815 year: 2002 end-page: 819 article-title: White Collar‐1, a circadian blue light photoreceptor, binding to the frequency promoter publication-title: Science – volume: 50 start-page: 41 year: 2004 end-page: 49 article-title: Enzyme activities associated with oxidative stress in during germination, mycelial growth, and conidiation and in response to near‐UV irradiation publication-title: Can J Microbiol – volume: 16 start-page: 1879 year: 2014 end-page: 1897 article-title: The transcriptional co‐activator multiprotein bridging factor 1 from the fungal insect pathogen, , mediates regulation of hyphal morphogenesis, stress tolerance, and virulence publication-title: Environ Microbiol – volume: 73 start-page: 140 year: 2001 end-page: 146 article-title: Effects of UVB irradiance on conidia and germinants of the entomopathogenic hyphomycete : a study of reciprocity and recovery publication-title: Photochem Photobiol – volume: 120 start-page: 500 year: 2016 end-page: 512 article-title: The cryptochrome/photolyase genes regulate the expression of ‐independent genes both in red and blue light publication-title: Fungal Biol – volume: 83 year: 2017 article-title: The two cryptochrome/photolyase family proteins fulfill distinct roles in DNA photorepair and regulation of conidiation in the gray mold fungus publication-title: Appl Environ Microbiol – volume: 13 start-page: 768 year: 1999 end-page: 785 article-title: Molecular mechanism of nucleotide excision repair publication-title: Genes Dev – volume: 152 start-page: 35 year: 2018 end-page: 37 article-title: Exposing mycelium to visible light up‐regulates a photolyase gene and increases photoreactivating ability publication-title: J Invertebr Pathol – volume: 5 start-page: 224 year: 2016 end-page: 243 article-title: White collar 1‐induced photolyase expression contributes to UV‐tolerance of publication-title: Microbiologyopen – volume: 61 start-page: 675 year: 1990 end-page: 684 article-title: Site‐specific DNA‐repair at the nucleosome level in a yeast minichromosome publication-title: Cell – volume: 9 start-page: 2951 year: 2019 end-page: 2961 article-title: Combining transcriptomics and proteomics reveals potential post‐transcriptional control of gene expression after light exposure in publication-title: G3‐Genes Genomes Genet – volume: 55 start-page: 413 year: 2010 end-page: 422 article-title: and responses of fungal biocontrol agents to the gradient doses of UVB and UV‐A irradiation publication-title: BioControl – volume: 14 start-page: 817 year: 2012 end-page: 829 article-title: A group III histidine kinase (mhk1) upstream of high‐osmolarity glycerol pathway regulates sporulation, multi‐stress tolerance and virulence of , a fungal entomopathogen publication-title: Environ Microbiol – volume: 70 start-page: 1 year: 2014 end-page: 10 article-title: Three α‐1,2‐mannosyltransferases contribute differentially to conidiation, cell wall integrity, multistress tolerance and virulence of publication-title: Fungal Genet Biol – volume: 77 start-page: 381 year: 1994 end-page: 390 article-title: The UV response involving the Ras signaling pathway and AP‐1 transcription factors is conserved between yeast and mammals publication-title: Cell – volume: 9 year: 2014 article-title: Three mitogen‐activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen publication-title: PLoS One – volume: 14 start-page: 