Cu-based bimetallic catalysts for CO2 reduction reaction

Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO₂ reduction into valuable hydrocarbon products. However, due to the difficulty in...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Sensor and Energy Materials Vol. 1; no. 3; p. 100023
Main Authors Wang, Xi-Qing, Chen, Qin, Zhou, Ya-Jiao, Li, Hong-Mei, Fu, Jun-Wei, Liu, Min
Format Journal Article
LanguageEnglish
Published Elsevier 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO₂ reduction into valuable hydrocarbon products. However, due to the difficulty in activating CO₂ and regulating intermediate adsorption/desorption properties, the CO₂RR activity and selectivity of Cu-based catalysts still cannot meet the requirements of industrial applications. The design of Cu-based bimetallic catalysts is a potential strategy because the introduction of the second metal can well promote the activation of CO₂ and break the linear scaling relationship in intermediate adsorption/desorption. In this review, the synergistic enhancements of Cu-based bimetals on CO₂ activation and intermediate adsorption/desorption are analyzed in detail, including the advantages caused by the morphology of Cu-based bimetallic catalysts, the local electric field effect induced by the special nanoneedle structure, the interface engineering (strain effect, atomic arrangement, interface regulation), and other particular effects (electronic effect and tandem effect). Finally, the challenges and perspectives on the development of Cu-based bimetallic catalysts for CO₂ reduction are proposed.
AbstractList Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO₂ reduction into valuable hydrocarbon products. However, due to the difficulty in activating CO₂ and regulating intermediate adsorption/desorption properties, the CO₂RR activity and selectivity of Cu-based catalysts still cannot meet the requirements of industrial applications. The design of Cu-based bimetallic catalysts is a potential strategy because the introduction of the second metal can well promote the activation of CO₂ and break the linear scaling relationship in intermediate adsorption/desorption. In this review, the synergistic enhancements of Cu-based bimetals on CO₂ activation and intermediate adsorption/desorption are analyzed in detail, including the advantages caused by the morphology of Cu-based bimetallic catalysts, the local electric field effect induced by the special nanoneedle structure, the interface engineering (strain effect, atomic arrangement, interface regulation), and other particular effects (electronic effect and tandem effect). Finally, the challenges and perspectives on the development of Cu-based bimetallic catalysts for CO₂ reduction are proposed.
Electrocatalytic CO2 reduction reaction (CO2RR) is one of the effective means to realize CO2 resource utilization. Among the high-efficiency metal-based catalysts, Cu is a star material profiting from its ability for CO2 reduction into valuable hydrocarbon products. However, due to the difficulty in activating CO2 and regulating intermediate adsorption/desorption properties, the CO2RR activity and selectivity of Cu-based catalysts still cannot meet the requirements of industrial applications. The design of Cu-based bimetallic catalysts is a potential strategy because the introduction of the second metal can well promote the activation of CO2 and break the linear scaling relationship in intermediate adsorption/desorption. In this review, the synergistic enhancements of Cu-based bimetals on CO2 activation and intermediate adsorption/desorption are analyzed in detail, including the advantages caused by the morphology of Cu-based bimetallic catalysts, the local electric field effect induced by the special nanoneedle structure, the interface engineering (strain effect, atomic arrangement, interface regulation), and other particular effects (electronic effect and tandem effect). Finally, the challenges and perspectives on the development of Cu-based bimetallic catalysts for CO2 reduction are proposed.
ArticleNumber 100023
Author Li, Hong-Mei
Wang, Xi-Qing
Fu, Jun-Wei
Liu, Min
Chen, Qin
Zhou, Ya-Jiao
Author_xml – sequence: 1
  givenname: Xi-Qing
  surname: Wang
  fullname: Wang, Xi-Qing
– sequence: 2
  givenname: Qin
  surname: Chen
  fullname: Chen, Qin
– sequence: 3
  givenname: Ya-Jiao
  surname: Zhou
  fullname: Zhou, Ya-Jiao
– sequence: 4
  givenname: Hong-Mei
  surname: Li
  fullname: Li, Hong-Mei
– sequence: 5
  givenname: Jun-Wei
  orcidid: 0000-0003-0190-1663
  surname: Fu
  fullname: Fu, Jun-Wei
– sequence: 6
  givenname: Min
