Cu-based bimetallic catalysts for CO2 reduction reaction
Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO₂ reduction into valuable hydrocarbon products. However, due to the difficulty in...
Saved in:
Published in | Advanced Sensor and Energy Materials Vol. 1; no. 3; p. 100023 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO₂ reduction into valuable hydrocarbon products. However, due to the difficulty in activating CO₂ and regulating intermediate adsorption/desorption properties, the CO₂RR activity and selectivity of Cu-based catalysts still cannot meet the requirements of industrial applications. The design of Cu-based bimetallic catalysts is a potential strategy because the introduction of the second metal can well promote the activation of CO₂ and break the linear scaling relationship in intermediate adsorption/desorption. In this review, the synergistic enhancements of Cu-based bimetals on CO₂ activation and intermediate adsorption/desorption are analyzed in detail, including the advantages caused by the morphology of Cu-based bimetallic catalysts, the local electric field effect induced by the special nanoneedle structure, the interface engineering (strain effect, atomic arrangement, interface regulation), and other particular effects (electronic effect and tandem effect). Finally, the challenges and perspectives on the development of Cu-based bimetallic catalysts for CO₂ reduction are proposed. |
---|---|
AbstractList | Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO₂ reduction into valuable hydrocarbon products. However, due to the difficulty in activating CO₂ and regulating intermediate adsorption/desorption properties, the CO₂RR activity and selectivity of Cu-based catalysts still cannot meet the requirements of industrial applications. The design of Cu-based bimetallic catalysts is a potential strategy because the introduction of the second metal can well promote the activation of CO₂ and break the linear scaling relationship in intermediate adsorption/desorption. In this review, the synergistic enhancements of Cu-based bimetals on CO₂ activation and intermediate adsorption/desorption are analyzed in detail, including the advantages caused by the morphology of Cu-based bimetallic catalysts, the local electric field effect induced by the special nanoneedle structure, the interface engineering (strain effect, atomic arrangement, interface regulation), and other particular effects (electronic effect and tandem effect). Finally, the challenges and perspectives on the development of Cu-based bimetallic catalysts for CO₂ reduction are proposed. Electrocatalytic CO2 reduction reaction (CO2RR) is one of the effective means to realize CO2 resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO2 reduction into valuable hydrocarbon products. However, due to the difficulty in activating CO2 and regulating intermediate adsorption/desorption properties, the CO2RR activity and selectivity of Cu-based catalysts still cannot meet the requirements of industrial applications. The design of Cu-based bimetallic catalysts is a potential strategy because the introduction of the second metal can well promote the activation of CO2 and break the linear scaling relationship in intermediate adsorption/desorption. In this review, the synergistic enhancements of Cu-based bimetals on CO2 activation and intermediate adsorption/desorption are analyzed in detail, including the advantages caused by the morphology of Cu-based bimetallic catalysts, the local electric field effect induced by the special nanoneedle structure, the interface engineering (strain effect, atomic arrangement, interface regulation), and other particular effects (electronic effect and tandem effect). Finally, the challenges and perspectives on the development of Cu-based bimetallic catalysts for CO2 reduction are proposed. |
ArticleNumber | 100023 |
Author | Li, Hong-Mei Wang, Xi-Qing Fu, Jun-Wei Liu, Min Chen, Qin Zhou, Ya-Jiao |
Author_xml | – sequence: 1 givenname: Xi-Qing surname: Wang fullname: Wang, Xi-Qing – sequence: 2 givenname: Qin surname: Chen fullname: Chen, Qin – sequence: 3 givenname: Ya-Jiao surname: Zhou fullname: Zhou, Ya-Jiao – sequence: 4 givenname: Hong-Mei surname: Li fullname: Li, Hong-Mei – sequence: 5 givenname: Jun-Wei orcidid: 0000-0003-0190-1663 surname: Fu fullname: Fu, Jun-Wei – sequence: 6 givenname: Min orcidid: 0000-0002-9007-4817 surname: Liu fullname: Liu, Min |
BookMark | eNp9kD9rwzAQxUVJoWmaT9DFYxen0smWrLGE_gkEsrTQTZxlqcg4USrZQ759naSF0qHTPY73Hne_azLZhZ0l5JbRBaNM3LcLTHabFkABxg2lwC_IFKTkOS3K98kvfUXmKbVHS1UKxeiUVMshr8d8k9V-a3vsOm8yg6M4pD5lLsRsuYEs2mYwvQ-7UeFJ3JBLh12y8-85I29Pj6_Ll3y9eV4tH9a54VL2uXOGQQXSNoisBGV5gwpErViBBkqpGkDBjauMk4VkYJhwjkohOLKC8prPyOrc2wRs9T76LcaDDuj1aRHih8bYe9NZbZwyRtSsUY4XzjUVK8cOSWuoZMFEOXbdnbv2MXwONvV665OxXYc7G4akQbIKBFBVjVZ1tpoYUorWaeN7PD7eR_SdZlQf4etWn-DrI3x9hj9m-Z_sz9n_pb4AHoyKeg |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c03600 crossref_primary_10_1039_D3TA01379K crossref_primary_10_1039_D4CY00807C crossref_primary_10_1007_s12274_023_5910_9 crossref_primary_10_1039_D4SC07740G crossref_primary_10_1002_ange_202316907 crossref_primary_10_1039_D3TA04929A crossref_primary_10_59761_RCR5085 crossref_primary_10_1039_D4CY00101J crossref_primary_10_3390_nano13010087 crossref_primary_10_1021_acsami_3c11342 crossref_primary_10_1039_D4NR04790G crossref_primary_10_3390_solar3010008 crossref_primary_10_3390_nano13111773 crossref_primary_10_1021_acsaem_3c02550 crossref_primary_10_1002_anie_202316907 crossref_primary_10_1007_s11705_024_2393_5 crossref_primary_10_1021_acsomega_4c03333 crossref_primary_10_1016_j_cej_2024_151677 crossref_primary_10_1021_jacs_3c07108 crossref_primary_10_1016_j_isci_2023_107953 crossref_primary_10_1021_acsaem_3c01448 crossref_primary_10_1039_D4GC05274A crossref_primary_10_1002_adma_202303902 crossref_primary_10_1002_cssc_202202251 crossref_primary_10_1007_s13204_023_02794_6 crossref_primary_10_1002_metm_28 crossref_primary_10_1021_acsaem_3c00965 crossref_primary_10_1002_adfm_202412812 crossref_primary_10_1002_cssc_202400898 crossref_primary_10_1021_acs_chemmater_3c00649 crossref_primary_10_1002_adfm_202300926 |