531 year: 2004 end-page: 544 article-title: Trials of , and imidacloprid for management of (Homoptera: Aleyrodidae) on greenhouse grown lettuce publication-title: Biocontrol Sci Technol – volume: 13 start-page: 902 year: 2006 end-page: 907 article-title: Rad4‐Rad23 interaction with SWI/SNF links ATP‐dependent chromatin remodeling with nucleotide excision repair publication-title: Nat Struct Mol Biol – volume: 98 start-page: 52 year: 2017 end-page: 60 article-title: Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in publication-title: Fungal Genet Biol – volume: 23 start-page: 854 year: 2016 end-page: 868 article-title: Soil application of GHA against apple sawfly, (Hymenoptera: Tenthredinidae): field mortality and fungal persistence publication-title: Insect Sci – volume: 93 start-page: 170 year: 2006 end-page: 182 article-title: Mutants and isolates of are diverse in their relationships between conidial pigmentation and stress tolerance publication-title: J Invertebr Pathol – volume: 99 start-page: 827 year: 2015 end-page: 840 article-title: The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence of publication-title: Appl Microbiol Biotechnol – volume: 122 start-page: 592 year: 2018 end-page: 601 article-title: The xenon test chamber Q‐SUN for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation publication-title: Fungal Biol – volume: 19 start-page: 2037 year: 2017 end-page: 2052 article-title: Two eisosome proteins play opposite roles in autophagic control and sustain cell integrity, function and pathogenicity in publication-title: Environ Microbiol – volume: 74 start-page: 734 year: 2001 end-page: 739 article-title: Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus publication-title: Photochem Photobiol – volume: 17 start-page: 1119 year: 2015 end-page: 1133 article-title: Wee1 and Cdc25 control morphogenesis, virulence and multistress tolerance of by balancing cell cycle‐required cyclin‐dependent kinase 1 activity publication-title: Environ Microbiol – volume: 94 start-page: 969 year: 2021 end-page: 980 article-title: Long‐term field evaluation and large‐scale application of a strain for controlling major rice pests publication-title: J Pest Sci – volume: 101 start-page: 185 year: 2017 end-page: 195 article-title: Vital role for the J‐domain protein Mdj1 in asexual development, multiple stress tolerance and virulence of publication-title: Appl Microbiol Biotechnol – volume: 98 start-page: 8253 year: 2014 end-page: 8265 article-title: Calcineurin modulates growth, stress tolerance, and virulence in and its regulatory network publication-title: Appl Microbiol Biotechnol – volume: 101 start-page: 5033 year: 2017 end-page: 5043 article-title: The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in publication-title: Appl Microbiol Biotechnol – volume: 6 start-page: 1682 year: 2007 end-page: 1692 article-title: PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction publication-title: Eukaryot Cell – volume: 45 start-page: 48 year: 2008 end-page: 55 article-title: Field trials of four formulations of and for control of cotton spider mites (Acari: Tetranychidae) in the Tarim Basin of China publication-title: Biol Control – volume: 86 start-page: e00287 year: 2020 end-page: e00220 article-title: Photoprotective role of photolyase‐interacting RAD23 and its pleiotropic effect on the insect‐pathogenic fungus