  orcidid: 0000-0002-9007-4817
  surname: Liu
  fullname: Liu, Min
BookMark eNp9kD9rwzAQxUVJoWmaT9DFYxen0smWrLGE_gkEsrTQTZxlqcg4USrZQ759naSF0qHTPY73Hne_azLZhZ0l5JbRBaNM3LcLTHabFkABxg2lwC_IFKTkOS3K98kvfUXmKbVHS1UKxeiUVMshr8d8k9V-a3vsOm8yg6M4pD5lLsRsuYEs2mYwvQ-7UeFJ3JBLh12y8-85I29Pj6_Ll3y9eV4tH9a54VL2uXOGQQXSNoisBGV5gwpErViBBkqpGkDBjauMk4VkYJhwjkohOLKC8prPyOrc2wRs9T76LcaDDuj1aRHih8bYe9NZbZwyRtSsUY4XzjUVK8cOSWuoZMFEOXbdnbv2MXwONvV665OxXYc7G4akQbIKBFBVjVZ1tpoYUorWaeN7PD7eR_SdZlQf4etWn-DrI3x9hj9m-Z_sz9n_pb4AHoyKeg
CitedBy_id crossref_primary_10_1021_acs_iecr_3c03600
crossref_primary_10_1039_D3TA01379K
crossref_primary_10_1039_D4CY00807C
crossref_primary_10_1007_s12274_023_5910_9
crossref_primary_10_1039_D4SC07740G
crossref_primary_10_1002_ange_202316907
crossref_primary_10_1039_D3TA04929A
crossref_primary_10_59761_RCR5085
crossref_primary_10_1039_D4CY00101J
crossref_primary_10_3390_nano13010087
crossref_primary_10_1021_acsami_3c11342
crossref_primary_10_1039_D4NR04790G
crossref_primary_10_3390_solar3010008
crossref_primary_10_3390_nano13111773
crossref_primary_10_1021_acsaem_3c02550
crossref_primary_10_1002_anie_202316907
crossref_primary_10_1007_s11705_024_2393_5
crossref_primary_10_1021_acsomega_4c03333
crossref_primary_10_1016_j_cej_2024_151677
crossref_primary_10_1021_jacs_3c07108
crossref_primary_10_1016_j_isci_2023_107953
crossref_primary_10_1021_acsaem_3c01448
crossref_primary_10_1039_D4GC05274A
crossref_primary_10_1002_adma_202303902
crossref_primary_10_1002_cssc_202202251
crossref_primary_10_1007_s13204_023_02794_6
crossref_primary_10_1002_metm_28
crossref_primary_10_1021_acsaem_3c00965
crossref_primary_10_1002_adfm_202412812
crossref_primary_10_1002_cssc_202400898
crossref_primary_10_1021_acs_chemmater_3c00649
crossref_primary_10_1002_adfm_202300926
Cites_doi 10.1016/j.cej.2021.128982
10.1002/anie.201810207
10.1002/anie.201612617
10.1016/j.apcatb.2019.01.021
10.1021/acscatal.6b03147
10.1016/j.jcat.2020.05.002
10.1002/adma.201504766
10.1149/2.0421704jes
10.1021/acscatal.1c03717
10.1021/acsami.9b01553
10.1021/acscatal.5b00922
10.1016/j.jechem.2020.05.006
10.1021/acsaem.0c00157
10.1021/jacs.9b02945
10.1021/jacs.8b12381
10.1021/jacs.8b01868
10.1021/nl3032795
10.1021/acs.nanolett.9b03324
10.1021/ja810151r
10.1002/anie.201707478
10.1021/acs.chemrev.8b00705
10.1016/j.electacta.2020.136756
10.1021/acsnano.0c07869
10.1002/cssc.201702342
10.1038/srep06414
10.1021/jacs.6b10740
10.1021/acscatal.7b02822
10.1021/jacs.6b08534
10.1021/acscatal.0c02124
10.1021/acscatal.6b02162
10.1246/cl.1986.897
10.1021/acscatal.6b02299
10.1016/S0926-860X(01)00828-6
10.1016/j.jechem.2019.03.030
10.1038/nchem.623
10.1039/C2NR32849F
10.1016/j.nanoen.2016.04.009
10.1021/jp046561k
10.1021/acs.jpcc.7b00940
10.1002/advs.202102648
10.1021/jacs.7b08607
10.1002/aenm.201602114
10.1016/S1872-2067(21)63866-4
10.1038/s41929-018-0139-9
10.1016/0021-9517(72)90069-3
10.1002/cssc.201801582
10.1021/jz401087q
10.1039/C9TA09471G
10.1021/acscatal.6b02067
10.1016/j.joule.2020.07.009
10.1002/anie.201708825
10.1039/C8TA05355C
10.1038/nchem.121
10.1038/s41929-018-0084-7
10.1016/j.jcis.2012.06.060
10.1021/acs.jpclett.8b00959
10.1021/acscatal.1c00420
10.1039/D0TA04551A
10.1016/j.apcatb.2021.120003
10.1039/D1NR03221F
10.1016/j.mtener.2019.01.006
10.1016/j.jmst.2021.10.045
10.1016/j.chempr.2018.05.001
10.1039/D0TA08880C
10.1021/acsami.8b20545
10.1021/acscatal.5b00462
10.1002/anie.201208320
10.1002/adfm.201806419
10.1016/j.nanoen.2019.104331
10.1038/nature19060
10.1016/j.cattod.2015.05.017
10.1007/s12274-020-2900-z
10.1021/ja5030172
10.1039/C5TA06804E
10.1021/acsenergylett.8b01286
10.1002/adma.201908398
10.1021/acscatal.5b01967
10.1016/j.jcat.2018.08.017
10.1016/j.apcatb.2017.02.040
10.1002/chem.201102632
10.1021/jacs.9b07415
10.1016/j.jcou.2019.03.002
10.1016/j.apcatb.2021.120039
10.1039/D1SE01255J
10.1002/asia.202100583
10.1016/j.apcatb.2017.05.001
10.1002/adfm.202101255
10.1039/D0CC07589B
10.1021/jp112128g
10.1007/s12274-021-3448-2
10.1021/jacs.7b06765
10.1039/C9CP03692J
10.1021/acs.nanolett.6b03615
10.1021/acsami.1c09128
10.1007/s12274-019-2310-2
10.1021/jacs.7b03516
10.1002/adfm.202102151
10.1021/acscatal.7b00707
10.1038/natrevmats.2017.59
10.1021/acs.jpclett.0c01970
10.1021/jz201461p
10.1021/acs.jpclett.5b00722
10.1021/acscatal.7b04150
10.1021/acsaem.7b00320
10.1039/C9TA11140A
10.1515/ntrev-2013-0022
10.1016/0021-9517(72)90072-3
10.1016/j.apsusc.2021.150460
10.1007/s11467-019-0950-z
10.1021/acsami.0c02057
10.1016/j.jpowsour.2017.12.070
10.1038/s41467-019-11292-9
10.1016/j.electacta.2021.138552
10.1016/j.jpowsour.2013.12.098
10.1021/acscatal.7b01161
10.1039/b822176f
10.1021/acsami.8b22071