Cites_doi | 10.1016/j.cej.2021.128982 10.1002/anie.201810207 10.1002/anie.201612617 10.1016/j.apcatb.2019.01.021 10.1021/acscatal.6b03147 10.1016/j.jcat.2020.05.002 10.1002/adma.201504766 10.1149/2.0421704jes 10.1021/acscatal.1c03717 10.1021/acsami.9b01553 10.1021/acscatal.5b00922 10.1016/j.jechem.2020.05.006 10.1021/acsaem.0c00157 10.1021/jacs.9b02945 10.1021/jacs.8b12381 10.1021/jacs.8b01868 10.1021/nl3032795 10.1021/acs.nanolett.9b03324 10.1021/ja810151r 10.1002/anie.201707478 10.1021/acs.chemrev.8b00705 10.1016/j.electacta.2020.136756 10.1021/acsnano.0c07869 10.1002/cssc.201702342 10.1038/srep06414 10.1021/jacs.6b10740 10.1021/acscatal.7b02822 10.1021/jacs.6b08534 10.1021/acscatal.0c02124 10.1021/acscatal.6b02162 10.1246/cl.1986.897 10.1021/acscatal.6b02299 10.1016/S0926-860X(01)00828-6 10.1016/j.jechem.2019.03.030 10.1038/nchem.623 10.1039/C2NR32849F 10.1016/j.nanoen.2016.04.009 10.1021/jp046561k 10.1021/acs.jpcc.7b00940 10.1002/advs.202102648 10.1021/jacs.7b08607 10.1002/aenm.201602114 10.1016/S1872-2067(21)63866-4 10.1038/s41929-018-0139-9 10.1016/0021-9517(72)90069-3 10.1002/cssc.201801582 10.1021/jz401087q 10.1039/C9TA09471G 10.1021/acscatal.6b02067 10.1016/j.joule.2020.07.009 10.1002/anie.201708825 10.1039/C8TA05355C 10.1038/nchem.121 10.1038/s41929-018-0084-7 10.1016/j.jcis.2012.06.060 10.1021/acs.jpclett.8b00959 10.1021/acscatal.1c00420 10.1039/D0TA04551A 10.1016/j.apcatb.2021.120003 10.1039/D1NR03221F 10.1016/j.mtener.2019.01.006 10.1016/j.jmst.2021.10.045 10.1016/j.chempr.2018.05.001 10.1039/D0TA08880C 10.1021/acsami.8b20545 10.1021/acscatal.5b00462 10.1002/anie.201208320 10.1002/adfm.201806419 10.1016/j.nanoen.2019.104331 10.1038/nature19060 10.1016/j.cattod.2015.05.017 10.1007/s12274-020-2900-z 10.1021/ja5030172 10.1039/C5TA06804E 10.1021/acsenergylett.8b01286 10.1002/adma.201908398 10.1021/acscatal.5b01967 10.1016/j.jcat.2018.08.017 10.1016/j.apcatb.2017.02.040 10.1002/chem.201102632 10.1021/jacs.9b07415 10.1016/j.jcou.2019.03.002 10.1016/j.apcatb.2021.120039 10.1039/D1SE01255J 10.1002/asia.202100583 10.1016/j.apcatb.2017.05.001 10.1002/adfm.202101255 10.1039/D0CC07589B 10.1021/jp112128g 10.1007/s12274-021-3448-2 10.1021/jacs.7b06765 10.1039/C9CP03692J 10.1021/acs.nanolett.6b03615 10.1021/acsami.1c09128 10.1007/s12274-019-2310-2 10.1021/jacs.7b03516 10.1002/adfm.202102151 10.1021/acscatal.7b00707 10.1038/natrevmats.2017.59 10.1021/acs.jpclett.0c01970 10.1021/jz201461p 10.1021/acs.jpclett.5b00722 10.1021/acscatal.7b04150 10.1021/acsaem.7b00320 10.1039/C9TA11140A 10.1515/ntrev-2013-0022 10.1016/0021-9517(72)90072-3 10.1016/j.apsusc.2021.150460 10.1007/s11467-019-0950-z 10.1021/acsami.0c02057 10.1016/j.jpowsour.2017.12.070 10.1038/s41467-019-11292-9 10.1016/j.electacta.2021.138552 10.1016/j.jpowsour.2013.12.098 10.1021/acscatal.7b01161 10.1039/b822176f 10.1021/acsami.8b22071 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.asems.2022.100023 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2773-045X |
ExternalDocumentID | oai_doaj_org_article_cf9cc6b1d9f34ffd81514070b2874165 10_1016_j_asems_2022_100023 |
GroupedDBID | 0R~ AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ CITATION EBS FDB GROUPED_DOAJ M41 M~E ROL 7S9 L.6 |
ID | FETCH-LOGICAL-c377t-ffc12827edaa1529e3da926b914ac2579d2a63cf8cf74712c16ff07663a1403b3 |
IEDL.DBID | DOA |
ISSN | 2773-045X |
IngestDate | Wed Aug 27 01:26:23 EDT 2025 Fri Jul 11 07:41:29 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 00:20:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-ffc12827edaa1529e3da926b914ac2579d2a63cf8cf74712c16ff07663a1403b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0190-1663 0000-0002-9007-4817 |
OpenAccessLink | https://doaj.org/article/cf9cc6b1d9f34ffd81514070b2874165 |
PQID | 2718262098 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf9cc6b1d9f34ffd81514070b2874165 proquest_miscellaneous_2718262098 crossref_citationtrail_10_1016_j_asems_2022_100023 crossref_primary_10_1016_j_asems_2022_100023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-00 20220901 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Sensor and Energy Materials |
PublicationYear | 2022 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Chen (10.1016/j.asems.2022.100023_bib124) 2020; 4 Keerthiga (10.1016/j.asems.2022.100023_bib45) 2017; 164 Chen (10.1016/j.asems.2022.100023_bib68) 2021; 13 Li (10.1016/j.asems.2022.100023_bib102) 2021; 17 Morales-Guio (10.1016/j.asems.2022.100023_bib126) 2018; 1 Chen (10.1016/j.asems.2022.100023_bib1) 2021; 54 Ponec (10.1016/j.asems.2022.100023_bib41) 1972; 24 Zhang (10.1016/j.asems.2022.100023_bib104) 2014; 136 Zhu (10.1016/j.asems.2022.100023_bib121) 2021; 14 Kottakkat (10.1016/j.asems.2022.100023_bib47) 2019; 11 Luo (10.1016/j.asems.2022.100023_bib101) 2017; 2 Luo (10.1016/j.asems.2022.100023_bib15) 2016; 6 Nitopi (10.1016/j.asems.2022.100023_bib110) 2019; 119 Nishimura (10.1016/j.asems.2022.100023_bib93) 2021 Zhang (10.1016/j.asems.2022.100023_bib44) 2013; 2 Du (10.1016/j.asems.2022.100023_bib108) 2021; 9 Iyengar (10.1016/j.asems.2022.100023_bib131) 2021; 11 Zhang (10.1016/j.asems.2022.100023_bib115) 2019; 21 Strasser (10.1016/j.asems.2022.100023_bib119) 2010; 2 Rashid (10.1016/j.asems.2022.100023_bib48) 2021; 6 Reller (10.1016/j.asems.2022.100023_bib50) 2017; 7 Weng (10.1016/j.asems.2022.100023_bib62) 