publication-title: Appl Environ Microbiol – volume: 86 start-page: 1543 year: 2010 end-page: 1553 article-title: A new manganese superoxide dismutase identified from enhances virulence and stress tolerance when overexpressed in the fungal pathogen publication-title: Appl Microbiol Biotechnol – volume: 98 start-page: 5517 year: 2014 end-page: 5529 article-title: The GPI‐anchored protein Ecm33 is vital for conidiation, cell wall integrity and multi‐stress tolerance of two filamentous entomopathogens but not for virulence publication-title: Appl Microbiol Biotechnol – volume: 21 year: 2019 article-title: The DUF1996 and WSC domain‐containing protein Wsc1I acts as a novel sensor of stress cues for Hog1 activation in publication-title: Cell Microbiol – volume: 81 start-page: 160 year: 2015 end-page: 171 article-title: Distinct contributions of one Fe‐ and two Cu/Zn‐cofactored superoxide dismutases to antioxidation, UV tolerance and virulence of publication-title: Fungal Genet Biol – volume: 55 start-page: 159 year: 2010 end-page: 185 article-title: Ecological factors in the inundative use of fungal entomopathogens publication-title: BioControl – volume: 61 start-page: 405 year: 2015 end-page: 425 article-title: Molecular and physiological effects of environmental UV radiation on fungal conidia publication-title: Curr Genet – volume: 17 start-page: 25 year: 2019 end-page: 36 article-title: Light sensing and responses in fungi publication-title: Nat Rev Microbiol – volume: 740 start-page: 2626 year: 2018 end-page: 2635 article-title: Rtt109‐dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of publication-title: Pest Manag Sci – volume: 54 start-page: 42 year: 2013 end-page: 51 article-title: Insight into the transcriptional regulation of Msn2 required for conidiation, multi‐stress responses and virulence of two entomopathogenic fungi publication-title: Fungal Genet Biol – volume: 102 start-page: 1343 year: 2018 end-page: 1355 article-title: The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation publication-title: Appl Microbiol Biotechnol – volume: 90 start-page: 55 year: 2005 end-page: 58 article-title: Influence of growth environment on tolerance to UVB radiation, germination speed, and morphology of e var. conidia publication-title: J Invertebr Pathol – volume: 105 start-page: 874 year: 2001 end-page: 882 article-title: Effect of UVB on conidia and germlings of the entomopathogenic hyphomycete publication-title: Mycol Res – volume: 65 start-page: 211 year: 2020 end-page: 222 article-title: and conidia produced on riboflavin‐supplemented medium have increased UV‐A tolerance and upregulated photoprotection and photoreactivation genes publication-title: BioControl – volume: 15 start-page: 105 year: 2005 end-page: 115 article-title: Powerful skin cancer protection by a CPD‐photolyase transgene publication-title: Curr Biol – volume: 39 start-page: 210 year: 2006 end-page: 217 article-title: Field efficacy of application of formulation and low rate pyridaben for sustainable control of citrus red mite (Acari: Tetranychidae) in orchards publication-title: Biol Control – volume: 61 start-page: 427 year: 2015 end-page: 440 article-title: Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation publication-title: Curr Genet – volume: 85 start-page: e02459 year: 2019 end-page: e02418 article-title: Two photolyases repair distinct DNA lesions