Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation

Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aimin...

Full description

Saved in:
Bibliographic Details
Published inPest management science Vol. 78; no. 1; pp. 30 - 42
Main Authors Tong, Sen‐Miao, Feng, Ming‐Guang
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1526-498X
1526-4998
1526-4998
DOI10.1002/ps.6600

Cover

Loading…
Abstract Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV‐resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress‐responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV‐induced DNA lesions and photoreactivation of UV‐impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair‐required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV‐resistant fungal insecticides. © 2021 Society of Chemical Industry. Photoreactivation of fungal cells impaired by solar UV irradiation relies upon DNA lesion photorepair by one or two photolyases localized exclusively in the nucleus.
AbstractList Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV‐resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress‐responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV‐induced DNA lesions and photoreactivation of UV‐impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair‐required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV‐resistant fungal insecticides. © 2021 Society of Chemical Industry.
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.
Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV‐resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress‐responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV‐induced DNA lesions and photoreactivation of UV‐impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair‐required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV‐resistant fungal insecticides. © 2021 Society of Chemical Industry. Photoreactivation of fungal cells impaired by solar UV irradiation relies upon DNA lesion photorepair by one or two photolyases localized exclusively in the nucleus.
Author Tong, Sen‐Miao
Feng, Ming‐Guang
Author_xml – sequence: 1
  givenname: Sen‐Miao
  orcidid: 0000-0002-7029-6084
  surname: Tong
  fullname: Tong, Sen‐Miao
  email: tongsm@zafu.edu.cn
  organization: Zhejiang A & F University
– sequence: 2
  givenname: Ming‐Guang
  orcidid: 0000-0002-2657-0293
  surname: Feng
  fullname: Feng, Ming‐Guang
  email: mgfeng@zju.edu.cn
  organization: Institute of Microbiology, College of Life Sciences, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34397162$$D View this record in MEDLINE/PubMed
BookMark eNqF0V1rHCEUBmApCU2yLf0HRehFCmXSM-rqeBlCvyChhbbQO3HU3Roc3arTsv--bjbJRUrJlSLPOep7TtBBTNEh9KKHsx6AvN2UM84BnqDjfkl4x6QcDu73w48jdFLKNQBIKclTdEQZlaLn5BjNVyk4Mwed8aiLL1hHi7Nbt5Oa8hZPzvzU0Zep4Dlal8PWxzVezXGtA_axOFO98daV01bV6quOxuGacEm7nnOoWf_27Y6Kfc7ael19is_Q4UqH4p7frgv0_f27bxcfu8vPHz5dnF92hooBunHlCDAQozWESUuWZKCEAxdLqnU_EseACgZjb-1o6MgEBQGaAx1BcCY1XaDX-76bnH7NrlQ1-WJcCDq6NBdFOG2xCRjgcbrkvSScEdHoqwf0Os05to-0hiCIBNZeuEAvb9U8Ts6qTfaTzlt1l30D3R6YnErJbqWMrzfxtMx8UD2o3WzVpqjdbJs_feDvWv4r3-zlHx_c9n9Mffl6o_8CsjOxIQ
CitedBy_id crossref_primary_10_3390_jof9030290
crossref_primary_10_1007_s43630_023_00376_7
crossref_primary_10_1128_msystems_00166_24
crossref_primary_10_1002_ps_7291
crossref_primary_10_3390_jof10060420
crossref_primary_10_1111_1758_2229_13107
crossref_primary_10_1016_j_jphotobiol_2024_112849
crossref_primary_10_3390_jof8111124
crossref_primary_10_1016_j_jip_2023_107892
crossref_primary_10_3390_molecules27185998
crossref_primary_10_1016_j_biocontrol_2023_105352
crossref_primary_10_3390_ijerph19116614
crossref_primary_10_3390_nu17050792
crossref_primary_10_1128_aem_00994_23
crossref_primary_10_3390_jof8060558
crossref_primary_10_3390_jof7110956
crossref_primary_10_1002_ps_7086
crossref_primary_10_1128_spectrum_00070_23
crossref_primary_10_3390_jof8040394
crossref_primary_10_1021_acs_jafc_4c04400
crossref_primary_10_3389_fmicb_2024_1507931
crossref_primary_10_1007_s11274_022_03301_9
crossref_primary_10_1016_j_jip_2024_108071
crossref_primary_10_3390_jof8101110
crossref_primary_10_1016_j_micres_2023_127589
crossref_primary_10_3390_jof8060606
crossref_primary_10_3390_jof9020154
crossref_primary_10_1016_j_micres_2024_127622
crossref_primary_10_1002_ps_7889
crossref_primary_10_3390_jof7110895
crossref_primary_10_1007_s10340_023_01622_8
crossref_primary_10_1111_php_13752
crossref_primary_10_1128_msystems_00318_22
crossref_primary_10_3390_insects14040307
Cites_doi 10.1007/s00294-015-0492-z
10.1126/science.1072795
10.1111/1462-2920.15398
10.1128/EC.00208-06
10.1016/j.cub.2005.01.001
10.1016/j.fgb.2020.103437
10.1007/s10526-017-9816-x
10.1038/srep03086
10.1177/0748730406288338
10.1007/s10340-020-01313-8
10.1371/journal.pone.0043069
10.1080/21505594.2021.1923232
10.1016/j.jip.2018.01.007
10.1016/0092-8674(94)90153-8
10.1007/s00253-020-10659-z
10.1007/s00253-014-5577-y
10.1007/s00253-015-6823-7
10.1016/j.jip.2005.05.005
10.1007/s00253-018-9148-5
10.1007/s00294-019-00957-z
10.1016/j.biocontrol.2006.06.016
10.1016/bs.adgen.2015.11.002
10.1111/j.1574-6976.2011.00288.x
10.1016/j.funbio.2021.06.003
10.1080/15572536.2003.11833149
10.1126/science.272.5258.48
10.1007/s00253-018-9020-7
10.1016/j.cropro.2003.10.004
10.1186/gb-2011-12-11-r116
10.1007/s00253-016-7757-4
10.1111/cmi.12839
10.1016/j.funbio.2017.08.003
10.1007/s00253-018-9302-0
10.1016/j.biocontrol.2007.11.006
10.1007/s00253-017-8155-2
10.1016/j.funbio.2014.03.001
10.1007/s11046-009-9207-7
10.1016/j.pestbp.2019.11.016
10.1007/s10340-020-01223-9
10.1007/s00253-017-8390-6
10.3390/jof6020060
10.1111/1462-2920.12044
10.1128/AEM.00812-17
10.1016/j.fgb.2015.01.008
10.1007/s00294-014-0439-9
10.1017/S0953756201004270
10.1093/glycob/cwg047
10.1007/s00253-014-6124-6
10.1038/srep20566
10.1002/mbo3.322
10.1007/s00253-017-8290-9
10.1093/nar/28.10.2060
10.1093/femsle/fnw036
10.1007/s10340-017-0846-z
10.1111/1462-2920.13197
10.1016/j.fgb.2015.07.002
10.1007/s10526-017-9818-8
10.1016/j.molcel.2017.04.024
10.1093/jipm/pmz012
10.1111/1744-7917.12233
10.1007/s00253-014-5876-3
10.1111/1462-2920.13727
10.1016/j.tibs.2016.07.009
10.1016/S0065-2164(04)54001-7
10.1016/j.fgb.2014.06.010
10.1128/MCB.16.5.2361
10.1111/1462-2920.12530
10.1146/annurev-arplant-042110-103759
10.1016/j.fgb.2013.02.008
10.1016/j.jip.2006.06.008
10.1111/febs.12362
10.1016/0092-8674(90)90479-X
10.1007/s00294-015-0477-y
10.1016/j.funbio.2016.01.007
10.1111/1462-2920.13671
10.1111/j.1462-2920.2011.02643.x
10.1016/j.fgb.2014.09.006
10.1038/srep00483
10.1016/j.funbio.2018.01.003
10.1007/s00253-017-8434-y
10.1111/1462-2920.12450
10.1016/j.mycres.2008.04.013
10.1021/cr0204348
10.1111/j.1462-2920.2012.02848.x
10.1007/s00253-016-7688-0
10.1007/s10526-009-9248-3
10.1007/s00253-017-8703-9
10.1080/09583159409355309
10.1146/annurev-ento-031616-035509
10.1002/ps.5803
10.3852/07-202
10.1093/glycob/cwu028
10.1016/j.cropro.2004.07.006
10.1007/s00253-018-9033-2
10.1128/EC.2.4.690-698.2003
10.1016/j.biocontrol.2011.07.005
10.3389/fmicb.2018.01677
10.1007/s00253-009-2083-8
10.1006/jipa.2001.5048
10.1006/fgbi.1999.1158
10.1562/0031-8655(2001)0740734BSUAUR2.0.CO2
10.1016/j.jip.2018.07.011
10.1093/gbe/evw082
10.1099/mic.0.27346-0
10.1073/pnas.1514637112
10.1007/s00253-018-9516-1
10.1016/j.fgb.2016.05.005
10.1016/j.jip.2004.06.007
10.1111/j.1574-6968.2010.02168.x
10.1016/j.fgb.2016.12.004
10.1038/s41598-017-01570-1
10.1080/10408369891234192
10.1007/s10526-009-9265-2
10.1128/AEM.02459-18
10.1007/s10340-019-01161-1
10.1534/g3.119.400430
10.1002/ps.5054
10.1111/j.1462-2920.2012.02871.x
10.1007/s00253-016-7420-0