2017; 56 Dong (10.1016/j.asems.2022.100023_bib69) 2021; 565 Zhang (10.1016/j.asems.2022.100023_bib59) 2021; 17 Kim (10.1016/j.asems.2022.100023_bib96) 2017; 139 Klingan (10.1016/j.asems.2022.100023_bib49) 2018; 11 Montoya (10.1016/j.asems.2022.100023_bib75) 2015; 6 Ren (10.1016/j.asems.2022.100023_bib128) 2016; 6 Shao (10.1016/j.asems.2022.100023_bib87) 2019; 29 Gao (10.1016/j.asems.2022.100023_bib127) 2019; 141 Larrazábal (10.1016/j.asems.2022.100023_bib61) 2016; 6 Peng (10.1016/j.asems.2022.100023_bib92) 2021; 288 Xie (10.1016/j.asems.2022.100023_bib95) 2021; 57 Chen (10.1016/j.asems.2022.100023_bib17) 2021 Dutta (10.1016/j.asems.2022.100023_bib125) 2020; 68 Ma (10.1016/j.asems.2022.100023_bib94) 2017; 139 Wang (10.1016/j.asems.2022.100023_bib66) 2013; 5 Yoo (10.1016/j.asems.2022.100023_bib73) 2020; 3 Li (10.1016/j.asems.2022.100023_bib43) 2014; 254 Wang (10.1016/j.asems.2022.100023_bib34) 2021; 17 Norskov (10.1016/j.asems.2022.100023_bib111) 2009; 1 Jiang (10.1016/j.asems.2022.100023_bib80) 2017; 56 Nursanto (10.1016/j.asems.2022.100023_bib8) 2016; 260 Mohl (10.1016/j.asems.2022.100023_bib55) 2011; 115 Zhang (10.1016/j.asems.2022.100023_bib88) 2020; 11 Li (10.1016/j.asems.2022.100023_bib86) 2021 Rosen (10.1016/j.asems.2022.100023_bib51) 2015; 5 Yin (10.1016/j.asems.2022.100023_bib64) 2012; 18 Yin (10.1016/j.asems.2022.100023_bib20) 2019; 19 Peterson (10.1016/j.asems.2022.100023_bib23) 2012; 3 Huang (10.1016/j.asems.2022.100023_bib103) 2017; 56 Ma (10.1016/j.asems.2022.100023_bib58) 2022 Zhang (10.1016/j.asems.2022.100023_bib123) 2019; 10 Li (10.1016/j.asems.2022.100023_bib4) 2020; 142 Wang (10.1016/j.asems.2022.100023_bib27) 2021; 15 Wang (10.1016/j.asems.2022.100023_bib9) 2004; 108 Jia (10.1016/j.asems.2022.100023_bib122) 2021; 31 Hoang (10.1016/j.asems.2022.100023_bib31) 2018; 140 Koh (10.1016/j.asems.2022.100023_bib46) 2017; 7 Ma (10.1016/j.asems.2022.100023_bib112) 2020; 8 Shetty (10.1016/j.asems.2022.100023_bib77) 2020; 10 Yu (10.1016/j.asems.2022.100023_bib13) 2021; 31 Cheng (10.1016/j.asems.2022.100023_bib2) 2016; 138 Wang (10.1016/j.asems.2022.100023_bib63) 2012; 384 Sun (10.1016/j.asems.2022.100023_bib116) 2020; 8 Reske (10.1016/j.asems.2022.100023_bib106) 2013; 4 Niu (10.1016/j.asems.2022.100023_bib25) 2020; 13 Clark (10.1016/j.asems.2022.100023_bib107) 2017; 139 Zhu (10.1016/j.asems.2022.100023_bib56) 2019; 37 Zhuang (10.1016/j.asems.2022.100023_bib99) 2018; 1 Chen (10.1016/j.asems.2022.100023_bib57) 2018; 1 Back (10.1016/j.asems.2022.100023_bib11) 2015; 5 Ye (10.1016/j.asems.2022.100023_bib90) 2020; 12 Zhu (10.1016/j.asems.2022.100023_bib100) 2018; 3 Zhong (10.1016/j.asems.2022.100023_bib72) 2020; 152 Zhang (10.1016/j.asems.2022.100023_bib18) 2022; 116 Kim (10.1016/j.asems.2022.100023_bib113) 2017; 213 Han (10.1016/j.asems.2022.100023_bib28) 2014; 4 Lee (10.1016/j.asems.2022.100023_bib129) 2017; 7 Saberi Safaei (10.1016/j.asems.2022.100023_bib79) 2016; 16 Weng (10.1016/j.asems.2022.100023_bib67) 2017; 56 García (10.1016/j.asems.2022.100023_bib7) 2018; 367 Liu (10.1016/j.asems.2022.100023_bib97) 2019; 11 Wang (10.1016/j.asems.2022.100023_bib83) 2019; 12 Tomboc (10.1016/j.asems.2022.100023_bib24) 2020; 32 Gu (10.1016/j.asems.2022.100023_bib21) 2018 Talukdar (10.1016/j.asems.2022.100023_bib109) 2021; 16 Huang (10.1016/j.asems.2022.100023_bib39) 2017; 7 Liu (10.1016/j.asems.2022.100023_bib16) 2021; 388 Wang (10.1016/j.asems.2022.100023_bib91) 2019; 11 Lu (10.1016/j.asems.2022.100023_bib5) 2016; 29 Li (10.1016/j.asems.2022.100023_bib74) 2022; 43 Sinfelt (10.1016/j.asems.2022.100023_bib42) 1972; 24 Dean (10.1016/j.asems.2022.100023_bib89) 2018; 11 Hori (10.1016/j.asems.2022.100023_bib12) 1986; 15 Zhang (10.1016/j.asems.2022.100023_bib132) 2020; 387 Fu (10.1016/j.asems.2022.100023_bib32) 2021; 415 Zhu (10.1016/j.asems.2022.100023_bib6) 2016; 28 Zhang (10.1016/j.asems.2022.100023_bib82) 2021; 8 Birhanu (10.1016/j.asems.2022.100023_bib118) 2020; 356 Li (10.1016/j.asems.2022.100023_bib3) 2019; 141 Ham (10.1016/j.asems.2022.100023_bib10) 2017; 208 Wang (10.1016/j.asems.2022.100023_bib98) 2019; 7 Adit Maark (10.1016/j.asems.2022.100023_bib120) 2017; 121 Mun (10.1016/j.asems.2022.100023_bib30) 2019; 246 Fu (10.1016/j.asems.2022.100023_bib14) 2021 Indrakanti (10.1016/j.asems.2022.100023_bib37) 2009; 2 Monzo (10.1016/j.asems.2022.100023_bib105) 2015; 3 Xu (10.1016/j.asems.2022.100023_bib36) 2020; 11 Tao (10.1016/j.asems.2022.100023_bib81) 2019; 58 Resasco (10.1016/j.asems.2022.100023_bib78) 2017; 139 Iyengar (10.1016/j.asems.2022.100023_bib130) 2021; 11 Jang (10.1016/j.asems.2022.100023_bib53) 2018; 378 Zhong (10.1016/j.asems.2022.100023_bib60) 2022 Huang (10.1016/j.asems.2022.100023_bib26) 2019; 141 Zhou (10.1016/j.asems.2022.100023_bib76) 2022 Chen (10.1016/j.asems.2022.100023_bib84) 2019; 12 Merino-Garcia (10.1016/j.asems.2022.100023_bib22) 2019; 31 Ponec (10.1016/j.asems.2022.100023_bib40) 2001; 222 Hoffman (10.1016/j.asems.2022.100023_bib52) 2017; 7 Meng (10.1016/j.asems.2022.100023_bib35) 2021; 289 Nie (10.1016/j.asems.2022.100023_bib38) 2013; 52 Chen (10.1016/j.asems.2022.100023_bib70) 2016; 6 Cui (10.1016/j.asems.2022.100023_bib65) 2012; 12 Nie (10.1016/j.asems.2022.100023_bib29) 2018; 8 Liu (10.1016/j.asems.2022.100023_bib71) 2016; 537 Liu (10.1016/j.asems.2022.100023_bib54) 2009; 131 Jeong (10.1016/j.asems.2022.100023_bib19) 2020; 10 Zu (10.1016/j.asems.2022.100023_bib114) 2018; 6 Wang (10.1016/j.asems.2022.100023_bib117) 2018; 9 Fu (10.1016/j.asems.2022.100023_bib33) 2020; 15 Vasileff (10.1016/j.asems.2022.100023_bib85) 2018; 4 |