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.asems.2022.100023
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2773-045X
ExternalDocumentID oai_doaj_org_article_cf9cc6b1d9f34ffd81514070b2874165
10_1016_j_asems_2022_100023
GroupedDBID 0R~
AALRI
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CITATION
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
7S9
L.6
ID FETCH-LOGICAL-c377t-ffc12827edaa1529e3da926b914ac2579d2a63cf8cf74712c16ff07663a1403b3
IEDL.DBID DOA
ISSN 2773-045X
IngestDate Wed Aug 27 01:26:23 EDT 2025
Fri Jul 11 07:41:29 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 00:20:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-ffc12827edaa1529e3da926b914ac2579d2a63cf8cf74712c16ff07663a1403b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0190-1663
0000-0002-9007-4817
OpenAccessLink https://doaj.org/article/cf9cc6b1d9f34ffd81514070b2874165
PQID 2718262098
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_cf9cc6b1d9f34ffd81514070b2874165
proquest_miscellaneous_2718262098
crossref_citationtrail_10_1016_j_asems_2022_100023
crossref_primary_10_1016_j_asems_2022_100023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-00
20220901
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-00
PublicationDecade 2020
PublicationTitle Advanced Sensor and Energy Materials
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
References Chen (10.1016/j.asems.2022.100023_bib124) 2020; 4
Keerthiga (10.1016/j.asems.2022.100023_bib45) 2017; 164
Chen (10.1016/j.asems.2022.100023_bib68) 2021; 13
Li (10.1016/j.asems.2022.100023_bib102) 2021; 17
Morales-Guio (10.1016/j.asems.2022.100023_bib126) 2018; 1
Chen (10.1016/j.asems.2022.100023_bib1) 2021; 54
Ponec (10.1016/j.asems.2022.100023_bib41) 1972; 24
Zhang (10.1016/j.asems.2022.100023_bib104) 2014; 136
Zhu (10.1016/j.asems.2022.100023_bib121) 2021; 14
Kottakkat (10.1016/j.asems.2022.100023_bib47) 2019; 11
Luo (10.1016/j.asems.2022.100023_bib101) 2017; 2
Luo (10.1016/j.asems.2022.100023_bib15) 2016; 6
Nitopi (10.1016/j.asems.2022.100023_bib110) 2019; 119
Nishimura (10.1016/j.asems.2022.100023_bib93) 2021
Zhang (10.1016/j.asems.2022.100023_bib44) 2013; 2
Du (10.1016/j.asems.2022.100023_bib108) 2021; 9
Iyengar (10.1016/j.asems.2022.100023_bib131) 2021; 11
Zhang (10.1016/j.asems.2022.100023_bib115) 2019; 21
Strasser (10.1016/j.asems.2022.100023_bib119) 2010; 2
Rashid (10.1016/j.asems.2022.100023_bib48) 2021; 6
Reller (10.1016/j.asems.2022.100023_bib50) 2017; 7
Weng (10.1016/j.asems.2022.100023_bib62) 2017; 56
Dong (10.1016/j.asems.2022.100023_bib69) 2021; 565
Zhang (10.1016/j.asems.2022.100023_bib59) 2021; 17
Kim (10.1016/j.asems.2022.100023_bib96) 2017; 139
Klingan (10.1016/j.asems.2022.100023_bib49) 2018; 11
Montoya (10.1016/j.asems.2022.100023_bib75) 2015; 6
Ren (10.1016/j.asems.2022.100023_bib128) 2016; 6
Shao (10.1016/j.asems.2022.100023_bib87) 2019; 29
Gao (10.1016/j.asems.2022.100023_bib127) 2019; 141
Larrazábal (10.1016/j.asems.2022.100023_bib61) 2016; 6
Peng (10.1016/j.asems.2022.100023_bib92) 2021; 288
Xie (10.1016/j.asems.2022.100023_bib95) 2021; 57
Chen (10.1016/j.asems.2022.100023_bib17) 2021
Dutta (10.1016/j.asems.2022.100023_bib125) 2020; 68
Ma (10.1016/j.asems.2022.100023_bib94) 2017; 139
Wang (10.1016/j.asems.2022.100023_bib66) 2013; 5
Yoo (10.1016/j.asems.2022.100023_bib73) 2020; 3
Li (10.1016/j.asems.2022.100023_bib43) 2014; 254
Wang (10.1016/j.asems.2022.100023_bib34) 2021; 17
Norskov (10.1016/j.asems.2022.100023_bib111) 2009; 1
Jiang (10.1016/j.asems.2022.100023_bib80) 2017; 56
Nursanto (10.1016/j.asems.2022.100023_bib8) 2016; 260
Mohl (10.1016/j.asems.2022.100023_bib55) 2011; 115
Zhang (10.1016/j.asems.2022.100023_bib88) 2020; 11
Li (10.1016/j.asems.2022.100023_bib86) 2021
Rosen (10.1016/j.asems.2022.100023_bib51) 2015; 5
Yin (10.1016/j.asems.2022.100023_bib64) 2012; 18
Yin (10.1016/j.asems.2022.100023_bib20) 2019; 19
Peterson (10.1016/j.asems.2022.100023_bib23) 2012; 3
Huang (10.1016/j.asems.2022.100023_bib103) 2017; 56
Ma (10.1016/j.asems.2022.100023_bib58) 2022
Zhang (10.1016/j.asems.2022.100023_bib123) 2019; 10
Li (10.1016/j.asems.2022.100023_bib4) 2020; 142
Wang (10.1016/j.asems.2022.100023_bib27) 2021; 15
Wang (10.1016/j.asems.2022.100023_bib9) 2004; 108
Jia (10.1016/j.asems.2022.100023_bib122) 2021; 31
Hoang (10.1016/j.asems.2022.100023_bib31) 2018; 140
Koh (10.1016/j.asems.2022.100023_bib46) 2017; 7
Ma (10.1016/j.asems.2022.100023_bib112) 2020; 8
Shetty (10.1016/j.asems.2022.100023_bib77) 2020; 10
Yu (10.1016/j.asems.2022.100023_bib13) 2021; 31
Cheng (10.1016/j.asems.2022.100023_bib2) 2016; 138
Wang (10.1016/j.asems.2022.100023_bib63) 2012; 384