10.1038/nsmb1152
10.1562/2005-05-08-RA-52
10.1016/j.biocontrol.2007.08.001
10.1111/cmi.13100
10.1007/s00253-010-2437-2
10.1016/S0092-8674(00)80566-8
10.1128/AEM.00287-20
10.1002/j.1460-2075.1994.tb06961.x
10.1016/j.fgb.2019.02.009
10.1038/s41579-018-0109-x
10.1371/journal.pgen.1001264
10.1111/1462-2920.13851
10.1128/mSystems.00098-21
10.1016/j.cub.2020.08.051
10.1242/jcs.202622
10.1111/1462-2920.15500
10.1016/bs.adgen.2016.01.006
10.1007/s10526-019-09990-w
10.1101/gad.13.7.768
10.1111/1462-2920.12634
10.1126/science.1073681
10.1111/j.1462-2920.2011.02654.x
10.1080/21505594.2018.1518089
10.1562/0031-8655(2001)0730140EOUIOC2.0.CO2
10.1371/journal.pone.0087948
10.1080/09583150410001682269
10.1371/journal.pone.0030298
10.1002/ps.2026
10.1016/j.mib.2012.09.006
10.1016/j.biocontrol.2013.06.017
10.1007/s00294-015-0483-0
10.1016/S0261-2194(98)00074-X
10.1016/j.fgb.2015.08.011
10.1139/w03-097
10.1111/1758-2229.12380
ContentType Journal Article
Copyright 2021 Society of Chemical Industry.
Copyright © 2022 Society of Chemical Industry
Copyright_xml – notice: 2021 Society of Chemical Industry.
– notice: Copyright © 2022 Society of Chemical Industry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7SS
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1002/ps.6600
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
MEDLINE
MEDLINE - Academic

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1526-4998
EndPage 42
ExternalDocumentID 34397162
10_1002_ps_6600
PS6600
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
– fundername: Ministry of Science and Technology of the People's Republic of China
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
29O
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QR
7SS
7ST
7T7
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3780-bfe20407bdc249d252832606753aa1b2e403740b1ddbc3b473070a603b07649a3
IEDL.DBID DR2
ISSN 1526-498X
1526-4998
IngestDate Fri Jul 11 18:34:56 EDT 2025
Fri Jul 11 11:51:25 EDT 2025
Wed Aug 13 04:37:23 EDT 2025
Thu Apr 03 07:06:11 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
Tue Jul 01 01:22:34 EDT 2025
Wed Jan 22 16:28:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords biological control
entomopathogenic fungi
DNA photorepair
UV resistance
cell photoreactivation
Language English
License 2021 Society of Chemical Industry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3780-bfe20407bdc249d252832606753aa1b2e403740b1ddbc3b473070a603b07649a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2657-0293
0000-0002-7029-6084
PMID 34397162
PQID 2607290475
PQPubID 46069
PageCount 13
ParticipantIDs proquest_miscellaneous_2636607080
proquest_miscellaneous_2561926427
proquest_journals_2607290475
pubmed_primary_34397162
crossref_citationtrail_10_1002_ps_6600
crossref_primary_10_1002_ps_6600
wiley_primary_10_1002_ps_6600_PS6600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
2022-Jan
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: London
PublicationTitle Pest management science
PublicationTitleAlternate Pest Manag Sci
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2017; 83
2013; 3
2020; 163
2002; 94
2019; 10
2006; 39
2004; 23
2011; 62
2015; 76
2019; 17
2014; 24
2011; 59
2012; 15
2012; 14
1990; 61
2018; 9
1998; 17
2015; 82
2015; 81
2013; 54
2006; 21
2019; 21
2015; 83
2020; 93
2014; 16
1994; 77
2007; 6
2016; 41
2011; 67
2008; 112
2014; 98
2017; 62
2019; 9
2005; 90
2018; 102
2018; 740
2017; 66
1999; 28
2019; 103
2016; 94
2020; 144
1993
2016; 93
2017; 130
2016; 18
2012; 36
1996; 16
2018; 20
2011; 7
2004; 54
2016; 5
2016; 6
2004; 50
2020; 30
2015; 61
2015; 112
2004; 150
2008; 45
2009; 101
1994; 13
2005; 15
2003; 103
2016; 8
2016; 23
2010; 55
2018; 122
2017; 7
2014; 70
2011; 315
2003; 13
2019; 127
2016; 100
2014; 68
2011; 12
2013; 280
2005; 24
2001; 105
2020; 6
2013; 15
2019; 65
1999; 13
2003; 2
2009; 168
1999; 96
2017; 121
2014; 9
2004; 87
2014; 118
2006; 93
2021; 6
2015; 17
2000; 28
2020; 86
2006; 13
2002; 297
2015; 99
2020; 104
2016; 363
2020; 76
2021; 94
2016; 120
2010; 85
2006; 82
2018; 152
2010; 86
2012; 2
2017; 90
2021; 12
2019; 85
2021
2004; 14
2018; 157
2017; 98
1996; 272
2017; 19
2020; 65
2007; 43
2017; 101
2001; 78
2012; 7
2001; 73
1994; 4
2001; 74
1998; 35
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
Madronich S (e_1_2_10_40_1) 1993
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 82
  start-page: 418
  year: 2006
  end-page: 422
  article-title: Conidial pigmentation is important to tolerance against solar‐simulated radiation in the entomopathogenic fungus
  publication-title: Photochem Photobiol
– volume: 59
  start-page: 255
  year: 2011
  end-page: 260
  article-title: Integration of thioredoxin (trxA) into enhances the fungal tolerance to the stresses of oxidation, heat and UVB irradiation
  publication-title: Biol Control
– volume: 144
  year: 2020
  article-title: Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of
  publication-title: Fungal Genet Biol
– volume: 43
  start-page: 237
  year: 2007
  end-page: 256
  article-title: Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types
  publication-title: Biol Control
– volume: 90
  start-page: 947
  year: 2017
  end-page: 960
  article-title: Efficacy of entomopathogenic fungi against adult from laboratory to field applications
  publication-title: J Pest Sci
– year: 2021
  article-title: Conidiation under illumination enhances conidial tolerance of insectpathogenic fungi to environmental stresses
  publication-title: Fungal Biol
– volume: 24
  start-page: 167
  year: 2005
  end-page: 175
  article-title: Impact of three application methods on the field efficacy of a ‐based mycoinsecticide against the false‐eye leafhopper, (Homoptera: Cicadellidae) in tea canopy
  publication-title: Crop Prot
– volume: 15
  start-page: 967
  year: 2013
  end-page: 979
  article-title: P‐type calcium ATPase functions as a core regulator of growth, conidiation and responses to multiple stressful stimuli through cross‐talk with signaling networks
  publication-title: Environ Microbiol
– volume: 272
  start-page: 48
  year: 1996
  end-page: 49
  article-title: No “end of history” for photolyases
  publication-title: Science
– volume: 103
  start-page: 577
  year: 2019
  end-page: 587
  article-title: Insights into regulatory roles of MAPK‐cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens
  publication-title: Appl Microbiol Biotechnol
– volume: 163
  start-page: 85
  year: 2020
  end-page: 192
  article-title: Characterization of trehalose‐6‐phosphate phosphatase in trehalose biosynthesis, asexual development, stress resistance and virulence of an insect mycopathogen
  publication-title: Pestic Biochem Physiol
– volume: 8
  start-page: 295
  year: 2016
  end-page: 304
  article-title: Subcellular localization of five singular WSC domain‐containing proteins and their roles in responses to stress cues and metal ions
  publication-title: Environ Microbiol Rep
– volume: 130
  start-page: 3336
  year: 2017
  end-page: 3346
  article-title: The deubiquitylating enzyme Ubp12 regulates Rad23‐dependent proteasomal degradation
  publication-title: J Cell Sci
– volume: 12
  start-page: R116
  year: 2011
  article-title: Genome sequence of the insect pathogenic fungus , a valued traditional Chinese medicine
  publication-title: Genome Biol
– volume: 93
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Miro GTPase controls mitochondrial behavior affecting stress tolerance and virulence of a fungal insect pathogen
  publication-title: Fungal Genet Biol
– volume: 150
  start-page: 3561