References_xml | – volume: 415 year: 2021 ident: 10.1016/j.asems.2022.100023_bib32 article-title: Activation of CO2 on graphitic carbon nitride supported single-atom cobalt sites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128982 – volume: 58 start-page: 1019 year: 2019 ident: 10.1016/j.asems.2022.100023_bib81 article-title: Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201810207 – volume: 56 start-page: 3594 year: 2017 ident: 10.1016/j.asems.2022.100023_bib103 article-title: Understanding of strain effects in the electrochemical reduction of CO2 : using Pd nanostructures as an ideal platform publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612617 – volume: 246 start-page: 82 year: 2019 ident: 10.1016/j.asems.2022.100023_bib30 article-title: Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.01.021 – volume: 7 start-page: 1749 year: 2017 ident: 10.1016/j.asems.2022.100023_bib39 article-title: Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO∗ coverage on the selective formation of ethylene publication-title: ACS Catal doi: 10.1021/acscatal.6b03147 – volume: 387 start-page: 163 year: 2020 ident: 10.1016/j.asems.2022.100023_bib132 article-title: Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes publication-title: J. Catal. doi: 10.1016/j.jcat.2020.05.002 – volume: 28 start-page: 3423 year: 2016 ident: 10.1016/j.asems.2022.100023_bib6 article-title: Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide publication-title: Adv. Mater. doi: 10.1002/adma.201504766 – volume: 164 start-page: H164 year: 2017 ident: 10.1016/j.asems.2022.100023_bib45 article-title: Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0421704jes – year: 2021 ident: 10.1016/j.asems.2022.100023_bib17 article-title: Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 13330 year: 2021 ident: 10.1016/j.asems.2022.100023_bib131 article-title: Theory-guided enhancement of CO2 reduction to ethanol on Ag–Cu tandem catalysts via particle-size effects publication-title: ACS Catal doi: 10.1021/acscatal.1c03717 – volume: 11 start-page: 16546 year: 2019 ident: 10.1016/j.asems.2022.100023_bib97 article-title: Electronic effects determine the selectivity of planar Au-Cu bimetallic thin films for electrochemical CO2 reduction publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.9b01553 – volume: 5 start-page: 4586 year: 2015 ident: 10.1016/j.asems.2022.100023_bib51 article-title: Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction publication-title: ACS Catal doi: 10.1021/acscatal.5b00922 – year: 2022 ident: 10.1016/j.asems.2022.100023_bib58 article-title: Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction publication-title: Adv. Mater. – volume: 54 start-page: 143 year: 2021 ident: 10.1016/j.asems.2022.100023_bib1 article-title: Boosting electrocatalytic activity for CO2 reduction on nitrogen-doped carbon catalysts by co-doping with phosphorus publication-title: J. Energy. Chem. doi: 10.1016/j.jechem.2020.05.006 – volume: 3 start-page: 4466 year: 2020 ident: 10.1016/j.asems.2022.100023_bib73 article-title: Compositional and geometrical effects of bimetallic Cu–Sn catalysts on selective electrochemical CO2 reduction to CO publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00157 – volume: 141 start-page: 8584 year: 2019 ident: 10.1016/j.asems.2022.100023_bib3 article-title: Binding site diversity promotes CO2 electroreduction to ethanol publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02945 – volume: 141 start-page: 2490 year: 2019 ident: 10.1016/j.asems.2022.100023_bib26 article-title: Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12381 – volume: 140 start-page: 5791 year: 2018 ident: 10.1016/j.asems.2022.100023_bib31 article-title: Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01868 – volume: 12 start-page: 5885 year: 2012 ident: 10.1016/j.asems.2022.100023_bib65 article-title: Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition publication-title: Nano Lett doi: 10.1021/nl3032795 – volume: 19 start-page: 8658 year: 2019 ident: 10.1016/j.asems.2022.100023_bib20 article-title: Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b03324 – year: 2018 ident: 10.1016/j.asems.2022.100023_bib21 article-title: Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4 publication-title: Small Methods – volume: 131 start-page: 5720 year: 2009 ident: 10.1016/j.asems.2022.100023_bib54 article-title: Synthesis of CuPt nanorod catalysts with tunable lengths publication-title: J. Am. Chem. Soc. doi: 10.1021/ja810151r – volume: 56 start-page: 13135 year: 2017 ident: 10.1016/j.asems.2022.100023_bib62 article-title: Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707478 – volume: 119 start-page: 7610 year: 2019 ident: 10.1016/j.asems.2022.100023_bib110 article-title: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 356 year: 2020 ident: 10.1016/j.asems.2022.100023_bib118 article-title: Electrocatalytic reduction of carbon dioxide on gold–copper bimetallic nanoparticles: effects of surface composition on selectivity publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136756 – volume: 15 start-page: 1039 year: 2021 ident: 10.1016/j.asems.2022.100023_bib27 article-title: Synergized Cu/Pb core/shell electrocatalyst for high-efficiency CO2 reduction to C2+ liquids publication-title: ACS Nano doi: 10.1021/acsnano.0c07869 – volume: 11 start-page: 1169 year: 2018 ident: 10.1016/j.asems.2022.100023_bib89 article-title: Design of copper-based bimetallic nanoparticles for carbon dioxide adsorption and activation publication-title: ChemSusChem doi: 10.1002/cssc.201702342 – volume: 4 start-page: 6414 year: 2014 ident: 10.1016/j.asems.2022.100023_bib28 article-title: Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction publication-title: Sci. Rep. doi: 10.1038/srep06414 – volume: 139 start-page: 47 year: 2017 ident: 10.1016/j.asems.2022.100023_bib94 article-title: Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10740 – volume: 7 start-page: 8594 year: 2017 ident: 10.1016/j.asems.2022.100023_bib129 article-title: Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol publication-title: ACS Catal doi: 10.1021/acscatal.7b02822 – volume: 138 start-page: 13802 year: 2016 ident: 10.1016/j.asems.2022.100023_bib2 article-title: Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08534 – volume: 10 year: 2020 ident: 10.1016/j.asems.2022.100023_bib19 article-title: Atomic-scale spacing between copper facets for the electrochemical reduction of carbon dioxide publication-title: Adv. Energy Mater. – volume: 10 start-page: 12867 year: 2020 ident: 10.1016/j.asems.2022.100023_bib77 article-title: Electric-field-assisted modulation of surface thermochemistry publication-title: ACS Catal doi: 10.1021/acscatal.0c02124 – volume: 6 start-page: 8239 year: 2016 ident: 10.1016/j.asems.2022.100023_bib128 article-title: Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts publication-title: ACS Catal doi: 10.1021/acscatal.6b02162 – volume: 15 start-page: 897 year: 1986 ident: 10.1016/j.asems.2022.100023_bib12 article-title: Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution publication-title: Chem. Lett. doi: 10.1246/cl.1986.897 – volume: 6 start-page: 7133 year: 2016 ident: 10.1016/j.asems.2022.100023_bib70 article-title: Electric field effects in electrochemical CO2 reduction publication-title: ACS Catal doi: 10.1021/acscatal.6b02299 – volume: 222 start-page: 31 year: 2001 ident: 10.1016/j.asems.2022.100023_bib40 article-title: Alloy catalysts: the concepts publication-title: APPL. CATAL. A-GEN. doi: 10.1016/S0926-860X(01)00828-6 – volume: 37 start-page: 176 year: 2019 ident: 10.1016/j.asems.2022.100023_bib56 article-title: Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.03.030 – volume: 2 start-page: 454 year: 2010 ident: 10.1016/j.asems.2022.100023_bib119 article-title: Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 5 start-page: 139 year: 2013 ident: 10.1016/j.asems.2022.100023_bib66 article-title: The growth and enhanced catalytic performance of Au@Pd core-shell nanodendrites publication-title: Nanoscale doi: 10.1039/C2NR32849F – volume: 29 start-page: 439 year: 2016 ident: 10.1016/j.asems.2022.100023_bib5 article-title: Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.009 – volume: 108 start-page: 19413 year: 2004 ident: 10.1016/j.asems.2022.100023_bib9 article-title: Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields publication-title: J. Phys. Chem. B doi: 10.1021/jp046561k – volume: 121 start-page: 4496 year: 2017 ident: 10.1016/j.asems.2022.100023_bib120 article-title: Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper–nickel heterostructures publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b00940 – volume: 8 start-page: 11 year: 2021 ident: 10.1016/j.asems.2022.100023_bib82 article-title: CsPbBr3 nanocrystal induced bilateral interface modification for efficient planar perovskite solar cells publication-title: Adv. Sci. doi: 10.1002/advs.202102648 – volume: 142 start-page: 9567 year: 2020 ident: 10.1016/j.asems.2022.100023_bib4 article-title: Progress and perspective for in situ studies of CO2 reduction publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 15848 year: 2017 ident: 10.1016/j.asems.2022.100023_bib107 article-title: Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08607 – volume: 7 start-page: 8 year: 2017 ident: 10.1016/j.asems.2022.100023_bib50 article-title: Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602114 – volume: 43 start-page: 519 year: 2022 ident: 10.1016/j.asems.2022.100023_bib74 article-title: Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63866-4 – volume: 1 start-page: 764 year: 2018 ident: 10.1016/j.asems.2022.100023_bib126 article-title: Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst publication-title: Nat. Catal. doi: 10.1038/s41929-018-0139-9 – volume: 24 start-page: 250 year: 1972 ident: 10.1016/j.asems.2022.100023_bib41 article-title: The reactions between cyclopentane and deuterium on nickel and nickel-copper alloys publication-title: J. Catal. doi: 10.1016/0021-9517(72)90069-3 – volume: 11 start-page: 3449 year: 2018 ident: 10.1016/j.asems.2022.100023_bib49 article-title: Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction publication-title: ChemSusChem doi: 10.1002/cssc.201801582 – volume: 4 start-page: 2410 year: 2013 ident: 10.1016/j.asems.2022.100023_bib106 article-title: Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401087q – volume: 17 start-page: 9 year: 2021 ident: 10.1016/j.asems.2022.100023_bib34 article-title: In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction publication-title: Small – volume: 8 start-page: 3344 year: 2020 ident: 10.1016/j.asems.2022.100023_bib112 article-title: Core-shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09471G – volume: 6 start-page: 6265 year: 2016 ident: 10.1016/j.asems.2022.100023_bib61 article-title: Enhanced reduction of CO2 to CO over Cu–in electrocatalysts: catalyst evolution is the key publication-title: ACS Catal doi: 10.1021/acscatal.6b02067 – volume: 152 year: 2020 ident: 10.1016/j.asems.2022.100023_bib72 article-title: Concentrating and activating carbon dioxide over AuCu aerogel grain boundaries publication-title: J. Chem. Phys. – volume: 4 start-page: 1688 year: 2020 ident: 10.1016/j.asems.2022.100023_bib124 article-title: Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons publication-title: Joule doi: 10.1016/j.joule.2020.07.009 – volume: 56 start-page: 15617 year: 2017 ident: 10.1016/j.asems.2022.100023_bib80 article-title: Unraveling the mechanism for the sharp-tip enhanced electrocatalytic carbon dioxide reduction: the kinetics