Sun (10.1016/j.asems.2022.100023_bib116) 2020; 8
Reske (10.1016/j.asems.2022.100023_bib106) 2013; 4
Niu (10.1016/j.asems.2022.100023_bib25) 2020; 13
Clark (10.1016/j.asems.2022.100023_bib107) 2017; 139
Zhu (10.1016/j.asems.2022.100023_bib56) 2019; 37
Zhuang (10.1016/j.asems.2022.100023_bib99) 2018; 1
Chen (10.1016/j.asems.2022.100023_bib57) 2018; 1
Back (10.1016/j.asems.2022.100023_bib11) 2015; 5
Ye (10.1016/j.asems.2022.100023_bib90) 2020; 12
Zhu (10.1016/j.asems.2022.100023_bib100) 2018; 3
Zhong (10.1016/j.asems.2022.100023_bib72) 2020; 152
Zhang (10.1016/j.asems.2022.100023_bib18) 2022; 116
Kim (10.1016/j.asems.2022.100023_bib113) 2017; 213
Han (10.1016/j.asems.2022.100023_bib28) 2014; 4
Lee (10.1016/j.asems.2022.100023_bib129) 2017; 7
Saberi Safaei (10.1016/j.asems.2022.100023_bib79) 2016; 16
Weng (10.1016/j.asems.2022.100023_bib67) 2017; 56
García (10.1016/j.asems.2022.100023_bib7) 2018; 367
Liu (10.1016/j.asems.2022.100023_bib97) 2019; 11
Wang (10.1016/j.asems.2022.100023_bib83) 2019; 12
Tomboc (10.1016/j.asems.2022.100023_bib24) 2020; 32
Gu (10.1016/j.asems.2022.100023_bib21) 2018
Talukdar (10.1016/j.asems.2022.100023_bib109) 2021; 16
Huang (10.1016/j.asems.2022.100023_bib39) 2017; 7
Liu (10.1016/j.asems.2022.100023_bib16) 2021; 388
Wang (10.1016/j.asems.2022.100023_bib91) 2019; 11
Lu (10.1016/j.asems.2022.100023_bib5) 2016; 29
Li (10.1016/j.asems.2022.100023_bib74) 2022; 43
Sinfelt (10.1016/j.asems.2022.100023_bib42) 1972; 24
Dean (10.1016/j.asems.2022.100023_bib89) 2018; 11
Hori (10.1016/j.asems.2022.100023_bib12) 1986; 15
Zhang (10.1016/j.asems.2022.100023_bib132) 2020; 387
Fu (10.1016/j.asems.2022.100023_bib32) 2021; 415
Zhu (10.1016/j.asems.2022.100023_bib6) 2016; 28
Zhang (10.1016/j.asems.2022.100023_bib82) 2021; 8
Birhanu (10.1016/j.asems.2022.100023_bib118) 2020; 356
Li (10.1016/j.asems.2022.100023_bib3) 2019; 141
Ham (10.1016/j.asems.2022.100023_bib10) 2017; 208
Wang (10.1016/j.asems.2022.100023_bib98) 2019; 7
Adit Maark (10.1016/j.asems.2022.100023_bib120) 2017; 121
Mun (10.1016/j.asems.2022.100023_bib30) 2019; 246
Fu (10.1016/j.asems.2022.100023_bib14) 2021
Indrakanti (10.1016/j.asems.2022.100023_bib37) 2009; 2
Monzo (10.1016/j.asems.2022.100023_bib105) 2015; 3
Xu (10.1016/j.asems.2022.100023_bib36) 2020; 11
Tao (10.1016/j.asems.2022.100023_bib81) 2019; 58
Resasco (10.1016/j.asems.2022.100023_bib78) 2017; 139
Iyengar (10.1016/j.asems.2022.100023_bib130) 2021; 11
Jang (10.1016/j.asems.2022.100023_bib53) 2018; 378
Zhong (10.1016/j.asems.2022.100023_bib60) 2022
Huang (10.1016/j.asems.2022.100023_bib26) 2019; 141
Zhou (10.1016/j.asems.2022.100023_bib76) 2022
Chen (10.1016/j.asems.2022.100023_bib84) 2019; 12
Merino-Garcia (10.1016/j.asems.2022.100023_bib22) 2019; 31
Ponec (10.1016/j.asems.2022.100023_bib40) 2001; 222
Hoffman (10.1016/j.asems.2022.100023_bib52) 2017; 7
Meng (10.1016/j.asems.2022.100023_bib35) 2021; 289
Nie (10.1016/j.asems.2022.100023_bib38) 2013; 52
Chen (10.1016/j.asems.2022.100023_bib70) 2016; 6
Cui (10.1016/j.asems.2022.100023_bib65) 2012; 12
Nie (10.1016/j.asems.2022.100023_bib29) 2018; 8
Liu (10.1016/j.asems.2022.100023_bib71) 2016; 537
Liu (10.1016/j.asems.2022.100023_bib54) 2009; 131
Jeong (10.1016/j.asems.2022.100023_bib19) 2020; 10
Zu (10.1016/j.asems.2022.100023_bib114) 2018; 6
Wang (10.1016/j.asems.2022.100023_bib117) 2018; 9
Fu (10.1016/j.asems.2022.100023_bib33) 2020; 15
Vasileff (10.1016/j.asems.2022.100023_bib85) 2018; 4
References_xml – volume: 415
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib32
  article-title: Activation of CO2 on graphitic carbon nitride supported single-atom cobalt sites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128982
– volume: 58
  start-page: 1019
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib81
  article-title: Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201810207
– volume: 56
  start-page: 3594
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib103
  article-title: Understanding of strain effects in the electrochemical reduction of CO2 : using Pd nanostructures as an ideal platform
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201612617
– volume: 246
  start-page: 82
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib30
  article-title: Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.01.021
– volume: 7
  start-page: 1749
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib39
  article-title: Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO∗ coverage on the selective formation of ethylene
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03147
– volume: 387
  start-page: 163
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib132
  article-title: Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.05.002
– volume: 28
  start-page: 3423
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib6
  article-title: Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504766
– volume: 164
  start-page: H164
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib45
  article-title: Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0421704jes
– year: 2021
  ident: 10.1016/j.asems.2022.100023_bib17
  article-title: Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 13330
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib131
  article-title: Theory-guided enhancement of CO2 reduction to ethanol on Ag–Cu tandem catalysts via particle-size effects
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c03717
– volume: 11
  start-page: 16546
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib97
  article-title: Electronic effects determine the selectivity of planar Au-Cu bimetallic thin films for electrochemical CO2 reduction
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.9b01553
– volume: 5
  start-page: 4586
  year: 2015
  ident: 10.1016/j.asems.2022.100023_bib51
  article-title: Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00922
– year: 2022
  ident: 10.1016/j.asems.2022.100023_bib58
  article-title: Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction
  publication-title: Adv. Mater.
– volume: 54
  start-page: 143
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib1
  article-title: Boosting electrocatalytic activity for CO2 reduction on nitrogen-doped carbon catalysts by co-doping with phosphorus
  publication-title: J. Energy. Chem.
  doi: 10.1016/j.jechem.2020.05.006
– volume: 3
  start-page: 4466
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib73
  article-title: Compositional and geometrical effects of bimetallic Cu–Sn catalysts on selective electrochemical CO2 reduction to CO
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00157
– volume: 141
  start-page: 8584
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib3
  article-title: Binding site diversity promotes CO2 electroreduction to ethanol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02945
– volume: 141
  start-page: 2490
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib26
  article-title: Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12381
– volume: 140
  start-page: 5791
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib31
  article-title: Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b01868
– volume: 12
  start-page: 5885
  year: 2012
  ident: 10.1016/j.asems.2022.100023_bib65
  article-title: Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition
  publication-title: Nano Lett
  doi: 10.1021/nl3032795
– volume: 19
  start-page: 8658
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib20
  article-title: Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b03324
– year: 2018
  ident: 10.1016/j.asems.2022.100023_bib21
  article-title: Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4
  publication-title: Small Methods
– volume: 131
  start-page: 5720
  year: 2009
  ident: 10.1016/j.asems.2022.100023_bib54
  article-title: Synthesis of CuPt nanorod catalysts with tunable lengths
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja810151r
– volume: 56
  start-page: 13135
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib62
  article-title: Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707478
– volume: 119
  start-page: 7610
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib110
  article-title: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
– volume: 356
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib118
  article-title: Electrocatalytic reduction of carbon dioxide on gold–copper bimetallic nanoparticles: effects of surface composition on selectivity
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136756
– volume: 15
  start-page: 1039
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib27
  article-title: Synergized Cu/Pb core/shell electrocatalyst for high-efficiency CO2 reduction to C2+ liquids
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07869
– volume: 11
  start-page: 1169
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib89
  article-title: Design of copper-based bimetallic nanoparticles for carbon dioxide adsorption and activation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702342
– volume: 4
  start-page: 6414
  year: 2014
  ident: 10.1016/j.asems.2022.100023_bib28
  article-title: Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction
  publication-title: Sci. Rep.