and reactivate UVB‐inactivated conidia of an insect mycopathogen under visible light publication-title: Appl Environ Microbiol – volume: 85 start-page: 975 year: 2010 end-page: 984 article-title: A new non‐hydrophobic cell wall protein (CWP10) of enhances conidial hydrophobicity when expressed in publication-title: Appl Microbiol Biotechnol – volume: 94 start-page: 251 year: 2016 end-page: 285 article-title: Insect immunity to entomopathogenic fungi publication-title: Adv Genet – volume: 41 start-page: 834 year: 2016 end-page: 846 article-title: Circadian oscillators: around the transcription‐ translation feedback loop and on to output publication-title: Trends Biochem Sci – volume: 102 start-page: 5611 year: 2018 end-page: 5623 article-title: Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in publication-title: Appl Microbiol Biotechnol – volume: 62 start-page: 613 year: 2017 end-page: 623 article-title: Preventive application of an entomopathogenic fungus in cover crops for wireworm control publication-title: BioControl – volume: 100 start-page: 5907 year: 2016 end-page: 5917 article-title: Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity and iron homeostasis of publication-title: Appl Microbiol Biotechnol – volume: 17 start-page: 675 year: 1998 end-page: 679 article-title: Effects of simulated solar radiation on conidial germination of in different formulations publication-title: Crop Prot – volume: 94 start-page: 912 year: 2002 end-page: 920 article-title: Damage and recovery from UVB exposure in conidia of the entomopathogens i and publication-title: Mycologia – volume: 61 start-page: 383 year: 2015 end-page: 404 article-title: Stress tolerance and virulence of insect‐pathogenic fungi are determined by environmental conditions during conidial formation publication-title: Curr Genet – volume: 18 start-page: 1037 year: 2016 end-page: 1047 article-title: Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen publication-title: Environ Microbiol – volume: 2 start-page: 483 year: 2012 article-title: Genomic perspectives on the evolution of fungal entomopathogenicity in publication-title: Sci Rep – volume: 16 start-page: 2361 year: 1996 end-page: 2368 article-title: Rad23 is required for transcription‐coupled repair and efficient overall repair in publication-title: Mol Cell Biol – volume: 118 start-page: 422 year: 2014 end-page: 431 article-title: Adenylate cyclase orthologues in two filamentous entomopathogens contribute differentially to growth, conidiation, pathogenicity and multi‐stress responses publication-title: Fungal Biol – volume: 100 start-page: 10363 year: 2016 end-page: 10374 article-title: Distinct roles of cytoplasmic thioredoxin reductases Trr1 and Trr2 in the redox system involving cysteine synthesis and host infection of a fungal insect pathogen publication-title: Appl Microbiol Biotechnol – volume: 2 start-page: 690 year: 2003 end-page: 698 article-title: Mannitol is required for stress tolerance in conidiospores publication-title: Eukaryot Cell – volume: 30 start-page: 4483 year: 2020 end-page: 4490 article-title: The DASH‐type cryptochrome from the fungus is a canonical CPD‐photolyase publication-title: Curr Biol – volume: 6 year: 2016 article-title: Three DUF1996 proteins localize in vacuoles and function in fungal responses to multiple stresses and metal ions publication-title: Sci Rep – year: 2021 