First order functional differential equations with periodic boundary conditions

In this article, the authors prove an existence theorem for periodic boundary value problems for first order functional differential equations (FDE) in Banach algebras under mixed generalized Lipschitz and Carathéodory conditions. The existence of extremal positive solutions is also proved under cer...

Full description

Saved in:
Bibliographic Details
Published inApplicable analysis Vol. 86; no. 2; pp. 205 - 221
Main Authors Dhage, B. C., Graef, John R.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.02.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, the authors prove an existence theorem for periodic boundary value problems for first order functional differential equations (FDE) in Banach algebras under mixed generalized Lipschitz and Carathéodory conditions. The existence of extremal positive solutions is also proved under certain monotonicity conditions. An example illustrating the results is included.
AbstractList In this article, the authors prove an existence theorem for periodic boundary value problems for first order functional differential equations (FDE) in Banach algebras under mixed generalized Lipschitz and Caratheodory conditions. The existence of extremal positive solutions is also proved under certain monotonicity conditions. An example illustrating the results is included.
In this article, the authors prove an existence theorem for periodic boundary value problems for first order functional differential equations (FDE) in Banach algebras under mixed generalized Lipschitz and Carathéodory conditions. The existence of extremal positive solutions is also proved under certain monotonicity conditions. An example illustrating the results is included.
Author Dhage, B. C.
Graef, John R.
Author_xml – sequence: 1
  givenname: B. C.
  surname: Dhage
  fullname: Dhage, B. C.
– sequence: 2
  givenname: John R.
  surname: Graef
  fullname: Graef, John R.
  email: john-graef@utc.edu
  organization: Department of Mathematics , University of Tennessee at Chattanooga
BookMark eNqFkE1LAzEQhoNUsFZ_gLc9eVudJLtJBC9S_IKCFwVvIZsPjGyTmmTR_nu3rScLehpm5nkG3jlGkxCDRegMwwUGAZcAQJnAwABj0gBnB2iKW0brFprXCZpu9vUI4CN0nPM7ACaiZVP0dOdTLlVMxqbKDUEXH4PqK-Ods8mG4sfGfgxqM8_Vpy9v1comH43XVReHYFRaVzoG47fECTp0qs_29KfO0Mvd7fP8oV483T_Obxa1ppyX2jgqBOPYtYRp0wEnHaNa4Y5awgljljvcmEYB1dRaTogwShPA3IqmIwbTGTrf3V2l-DHYXOTSZ237XgUbhyyJuGqvmKAjyHegTjHnZJ3UvmzTlKR8LzHIzQPl3gNHE_8yV8kvx7h_Otc7xwcX01J9xtQbWdS6j8klFbTPkv6l83_1PUuWr0K_AVwDmiQ
CitedBy_id crossref_primary_10_1007_s11784_020_00825_1
Cites_doi 10.1016/0362-546X(94)90019-1
10.1155/S1048953304308038
10.1016/S0362-546X(01)00889-6
10.1006/jmaa.1996.0231
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2007
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2007
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1080/00036810601124076
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1563-504X
EndPage 221
ExternalDocumentID 10_1080_00036810601124076
212340
GroupedDBID --Z
-~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~S~
