Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond

The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ∼70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon li...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 109; no. 3; p. 033604
Main Authors Faraon, Andrei, Santori, Charles, Huang, Zhihong, Acosta, Victor M, Beausoleil, Raymond G
Format Journal Article
LanguageEnglish
Published United States 19.07.2012
Online AccessGet more information

Cover

Loading…
Abstract The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ∼70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected photoluminescence is emitted primarily by a single nitrogen-vacancy center. The linewidth of the coupled nitrogen-vacancy center and the spectral diffusion are characterized using high-resolution photoluminescence and photoluminescence excitation spectroscopy.
AbstractList The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ∼70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected photoluminescence is emitted primarily by a single nitrogen-vacancy center. The linewidth of the coupled nitrogen-vacancy center and the spectral diffusion are characterized using high-resolution photoluminescence and photoluminescence excitation spectroscopy.
Author Santori, Charles
Beausoleil, Raymond G
Acosta, Victor M
Faraon, Andrei
Huang, Zhihong
Author_xml – sequence: 1
  givenname: Andrei
  surname: Faraon
  fullname: Faraon, Andrei
  email: andrei.faraon@hp.com
  organization: Hewlett Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304, USA. andrei.faraon@hp.com
– sequence: 2
  givenname: Charles
  surname: Santori
  fullname: Santori, Charles
– sequence: 3
  givenname: Zhihong
  surname: Huang
  fullname: Huang, Zhihong
– sequence: 4
  givenname: Victor M
  surname: Acosta
  fullname: Acosta, Victor M
– sequence: 5
  givenname: Raymond G
  surname: Beausoleil
  fullname: Beausoleil, Raymond G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22861849$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAUQIMozkN_YcgPtOZR81hK8QUDbnQnDGlyOxNpk9JkCv17C46rA2dx4GzQdYgBENpRUlJK-MNwmtMIUwc5l5ToknAuSHWF1pRIXUhKqxXapPRDCKFMqFu0YkwJqiq9Rt91PA-dD0ccWxx8HuMRQjEZa4KdsYWQYUw4RzycYo7BW2zHOWXTYWsmnz0k7APuY4gXv7QAO28W5e7QTWu6BPcXbtHXy_Nn_VbsP17f66d9YbmUuXCVlK1rW6W1pdqKVjZGkobqCpYDyx61a6xS0okKOOOacEYtEUIKDWb5YFu0--sO56YHdxhG35txPvxvsl8_pVmd
CitedBy_id crossref_primary_10_1364_OPTICA_3_000207
crossref_primary_10_1038_srep35529
crossref_primary_10_1021_acsphotonics_8b00930
crossref_primary_10_1103_PhysRevLett_110_167402
crossref_primary_10_1002_qute_201900069
crossref_primary_10_1038_s41467_023_36098_8
crossref_primary_10_1103_PhysRevLett_119_096402
crossref_primary_10_1073_pnas_1305920110
crossref_primary_10_1364_JOSAB_33_000B35
crossref_primary_10_1364_PRJ_459794
crossref_primary_10_1039_D2TC01258H
crossref_primary_10_1002_pssa_201532494
crossref_primary_10_1016_j_decarb_2024_100037
crossref_primary_10_1063_1_4856935
crossref_primary_10_1103_PhysRevA_103_052421
crossref_primary_10_1038_srep16444
crossref_primary_10_1063_1_4991416
crossref_primary_10_1103_PhysRevLett_113_263601
crossref_primary_10_1103_PhysRevApplied_7_054010
crossref_primary_10_1103_PhysRevX_11_031021
crossref_primary_10_1103_PhysRevLett_132_073601
crossref_primary_10_1103_PhysRevB_88_064105
crossref_primary_10_1038_s41534_024_00915_9
crossref_primary_10_1063_1_4890613
crossref_primary_10_1364_OE_23_025279
crossref_primary_10_1103_PhysRevB_94_195314
crossref_primary_10_1021_acsphotonics_1c00576
crossref_primary_10_1063_1_4804262