article-title: Distinctive role of in the adaptation of to insect‐pathogenic lifecycle and environmental stresses publication-title: Environ Microbiol – volume: 6 start-page: e00098 year: 2021 end-page: e00021 article-title: A small cysteine‐free protein acts as a novel regulator of fungal insect‐pathogenic lifecycle and genomic expression publication-title: mSystems – volume: 13 start-page: 6143 year: 1994 end-page: 6151 article-title: A new class of DNA photolyases present in various organisms including aplacental mammals publication-title: EMBO J – volume: 280 start-page: 3697 year: 2013 end-page: 3708 article-title: The photolyase‐encoding gene is transcriptionally regulated by non‐canonical light response elements publication-title: FEBS J – volume: 157 start-page: 32 year: 2018 end-page: 35 article-title: Possible source of the high UVB and heat tolerance of (isolate ARSEF 324) publication-title: J Invertebr Pathol – volume: 94 start-page: 111 year: 2021 end-page: 117 article-title: Effective control of by Metarhizium anisopliae CQMa421 under field conditions publication-title: J Pest Sci – volume: 9 start-page: 1677 year: 2018 article-title: Roles of three HSF domain‐containing proteins in mediating heat‐shock protein genes and sustaining asexual cycle, stress tolerance and virulence in publication-title: Front Microbiol – ident: e_1_2_10_37_1 doi: 10.1007/s00294-015-0492-z – ident: e_1_2_10_145_1 doi: 10.1126/science.1072795 – ident: e_1_2_10_151_1 doi: 10.1111/1462-2920.15398 – ident: e_1_2_10_132_1 doi: 10.1128/EC.00208-06 – ident: e_1_2_10_126_1 doi: 10.1016/j.cub.2005.01.001 – ident: e_1_2_10_91_1 doi: 10.1016/j.fgb.2020.103437 – ident: e_1_2_10_18_1 doi: 10.1007/s10526-017-9816-x – ident: e_1_2_10_115_1 doi: 10.1038/srep03086 – ident: e_1_2_10_147_1 doi: 10.1177/0748730406288338 – ident: e_1_2_10_23_1 doi: 10.1007/s10340-020-01313-8 – ident: e_1_2_10_154_1 doi: 10.1371/journal.pone.0043069 – ident: e_1_2_10_109_1 doi: 10.1080/21505594.2021.1923232 – ident: e_1_2_10_64_1 doi: 10.1016/j.jip.2018.01.007 – ident: e_1_2_10_42_1 doi: 10.1016/0092-8674(94)90153-8 – ident: e_1_2_10_36_1 doi: 10.1007/s00253-020-10659-z – ident: e_1_2_10_80_1 doi: 10.1007/s00253-014-5577-y – ident: e_1_2_10_75_1 doi: 10.1007/s00253-015-6823-7 – ident: e_1_2_10_59_1 doi: 10.1016/j.jip.2005.05.005 – ident: e_1_2_10_100_1 doi: 10.1007/s00253-018-9148-5 – ident: e_1_2_10_111_1 doi: 10.1007/s00294-019-00957-z – ident: e_1_2_10_16_1 doi: 10.1016/j.biocontrol.2006.06.016 – ident: e_1_2_10_32_1 doi: 10.1016/bs.adgen.2015.11.002 – ident: e_1_2_10_148_1 doi: 10.1111/j.1574-6976.2011.00288.x – ident: e_1_2_10_156_1 doi: 10.1016/j.funbio.2021.06.003 – ident: e_1_2_10_53_1 doi: 10.1080/15572536.2003.11833149 – ident: e_1_2_10_46_1 doi: 10.1126/science.272.5258.48 – ident: e_1_2_10_114_1 doi: 10.1007/s00253-018-9020-7 – ident: e_1_2_10_10_1 doi: 10.1016/j.cropro.2003.10.004 – ident: e_1_2_10_26_1 doi: 10.1186/gb-2011-12-11-r116 – ident: e_1_2_10_90_1 doi: 10.1007/s00253-016-7757-4 – ident: e_1_2_10_110_1 doi: 10.1111/cmi.12839 – ident: e_1_2_10_116_1 doi: 10.1016/j.funbio.2017.08.003 – ident: e_1_2_10_85_1 doi: 10.1007/s00253-018-9302-0 – ident: e_1_2_10_17_1 doi: 10.1016/j.biocontrol.2007.11.006 – ident: e_1_2_10_72_1 doi: 10.1007/s00253-017-8155-2 – ident: e_1_2_10_118_1 doi: 10.1016/j.funbio.2014.03.001 – ident: e_1_2_10_57_1 doi: 10.1007/s11046-009-9207-7 – ident: e_1_2_10_73_1 doi: 10.1016/j.pestbp.2019.11.016 – ident: e_1_2_10_14_1 doi: 10.1007/s10340-020-01223-9 – ident: e_1_2_10_20_1 doi: 10.1007/s00253-017-8390-6 – ident: e_1_2_10_8_1 doi: 10.3390/jof6020060 – ident: e_1_2_10_101_1 doi: 10.1111/1462-2920.12044 – ident: e_1_2_10_137_1 doi: 10.1128/AEM.00812-17 – ident: e_1_2_10_86_1 doi: 10.1016/j.fgb.2015.01.008 – ident: e_1_2_10_30_1 doi: 10.1007/s00294-014-0439-9 – ident: e_1_2_10_50_1 doi: 10.1017/S0953756201004270 – ident: e_1_2_10_69_1 doi: 10.1093/glycob/cwg047 – ident: e_1_2_10_103_1 doi: 10.1007/s00253-014-6124-6 – ident: e_1_2_10_113_1 doi: 10.1038/srep20566 – ident: e_1_2_10_136_1 doi: 10.1002/mbo3.322 – ident: e_1_2_10_105_1 doi: 10.1007/s00253-017-8290-9 – ident: e_1_2_10_48_1 doi: 10.1093/nar/28.10.2060 – ident: e_1_2_10_63_1 doi: 10.1093/femsle/fnw036 – ident: e_1_2_10_15_1 doi: 10.1007/s10340-017-0846-z – ident: e_1_2_10_89_1 doi: 10.1111/1462-2920.13197 – ident: e_1_2_10_93_1 doi: 10.1016/j.fgb.2015.07.002 – ident: e_1_2_10_13_1 doi: 10.1007/s10526-017-9818-8 – ident: e_1_2_10_131_1 doi: 10.1016/j.molcel.2017.04.024 – ident: e_1_2_10_22_1 doi: 10.1093/jipm/pmz012 – ident: e_1_2_10_21_1 doi: 10.1111/1744-7917.12233 – ident: e_1_2_10_104_1 doi: 10.1007/s00253-014-5876-3 – ident: e_1_2_10_123_1 doi: 10.1111/1462-2920.13727 – ident: e_1_2_10_149_1 doi: 10.1016/j.tibs.2016.07.009 – ident: e_1_2_10_3_1 doi: 10.1016/S0065-2164(04)54001-7 – ident: e_1_2_10_108_1 doi: 10.1016/j.fgb.2014.06.010 – ident: e_1_2_10_142_1 doi: 10.1128/MCB.16.5.2361 – ident: e_1_2_10_121_1 doi: 10.1111/1462-2920.12530 – ident: e_1_2_10_127_1 doi: 10.1146/annurev-arplant-042110-103759 – ident: e_1_2_10_94_1 doi: 10.1016/j.fgb.2013.02.008 – ident: e_1_2_10_56_1 doi: 10.1016/j.jip.2006.06.008 – ident: e_1_2_10_133_1 doi: 10.1111/febs.12362 – ident: e_1_2_10_128_1 doi: 10.1016/0092-8674(90)90479-X – ident: e_1_2_10_62_1 doi: 10.1007/s00294-015-0477-y – ident: e_1_2_10_135_1 doi: 10.1016/j.funbio.2016.01.007 – ident: e_1_2_10_95_1 doi: 10.1111/1462-2920.13671 – ident: e_1_2_10_99_1 doi: 10.1111/j.1462-2920.2011.02643.x – ident: e_1_2_10_84_1 doi: 10.1016/j.fgb.2014.09.006 – ident: e_1_2_10_27_1 doi: 10.1038/srep00483 – ident: e_1_2_10_54_1 doi: 10.1016/j.funbio.2018.01.003 – ident: e_1_2_10_96_1 doi: 10.1007/s00253-017-8434-y – ident: e_1_2_10_117_1 doi: 10.1111/1462-2920.12450 – ident: e_1_2_10_60_1 doi: 10.1016/j.mycres.2008.04.013 – ident: e_1_2_10_44_1 doi: 10.1021/cr0204348 – ident: e_1_2_10_82_1 doi: 10.1111/j.1462-2920.2012.02848.x – ident: e_1_2_10_87_1 doi: 10.1007/s00253-016-7688-0 – ident: e_1_2_10_24_1 doi: 10.1007/s10526-009-9248-3 – ident: e_1_2_10_106_1 doi: 10.1007/s00253-017-8703-9 – ident: e_1_2_10_2_1 doi: 10.1080/09583159409355309 – ident: e_1_2_10_6_1 doi: 10.1146/annurev-ento-031616-035509 – ident: e_1_2_10_7_1 doi: 10.1002/ps.5803 – ident: e_1_2_10_29_1 doi: 10.3852/07-202 – ident: e_1_2_10_107_1 doi: 10.1093/glycob/cwu028 – ident: e_1_2_10_11_1 doi: 10.1016/j.cropro.2004.07.006 – ident: e_1_2_10_33_1 doi: 10.1007/s00253-018-9033-2 – ident: e_1_2_10_70_1 doi: 10.1128/EC.2.4.690-698.2003 – ident: e_1_2_10_153_1 doi: 10.1016/j.biocontrol.2011.07.005 – ident: e_1_2_10_92_1 doi: 10.3389/fmicb.2018.01677 – ident: e_1_2_10_155_1 doi: 10.1007/s00253-009-2083-8 – ident: e_1_2_10_51_1 doi: 10.1006/jipa.2001.5048 – ident: e_1_2_10_134_1 doi: 10.1006/fgbi.1999.1158 – ident: e_1_2_10_52_1 doi: 10.1562/0031-8655(2001)0740734BSUAUR2.0.CO2 – ident: e_1_2_10_68_1 doi: 10.1016/j.jip.2018.07.011 – ident: e_1_2_10_28_1 doi: 10.1093/gbe/evw082 – ident: e_1_2_10_150_1 doi: 10.1099/mic.0.27346-0 – ident: e_1_2_10_138_1 doi: 10.1073/pnas.1514637112 – ident: e_1_2_10_34_1 doi: 10.1007/s00253-018-9516-1 – ident: e_1_2_10_122_1 doi: 10.1016/j.fgb.2016.05.005 – ident: e_1_2_10_58_1 doi: 10.1016/j.jip.2004.06.007 – ident: e_1_2_10_61_1 doi: 10.1111/j.1574-6968.2010.02168.x – ident: e_1_2_10_124_1 doi: 10.1016/j.fgb.2016.12.004 – ident: e_1_2_10_102_1 doi: 10.1038/s41598-017-01570-1 – ident: e_1_2_10_43_1 doi: 10.1080/10408369891234192 – ident: e_1_2_10_41_1 doi: 10.1007/s10526-009-9265-2 – ident: e_1_2_10_141_1 doi: 10.1128/AEM.02459-18 – ident: e_1_2_10_19_1 doi: 10.1007/s10340-019-01161-1 – ident: e_1_2_10_65_1 doi: 10.1534/g3.119.400430 – ident: e_1_2_10_112_1 doi: 10.1002/ps.5054 – ident: e_1_2_10_81_1 doi: 10.1111/j.1462-2920.2012.02871.x – ident: e_1_2_10_88_1 doi: 10.1007/s00253-016-7420-0 – ident: e_1_2_10_129_1 doi: 10.1038/nsmb1152 – start-page: 17 volume-title: UVB Radiation and Ozone Depletion year: 1993 ident: e_1_2_10_40_1 – ident: e_1_2_10_55_1 doi: 10.1562/2005-05-08-RA-52 – ident: e_1_2_10_4_1 doi: 10.1016/j.biocontrol.2007.08.001 – ident: e_1_2_10_98_1 doi: 10.1111/cmi.13100 – ident: e_1_2_10_152_1 doi: 10.1007/s00253-010-2437-2 – ident: e_1_2_10_144_1 doi: 10.1016/S0092-8674(00)80566-8 – ident: e_1_2_10_143_1 doi: 10.1128/AEM.00287-20 – ident: e_1_2_10_45_1 doi: 10.1002/j.1460-2075.1994.tb06961.x – ident: e_1_2_10_76_1 doi: 10.1016/j.fgb.2019.02.009 – ident: e_1_2_10_140_1 doi: 10.1038/s41579-018-0109-x – ident: e_1_2_10_25_1 doi: 10.1371/journal.pgen.1001264 – ident: e_1_2_10_97_1 doi: 10.1111/1462-2920.13851 – ident: e_1_2_10_125_1 doi: 10.1128/mSystems.00098-21 – ident: e_1_2_10_139_1 doi: 10.1016/j.cub.2020.08.051 – ident: e_1_2_10_130_1 doi: 10.1242/jcs.202622 – ident: e_1_2_10_77_1 doi: 10.1111/1462-2920.15500 – ident: e_1_2_10_31_1 doi: 10.1016/bs.adgen.2016.01.006 – ident: e_1_2_10_66_1 doi: 10.1007/s10526-019-09990-w – ident: e_1_2_10_47_1 doi: 10.1101/gad.13.7.768 – ident: e_1_2_10_119_1 doi: 10.1111/1462-2920.12634 – ident: e_1_2_10_146_1 doi: 10.1126/science.1073681 – ident: e_1_2_10_71_1 doi: 10.1111/j.1462-2920.2011.02654.x – ident: e_1_2_10_35_1 doi: 10.1080/21505594.2018.1518089 – ident: e_1_2_10_49_1 doi: 10.1562/0031-8655(2001)0730140EOUIOC2.0.CO2 – ident: e_1_2_10_78_1 doi: 10.1371/journal.pone.0087948 – ident: e_1_2_10_9_1 doi: 10.1080/09583150410001682269 – ident: e_1_2_10_83_1 doi: 10.1371/journal.pone.0030298 – ident: e_1_2_10_12_1 doi: 10.1002/ps.2026 – ident: e_1_2_10_74_1 doi: 10.1016/j.mib.2012.09.006 – ident: e_1_2_10_5_1 doi: 10.1016/j.biocontrol.2013.06.017 – ident: e_1_2_10_38_1 doi: 10.1007/s00294-015-0483-0 – ident: e_1_2_10_39_1 doi: 10.1016/S0261-2194(98)00074-X – ident: e_1_2_10_120_1 doi: 10.1016/j.fgb.2015.08.011 – ident: e_1_2_10_67_1 doi: 10.1139/w03-097 – ident: e_1_2_10_79_1 doi: 10.1111/1758-2229.12380 |
SSID | ssj0009992 |
Score | 2.5114377 |
SecondaryResourceType | review_article |
Snippet | Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because... Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30 |
SubjectTerms | Antioxidants arthropods biological control biosynthesis cell photoreactivation Cell walls Conidia deoxyribodipyrimidine photo-lyase Deoxyribodipyrimidine Photo-Lyase - genetics DNA DNA photorepair entomopathogenic fungi Formulations Fungi Insecticide Resistance Insecticides Insects Irradiation Pests Photoreactivation Proteins radiation resistance Regulatory mechanisms (biology) Solutes Spores, Fungal Ultraviolet radiation Ultraviolet Rays UV resistance Wavelengths |
Title | Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fps.6600 https://www.ncbi.nlm.nih.gov/pubmed/34397162 https://www.proquest.com/docview/2607290475 https://www.proquest.com/docview/2561926427 https://www.proquest.com/docview/2636607080 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7iSQ_uS92IIHrq2CVNOsdBFBEUcYHBS0nSKMWxMzSdg_563-syjooinkrpS5uZvOV7bd73CDnQxhNSepELwSl2GUs9V0EgdHUIAdbgzsKqF8HlFT-_Zxf9qD_V6qvmh5i8cEPLqPw1GrhU9viDNHRkOxyiNXhf3KmFcOjmgzgKYE_1nTMKuMu6cb8ul8WRx824z3HoG7j8jFWrYHO2SB7aadZ7TJ4741J19NsXBsd__Y4lstBAUNqrdWaZzJh8hcz3noqGhsPA2RRN4SoZX7Y9dCkEvcxSmae0qJvYD4tX-mKwfDizL5ZiSVoxwNIpChETog_Ncos-VWepsUcwyiJgBU2j5ZBazKspPLSQ1QaBkmZFgWQJqC1r5P7s9O7k3G3aNcDCihjW-NEE4BKESjXkdGmAtDGQLUFGEkrpq8Aw5LrxlJ-mSoeKCXQ3knuh8gRnXRmuk9l8mJtNQnUMqE5Dds5lyCKAQKYrun6g4og_-kwrhxy2i5fohsscW2oMkpqFOUhGNsF_1YF7tYKjmr7ju8hOu_pJY782gXlD1uExETlkf3IZLA8_p8jcDMcgE2HyCfmb-EWGh_AMAbDcIRu1Zk3mESIW9HngkINKP36aYHJ9i4etv4ltk7kAKzSqt0Q7ZLYsxmYXcFOp9ioTeQdctxQG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BewAOfQBtQ1tqpApO2ebh2Nlj1YcW6FYIWmklDpHtuFVEm13F2QP8emby2FIqEOIURRknTjzj-cbxfAOwb2wglQoSH51T6nOeB75GR-ibGB2spZ2FTS2C8bkYXfIPk2TS7aqkXJiWH2Kx4EaW0czXZOC0IH1wxxo6cwOB7voxLFM9b6pecPz5jjoKgU_zpzOJhM-H6aRNmKWmB13D-57oAby8j1Ybd3O6Cl_7jra7TL4N5rUemB-_cTj-35uswUqHQtlhqzbr8MiWz-HZ4XXVMXFYPPuFqfAFzMd9GV2Gfq9wTJU5q9o69tPqO7u1lEFcuFvHKCutuqHsKYZOEx0QK0pH06opcuveYStHmBWVjdVT5ii0ZvjQSjV7BGpWVBXxJZDCvITL05OLo5HfVWzAsZUpDvOVjXBWkDo3GNblETHHYMCEQUmsVKgjy4nuJtBhnmsTay5pxlEiiHUgBR-qeAOWymlpt4CZFIGdwQBdqJgniILsUA7DSKeJuAq50R687UcvMx2dOVXVuMlaIuYom7mMvqqH9-oFZy2Dx0ORnX74s86EXYb9xsAj4DLx4M3iMhof_VFRpZ3OUSah-BNDOPkXGRHjMyQicw82W9Va9CMmOBiKyIP9RkH-1MHs0xc6vPo3sT14MroYn2Vn788_bsPTiBI2mkWjHViqq7ndRRhV69eNvfwEgrAYIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tIE3jYcA2WAYMT0LbU0o-HDt9REDFPkBoG1K1l8h2XBQBaRWnD9tfv7t8FBjaNO2pqnpu3PrOv98lvt8B7BkbSKWCxEdwSn3O88DXCIS-iRFgLZ0sbHoRnJ6Jkwv-cZyM77T6avUhFjfcKDKa_ZoCfJZP9m9FQ2duIBCtH8MyFxgqxIe-3CpHIe9pHnQmkfD5MB239bI0dL8beB-IHrDL-2S1QZvRKnzv59keMrkazGs9MD9_k3D8rx-yBs86DsoOWqdZh0e2fA4rB5dVp8Nh8d0dncIXMD_tm-gyRL3CMVXmrGq72E-rH-zGUv1w4W4co5q06ppqpxhCJsIPK0pHm6opcuve4yhHjBVdjdVT5iixZnjRSjUnBGpWVBWpJZC7vISL0fG3wxO_69eAKytTXOSJjXBPkDo3mNTlEenGYLqEKUmsVKgjy0nsJtBhnmsTay5pv1EiiHUgBR-qeAOWymlpXwEzKdI6g-m5UDFPkAPZoRyGkU4TMQm50R686xcvM52YOfXUuM5aGeYom7mM_lUPv6s3nLX6HQ9NtvvVz7oAdhnOG9OOgMvEg7eLjzH06HmKKu10jjYJZZ-YwMm_2IgYryGRl3uw2XrWYh4xkcFQRB7sNf7xpwlm51_p5fW_me3Ck_OjUfb5w9mnLXgaUbVGc8doG5bqam53kEPV-k0TLb8ASkQW2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+basis+and+regulatory+mechanisms+underlying+fungal+insecticides%27+resistance+to+solar+ultraviolet+irradiation&rft.jtitle=Pest+management+science&rft.au=Sen%E2%80%90Miao+Tong&rft.au=Ming%E2%80%90Guang+Feng&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1526-498X&rft.eissn=1526-4998&rft.volume=78&rft.issue=1&rft.spage=30&rft.epage=42&rft_id=info:doi/10.1002%2Fps.6600&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-498X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-498X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-498X&client=summon |