decide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708825 – volume: 6 start-page: 16804 year: 2018 ident: 10.1016/j.asems.2022.100023_bib114 article-title: Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05355C – volume: 1 start-page: 37 year: 2009 ident: 10.1016/j.asems.2022.100023_bib111 article-title: Towards the computational design of solid catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 1 start-page: 421 year: 2018 ident: 10.1016/j.asems.2022.100023_bib99 article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols publication-title: Nat. Catal. doi: 10.1038/s41929-018-0084-7 – volume: 384 start-page: 105 year: 2012 ident: 10.1016/j.asems.2022.100023_bib63 article-title: Dendritic PtCo alloy nanoparticles as high performance oxygen reduction catalysts publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.06.060 – volume: 9 start-page: 3057 year: 2018 ident: 10.1016/j.asems.2022.100023_bib117 article-title: Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00959 – volume: 11 start-page: 9 year: 2020 ident: 10.1016/j.asems.2022.100023_bib36 article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction publication-title: Nat. Commun. – year: 2022 ident: 10.1016/j.asems.2022.100023_bib76 article-title: Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction publication-title: Nano Lett – volume: 11 start-page: 4456 year: 2021 ident: 10.1016/j.asems.2022.100023_bib130 article-title: Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu–Ag tandem catalysts publication-title: ACS Catal doi: 10.1021/acscatal.1c00420 – volume: 8 start-page: 12291 year: 2020 ident: 10.1016/j.asems.2022.100023_bib116 article-title: Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04551A – year: 2021 ident: 10.1016/j.asems.2022.100023_bib86 article-title: Recent advances in metal-based electrocatalysts with hetero-interfaces for CO2 reduction reaction publication-title: Chem Catalysis – volume: 288 year: 2021 ident: 10.1016/j.asems.2022.100023_bib92 article-title: Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120003 – volume: 13 start-page: 13604 year: 2021 ident: 10.1016/j.asems.2022.100023_bib68 article-title: CoS2 needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution publication-title: Nanoscale doi: 10.1039/D1NR03221F – volume: 12 start-page: 250 year: 2019 ident: 10.1016/j.asems.2022.100023_bib84 article-title: Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis, Mater publication-title: Today Energy doi: 10.1016/j.mtener.2019.01.006 – volume: 116 start-page: 192 year: 2022 ident: 10.1016/j.asems.2022.100023_bib18 article-title: Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.10.045 – volume: 4 start-page: 1809 year: 2018 ident: 10.1016/j.asems.2022.100023_bib85 article-title: Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction publication-title: Chem doi: 10.1016/j.chempr.2018.05.001 – volume: 9 start-page: 4933 year: 2021 ident: 10.1016/j.asems.2022.100023_bib108 article-title: Elastic strain controlling the activity and selectivity of CO2 electroreduction on Cu overlayers publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08880C – volume: 11 start-page: 2763 year: 2019 ident: 10.1016/j.asems.2022.100023_bib91 article-title: Silver/copper interface for relay electroreduction of carbon dioxide to ethylene publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b20545 – year: 2021 ident: 10.1016/j.asems.2022.100023_bib14 article-title: Bimetallic atomic site catalysts for CO2 reduction reactions: a review publication-title: Environ. Chem. Lett. – volume: 5 start-page: 5089 year: 2015 ident: 10.1016/j.asems.2022.100023_bib11 article-title: Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO publication-title: ACS Catal doi: 10.1021/acscatal.5b00462 – volume: 52 start-page: 2459 year: 2013 ident: 10.1016/j.asems.2022.100023_bib38 article-title: Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201208320 – volume: 29 year: 2019 ident: 10.1016/j.asems.2022.100023_bib87 article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806419 – volume: 68 year: 2020 ident: 10.1016/j.asems.2022.100023_bib125 article-title: Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104331 – volume: 537 start-page: 382 year: 2016 ident: 10.1016/j.asems.2022.100023_bib71 article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration publication-title: Nature doi: 10.1038/nature19060 – volume: 260 start-page: 107 year: 2016 ident: 10.1016/j.asems.2022.100023_bib8 article-title: Gold catalyst reactivity for CO2 electro-reduction: from nano particle to layer publication-title: Catal. Today doi: 10.1016/j.cattod.2015.05.017 – volume: 13 start-page: 2564 year: 2020 ident: 10.1016/j.asems.2022.100023_bib25 article-title: Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires publication-title: Nano Res doi: 10.1007/s12274-020-2900-z – volume: 136 start-page: 7734 year: 2014 ident: 10.1016/j.asems.2022.100023_bib104 article-title: Tuning nanoparticle structure and surface strain for catalysis optimization publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5030172 – volume: 3 start-page: 23690 year: 2015 ident: 10.1016/j.asems.2022.100023_bib105 article-title: Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06804E – volume: 56 start-page: 13135 year: 2017 ident: 10.1016/j.asems.2022.100023_bib67 article-title: Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201707478 – volume: 3 start-page: 2144 year: 2018 ident: 10.1016/j.asems.2022.100023_bib100 article-title: formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.8b01286 – volume: 32 year: 2020 ident: 10.1016/j.asems.2022.100023_bib24 article-title: Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs publication-title: Adv. Mater. doi: 10.1002/adma.201908398 – volume: 6 start-page: 219 year: 2016 ident: 10.1016/j.asems.2022.100023_bib15 article-title: Facet dependence of CO2 reduction paths on Cu electrodes publication-title: ACS Catal doi: 10.1021/acscatal.5b01967 – volume: 367 start-page: 72 year: 2018 ident: 10.1016/j.asems.2022.100023_bib7 article-title: Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium publication-title: J. Catal. doi: 10.1016/j.jcat.2018.08.017 – volume: 208 start-page: 35 year: 2017 ident: 10.1016/j.asems.2022.100023_bib10 article-title: Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.02.040 – volume: 18 start-page: 777 year: 2012 ident: 10.1016/j.asems.2022.100023_bib64 article-title: Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity publication-title: Chem. Eur. J. doi: 10.1002/chem.201102632 – volume: 141 start-page: 18704 year: 2019 ident: 10.1016/j.asems.2022.100023_bib127 article-title: Selective C-C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by Operando Raman spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07415 – volume: 31 start-page: 135 year: 2019 ident: 10.1016/j.asems.2022.100023_bib22 article-title: Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.03.002 – volume: 289 start-page: 11 year: 2021 ident: 10.1016/j.asems.2022.100023_bib35 article-title: TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120039 – volume: 6 start-page: 128 year: 2021 ident: 10.1016/j.asems.2022.100023_bib48 article-title: Unravelling the chemistry of catalyst surfaces and solvents towards C-C bond formation through activation and electrochemical conversion of CO2 into hydrocarbons over micro-structured dendritic copper publication-title: Sustain. Energ. Fuels doi: 10.1039/D1SE01255J – volume: 16 start-page: 2168 year: 2021 ident: 10.1016/j.asems.2022.100023_bib109 article-title: Recent advances in bimetallic Cu-based nanocrystals for electrocatalytic CO2 conversion publication-title: Chem. Asian. J. doi: 10.1002/asia.202100583 – volume: 213 start-page: 211 year: 2017 ident: 10.1016/j.asems.2022.100023_bib113 article-title: Highly active and selective Au thin layer on Cu polycrystalline surface prepared by galvanic displacement for the electrochemical reduction of CO2 to CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.05.001 – volume: 17 year: 2021 ident: 10.1016/j.asems.2022.100023_bib102 article-title: Construction of lattice strain in bimetallic nanostructures and its effectiveness in electrochemical applications publication-title: Small – volume: 31 year: 2021 ident: 10.1016/j.asems.2022.100023_bib122 article-title: Symmetry-broken Au–Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101255 – volume: 57 start-page: 1839 year: 2021 ident: 10.1016/j.asems.2022.100023_bib95 article-title: Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO2 reduction publication-title: Chem. Commun. doi: 10.1039/D0CC07589B – volume: 115 start-page: 9403 year: 2011 ident: 10.1016/j.asems.2022.100023_bib55 article-title: formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction publication-title: J. Phys. Chem. C. doi: 10.1021/jp112128g – volume: 14 start-page: 4471 year: 2021 ident: 10.1016/j.asems.2022.100023_bib121 article-title: Tandem catalysis in electrochemical CO2 reduction reaction publication-title: Nano. Res. doi: 10.1007/s12274-021-3448-2 – volume: 139 start-page: 11277 year: 2017 ident: 10.1016/j.asems.2022.100023_bib78 article-title: Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06765 – volume: 21 start-page: 21341 year: 2019 ident: 10.1016/j.asems.2022.100023_bib115 article-title: Zn-Doped Cu(100) facet with efficient catalytic ability for the CO2 electroreduction to ethylene publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03692J – volume: 16 start-page: 7224 year: 2016 ident: 10.1016/j.asems.2022.100023_bib79 article-title: High-density nanosharp microstructures enable efficient CO2 electroreduction publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b03615 – year: 2021 ident: 10.1016/j.asems.2022.100023_bib93 article-title: Guiding the catalytic properties of copper for electrochemical CO2 reduction by metal atom decoration publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.1c09128 – volume: 12 start-page: 2055 year: 2019 ident: 10.1016/j.asems.2022.100023_bib83 article-title: Rational design of three-phase interfaces for electrocatalysis publication-title: Nano Res doi: 10.1007/s12274-019-2310-2 – volume: 139 start-page: 8329 year: 2017 ident: 10.1016/j.asems.2022.100023_bib96 article-title: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03516 – volume: 31 year: 2021 ident: 10.1016/j.asems.2022.100023_bib13 article-title: Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102151 – volume: 7 start-page: 5071 year: 2017 ident: 10.1016/j.asems.2022.100023_bib46 article-title: Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst publication-title: ACS Catal doi: 10.1021/acscatal.7b00707 – volume: 17 start-page: 7 year: 2021 ident: 10.1016/j.asems.2022.100023_bib59 article-title: Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness publication-title: Small – volume: 2 year: 2017 ident: 10.1016/j.asems.2022.100023_bib101 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.59 – volume: 11 start-page: 6593 year: 2020 ident: 10.1016/j.asems.2022.100023_bib88 article-title: Electroreduction reaction mechanism of carbon dioxide to C2 products via Cu/Au bimetallic catalysis: a theoretical prediction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01970 – volume: 3 start-page: 251 year: 2012 ident: 10.1016/j.asems.2022.100023_bib23 article-title: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201461p – volume: 6 start-page: 2032 year: 2015 