  doi: 10.1038/srep06414
– volume: 139
  start-page: 47
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib94
  article-title: Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10740
– volume: 7
  start-page: 8594
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib129
  article-title: Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b02822
– volume: 138
  start-page: 13802
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib2
  article-title: Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08534
– volume: 10
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib19
  article-title: Atomic-scale spacing between copper facets for the electrochemical reduction of carbon dioxide
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 12867
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib77
  article-title: Electric-field-assisted modulation of surface thermochemistry
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c02124
– volume: 6
  start-page: 8239
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib128
  article-title: Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02162
– volume: 15
  start-page: 897
  year: 1986
  ident: 10.1016/j.asems.2022.100023_bib12
  article-title: Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1986.897
– volume: 6
  start-page: 7133
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib70
  article-title: Electric field effects in electrochemical CO2 reduction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02299
– volume: 222
  start-page: 31
  year: 2001
  ident: 10.1016/j.asems.2022.100023_bib40
  article-title: Alloy catalysts: the concepts
  publication-title: APPL. CATAL. A-GEN.
  doi: 10.1016/S0926-860X(01)00828-6
– volume: 37
  start-page: 176
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib56
  article-title: Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.03.030
– volume: 2
  start-page: 454
  year: 2010
  ident: 10.1016/j.asems.2022.100023_bib119
  article-title: Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– volume: 5
  start-page: 139
  year: 2013
  ident: 10.1016/j.asems.2022.100023_bib66
  article-title: The growth and enhanced catalytic performance of Au@Pd core-shell nanodendrites
  publication-title: Nanoscale
  doi: 10.1039/C2NR32849F
– volume: 29
  start-page: 439
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib5
  article-title: Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.009
– volume: 108
  start-page: 19413
  year: 2004
  ident: 10.1016/j.asems.2022.100023_bib9
  article-title: Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046561k
– volume: 121
  start-page: 4496
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib120
  article-title: Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper–nickel heterostructures
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b00940
– volume: 8
  start-page: 11
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib82
  article-title: CsPbBr3 nanocrystal induced bilateral interface modification for efficient planar perovskite solar cells
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202102648
– volume: 142
  start-page: 9567
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib4
  article-title: Progress and perspective for in situ studies of CO2 reduction
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 15848
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib107
  article-title: Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08607
– volume: 7
  start-page: 8
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib50
  article-title: Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602114
– volume: 43
  start-page: 519
  year: 2022
  ident: 10.1016/j.asems.2022.100023_bib74
  article-title: Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63866-4
– volume: 1
  start-page: 764
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib126
  article-title: Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0139-9
– volume: 24
  start-page: 250
  year: 1972
  ident: 10.1016/j.asems.2022.100023_bib41
  article-title: The reactions between cyclopentane and deuterium on nickel and nickel-copper alloys
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(72)90069-3
– volume: 11
  start-page: 3449
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib49
  article-title: Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801582
– volume: 4
  start-page: 2410
  year: 2013
  ident: 10.1016/j.asems.2022.100023_bib106
  article-title: Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401087q
– volume: 17
  start-page: 9
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib34
  article-title: In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction
  publication-title: Small
– volume: 8
  start-page: 3344
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib112
  article-title: Core-shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09471G
– volume: 6
  start-page: 6265
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib61
  article-title: Enhanced reduction of CO2 to CO over Cu–in electrocatalysts: catalyst evolution is the key
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02067
– volume: 152
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib72
  article-title: Concentrating and activating carbon dioxide over AuCu aerogel grain boundaries
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 1688
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib124
  article-title: Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.009
– volume: 56
  start-page: 15617
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib80
  article-title: Unraveling the mechanism for the sharp-tip enhanced electrocatalytic carbon dioxide reduction: the kinetics decide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708825
– volume: 6
  start-page: 16804
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib114
  article-title: Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05355C
– volume: 1
  start-page: 37
  year: 2009
  ident: 10.1016/j.asems.2022.100023_bib111
  article-title: Towards the computational design of solid catalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.121
– volume: 1
  start-page: 421
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib99
  article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0084-7
– volume: 384
  start-page: 105
  year: 2012
  ident: 10.1016/j.asems.2022.100023_bib63
  article-title: Dendritic PtCo alloy nanoparticles as high performance oxygen reduction catalysts
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.06.060
– volume: 9
  start-page: 3057
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib117
  article-title: Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00959
– volume: 11
  start-page: 9
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib36
  article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction
  publication-title: Nat. Commun.
– year: 2022
  ident: 10.1016/j.asems.2022.100023_bib76
  article-title: Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction
  publication-title: Nano Lett
– volume: 11
  start-page: 4456
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib130
  article-title: Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu–Ag tandem catalysts
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c00420
– volume: 8
  start-page: 12291
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib116
  article-title: Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04551A
– year: 2021
  ident: 10.1016/j.asems.2022.100023_bib86
  article-title: Recent advances in metal-based electrocatalysts with hetero-interfaces for CO2 reduction reaction
  publication-title: Chem Catalysis
– volume: 288
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib92
  article-title: Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120003
– volume: 13
  start-page: 13604
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib68
  article-title: CoS2 needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution
  publication-title: Nanoscale
  doi: 10.1039/D1NR03221F
– volume: 12
  start-page: 250
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib84
  article-title: Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis, Mater
  publication-title: Today Energy
  doi: 10.1016/j.mtener.2019.01.006
– volume: 116
  start-page: 192
  year: 2022
  ident: 10.1016/j.asems.2022.100023_bib18
  article-title: Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.10.045
– volume: 4
  start-page: 1809
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib85
  article-title: Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.05.001
– volume: 9
  start-page: 4933
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib108
  article-title: Elastic strain controlling the activity and selectivity of CO2 electroreduction on Cu overlayers
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08880C
– volume: 11
  start-page: 2763
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib91
  article-title: Silver/copper interface for relay electroreduction of carbon dioxide to ethylene
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b20545
– year: 2021
  ident: 10.1016/j.asems.2022.100023_bib14
  article-title: Bimetallic atomic site catalysts for CO2 reduction reactions: a review
  publication-title: Environ. Chem. Lett.