crossref_primary_10_1103_PhysRevLett_117_240501
crossref_primary_10_1103_PhysRevX_7_041023
crossref_primary_10_1103_PhysRevLett_110_243602
crossref_primary_10_1088_2040_8986_ab66cd
crossref_primary_10_1103_PhysRevA_108_023711
crossref_primary_10_3367_UFNe_2020_11_038888
crossref_primary_10_1038_s41598_018_26633_9
crossref_primary_10_1103_PhysRevLett_124_023602
crossref_primary_10_1364_PRJ_405246
crossref_primary_10_1063_5_0126669
crossref_primary_10_1088_1367_2630_aaf2ac
crossref_primary_10_1088_2515_7647_aaea7d
crossref_primary_10_1021_acs_nanolett_5b03515
crossref_primary_10_1016_j_diamond_2018_07_020
crossref_primary_10_1007_s10773_016_3148_y
crossref_primary_10_1109_JPROC_2016_2561274
crossref_primary_10_1021_acs_nanolett_5b02542
crossref_primary_10_1103_PhysRevLett_110_213605
crossref_primary_10_1103_PRXQuantum_3_030330
crossref_primary_10_1088_1361_6528_ac1fb1
crossref_primary_10_1103_PhysRevApplied_9_064031
crossref_primary_10_1016_j_carbon_2021_04_025
crossref_primary_10_1103_PhysRevA_105_013717
crossref_primary_10_1103_PhysRevLett_113_113602
crossref_primary_10_3390_nano12091516
crossref_primary_10_1103_PhysRevB_92_081301
crossref_primary_10_1002_qute_202100003
crossref_primary_10_1364_JOSAB_432827
crossref_primary_10_1021_ph500469e
crossref_primary_10_1103_PhysRevB_103_235309
crossref_primary_10_1016_j_optcom_2014_04_075
crossref_primary_10_1088_1742_6596_961_1_012007
crossref_primary_10_1103_PhysRevA_87_022312
crossref_primary_10_1038_s41534_023_00777_7
crossref_primary_10_1021_acs_nanolett_3c04056
crossref_primary_10_1063_5_0002709
crossref_primary_10_1557_s43578_022_00795_9
crossref_primary_10_1088_1367_2630_17_12_122003
crossref_primary_10_1016_j_jsamd_2016_04_008
crossref_primary_10_1007_s11128_016_1499_1
crossref_primary_10_1364_OE_25_013153
crossref_primary_10_1364_OPTICA_398628
crossref_primary_10_1103_PhysRevLett_118_133603
crossref_primary_10_1103_PhysRevA_111_012612
crossref_primary_10_1063_1_4982168
crossref_primary_10_1103_PhysRevLett_125_153602
crossref_primary_10_1002_adom_201300331
crossref_primary_10_1002_inf2_12128
crossref_primary_10_1088_1367_2630_15_4_043017
crossref_primary_10_1063_1_4890083
crossref_primary_10_1088_1367_2630_aa8085
crossref_primary_10_3389_fphy_2022_960078
crossref_primary_10_1103_PhysRevB_100_165428
crossref_primary_10_1103_PhysRevA_103_043706
crossref_primary_10_1364_OE_22_022111
crossref_primary_10_4236_jmp_2019_1010078
crossref_primary_10_1038_srep35566
crossref_primary_10_1364_OE_21_030812
crossref_primary_10_1063_1_5004174
crossref_primary_10_1364_OE_22_015024
crossref_primary_10_1038_nature11573
crossref_primary_10_1364_OE_22_020045
crossref_primary_10_1021_acsphotonics_8b01671
crossref_primary_10_1557_mrs_2015_266
crossref_primary_10_1021_acs_cgd_0c00080
crossref_primary_10_1016_j_rinp_2022_105425
crossref_primary_10_3390_photonics11080753
crossref_primary_10_1103_PhysRevB_89_224402
crossref_primary_10_1103_PhysRevB_99_161203
crossref_primary_10_1103_PhysRevApplied_11_024013
crossref_primary_10_1002_adma_202000891
crossref_primary_10_1016_j_optcom_2014_09_085
crossref_primary_10_1364_OE_22_012410
crossref_primary_10_1038_s41467_019_09873_9
crossref_primary_10_1021_acs_nanolett_1c03013
crossref_primary_10_1016_j_optcom_2018_03_066
crossref_primary_10_1016_j_carbon_2022_07_044
crossref_primary_10_1103_PhysRevLett_123_183602
crossref_primary_10_1038_s41566_018_0232_2
crossref_primary_10_1002_pssa_201900233
crossref_primary_10_1038_ncomms14451
crossref_primary_10_1103_PhysRevA_92_043844