  year: 2004
  end-page: 3569
  article-title: BLR‐1 and BLR‐2, key regulatory elements of photoconidiation and mycelial growth in
  publication-title: Microbiology
– volume: 6
  start-page: 60
  year: 2020
  article-title: Integrated management of in cowpea using intercropping and entomopathogenic fungi under field conditions
  publication-title: J Fungi
– volume: 28
  start-page: 2060
  year: 2000
  end-page: 2068
  article-title: DNA repair in a yeast origin of replication: contributions of photolyase and nucleotide excision repair
  publication-title: Nucleic Acids Res
– volume: 104
  start-page: 5711
  year: 2020
  end-page: 5724
  article-title: Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides
  publication-title: Appl Microbiol Biotechnol
– volume: 10
  start-page: 13
  year: 2019
  article-title: Biological control of spotted‐wing (Diptera: Drosophilidae) ‐ current and pending tactics
  publication-title: J Integr Pest Manag
– volume: 21
  start-page: 159
  year: 2006
  end-page: 168
  article-title: Two circadian timing circuits in cells share components and regulate distinct rhythmic processes
  publication-title: J Biol Rhythms
– volume: 101
  start-page: 512
  year: 2009
  end-page: 530
  article-title: A multilocus phylogeny of the lineage
  publication-title: Mycologia
– volume: 7
  year: 2012
  article-title: Additive contributions of two manganese‐cored superoxide dismutases (MnSODs) to anti‐oxidation, UV tolerance and virulence of
  publication-title: PLoS One
– volume: 28
  start-page: 12
  year: 1999
  end-page: 20
  article-title: Characterization of a photolyase‐deficient mutant generated by repeat induced point mutation of the gene
  publication-title: Fungal Genet Biol
– volume: 101
  start-page: 6941
  year: 2017
  end-page: 6949
  article-title: The Hog1‐like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen
  publication-title: Appl Microbiol Biotechnol
– volume: 67
  start-page: 36
  year: 2011
  end-page: 43
  article-title: Evaluation of alternative rice planthopper control by the combined action of oil‐formulated and low‐rate buprofezin
  publication-title: Pest Manag Sci
– volume: 14
  start-page: 2139
  year: 2012
  end-page: 2150
  article-title: Primary roles of two dehydrogenases in the mannitol metabolism and multi‐stress tolerance of entomopathogenic fungus
  publication-title: Environ Microbiol
– volume: 10
  start-page: 429
  year: 2019
  end-page: 437
  article-title: Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes
  publication-title: Virulence
– volume: 101
  start-page: 6793
  year: 2017
  end-page: 6807
  article-title: Application of the entomogenous fungus, , for leafroller ( ) control and its effect on rice phyllosphere microbial diversity
  publication-title: Appl Microbiol Biotechnol
– volume: 93
  start-page: 275
  year: 2020
  end-page: 290
  article-title: Impact of granular carriers to improve the efficacy of entomopathogenic fungi against wireworms in spring wheat
  publication-title: J Pest Sci
– volume: 168
  start-page: 145
  year: 2009
  end-page: 152
  article-title: Comparative tolerances of various isolates to UVB irradiation with a description of a modeling method to assess lethal dose
  publication-title: Mycopathologia
– volume: 7
  year: 2012
  article-title: Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi
  publication-title: PLoS One
– volume: 99
  start-page: 10069
  year: 2015
  end-page: 10081
  article-title: WetA and VosA are distinct regulators of conidiation capacity, conidial quality, and biological control potential of a fungal insect pathogen
  publication-title: Appl Microbiol Biotechnol
– volume: 62
  start-page: 335
  year: 2011
  end-page: 364
  article-title: The cryptochromes: blue light photoreceptors in plants and animals
  publication-title: Annu Rev Plant Biol
– volume: 24
  start-page: 638
  year: 2014
  end-page: 648
  article-title: The connection of protein ‐mannosyltransferase family to the biocontrol potential of , a fungal entomopathogen
  publication-title: Glycobiology
– volume: 102
  start-page: 9221
  year: 2018
  end-page: 9230
  article-title: Antioxidant activities of four superoxide dismutases in and their contributions to pest control potential
  publication-title: Appl Microbiol Biotechnol
– volume: 54
  start-page: 1
  year: 2004
  end-page: 70
  article-title: spp., cosmopolitan insect pathogenic fungi: mycological aspects
  publication-title: Adv Appl Microbiol
– volume: 315
  start-page: 81
  year: 2011
  end-page: 86
  article-title: Visible light during mycelial growth and conidiation of produces conidia with increased stress tolerance
  publication-title: FEMS Microbiol Lett
– volume: 17
  start-page: 1444
  year: 2015
  end-page: 1462
  article-title: Unveiling equal importance of two 14‐3‐3 proteins for morphogenesis, conidiation, multistress tolerance and virulence of an insect pathogen
  publication-title: Environ Microbiol
– volume: 4
  start-page: 3
  year: 1994
  end-page: 34
  article-title: Production, formulation and application of the entomopathogenic fungus for insect control: current status
  publication-title: Biocontrol Sci Technol
– volume: 7
  year: 2011
  article-title: Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi and
  publication-title: PLoS Genet
– volume: 68
  start-page: 129
  year: 2014
  end-page: 135
  article-title: Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests
  publication-title: Biol Control
– volume: 62
  start-page: 639
  year: 2017
  end-page: 648
  article-title: Entomopathogenic Beauveria bassiana granules to control soil‐dwelling stage of western flower thrips, (Thysanoptera: Thripidae)
  publication-title: BioConrol
– volume: 78
  start-page: 98
  year: 2001
  end-page: 108
  article-title: Variability in response to UVB among species and strains of isolated from sites at latitudes from 61°N to 54°S
  publication-title: J Invertebr Pathol
– volume: 61
  start-page: 239
  year: 2015
  end-page: 249
  article-title: Stress response signaling and virulence: insights from entomopathogenic fungi
  publication-title: Curr Genet
– volume: 35
  start-page: 189
  year: 1998
  end-page: 237
  article-title: Molecular and cellular effects of ultraviolet light‐induced genotoxicity
  publication-title: Crit Rev Clin Lab Sci
– volume: 15
  start-page: 447
  year: 2013
  end-page: 462
  article-title: Differentiated functions of Ras1 and Ras2 proteins in regulating the germination, growth, conidiation, multi‐stress tolerance and virulence of
  publication-title: Environ Microbiol
– volume: 82
  start-page: 85
  year: 2015
  end-page: 94
  article-title: A novel Ras GTPase (Ras3) regulates conidiation, multi‐stress tolerance and virulence by acting upstream of Hog1 signaling pathway in
  publication-title: Fungal Genet Biol
– volume: 83
  start-page: 68
  year: 2015
  end-page: 77
  article-title: ATPase, MaENA1, of influences the Na ‐, thermo‐ and UV‐tolerances of conidia and is involved in multiple mechanisms of stress tolerance
  publication-title: Fungal Genet Biol
– volume: 94
  start-page: 307
  year: 2016
  end-page: 364
  article-title: Entomopathogenic fungi: new insights into host‐pathogen interactions
  publication-title: Adv Genet
– volume: 112
  start-page: 1362
  year: 2008
  end-page: 1372
  article-title: Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UVB radiation in conidia
  publication-title: Mycol Res
– volume: 127
  start-page: 1
  year: 2019
  end-page: 11
  article-title: The velvet protein VeA functions in asexual cycle, stress tolerance and transcriptional regulation of