– volume: 5
  start-page: 5089
  year: 2015
  ident: 10.1016/j.asems.2022.100023_bib11
  article-title: Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00462
– volume: 52
  start-page: 2459
  year: 2013
  ident: 10.1016/j.asems.2022.100023_bib38
  article-title: Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201208320
– volume: 29
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib87
  article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806419
– volume: 68
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib125
  article-title: Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104331
– volume: 537
  start-page: 382
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib71
  article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
  publication-title: Nature
  doi: 10.1038/nature19060
– volume: 260
  start-page: 107
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib8
  article-title: Gold catalyst reactivity for CO2 electro-reduction: from nano particle to layer
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.05.017
– volume: 13
  start-page: 2564
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib25
  article-title: Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires
  publication-title: Nano Res
  doi: 10.1007/s12274-020-2900-z
– volume: 136
  start-page: 7734
  year: 2014
  ident: 10.1016/j.asems.2022.100023_bib104
  article-title: Tuning nanoparticle structure and surface strain for catalysis optimization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5030172
– volume: 3
  start-page: 23690
  year: 2015
  ident: 10.1016/j.asems.2022.100023_bib105
  article-title: Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06804E
– volume: 56
  start-page: 13135
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib67
  article-title: Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201707478
– volume: 3
  start-page: 2144
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib100
  article-title: formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.8b01286
– volume: 32
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib24
  article-title: Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908398
– volume: 6
  start-page: 219
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib15
  article-title: Facet dependence of CO2 reduction paths on Cu electrodes
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b01967
– volume: 367
  start-page: 72
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib7
  article-title: Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.08.017
– volume: 208
  start-page: 35
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib10
  article-title: Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.02.040
– volume: 18
  start-page: 777
  year: 2012
  ident: 10.1016/j.asems.2022.100023_bib64
  article-title: Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201102632
– volume: 141
  start-page: 18704
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib127
  article-title: Selective C-C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by Operando Raman spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07415
– volume: 31
  start-page: 135
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib22
  article-title: Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.03.002
– volume: 289
  start-page: 11
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib35
  article-title: TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120039
– volume: 6
  start-page: 128
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib48
  article-title: Unravelling the chemistry of catalyst surfaces and solvents towards C-C bond formation through activation and electrochemical conversion of CO2 into hydrocarbons over micro-structured dendritic copper
  publication-title: Sustain. Energ. Fuels
  doi: 10.1039/D1SE01255J
– volume: 16
  start-page: 2168
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib109
  article-title: Recent advances in bimetallic Cu-based nanocrystals for electrocatalytic CO2 conversion
  publication-title: Chem. Asian. J.
  doi: 10.1002/asia.202100583
– volume: 213
  start-page: 211
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib113
  article-title: Highly active and selective Au thin layer on Cu polycrystalline surface prepared by galvanic displacement for the electrochemical reduction of CO2 to CO
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.05.001
– volume: 17
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib102
  article-title: Construction of lattice strain in bimetallic nanostructures and its effectiveness in electrochemical applications
  publication-title: Small
– volume: 31
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib122
  article-title: Symmetry-broken Au–Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101255
– volume: 57
  start-page: 1839
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib95
  article-title: Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO2 reduction
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC07589B
– volume: 115
  start-page: 9403
  year: 2011
  ident: 10.1016/j.asems.2022.100023_bib55
  article-title: formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp112128g
– volume: 14
  start-page: 4471
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib121
  article-title: Tandem catalysis in electrochemical CO2 reduction reaction
  publication-title: Nano. Res.
  doi: 10.1007/s12274-021-3448-2
– volume: 139
  start-page: 11277
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib78
  article-title: Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06765
– volume: 21
  start-page: 21341
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib115
  article-title: Zn-Doped Cu(100) facet with efficient catalytic ability for the CO2 electroreduction to ethylene
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03692J
– volume: 16
  start-page: 7224
  year: 2016
  ident: 10.1016/j.asems.2022.100023_bib79
  article-title: High-density nanosharp microstructures enable efficient CO2 electroreduction
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b03615
– year: 2021
  ident: 10.1016/j.asems.2022.100023_bib93
  article-title: Guiding the catalytic properties of copper for electrochemical CO2 reduction by metal atom decoration
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.1c09128
– volume: 12
  start-page: 2055
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib83
  article-title: Rational design of three-phase interfaces for electrocatalysis
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2310-2
– volume: 139
  start-page: 8329
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib96
  article-title: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03516
– volume: 31
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib13
  article-title: Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102151
– volume: 7
  start-page: 5071
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib46
  article-title: Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00707
– volume: 17
  start-page: 7
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib59
  article-title: Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness
  publication-title: Small
– volume: 2
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib101
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.59
– volume: 11
  start-page: 6593
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib88
  article-title: Electroreduction reaction mechanism of carbon dioxide to C2 products via Cu/Au bimetallic catalysis: a theoretical prediction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01970
– volume: 3
  start-page: 251
  year: 2012
  ident: 10.1016/j.asems.2022.100023_bib23
  article-title: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201461p
– volume: 6
  start-page: 2032
  year: 2015
  ident: 10.1016/j.asems.2022.100023_bib75
  article-title: Theoretical insights into a CO dimerization mechanism in CO2 electroreduction
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00722
– volume: 8
  start-page: 4873
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib29
  article-title: Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b04150
– volume: 1
  start-page: 883
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib57
  article-title: Tailoring the selectivity of bimetallic copper–palladium nanoalloys for electrocatalytic reduction of CO2 to CO
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00320
– volume: 7
  start-page: 27514
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib98
  article-title: Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO2 to formate
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11140A
– volume: 2
  start-page: 487
  year: 2013
  ident: 10.1016/j.asems.2022.100023_bib44
  article-title: Morphology control of bimetallic nanostructures for electrochemical catalysts
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2013-0022
– volume: 24
  start-page: 283
  year: 1972
  ident: 10.1016/j.asems.2022.100023_bib42
  article-title: Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(72)90072-3
– volume: 565
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib69
  article-title: Electric-field-driven electrochemical CO2 reduction of sharpened Sn/Cu catalysts
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150460
– volume: 15
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib33
  article-title: Graphitic carbon nitride based single-atom photocatalysts
  publication-title: Front. Phys.