crossref_primary_10_1002_lpor_201400185
crossref_primary_10_1021_nl402174g
crossref_primary_10_1103_PhysRevLett_124_083603
crossref_primary_10_1088_1612_2011_10_11_115201
crossref_primary_10_1021_nl302541e
crossref_primary_10_1364_OE_22_001551
crossref_primary_10_1002_qute_201900084
crossref_primary_10_1021_acs_nanolett_5b00876
crossref_primary_10_1021_acsnano_1c05600
crossref_primary_10_1088_2515_7647_ab0c4e
crossref_primary_10_1557_mrs_2013_19
crossref_primary_10_1103_PhysRevA_91_032328
crossref_primary_10_1002_pssa_201600656
crossref_primary_10_1364_OPTICA_4_001317
crossref_primary_10_1364_OE_487913
crossref_primary_10_1021_acsphotonics_1c01806
crossref_primary_10_1021_acsnano_6b08412
crossref_primary_10_3390_cryst7050124
crossref_primary_10_1103_PhysRevB_88_161403
crossref_primary_10_1016_j_aop_2016_03_003
crossref_primary_10_1038_nphoton_2013_41
crossref_primary_10_1063_1_5067358
crossref_primary_10_1063_5_0051675
crossref_primary_10_3390_mi9090437
crossref_primary_10_1364_OPTICA_463723
crossref_primary_10_1063_1_4904909
crossref_primary_10_1103_PhysRevApplied_13_064016
crossref_primary_10_1021_acsnano_1c01255
crossref_primary_10_1103_PhysRevX_11_041041
crossref_primary_10_1007_s11433_018_9290_5
crossref_primary_10_1103_PhysRevLett_119_223602
crossref_primary_10_1103_PhysRevApplied_7_024031
crossref_primary_10_1007_s11128_020_02797_0
crossref_primary_10_1088_2040_8978_16_11_114017
crossref_primary_10_1146_annurev_conmatphys_030212_184238
crossref_primary_10_1038_s41567_021_01364_3
crossref_primary_10_1364_OME_9_004545
crossref_primary_10_1021_acsphotonics_6b00913
crossref_primary_10_3390_cryst4030342
crossref_primary_10_1364_OE_24_028815
crossref_primary_10_1021_acsnano_0c10601
crossref_primary_10_1002_adom_201801344
crossref_primary_10_1103_PhysRevLett_117_167401
crossref_primary_10_1088_0253_6102_61_4_20
crossref_primary_10_1103_PhysRevResearch_2_043328
crossref_primary_10_1021_acsnano_9b01668
crossref_primary_10_1016_j_photonics_2015_03_002
crossref_primary_10_1002_adom_202300392
crossref_primary_10_1021_acs_nanolett_9b01316
crossref_primary_10_1098_rsta_2022_0314
crossref_primary_10_1063_5_0161940
crossref_primary_10_1103_PhysRevApplied_6_054010
crossref_primary_10_1038_srep05040
crossref_primary_10_1109_JSTQE_2018_2806079
crossref_primary_10_1038_srep12918
crossref_primary_10_1364_OE_21_032623
crossref_primary_10_1038_ncomms7173
crossref_primary_10_1063_1_4948746
crossref_primary_10_1103_PhysRevB_102_075312
crossref_primary_10_1103_PhysRevLett_123_063601
crossref_primary_10_1021_acsphotonics_3c01561
crossref_primary_10_1063_5_0061778
crossref_primary_10_1103_PhysRevA_88_053812
crossref_primary_10_1016_j_diamond_2016_01_011
crossref_primary_10_1021_acsphotonics_1c00849
crossref_primary_10_1364_JOSAB_401247
crossref_primary_10_1116_5_0011316
crossref_primary_10_1364_OE_21_011031
crossref_primary_10_1088_1367_2630_17_4_043011
crossref_primary_10_1088_2040_8978_18_2_024002
crossref_primary_10_1103_PhysRevApplied_18_064011
crossref_primary_10_1039_C7NR07953B
crossref_primary_10_1103_PhysRevApplied_5_034010
crossref_primary_10_1063_5_0056534
crossref_primary_10_1140_epjb_s10051_022_00317_w
crossref_primary_10_1364_JOSAB_31_001746
crossref_primary_10_1038_micronano_2017_61
crossref_primary_10_1007_s10701_013_9771_z
crossref_primary_10_1103_PhysRevA_89_012307
crossref_primary_10_1021_acs_nanolett_7b05075
crossref_primary_10_1016_j_ijleo_2019_01_039
crossref_primary_10_1103_PhysRevApplied_15_024049
crossref_primary_10_1021_nl304682r
crossref_primary_10_1038_ncomms9206