ident: 10.1016/j.asems.2022.100023_bib75 article-title: Theoretical insights into a CO dimerization mechanism in CO2 electroreduction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00722 – volume: 8 start-page: 4873 year: 2018 ident: 10.1016/j.asems.2022.100023_bib29 article-title: Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol publication-title: ACS Catal doi: 10.1021/acscatal.7b04150 – volume: 1 start-page: 883 year: 2018 ident: 10.1016/j.asems.2022.100023_bib57 article-title: Tailoring the selectivity of bimetallic copper–palladium nanoalloys for electrocatalytic reduction of CO2 to CO publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00320 – volume: 7 start-page: 27514 year: 2019 ident: 10.1016/j.asems.2022.100023_bib98 article-title: Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO2 to formate publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11140A – volume: 2 start-page: 487 year: 2013 ident: 10.1016/j.asems.2022.100023_bib44 article-title: Morphology control of bimetallic nanostructures for electrochemical catalysts publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2013-0022 – volume: 24 start-page: 283 year: 1972 ident: 10.1016/j.asems.2022.100023_bib42 article-title: Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys publication-title: J. Catal. doi: 10.1016/0021-9517(72)90072-3 – volume: 565 year: 2021 ident: 10.1016/j.asems.2022.100023_bib69 article-title: Electric-field-driven electrochemical CO2 reduction of sharpened Sn/Cu catalysts publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150460 – volume: 15 year: 2020 ident: 10.1016/j.asems.2022.100023_bib33 article-title: Graphitic carbon nitride based single-atom photocatalysts publication-title: Front. Phys. doi: 10.1007/s11467-019-0950-z – volume: 12 start-page: 25374 year: 2020 ident: 10.1016/j.asems.2022.100023_bib90 article-title: Synergy between a silver-copper surface alloy composition and carbon dioxide adsorption and activation publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.0c02057 – volume: 378 start-page: 412 year: 2018 ident: 10.1016/j.asems.2022.100023_bib53 article-title: One-dimensional CuIn alloy nanowires as a robust and efficient electrocatalyst for selective CO2-to-CO conversion publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.070 – volume: 10 start-page: 3340 year: 2019 ident: 10.1016/j.asems.2022.100023_bib123 article-title: Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane publication-title: Nat. Commun. doi: 10.1038/s41467-019-11292-9 – volume: 388 year: 2021 ident: 10.1016/j.asems.2022.100023_bib16 article-title: Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138552 – volume: 254 start-page: 119 year: 2014 ident: 10.1016/j.asems.2022.100023_bib43 article-title: Simple synthesis of hollow Pt–Pd nanospheres supported on reduced graphene oxide for enhanced methanol electrooxidation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.098 – year: 2022 ident: 10.1016/j.asems.2022.100023_bib60 article-title: Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling toward CO2 eletroreduction publication-title: Nano Lett – volume: 7 start-page: 5381 year: 2017 ident: 10.1016/j.asems.2022.100023_bib52 article-title: Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts publication-title: ACS Catal doi: 10.1021/acscatal.7b01161 – volume: 2 year: 2009 ident: 10.1016/j.asems.2022.100023_bib37 article-title: Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook publication-title: Energy Environ. Sci. doi: 10.1039/b822176f – volume: 11 start-page: 14734 year: 2019 ident: 10.1016/j.asems.2022.100023_bib47 article-title: Electrodeposited AgCu foam catalysts for enhanced reduction of CO2 to CO publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b22071 |
SSID | ssj0002856910 |
Score | 2.3848295 |
SecondaryResourceType | review_article |
Snippet | Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based... Electrocatalytic CO2 reduction reaction (CO2RR) is one of the effective means to realize CO2 resource utilization. Among the high-efficiency metal-based... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 100023 |
SubjectTerms | adsorption Bimetallic catalysts carbon dioxide CO2 reduction reaction desorption electric field energy Strain effect Tandem effect |
Title | Cu-based bimetallic catalysts for CO2 reduction reaction |
URI | https://www.proquest.com/docview/2718262098 https://doaj.org/article/cf9cc6b1d9f34ffd81514070b2874165 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdRVJxfVPBosU3afBx1TIYwvTjYLaRpAhtbJ_s4ePFv9720HRNBL15KKWmT_l7S33vpyy-E3IKLKq2QmBeWOxTVNrExXMVS5YlNSmpyiQuFhy98MMqex_l4Z6svzAmr5YFr4O6tV9byIi2VZ5n3pQSKgiAkKVCoPeVBvRQ4byeYmoYpo5yrIEVAhYCGZPm4lRwKyV3AEHMU66YU0wQSyr7RUlDv__FxDozzdEgOGlcxeqibeET2XHVMZG8TI_OUUTGZO_CcZxMbhTmYj9V6FYELGvVeabRERVbEHM7qpQsnZPTUf-sN4mb3g9gyIdax9xa4gwpXGgMkqxwrjaK8UGlmLAw0BUByZr20HgNLalPufSLAgzCowVewU9KpFpU7IxFVxucZowygzExZmOD2pfhAxpXKuoS2L69tIw2OO1TMdJsDNtUBMY2I6RqxLrnb3vReK2P8XvwRUd0WRVnrcAGMrRtj67-M3SU3rU00DAP8t2Eqt9hATQIDJegJ8vw_Krog-9j2OpnsknTWy427Au9jXVyHjgbH4Wf_CxCQ1EM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-based+bimetallic+catalysts+for+CO2+reduction+reaction&rft.jtitle=Advanced+Sensor+and+Energy+Materials&rft.au=Wang%2C+Xi-Qing&rft.au=Chen%2C+Qin&rft.au=Zhou%2C+Ya-Jiao&rft.au=Li%2C+Hong-Mei&rft.date=2022-09-01&rft.issn=2773-045X&rft.eissn=2773-045X&rft.volume=1&rft.issue=3&rft.spage=100023&rft_id=info:doi/10.1016%2Fj.asems.2022.100023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asems_2022_100023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2773-045X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2773-045X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2773-045X&client=summon |