  doi: 10.1007/s11467-019-0950-z
– volume: 12
  start-page: 25374
  year: 2020
  ident: 10.1016/j.asems.2022.100023_bib90
  article-title: Synergy between a silver-copper surface alloy composition and carbon dioxide adsorption and activation
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.0c02057
– volume: 378
  start-page: 412
  year: 2018
  ident: 10.1016/j.asems.2022.100023_bib53
  article-title: One-dimensional CuIn alloy nanowires as a robust and efficient electrocatalyst for selective CO2-to-CO conversion
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.070
– volume: 10
  start-page: 3340
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib123
  article-title: Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11292-9
– volume: 388
  year: 2021
  ident: 10.1016/j.asems.2022.100023_bib16
  article-title: Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138552
– volume: 254
  start-page: 119
  year: 2014
  ident: 10.1016/j.asems.2022.100023_bib43
  article-title: Simple synthesis of hollow Pt–Pd nanospheres supported on reduced graphene oxide for enhanced methanol electrooxidation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.098
– year: 2022
  ident: 10.1016/j.asems.2022.100023_bib60
  article-title: Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling toward CO2 eletroreduction
  publication-title: Nano Lett
– volume: 7
  start-page: 5381
  year: 2017
  ident: 10.1016/j.asems.2022.100023_bib52
  article-title: Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b01161
– volume: 2
  year: 2009
  ident: 10.1016/j.asems.2022.100023_bib37
  article-title: Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b822176f
– volume: 11
  start-page: 14734
  year: 2019
  ident: 10.1016/j.asems.2022.100023_bib47
  article-title: Electrodeposited AgCu foam catalysts for enhanced reduction of CO2 to CO
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b22071
SSID ssj0002856910
Score 2.3848295
SecondaryResourceType review_article
Snippet Electrocatalytic CO₂ reduction reaction (CO₂RR) is one of the effective means to realize CO₂ resource utilization. Among the high-efficiency metal-based...
Electrocatalytic CO2 reduction reaction (CO2RR) is one of the effective means to realize CO2 resource utilization. Among the high-efficiency metal-based...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 100023
SubjectTerms adsorption
Bimetallic catalysts
carbon dioxide
CO2 reduction reaction
desorption
electric field
energy
Strain effect
Tandem effect
Title Cu-based bimetallic catalysts for CO2 reduction reaction
URI https://www.proquest.com/docview/2718262098
https://doaj.org/article/cf9cc6b1d9f34ffd81514070b2874165
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdRVJxfVPBosU3afBx1TIYwvTjYLaRpAhtbJ_s4ePFv9720HRNBL15KKWmT_l7S33vpyy-E3IKLKq2QmBeWOxTVNrExXMVS5YlNSmpyiQuFhy98MMqex_l4Z6svzAmr5YFr4O6tV9byIi2VZ5n3pQSKgiAkKVCoPeVBvRQ4byeYmoYpo5yrIEVAhYCGZPm4lRwKyV3AEHMU66YU0wQSyr7RUlDv__FxDozzdEgOGlcxeqibeET2XHVMZG8TI_OUUTGZO_CcZxMbhTmYj9V6FYELGvVeabRERVbEHM7qpQsnZPTUf-sN4mb3g9gyIdax9xa4gwpXGgMkqxwrjaK8UGlmLAw0BUByZr20HgNLalPufSLAgzCowVewU9KpFpU7IxFVxucZowygzExZmOD2pfhAxpXKuoS2L69tIw2OO1TMdJsDNtUBMY2I6RqxLrnb3vReK2P8XvwRUd0WRVnrcAGMrRtj67-M3SU3rU00DAP8t2Eqt9hATQIDJegJ8vw_Krog-9j2OpnsknTWy427Au9jXVyHjgbH4Wf_CxCQ1EM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-based+bimetallic+catalysts+for+CO2+reduction+reaction&rft.jtitle=Advanced+Sensor+and+Energy+Materials&rft.au=Wang%2C+Xi-Qing&rft.au=Chen%2C+Qin&rft.au=Zhou%2C+Ya-Jiao&rft.au=Li%2C+Hong-Mei&rft.date=2022-09-01&rft.issn=2773-045X&rft.eissn=2773-045X&rft.volume=1&rft.issue=3&rft.spage=100023&rft_id=info:doi/10.1016%2Fj.asems.2022.100023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asems_2022_100023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2773-045X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2773-045X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2773-045X&client=summon