07G
1TA
6TJ
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ADYSH
AEUMN
AFFNX
AFRVT
AGLEN
AGROQ
AHMOU
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
HF~
H~9
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TDBHL
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
XOL
ZY4
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c377t-df388671f526cdb072b63ca1b3e27266e7f14d4a03c3ee7228dac2017e84b2d13
ISSN 0003-6811
IngestDate Thu Jul 10 23:38:05 EDT 2025
Tue Jul 01 02:43:11 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Mon May 13 12:10:01 EDT 2019
Wed Dec 25 09:05:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-df388671f526cdb072b63ca1b3e27266e7f14d4a03c3ee7228dac2017e84b2d13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28959683
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_28959683
informaworld_taylorfrancis_310_1080_00036810601124076
crossref_primary_10_1080_00036810601124076
crossref_citationtrail_10_1080_00036810601124076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20070201
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 20070201
  day: 01
PublicationDecade 2000
PublicationTitle Applicable analysis
PublicationYear 2007
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Omari P (CIT0012) 1983; 2
Granas A (CIT0005) 1991; 70
Guo D (CIT0006) 1988
Heikkilä S (CIT0008) 1994
Dhage BC (CIT0003)
Dhage BC (CIT0004); 1
Dhage BC (CIT0001) 2004
Liz E (CIT0010) 1996; 200
Nieto JJ (CIT0011) 2002; 51
Ladde GS (CIT0009) 1985
Dhage BC (CIT0002) 2006; 46
Haddock JR (CIT0007) 1994; 22
References_xml – volume: 22
  start-page: 267
  year: 1994
  ident: CIT0007
  publication-title: Nonlinear Analysis
  doi: 10.1016/0362-546X(94)90019-1
– volume: 2
  start-page: 207
  year: 1983
  ident: CIT0012
  publication-title: Bollettino della Unione Matematica Italiana B
– start-page: 271
  year: 2004
  ident: CIT0001
  publication-title: Journal of Applied Mathematics and Stochastic Analysis
  doi: 10.1155/S1048953304308038
– ident: CIT0003
  publication-title: Computers & Mathematics with Applications
– volume: 1
  start-page: 135
  ident: CIT0004
  publication-title: Journal of Nonlinear Function Analysis Differential Equations
– volume-title: Nonlinear Problems in Abstract Spaces
  year: 1988
  ident: CIT0006
– volume: 46
  start-page: 427
  year: 2006
  ident: CIT0002
  publication-title: Kyungpook Mathematical Journal
– volume-title: Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations
  year: 1994
  ident: CIT0008
– volume-title: Monotone Iterative Techniques for Nonlinear Differential Equations
  year: 1985
  ident: CIT0009
– volume: 51
  start-page: 1223
  year: 2002
  ident: CIT0011
  publication-title: Nonlinear Analysis
  doi: 10.1016/S0362-546X(01)00889-6
– volume: 70
  start-page: 153
  year: 1991
  ident: CIT0005
  publication-title: Journal de Mathematiques Pures et Appliquees
– volume: 200
  start-page: 680
  year: 1996
  ident: CIT0010
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1006/jmaa.1996.0231
SSID ssj0012856
Score 1.7231058