  publication-title: Fungal Genet Biol
– volume: 121
  start-page: 956
  year: 2017
  end-page: 965
  article-title: Lysyl‐tRNA synthetase (Krs) acts a virulence factor of by its vital role in conidial germination and dimorphic transition
  publication-title: Fungal Biol
– volume: 66
  start-page: 488
  year: 2017
  end-page: 502
  article-title: ubiquitin linkage‐type analysis reveals that the Cdc48‐Rad23/Dsk2 axis contributes to K48‐linked chain specificity of the proteasome
  publication-title: Mol Cell
– volume: 23
  start-page: 489
  year: 2004
  end-page: 496
  article-title: Field trials of an oil‐based emulsifiable formulation of conidia and low application rates of imidacloprid for control of false‐eye leafhopper in southern China
  publication-title: Crop Prot
– volume: 76
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Subcellular localization of six thioredoxins and their antioxidant activity and contributions to biological control potential in
  publication-title: Fungal Genet Biol
– volume: 62
  start-page: 73
  year: 2017
  end-page: 90
  article-title: Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements
  publication-title: Annu Rev Entomol
– volume: 87
  start-page: 73
  year: 2004
  end-page: 83
  article-title: Variations in UVB tolerance and germination speed of conidia produced on insects and artificial substrates
  publication-title: J Invertebr Pathol
– volume: 103
  start-page: 2203
  year: 2003
  end-page: 2237
  article-title: Structure and function of DNA photolyase and cryptochrome blue‐light photoreceptors
  publication-title: Chem Rev
– volume: 297
  start-page: 840
  year: 2002
  end-page: 843
  article-title: White collar‐1, a DNA binding transcription factor and a light sensor
  publication-title: Science
– volume: 363
  year: 2016
  article-title: Exposure of mycelium to light induces tolerance to UVB radiation
  publication-title: FEMS Microbiol Lett
– volume: 65
  start-page: 1025
  year: 2019
  end-page: 1040
  article-title: MaPmt4, a protein ‐mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in
  publication-title: Curr Genet
– volume: 19
  start-page: 4091
  year: 2017
  end-page: 4102
  article-title: Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 cascade in a fungal insect pathogen
  publication-title: Environ Microbiol
– volume: 112
  start-page: 15130
  year: 2015
  end-page: 15135
  article-title: Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution
  publication-title: Proc Natl Acad Sci U S A
– volume: 102
  start-page: 6973
  year: 2018
  end-page: 6986
  article-title: C‐terminal Ser/Thr residues are vital for the regulatory role of Ste7 in the asexual cycle and virulence of
  publication-title: Appl Microbiol Biotechnol
– volume: 15
  start-page: 409
  year: 2013
  end-page: 418
  article-title: Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses
  publication-title: Environ Microbiol
– start-page: 17
  year: 1993
  end-page: 69
– volume: 76
  start-page: 2627
  year: 2020
  end-page: 2634
  article-title: Colony heating protects honey bee populations from a risk of contact with wide‐spectrum insecticides applied in the field
  publication-title: Pest Manag Sci
– volume: 96
  start-page: 271
  year: 1999
  end-page: 290
  article-title: Molecular bases for circadian clocks
  publication-title: Cell
– volume: 15
  start-page: 669
  year: 2012
  end-page: 677
  article-title: Genetic control of asexual sporulation in filamentous fungi
  publication-title: Curr Opin Microbiol
– volume: 8
  start-page: 1374
  year: 2016
  end-page: 1387
  article-title: Divergent and convergent evolution of fungal pathogenicity
  publication-title: Genome Biol Evol
– volume: 101
  start-page: 3637
  year: 2017
  end-page: 3651
  article-title: Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen
  publication-title: Appl Microbiol Biotechnol
– volume: 12
  start-page: 1306
  year: 2021
  end-page: 1322
  article-title: DIM5/KMT1 controls fungal insect pathogenicity and genome stability by methylation of histone H3K4, H3K9 and H3K36
  publication-title: Virulence
– volume: 19
  start-page: 1808
  year: 2017
  end-page: 1821
  article-title: Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus
  publication-title: Environ Microbiol
– volume: 102
  start-page: 4995
  year: 2018
  end-page: 5004
  article-title: Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens
  publication-title: Appl Microbiol Biotechnol
– volume: 13
  start-page: 17
  year: 2003
  end-page: 27
  article-title: New insights on trehalose: a multifunctional molecule
  publication-title: Glycobiology
– volume: 7
  start-page: 1420
  year: 2017
  article-title: Differential roles of six P‐type calcium ATPases in sustaining intracellular Ca homeostasis, asexual cycle and environmental fitness of
  publication-title: Sci Rep
– volume: 3
  start-page: 3086
  year: 2013
  article-title: Cytokinesis‐required Cdc14 is a signaling hub of asexual development and multi‐stress tolerance in
  publication-title: Sci Rep
– volume: 20
  year: 2018
  article-title: Pleiotropic effects of the histone deacetylase Hos2 linked to H4‐K16 deacetylation, H3‐K56 acetylation and H2A‐S129 phosphorylation in
  publication-title: Cell Microbiol
– year: 2021
  article-title: Two white collar proteins protect fungal cells from solar UV damage by their interactions with two photolyases in
  publication-title: Environ Microbiol
– volume: 36
  start-page: 95
  year: 2012
  end-page: 110
  article-title: The circadian clock of
  publication-title: FEMS Microbiol Rev
– volume: 297
  start-page: 815
  year: 2002
  end-page: 819
  article-title: White Collar‐1, a circadian blue light photoreceptor, binding to the frequency promoter
  publication-title: Science
– volume: 50
  start-page: 41
  year: 2004
  end-page: 49
  article-title: Enzyme activities associated with oxidative stress in during germination, mycelial growth, and conidiation and in response to near‐UV irradiation
  publication-title: Can J Microbiol
– volume: 16
  start-page: 1879
  year: 2014
  end-page: 1897
  article-title: The transcriptional co‐activator multiprotein bridging factor 1 from the fungal insect pathogen, , mediates regulation of hyphal morphogenesis, stress tolerance, and virulence
  publication-title: Environ Microbiol
– volume: 73
  start-page: 140
  year: 2001
  end-page: 146
  article-title: Effects of UVB irradiance on conidia and germinants of the entomopathogenic hyphomycete : a study of reciprocity and recovery
  publication-title: Photochem Photobiol
– volume: 120
  start-page: 500
  year: 2016
  end-page: 512
  article-title: The cryptochrome/photolyase genes regulate the expression of ‐independent genes both in red and blue light
  publication-title: Fungal Biol
– volume: 83
  year: 2017
  article-title: The two cryptochrome/photolyase family proteins fulfill distinct roles in DNA photorepair and regulation of conidiation in the gray mold fungus
  publication-title: Appl Environ Microbiol
– volume: 13
  start-page: 768
  year: 1999
  end-page: 785
  article-title: Molecular mechanism of nucleotide excision repair
  publication-title: Genes Dev
– volume: 152
  start-page: 35
  year: 2018
  end-page: 37
  article-title: Exposing mycelium to visible light up‐regulates a photolyase gene and increases photoreactivating ability
  publication-title: J Invertebr Pathol
– volume: 5
  start-page: 224
  year: 2016
  end-page: 243
  article-title: White collar 1‐induced photolyase expression contributes to UV‐tolerance of
  publication-title: Microbiologyopen
– volume: 61
  start-page: 675
  year: 1990
  end-page: 684
  article-title: Site‐specific DNA‐repair at the nucleosome level in a yeast minichromosome
  publication-title: Cell
– volume: 9
  start-page: 2951
  year: 2019
  end-page: 2961
  article-title: Combining transcriptomics and proteomics reveals potential post‐transcriptional control of gene expression after light exposure in
  publication-title: G3‐Genes Genomes Genet
– volume: 55
  start-page: 413
  year: 2010
  end-page: 422
  article-title: and responses of fungal biocontrol agents to the gradient doses of UVB and UV‐A irradiation
  publication-title: BioControl
– volume: 14
  start-page: 817
  year: 2012
  end-page: 829
  article-title: A group III histidine kinase (mhk1) upstream of high‐osmolarity glycerol pathway regulates sporulation, multi‐stress tolerance and virulence of , a fungal entomopathogen
  publication-title: Environ Microbiol
– volume: 70
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Three α‐1,2‐mannosyltransferases contribute differentially to conidiation, cell wall integrity, multistress tolerance and virulence of
  publication-title: Fungal Genet Biol
– volume: 77
  start-page: 381
  year: 1994
  end-page: 390
  article-title: The UV response involving the Ras signaling pathway and AP‐1 transcription factors is conserved between yeast and mammals
  publication-title: Cell
– volume: 9
  year: 2014
  article-title: Three mitogen‐activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen
  publication-title: PLoS One
– volume: 14
  start-page: 531
  year: 2004
  end-page: 544
  article-title: Trials of , and imidacloprid for management of (Homoptera: Aleyrodidae) on greenhouse grown lettuce
  publication-title: Biocontrol Sci Technol
– volume: 13
  start-page: 902
  year: 2006
  end-page: 907
  article-title: Rad4‐Rad23 interaction with SWI/SNF links ATP‐dependent chromatin remodeling with nucleotide excision repair
  publication-title: Nat Struct Mol Biol
– volume: 98
  start-page: 52
  year: 2017
  end-page: 60
  article-title: Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in
  publication-title: Fungal Genet Biol
– volume: 23
  start-page: 854
  year: 2016
  end-page: 868
  article-title: Soil application of GHA against apple sawfly, (Hymenoptera: Tenthredinidae): field mortality and fungal persistence
  publication-title: Insect Sci
– volume: 93
  start-page: 170
  year: 2006
  end-page: 182
  article-title: Mutants and isolates of are diverse in their relationships between conidial pigmentation and stress tolerance
  publication-title: J Invertebr Pathol
– volume: 99
  start-page: 827
  year: 2015
  end-page: 840
  article-title: The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence of
  publication-title: Appl Microbiol Biotechnol
– volume: 122
  start-page: 592
  year: 2018
  end-page: 601
  article-title: The xenon test chamber Q‐SUN for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation
  publication-title: Fungal Biol
– volume: 19
  start-page: 2037
  year: 2017
  end-page: 2052
  article-title: Two eisosome proteins play opposite roles in autophagic control and sustain cell integrity, function and pathogenicity in
  publication-title: Environ Microbiol
– volume: 74
  start-page: 734
  year: 2001
  end-page: 739
  article-title: Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus
  publication-title: Photochem Photobiol
– volume: 17
  start-page: 1119
  year: 2015
  end-page: 1133
  article-title: Wee1 and Cdc25 control morphogenesis, virulence and multistress tolerance of by balancing cell cycle‐required cyclin‐dependent kinase 1 activity
  publication-title: Environ Microbiol
– volume: 94
  start-page: 969
  year: 2021
  end-page: 980
  article-title: Long‐term field evaluation and large‐scale application of a strain for controlling major rice pests
  publication-title: J Pest Sci
– volume: 101
  start-page: 185
  year: 2017
  end-page: 195
  article-title: Vital role for the J‐domain protein Mdj1 in asexual development, multiple stress tolerance and virulence of
  publication-title: Appl Microbiol Biotechnol
– volume: 98
  start-page: 8253
  year: 2014
  end-page: 8265
  article-title: Calcineurin modulates growth, stress tolerance, and virulence in and its regulatory network
  publication-title: Appl Microbiol Biotechnol
– volume: 101
  start-page: 5033
  year: 2017
  end-page: 5043
  article-title: The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in
  publication-title: Appl Microbiol Biotechnol
– volume: 6
  start-page: 1682
  year: 2007
  end-page: 1692
  article-title: PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction
  publication-title: Eukaryot Cell
– volume: 45
  start-page: 48
  year: 2008
  end-page: 55
  article-title: Field trials of four formulations of and for control of cotton spider mites (Acari: Tetranychidae) in the Tarim Basin of China
  publication-title: Biol Control
– volume: 86
  start-page: e00287
  year: 2020
  end-page: e00220
  article-title: Photoprotective role of photolyase‐interacting RAD23 and its pleiotropic effect on the insect‐pathogenic fungus
  publication-title: Appl Environ Microbiol
– volume: 86
  start-page: 1543
  year: 2010
  end-page: 1553
  article-title: A new manganese superoxide dismutase identified from enhances virulence and stress tolerance when overexpressed in the fungal pathogen
  publication-title: Appl Microbiol Biotechnol
– volume: 98
  start-page: 5517
  year: 2014
  end-page: 5529
  article-title: The GPI‐anchored protein Ecm33 is vital for conidiation, cell wall integrity and multi‐stress tolerance of two filamentous entomopathogens but not for virulence
  publication-title: Appl Microbiol Biotechnol
– volume: 21
  year: 2019
  article-title: The DUF1996 and WSC domain‐containing protein Wsc1I acts as a novel sensor of stress cues for Hog1 activation in
  publication-title: Cell Microbiol
– volume: 81
  start-page: 160
  year: 2015
  end-page: 171
  article-title: Distinct contributions of one Fe‐ and two Cu/Zn‐cofactored superoxide dismutases to antioxidation, UV tolerance and virulence of
  publication-title: Fungal Genet Biol
– volume: 55
  start-page: 159
  year: 2010
  end-page: 185
  article-title: Ecological factors in the inundative use of fungal entomopathogens
  publication-title: BioControl
– volume: 61
  start-page: 405
  year: 2015
  end-page: 425
  article-title: Molecular and physiological effects of environmental UV radiation on fungal conidia
  publication-title: Curr Genet
– volume: 17
  start-page: 25
  year: 2019
  end-page: 36
  article-title: Light sensing and responses in fungi
  publication-title: Nat Rev Microbiol
– volume: 740
  start-page: 2626
  year: 2018
  end-page: 2635
  article-title: Rtt109‐dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of
  publication-title: Pest Manag Sci
– volume: 54
  start-page: 42
  year: 2013
  end-page: 51
  article-title: Insight into the transcriptional regulation of Msn2 required for conidiation, multi‐stress responses and virulence of two entomopathogenic fungi
  publication-title: Fungal Genet Biol
– volume: 102
  start-page: 1343
  year: 2018
  end-page: 1355
  article-title: The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation
  publication-title: Appl Microbiol Biotechnol
– volume: 90
  start-page: 55
  year: 2005
  end-page: 58
  article-title: Influence of growth environment on tolerance to UVB radiation, germination speed, and morphology of e var. conidia
  publication-title: J Invertebr Pathol
– volume: 105
  start-page: 874
  year: 2001
  end-page: 882
  article-title: Effect of UVB on conidia and germlings of the entomopathogenic hyphomycete
  publication-title: Mycol Res
– volume: 65
  start-page: 211
  year: 2020
  end-page: 222
  article-title: and conidia produced on riboflavin‐supplemented medium have increased UV‐A tolerance and upregulated photoprotection and photoreactivation genes
  publication-title: BioControl
– volume: 15
  start-page: 105
  year: 2005
  end-page: 115
  article-title: Powerful skin cancer protection by a CPD‐photolyase transgene
  publication-title: Curr Biol
– volume: 39
  start-page: 210
  year: 2006
  end-page: 217
  article-title: Field efficacy of application of formulation and low rate pyridaben for sustainable control of citrus red mite (Acari: Tetranychidae) in orchards
  publication-title: Biol Control
– volume: 61
  start-page: 427
  year: 2015
  end-page: 440
  article-title: Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation
  publication-title: Curr Genet
– volume: 85
  start-page: e02459
  year: 2019
  end-page: e02418
  article-title: Two photolyases repair distinct DNA lesions and reactivate UVB‐inactivated conidia of an insect mycopathogen under visible light
  publication-title: Appl Environ Microbiol
– volume: 85
  start-page: 975
  year: 2010
  end-page: 984
  article-title: A new non‐hydrophobic cell wall protein (CWP10) of enhances conidial hydrophobicity when expressed in
  publication-title: Appl Microbiol Biotechnol
– volume: 94
  start-page: 251
  year: 2016
  end-page: 285
  article-title: Insect immunity to entomopathogenic fungi
  publication-title: Adv Genet
– volume: 41
  start-page: 834
  year: 2016
  end-page: 846
  article-title: Circadian oscillators: around the transcription‐ translation feedback loop and on to output
  publication-title: Trends Biochem Sci
– volume: 102
  start-page: 5611
  year: 2018
  end-page: 5623
  article-title: Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in
  publication-title: Appl Microbiol Biotechnol
– volume: 62
  start-page: 613
  year: 2017
  end-page: 623
  article-title: Preventive application of an entomopathogenic fungus in cover crops for wireworm control
  publication-title: BioControl
– volume: 100
  start-page: 5907
  year: 2016
  end-page: 5917
  article-title: Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity and iron homeostasis of
  publication-title: Appl Microbiol Biotechnol
– volume: 17
  start-page: 675
  year: 1998
  end-page: 679
  article-title: Effects of simulated solar radiation on conidial germination of in different formulations
  publication-title: Crop Prot
– volume: 94
  start-page: 912
  year: 2002
  end-page: 920
  article-title: Damage and recovery from UVB exposure in conidia of the entomopathogens i and
  publication-title: Mycologia
– volume: 61
  start-page: 383
  year: 2015
  end-page: 404
  article-title: Stress tolerance and virulence of insect‐pathogenic fungi are determined by environmental conditions during conidial formation
  publication-title: Curr Genet
– volume: 18
  start-page: 1037
  year: 2016
  end-page: 1047
  article-title: Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen
  publication-title: Environ Microbiol
– volume: 2
  start-page: 483
  year: 2012
  article-title: Genomic perspectives on the evolution of fungal entomopathogenicity in
  publication-title: Sci Rep
– volume: 16
  start-page: 2361
  year: 1996
  end-page: 2368
  article-title: Rad23 is required for transcription‐coupled repair and efficient overall repair in
  publication-title: Mol Cell Biol
– volume: 118
  start-page: 422
  year: 2014
  end-page: 431
  article-title: Adenylate cyclase orthologues in two filamentous entomopathogens contribute differentially to growth, conidiation, pathogenicity and multi‐stress responses
  publication-title: Fungal Biol
– volume: 100
  start-page: 10363
  year: 2016
  end-page: 10374
  article-title: Distinct roles of cytoplasmic thioredoxin reductases Trr1 and Trr2 in the redox system involving cysteine synthesis and host infection of a fungal insect pathogen
  publication-title: Appl Microbiol Biotechnol
– volume: 2
  start-page: 690
  year: 2003
  end-page: 698
  article-title: Mannitol is required for stress tolerance in conidiospores
  publication-title: Eukaryot Cell
– volume: 30
  start-page: 4483
  year: 2020
  end-page: 4490
  article-title: The DASH‐type cryptochrome from the fungus is a canonical CPD‐photolyase
  publication-title: Curr Biol
– volume: 6
  year: 2016
  article-title: Three DUF1996 proteins localize in vacuoles and function in fungal responses to multiple stresses and metal ions
  publication-title: Sci Rep
– year: 2021
  article-title: Distinctive role of in the adaptation of to insect‐pathogenic lifecycle and environmental stresses
  publication-title: Environ Microbiol
– volume: 6
  start-page: e00098
  year: 2021
  end-page: e00021
  article-title: A small cysteine‐free protein acts as a novel regulator of fungal insect‐pathogenic lifecycle and genomic expression
  publication-title: mSystems
– volume: 13
  start-page: 6143
  year: 1994
  end-page: 6151
  article-title: A new class of DNA photolyases present in various organisms including aplacental mammals
  publication-title: EMBO J
– volume: 280
  start-page: 3697
  year: 2013
  end-page: 3708
  article-title: The photolyase‐encoding gene is transcriptionally regulated by non‐canonical light response elements
  publication-title: FEBS J
– volume: 157
  start-page: 32
  year: 2018
  end-page: 35
  article-title: Possible source of the high UVB and heat tolerance of (isolate ARSEF 324)
  publication-title: J Invertebr Pathol
– volume: 94
  start-page: 111
  year: 2021
  end-page: 117
  article-title: Effective control of by Metarhizium anisopliae CQMa421 under field conditions
  publication-title: J Pest Sci
– volume: 9
  start-page: 1677
  year: 2018
  article-title: Roles of three HSF domain‐containing proteins in mediating heat‐shock protein genes and sustaining asexual cycle, stress tolerance and virulence in
  publication-title: Front Microbiol
– ident: e_1_2_10_37_1
  doi: 10.1007/s00294-015-0492-z
– ident: e_1_2_10_145_1
  doi: 10.1126/science.1072795
– ident: e_1_2_10_151_1
  doi: 10.1111/1462-2920.15398
– ident: e_1_2_10_132_1
  doi: 10.1128/EC.00208-06
– ident: e_1_2_10_126_1
  doi: 10.1016/j.cub.2005.01.001
– ident: e_1_2_10_91_1
  doi: 10.1016/j.fgb.2020.103437
– ident: e_1_2_10_18_1
  doi: 10.1007/s10526-017-9816-x
– ident: e_1_2_10_115_1
  doi: 10.1038/srep03086
– ident: e_1_2_10_147_1
  doi: 10.1177/0748730406288338
– ident: e_1_2_10_23_1
  doi: 10.1007/s10340-020-01313-8
– ident: e_1_2_10_154_1
  doi: 10.1371/journal.pone.0043069
– ident: e_1_2_10_109_1
  doi: 10.1080/21505594.2021.1923232
– ident: e_1_2_10_64_1
  doi: 10.1016/j.jip.2018.01.007
– ident: e_1_2_10_42_1
  doi: 10.1016/0092-8674(94)90153-8
– ident: e_1_2_10_36_1
  doi: 10.1007/s00253-020-10659-z
– ident: e_1_2_10_80_1
  doi: 10.1007/s00253-014-5577-y
– ident: e_1_2_10_75_1
  doi: 10.1007/s00253-015-6823-7
– ident: e_1_2_10_59_1
  doi: 10.1016/j.jip.2005.05.005
– ident: e_1_2_10_100_1
  doi: 10.1007/s00253-018-9148-5
– ident: e_1_2_10_111_1
  doi: 10.1007/s00294-019-00957-z
– ident: e_1_2_10_16_1
  doi: 10.1016/j.biocontrol.2006.06.016
– ident: e_1_2_10_32_1
  doi: 10.1016/bs.adgen.2015.11.002
– ident: e_1_2_10_148_1
  doi: 10.1111/j.1574-6976.2011.00288.x
– ident: e_1_2_10_156_1
  doi: 10.1016/j.funbio.2021.06.003
– ident: e_1_2_10_53_1
  doi: 10.1080/15572536.2003.11833149
– ident: e_1_2_10_46_1
  doi: 10.1126/science.272.5258.48
– ident: e_1_2_10_114_1
  doi: 10.1007/s00253-018-9020-7
– ident: e_1_2_10_10_1
  doi: 10.1016/j.cropro.2003.10.004
– ident: e_1_2_10_26_1
  doi: 10.1186/gb-2011-12-11-r116
– ident: e_1_2_10_90_1
  doi: 10.1007/s00253-016-7757-4
– ident: e_1_2_10_110_1
  doi: 10.1111/cmi.12839
– ident: e_1_2_10_116_1
  doi: 10.1016/j.funbio.2017.08.003
– ident: e_1_2_10_85_1
  doi: 10.1007/s00253-018-9302-0
– ident: e_1_2_10_17_1
  doi: 10.1016/j.biocontrol.2007.11.006
– ident: e_1_2_10_72_1
  doi: 10.1007/s00253-017-8155-2
– ident: e_1_2_10_118_1
  doi: 10.1016/j.funbio.2014.03.001
– ident: e_1_2_10_57_1
  doi: 10.1007/s11046-009-9207-7
– ident: e_1_2_10_73_1
  doi: 10.1016/j.pestbp.2019.11.016
– ident: e_1_2_10_14_1
  doi: 10.1007/s10340-020-01223-9
– ident: e_1_2_10_20_1
  doi: 10.1007/s00253-017-8390-6
– ident: e_1_2_10_8_1
  doi: 10.3390/jof6020060
– ident: e_1_2_10_101_1
  doi: 10.1111/1462-2920.12044
– ident: e_1_2_10_137_1
  doi: 10.1128/AEM.00812-17
– ident: e_1_2_10_86_1
  doi: 10.1016/j.fgb.2015.01.008
– ident: e_1_2_10_30_1
  doi: 10.1007/s00294-014-0439-9
– ident: e_1_2_10_50_1
  doi: 10.1017/S0953756201004270
– ident: e_1_2_10_69_1
  doi: 10.1093/glycob/cwg047
– ident: e_1_2_10_103_1
  doi: 10.1007/s00253-014-6124-6
– ident: e_1_2_10_113_1
  doi: 10.1038/srep20566
– ident: e_1_2_10_136_1
  doi: 10.1002/mbo3.322
– ident: e_1_2_10_105_1
  doi: 10.1007/s00253-017-8290-9
– ident: e_1_2_10_48_1
  doi: 10.1093/nar/28.10.2060
– ident: e_1_2_10_63_1
  doi: 10.1093/femsle/fnw036
– ident: e_1_2_10_15_1
  doi: 10.1007/s10340-017-0846-z
– ident: e_1_2_10_89_1
  doi: 10.1111/1462-2920.13197
– ident: e_1_2_10_93_1
  doi: 10.1016/j.fgb.2015.07.002
– ident: e_1_2_10_13_1
  doi: 10.1007/s10526-017-9818-8
– ident: e_1_2_10_131_1
  doi: 10.1016/j.molcel.2017.04.024
– ident: e_1_2_10_22_1
  doi: 10.1093/jipm/pmz012
– ident: e_1_2_10_21_1
  doi: 10.1111/1744-7917.12233
– ident: e_1_2_10_104_1
  doi: 10.1007/s00253-014-5876-3
– ident: e_1_2_10_123_1
  doi: 10.1111/1462-2920.13727
– ident: e_1_2_10_149_1
  doi: 10.1016/j.tibs.2016.07.009
– ident: e_1_2_10_3_1
  doi: 10.1016/S0065-2164(04)54001-7
– ident: e_1_2_10_108_1
  doi: 10.1016/j.fgb.2014.06.010
– ident: e_1_2_10_142_1
  doi: 10.1128/MCB.16.5.2361
– ident: e_1_2_10_121_1
  doi: 10.1111/1462-2920.12530
– ident: e_1_2_10_127_1
  doi: 10.1146/annurev-arplant-042110-103759
– ident: e_1_2_10_94_1
  doi: 10.1016/j.fgb.2013.02.008
– ident: e_1_2_10_56_1
  doi: 10.1016/j.jip.2006.06.008
– ident: e_1_2_10_133_1
  doi: 10.1111/febs.12362
– ident: e_1_2_10_128_1
  doi: 10.1016/0092-8674(90)90479-X
– ident: e_1_2_10_62_1
  doi: 10.1007/s00294-015-0477-y
– ident: e_1_2_10_135_1
  doi: 10.1016/j.funbio.2016.01.007
– ident: e_1_2_10_95_1
  doi: 10.1111/1462-2920.13671
– ident: e_1_2_10_99_1
  doi: 10.1111/j.1462-2920.2011.02643.x
– ident: e_1_2_10_84_1
  doi: 10.1016/j.fgb.2014.09.006
– ident: e_1_2_10_27_1
  doi: 10.1038/srep00483
– ident: e_1_2_10_54_1
  doi: 10.1016/j.funbio.2018.01.003
– ident: e_1_2_10_96_1
  doi: 10.1007/s00253-017-8434-y
– ident: e_1_2_10_117_1
  doi: 10.1111/1462-2920.12450
– ident: e_1_2_10_60_1
  doi: 10.1016/j.mycres.2008.04.013
– ident: e_1_2_10_44_1
  doi: 10.1021/cr0204348
– ident: e_1_2_10_82_1
  doi: 10.1111/j.1462-2920.2012.02848.x
– ident: e_1_2_10_87_1
  doi: 10.1007/s00253-016-7688-0
– ident: e_1_2_10_24_1
  doi: 10.1007/s10526-009-9248-3
– ident: e_1_2_10_106_1
  doi: 10.1007/s00253-017-8703-9
– ident: e_1_2_10_2_1
  doi: 10.1080/09583159409355309
– ident: e_1_2_10_6_1
  doi: 10.1146/annurev-ento-031616-035509
– ident: e_1_2_10_7_1
  doi: 10.1002/ps.5803
– ident: e_1_2_10_29_1
  doi: 10.3852/07-202
– ident: e_1_2_10_107_1
  doi: 10.1093/glycob/cwu028
– ident: e_1_2_10_11_1
  doi: 10.1016/j.cropro.2004.07.006
– ident: e_1_2_10_33_1
  doi: 10.1007/s00253-018-9033-2
– ident: e_1_2_10_70_1
  doi: 10.1128/EC.2.4.690-698.2003
– ident: e_1_2_10_153_1
  doi: 10.1016/j.biocontrol.2011.07.005
– ident: e_1_2_10_92_1
  doi: 10.3389/fmicb.2018.01677
– ident: e_1_2_10_155_1
  doi: 10.1007/s00253-009-2083-8
– ident: e_1_2_10_51_1
  doi: 10.1006/jipa.2001.5048
– ident: e_1_2_10_134_1
  doi: 10.1006/fgbi.1999.1158
– ident: e_1_2_10_52_1
  doi: 10.1562/0031-8655(2001)0740734BSUAUR2.0.CO2
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jip.2018.07.011
– ident: e_1_2_10_28_1
  doi: 10.1093/gbe/evw082
– ident: e_1_2_10_150_1
  doi: 10.1099/mic.0.27346-0
– ident: e_1_2_10_138_1
  doi: 10.1073/pnas.1514637112
– ident: e_1_2_10_34_1
  doi: 10.1007/s00253-018-9516-1
– ident: e_1_2_10_122_1
  doi: 10.1016/j.fgb.2016.05.005
– ident: e_1_2_10_58_1
  doi: 10.1016/j.jip.2004.06.007
– ident: e_1_2_10_61_1
  doi: 10.1111/j.1574-6968.2010.02168.x
– ident: e_1_2_10_124_1
  doi: 10.1016/j.fgb.2016.12.004
– ident: e_1_2_10_102_1
  doi: 10.1038/s41598-017-01570-1
– ident: e_1_2_10_43_1
  doi: 10.1080/10408369891234192
– ident: e_1_2_10_41_1
  doi: 10.1007/s10526-009-9265-2
– ident: e_1_2_10_141_1
  doi: 10.1128/AEM.02459-18
– ident: e_1_2_10_19_1
  doi: 10.1007/s10340-019-01161-1
– ident: e_1_2_10_65_1
  doi: 10.1534/g3.119.400430
– ident: e_1_2_10_112_1
  doi: 10.1002/ps.5054
– ident: e_1_2_10_81_1
  doi: 10.1111/j.1462-2920.2012.02871.x
– ident: e_1_2_10_88_1
  doi: 10.1007/s00253-016-7420-0
– ident: e_1_2_10_129_1
  doi: 10.1038/nsmb1152
– start-page: 17
  volume-title: UVB Radiation and Ozone Depletion
  year: 1993
  ident: e_1_2_10_40_1
– ident: e_1_2_10_55_1
  doi: 10.1562/2005-05-08-RA-52
– ident: e_1_2_10_4_1
  doi: 10.1016/j.biocontrol.2007.08.001
– ident: e_1_2_10_98_1
  doi: 10.1111/cmi.13100
– ident: e_1_2_10_152_1
  doi: 10.1007/s00253-010-2437-2
– ident: e_1_2_10_144_1
  doi: 10.1016/S0092-8674(00)80566-8
– ident: e_1_2_10_143_1
  doi: 10.1128/AEM.00287-20
– ident: e_1_2_10_45_1
  doi: 10.1002/j.1460-2075.1994.tb06961.x
– ident: e_1_2_10_76_1
  doi: 10.1016/j.fgb.2019.02.009
– ident: e_1_2_10_140_1
  doi: 10.1038/s41579-018-0109-x
– ident: e_1_2_10_25_1
  doi: 10.1371/journal.pgen.1001264
– ident: e_1_2_10_97_1
  doi: 10.1111/1462-2920.13851
– ident: e_1_2_10_125_1
  doi: 10.1128/mSystems.00098-21
– ident: e_1_2_10_139_1
  doi: 10.1016/j.cub.2020.08.051
– ident: e_1_2_10_130_1
  doi: 10.1242/jcs.202622
– ident: e_1_2_10_77_1
  doi: 10.1111/1462-2920.15500
– ident: e_1_2_10_31_1
  doi: 10.1016/bs.adgen.2016.01.006
– ident: e_1_2_10_66_1
  doi: 10.1007/s10526-019-09990-w
– ident: e_1_2_10_47_1
  doi: 10.1101/gad.13.7.768
– ident: e_1_2_10_119_1
  doi: 10.1111/1462-2920.12634
– ident: e_1_2_10_146_1
  doi: 10.1126/science.1073681
– ident: e_1_2_10_71_1
  doi: 10.1111/j.1462-2920.2011.02654.x
– ident: e_1_2_10_35_1
  doi: 10.1080/21505594.2018.1518089
– ident: e_1_2_10_49_1
  doi: 10.1562/0031-8655(2001)0730140EOUIOC2.0.CO2
– ident: e_1_2_10_78_1
  doi: 10.1371/journal.pone.0087948
– ident: e_1_2_10_9_1
  doi: 10.1080/09583150410001682269
– ident: e_1_2_10_83_1
  doi: 10.1371/journal.pone.0030298
– ident: e_1_2_10_12_1
  doi: 10.1002/ps.2026
– ident: e_1_2_10_74_1
  doi: 10.1016/j.mib.2012.09.006
– ident: e_1_2_10_5_1
  doi: 10.1016/j.biocontrol.2013.06.017
– ident: e_1_2_10_38_1
  doi: 10.1007/s00294-015-0483-0
– ident: e_1_2_10_39_1
  doi: 10.1016/S0261-2194(98)00074-X
– ident: e_1_2_10_120_1
  doi: 10.1016/j.fgb.2015.08.011
– ident: e_1_2_10_67_1
  doi: 10.1139/w03-097
– ident: e_1_2_10_79_1
  doi: 10.1111/1758-2229.12380
SSID ssj0009992
Score 2.5114377
SecondaryResourceType review_article
Snippet Resistance to solar ultraviolet (UV) irradiation is crucial for field‐persistent control efficacies of fungal formulations against arthropod pests, because...
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Antioxidants
arthropods
biological control
biosynthesis
cell photoreactivation
Cell walls
Conidia
deoxyribodipyrimidine photo-lyase
Deoxyribodipyrimidine Photo-Lyase - genetics
DNA
DNA photorepair
entomopathogenic fungi
Formulations
Fungi
Insecticide Resistance
Insecticides
Insects
Irradiation
Pests
Photoreactivation
Proteins
radiation resistance
Regulatory mechanisms (biology)
Solutes
Spores, Fungal
Ultraviolet radiation
Ultraviolet Rays
UV resistance
Wavelengths
Title Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fps.6600
https://www.ncbi.nlm.nih.gov/pubmed/34397162
https://www.proquest.com/docview/2607290475
https://www.proquest.com/docview/2561926427
https://www.proquest.com/docview/2636607080
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7iSQ_uS92IIHrq2CVNOsdBFBEUcYHBS0nSKMWxMzSdg_563-syjooinkrpS5uZvOV7bd73CDnQxhNSepELwSl2GUs9V0EgdHUIAdbgzsKqF8HlFT-_Zxf9qD_V6qvmh5i8cEPLqPw1GrhU9viDNHRkOxyiNXhf3KmFcOjmgzgKYE_1nTMKuMu6cb8ul8WRx824z3HoG7j8jFWrYHO2SB7aadZ7TJ4741J19NsXBsd__Y4lstBAUNqrdWaZzJh8hcz3noqGhsPA2RRN4SoZX7Y9dCkEvcxSmae0qJvYD4tX-mKwfDizL5ZiSVoxwNIpChETog_Ncos-VWepsUcwyiJgBU2j5ZBazKspPLSQ1QaBkmZFgWQJqC1r5P7s9O7k3G3aNcDCihjW-NEE4BKESjXkdGmAtDGQLUFGEkrpq8Aw5LrxlJ-mSoeKCXQ3knuh8gRnXRmuk9l8mJtNQnUMqE5Dds5lyCKAQKYrun6g4og_-kwrhxy2i5fohsscW2oMkpqFOUhGNsF_1YF7tYKjmr7ju8hOu_pJY782gXlD1uExETlkf3IZLA8_p8jcDMcgE2HyCfmb-EWGh_AMAbDcIRu1Zk3mESIW9HngkINKP36aYHJ9i4etv4ltk7kAKzSqt0Q7ZLYsxmYXcFOp9ioTeQdctxQG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BewAOfQBtQ1tqpApO2ebh2Nlj1YcW6FYIWmklDpHtuFVEm13F2QP8emby2FIqEOIURRknTjzj-cbxfAOwb2wglQoSH51T6nOeB75GR-ibGB2spZ2FTS2C8bkYXfIPk2TS7aqkXJiWH2Kx4EaW0czXZOC0IH1wxxo6cwOB7voxLFM9b6pecPz5jjoKgU_zpzOJhM-H6aRNmKWmB13D-57oAby8j1Ybd3O6Cl_7jra7TL4N5rUemB-_cTj-35uswUqHQtlhqzbr8MiWz-HZ4XXVMXFYPPuFqfAFzMd9GV2Gfq9wTJU5q9o69tPqO7u1lEFcuFvHKCutuqHsKYZOEx0QK0pH06opcuveYStHmBWVjdVT5ii0ZvjQSjV7BGpWVBXxJZDCvITL05OLo5HfVWzAsZUpDvOVjXBWkDo3GNblETHHYMCEQUmsVKgjy4nuJtBhnmsTay5pxlEiiHUgBR-qeAOWymlpt4CZFIGdwQBdqJgniILsUA7DSKeJuAq50R687UcvMx2dOVXVuMlaIuYom7mMvqqH9-oFZy2Dx0ORnX74s86EXYb9xsAj4DLx4M3iMhof_VFRpZ3OUSah-BNDOPkXGRHjMyQicw82W9Va9CMmOBiKyIP9RkH-1MHs0xc6vPo3sT14MroYn2Vn788_bsPTiBI2mkWjHViqq7ndRRhV69eNvfwEgrAYIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tIE3jYcA2WAYMT0LbU0o-HDt9REDFPkBoG1K1l8h2XBQBaRWnD9tfv7t8FBjaNO2pqnpu3PrOv98lvt8B7BkbSKWCxEdwSn3O88DXCIS-iRFgLZ0sbHoRnJ6Jkwv-cZyM77T6avUhFjfcKDKa_ZoCfJZP9m9FQ2duIBCtH8MyFxgqxIe-3CpHIe9pHnQmkfD5MB239bI0dL8beB-IHrDL-2S1QZvRKnzv59keMrkazGs9MD9_k3D8rx-yBs86DsoOWqdZh0e2fA4rB5dVp8Nh8d0dncIXMD_tm-gyRL3CMVXmrGq72E-rH-zGUv1w4W4co5q06ppqpxhCJsIPK0pHm6opcuve4yhHjBVdjdVT5iixZnjRSjUnBGpWVBWpJZC7vISL0fG3wxO_69eAKytTXOSJjXBPkDo3mNTlEenGYLqEKUmsVKgjy0nsJtBhnmsTay5pv1EiiHUgBR-qeAOWymlpXwEzKdI6g-m5UDFPkAPZoRyGkU4TMQm50R686xcvM52YOfXUuM5aGeYom7mM_lUPv6s3nLX6HQ9NtvvVz7oAdhnOG9OOgMvEg7eLjzH06HmKKu10jjYJZZ-YwMm_2IgYryGRl3uw2XrWYh4xkcFQRB7sNf7xpwlm51_p5fW_me3Ck_OjUfb5w9mnLXgaUbVGc8doG5bqam53kEPV-k0TLb8ASkQW2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+basis+and+regulatory+mechanisms+underlying+fungal+insecticides%27+resistance+to+solar+ultraviolet+irradiation&rft.jtitle=Pest+management+science&rft.au=Sen%E2%80%90Miao+Tong&rft.au=Ming%E2%80%90Guang+Feng&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1526-498X&rft.eissn=1526-4998&rft.volume=78&rft.issue=1&rft.spage=30&rft.epage=42&rft_id=info:doi/10.1002%2Fps.6600&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-498X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-498X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-498X&client=summon