crossref_primary_10_1103_PhysRevApplied_6_014019
crossref_primary_10_3762_bjnano_4_33
crossref_primary_10_1038_s41598_017_13309_z
crossref_primary_10_1088_1367_2630_15_8_083014
crossref_primary_10_1103_PhysRevApplied_8_024026
crossref_primary_10_1007_s11128_018_1939_1
crossref_primary_10_1021_nl3037454
crossref_primary_10_1364_OE_27_023396
crossref_primary_10_1088_0034_4885_77_5_056503
crossref_primary_10_1364_OE_21_029679
crossref_primary_10_1103_PhysRevB_102_235303
crossref_primary_10_1063_5_0079649
crossref_primary_10_1002_adom_201400434
crossref_primary_10_1021_acs_nanolett_0c00339
crossref_primary_10_1039_C7CP08005K
crossref_primary_10_1103_PhysRevApplied_13_014036
crossref_primary_10_1038_s41598_025_85673_0
crossref_primary_10_1007_s10773_016_3008_9
crossref_primary_10_1088_1367_2630_15_2_025010
crossref_primary_10_1103_PhysRevB_95_205420
crossref_primary_10_1126_sciadv_abn9573
crossref_primary_10_1063_1_4922117
crossref_primary_10_1016_j_diamond_2012_12_008
crossref_primary_10_1103_PhysRevLett_127_147402
crossref_primary_10_1002_qute_201800061
crossref_primary_10_1063_1_4871580
crossref_primary_10_1364_OE_507325
crossref_primary_10_1021_nl502327b
crossref_primary_10_1038_lsa_2015_111
crossref_primary_10_1063_1_4992118
crossref_primary_10_1103_PhysRevB_107_214110
crossref_primary_10_1038_s41598_021_82832_x
crossref_primary_10_1063_1_4892544
crossref_primary_10_1103_PhysRevA_89_060303
crossref_primary_10_1002_qute_202300432
crossref_primary_10_1126_science_aaa3786
crossref_primary_10_1021_nl404836p
crossref_primary_10_1103_PhysRevApplied_22_064069
crossref_primary_10_1080_26941112_2021_1877019
crossref_primary_10_1021_acs_nanolett_7b04684
crossref_primary_10_1016_j_apsusc_2024_159581
crossref_primary_10_1002_andp_201800043
crossref_primary_10_1002_pssa_201900528
crossref_primary_10_1002_qute_202200142
crossref_primary_10_1038_s41578_018_0008_9
crossref_primary_10_1038_ncomms5739
crossref_primary_10_1038_s41534_025_00985_3
crossref_primary_10_3390_ma16083274
crossref_primary_10_1103_PhysRevB_96_081201
crossref_primary_10_1002_andp_201900578
crossref_primary_10_1364_OE_20_022743
crossref_primary_10_1002_lpor_201400453
crossref_primary_10_1016_j_pquantelec_2017_05_003
crossref_primary_10_1002_pssa_201200576
crossref_primary_10_1103_PhysRevLett_116_223001
crossref_primary_10_1103_PhysRevApplied_5_044010
crossref_primary_10_1103_PhysRevA_99_052330
crossref_primary_10_1063_1_5123263
crossref_primary_10_1116_1_4813559
crossref_primary_10_1038_ncomms6718
crossref_primary_10_1103_PhysRevX_13_011042
crossref_primary_10_1039_C7NR05675C
crossref_primary_10_1088_1612_2011_12_3_036001
crossref_primary_10_1002_andp_202100286
crossref_primary_10_1063_1_5021349
crossref_primary_10_1021_acs_nanolett_9b01402
crossref_primary_10_1088_0256_307X_34_9_096101
crossref_primary_10_1002_qute_201900120
crossref_primary_10_1063_5_0081577
crossref_primary_10_1088_2515_7647_ad9718
crossref_primary_10_1515_nanoph_2020_0187
crossref_primary_10_1007_s10773_016_3188_3
crossref_primary_10_1002_qute_201900006
crossref_primary_10_1515_nanoph_2023_0927
crossref_primary_10_1021_acs_chemmater_6b01372
crossref_primary_10_1103_PhysRevB_99_075430
crossref_primary_10_1103_PhysRevX_5_031009
crossref_primary_10_1364_OE_25_010863
crossref_primary_10_1088_1361_6455_aaf668
crossref_primary_10_1002_qute_202100049
crossref_primary_10_1088_1367_2630_18_8_083015
crossref_primary_10_1103_PhysRevApplied_19_054029
crossref_primary_10_1103_PhysRevB_89_041402
crossref_primary_10_1109_JLT_2022_3210466
crossref_primary_10_1007_s10773_019_04109_4
crossref_primary_10_1364_OE_24_000536
crossref_primary_10_1126_science_aah6875
crossref_primary_10_1063_1_4819339
crossref_primary_10_3762_bjnano_9_12
crossref_primary_10_1007_s10773_021_04874_1
crossref_primary_10_1063_1_4902562
crossref_primary_10_1364_OE_26_033245
crossref_primary_10_1103_PhysRevX_10_041027
crossref_primary_10_1103_PhysRevX_7_031040
crossref_primary_10_1364_OME_9_001678
crossref_primary_10_1364_OPTICAQ_509233
crossref_primary_10_1016_j_chip_2023_100081
crossref_primary_10_7567_APEX_7_115201
crossref_primary_10_1364_OL_39_006962
crossref_primary_10_1364_OME_411219
crossref_primary_10_1364_OME_7_001514
crossref_primary_10_1364_OME_7_000785
crossref_primary_10_1002_adfm_202304648
crossref_primary_10_1038_nphoton_2014_84
crossref_primary_10_1073_pnas_1704219114
crossref_primary_10_1103_PhysRevApplied_19_064057
crossref_primary_10_1134_S1063739716060081
crossref_primary_10_1002_pssa_201700586
crossref_primary_10_1103_PhysRevApplied_22_014035
crossref_primary_10_1038_nphoton_2015_58
crossref_primary_10_1088_1367_2630_aaec29
crossref_primary_10_1002_andp_201900225
ContentType Journal Article
DBID NPM
DOI 10.1103/physrevlett.109.033604
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 22861849
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ABSSX
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
F5P
MVM
N9A
NPBMV
NPM
P0-
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XOL
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c377t-d477fdff899c19c6f7ba70b194e107c259dbc887d64e32390321c066769ea6182
IngestDate Mon Jul 21 05:56:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-d477fdff899c19c6f7ba70b194e107c259dbc887d64e32390321c066769ea6182
PMID 22861849
ParticipantIDs pubmed_primary_22861849
PublicationCentury 2000
PublicationDate 2012-07-19
PublicationDateYYYYMMDD 2012-07-19
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2012
SSID ssj0001268
Score 2.5688
Snippet The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ∼70 by coupling to a photonic crystal resonator fabricated in...
SourceID pubmed
SourceType Index Database
StartPage 033604
Title Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond
URI https://www.ncbi.nlm.nih.gov/pubmed/22861849
Volume 109
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEF9ii-BLsbVqa5V96Fs5vdu73OYeJbSEgqUPWkQE2U8S0GyIp9D-Ef2bnbmdS2JUqn25hN3k2L3f7-Zm5uaDsc-ymxnrUp10tVforbJJT3uXGC-8sKWFD8xGPvpRDk6K76fd007n70LU0k2t982fR_NK_gdVGANcMUv2BcjOTgoD8B3whSMgDMdnYdwPN5NLCluGW3Ma4JfJrTIoMb9g2CVm54JyORmGuul0Y6a_rzH70ajbppIqejtgtYHGG5UTCAND9_p3_mzBpESXyyYHaJ45oqaKWlNjeORo5rXBBsUxk53e6s9JRG7qs-FoGOjhibQzgdTZXyN8m0C-WvJKZE0EK8k-FyVpKqtEZjFDdCZq02qBU_mC4EzzvIx9iB_K9BRrS6CjBzaJG8QSWPsP_wDYTK4apIXoYR-b6t-zS7W226kVtgJWB7ZRRd_PWuuxK3uUYw5LOnh8QVhcmk6yZKg0CsvxOntDlgY_jLR5yzpu_I6tRiivN9h5Sx4ePF8mDyfy8DrwljycSMJb8vDRmC-RhxN53rOTb1-P-4OEWm0kJpeyTmwhpbfeg_VtssqUXmolU51VhQMgDdjIVht4HtmycLnIqzQXmYnx0U7BbsUmezUOY7fNuNBglLuuB8VPFcqVyvpSFjYzQqbGG_mBbcXLcjGJ9VQu2gv28cmZHbY2J9kn9trDDex2QRus9V4D0h2o5WbR
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+of+nitrogen-vacancy+centers+to+photonic+crystal+cavities+in+monocrystalline+diamond&rft.jtitle=Physical+review+letters&rft.au=Faraon%2C+Andrei&rft.au=Santori%2C+Charles&rft.au=Huang%2C+Zhihong&rft.au=Acosta%2C+Victor+M&rft.date=2012-07-19&rft.eissn=1079-7114&rft.volume=109&rft.issue=3&rft.spage=033604&rft_id=info:doi/10.1103%2Fphysrevlett.109.033604&rft_id=info%3Apmid%2F22861849&rft_id=info%3Apmid%2F22861849&rft.externalDocID=22861849