Snippet In this article, the authors prove an existence theorem for periodic boundary value problems for first order functional differential equations (FDE) in Banach...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms 2000 Mathematics Subject Classifications: 34K10
Banach algebra
Existence theorems
Extremal solutions
Periodic boundary value problem
Title First order functional differential equations with periodic boundary conditions
URI https://www.tandfonline.com/doi/abs/10.1080/00036810601124076
https://www.proquest.com/docview/28959683
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96vuiDH6fi-pkHnyxZmiZNs496eByCJ8ge3FvJJy7I7nnbBfWvN0mTtLsri95LKaVNS-bXycxk5jcAvJXYYKWoRkYygShhFEmMFWqolJQzQ5gNCbLn7OyCfrqsL1OL-1hd0smp-v3XupKbSNVdc3L1VbL_Idk8qLvgzp183dFJ2B3_ScanC2e7FYE9s_ALVIzrpaYnnY-Gmx-bmO0WQq6e2HilF6qQoZ_S9S-fd64XQ9guMdL2G9u-rkpE3pJs834TfT_2D9PiZDok8AhjU3Jv8XW6FU5oUgZyBMB8r7PHKAiWdChBjEcVaaLaZATVZZ9rmfRqpLhejNzbqCTLerTeVn2F9J4qz7mPxFOmOb8Re-dzhzY7LMR-9aXlbXCncq6C72JByvO8k1Tx0ME3f3Xa2fb86rtjb9kmW8y1eyt1MD_mD8H96DfA9z0IHoFbZnkMHkQfAkYNvT4G9z5nHt71Y_AlIAQGhMABIXCMEJgRAj1CYEIITAiBA0KegIvTj_OTMxRbaCBFmqZD2hLuGQxtXTGlZdlUkhElsCSmapxtZhqLqaaiJIoY42aPa8_ZiRvDqaw0Jk_B0XK1NM8AJLaeWU609HuxNRPOsZBGCqIsnTH3f09AmSavVZFf3rc5-d7iTEO7M98T8C4_ctWTqxy6uRxLpO0CUm0P0v3b2-5nNwH1gUfIgVe9SdJunbb1W2hiaVabdVvxWT1jnDy_4cgvwN3hp3sJjrrrjXnlrNpOvg6w_QMkAZxO
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH7iGICBG1FOD0xIgTh27HREiKpcZQGJLYovCYFaIKkE_Hp8JBUF1KH7s3P4Pb9T3wdwJLDGUlIVacGKiBJGI4GxjDgVgmZME2b8gGyPdR_o1WP6WBfcynqs0uXQJgBF-LvaGbcrRjcjcaceRSXDDkoEu4yEzcJ82mbcMRiQuDfqIiSZZ2914pGVx01X878txvzSGGrpn1vau57OCuTNS4eJk-eTYSVO5NcvPMfpv2oVluuoFJ0FNVqDGd1fh5U6QkW1_ZfrsHQ7QnktN-Cu82RjR-TRO5FzkKGuiBrSFXt5vCD9FsDES-RKvsgBKw_Uk0TC8zm9fyKbkKswN7YJD52L-_NuVBM0RJJwXkXKkMzh45k0YVKJmCeCEVlgQXTCrefX3GCqaBETSbTmSZIphwiJuc6oSBQmWzDXH_T1NiBi0rbJiBKu05eywoatQouCSEPbzGpPC-LmeHJZo5c7Eo2XHI9ATn_9vhYcj5a8BuiOScLxzzPPK18vMYHc5K94Xn1ULUgnLCETHnXY6FNubdk1aIq-HgzL3Ca_Vo0zsjPlzoew0L2_vclvLnvXu7AYytBu8mYP5qr3od638VMlDryRfANtkQ4Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dT9swEMBPg0mIPcAoQysfww88TQqLY8dJHxGsgg0KD6vEWxR_SRVVW0gqwf76-eyk4mPqA-9nR4l9vjvf5XcAR5IaqhTXkZGijDgTPJKUqijjUvJcGCasL5AdiPMh_3Wb3ja1OVVTVokxtA2gCH9Wo3LPtG0r4n54iEpOkSRCMSARK_BRIDgc_-CIB4skQpL75q0oHjl52iY1_zfFC7P0Alr65pD2lqe_GdqrVh5YiAUnd8fzWh6rv69wju9-qc-w0fik5CRsoi34YCYd2Gz8U9Jof9WBT1cLxmu1Ddf9kfMciWd3EjSP4VaRtC1X3NExJuY-oMQrghe-BLHKUz1SRPpuTg9PxIXjOlSNfYFh_-ef0_Ooac8QKZZldaQty5GOZ9NEKC3jLJGCqZJKZpLM2X2TWco1L2OmmDFZkuQaeZA0MzmXiaZsB1Yn04n5CoTZtGdzpiXm-VJROqdVGlkyZXlPuL3ThbhdnUI17HJsoTEu6AJx-urzdeH7YsgsgDuWCcfPl7yo_W2JDa1N3ooX9WPdhXTJELbkUYftdiqcJmN6ppyY6bwqXOib9kTOdt858yGs3Zz1i8uLwe89WA930Fh2sw-r9cPcHDjnqZbfvIr8AwfBDL0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+order+functional+differential+equations+with+periodic+boundary+conditions&rft.jtitle=Applicable+analysis&rft.au=Dhage%2C+B.+C.&rft.au=Graef%2C+John+R.&rft.date=2007-02-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=86&rft.issue=2&rft.spage=205&rft.epage=221&rft_id=info:doi/10.1080%2F00036810601124076&rft.externalDocID=212340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon