Gabor-based kernel PCA with fractional power polynomial models for face recognition

This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial lo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 26; no. 5; pp. 572 - 581
Main Author Liu, Chengjun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
AbstractList This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively.
Author Chengjun Liu
Author_xml – sequence: 1
  givenname: Chengjun
  surname: Liu
  fullname: Liu, Chengjun
  email: liu@cs.njit.edu
  organization: Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA. liu@cs.njit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15460279$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1LHDEUhoNY6mr7BxTK4EXvZj35mHxcLou1gkVBex0ymTMaOzPZJrOI_95Zd2vBi_YmgeR5Dpz3PST7QxyQkGMKc0rBnN3dLH5czhmAmFOmuGFqj8yo4abkFTf7ZAZUslJrpg_IYc6PAFRUwD-SA1oJCUyZGbm9cHVMZe0yNsUvTAN2xc1yUTyF8aFok_NjiIPrilV8wjSd3fMQ-zA99LHBLhdtTEXrPBYJfbwfwgb_RD60rsv4eXcfkZ_fzu-W38ur64vL5eKq9FypsfSaMRBGCyMkFU4z13iKmoKrKlk3nnFKm6atawAuFWNCSc-cAc-EQJCUH5Gv27mrFH-vMY-2D9lj17kB4zpbKQ3nBtR_QTZFpKmGCTx9Bz7GdZr2z1ZrAUwqkBP0ZQet6x4bu0qhd-nZ_gl1AvQW8CnmnLC1Poxuk8yYXOgsBbvpz772Zzf92V1_k8reqW_T_yWdbKWAiH-F3e8LXY2j1w
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1049_el_2010_0219
crossref_primary_10_1109_THMS_2014_2340578
crossref_primary_10_1016_j_patrec_2010_03_011
crossref_primary_10_1243_09544119JEIM384
crossref_primary_10_1016_j_imavis_2006_05_002
crossref_primary_10_1016_j_ins_2012_10_016
crossref_primary_10_1016_j_patcog_2013_08_023
crossref_primary_10_1016_j_asoc_2017_10_021
crossref_primary_10_1007_s11042_020_08628_9
crossref_primary_10_1155_2014_840685
crossref_primary_10_3390_app11146303
crossref_primary_10_1109_TMM_2007_893346
crossref_primary_10_1109_ACCESS_2017_2737821
crossref_primary_10_1007_s00138_013_0561_6
crossref_primary_10_1016_j_catena_2022_106428
crossref_primary_10_1016_j_patrec_2009_12_026
crossref_primary_10_4018_ijcvip_2012070101
crossref_primary_10_1016_j_cviu_2005_10_002
crossref_primary_10_1109_TSMCB_2012_2191773
crossref_primary_10_1016_j_procs_2015_07_434
crossref_primary_10_1016_j_patrec_2010_11_021
crossref_primary_10_1016_j_neucom_2008_05_001
crossref_primary_10_4028_www_scientific_net_AMM_373_375_654
crossref_primary_10_1007_s11356_022_19812_9
crossref_primary_10_1109_TPAMI_2006_90
crossref_primary_10_1016_j_proeng_2012_07_250
crossref_primary_10_1109_LRA_2024_3511416
crossref_primary_10_1049_iet_bmt_2018_5235
crossref_primary_10_1162_NECO_a_00535
crossref_primary_10_1016_j_patcog_2014_10_018
crossref_primary_10_1109_LSP_2021_3095017
crossref_primary_10_1109_TIP_2006_877435
crossref_primary_10_1016_j_compeleceng_2015_03_031
crossref_primary_10_1016_j_neucom_2013_01_007
crossref_primary_10_1109_TMM_2007_898933
crossref_primary_10_1016_j_riai_2011_06_009
crossref_primary_10_1049_iet_bmt_2011_0004
crossref_primary_10_1051_ita_2006006
crossref_primary_10_1109_TSMCC_2010_2051328
crossref_primary_10_1016_j_chemolab_2021_104247
crossref_primary_10_1016_j_eswa_2010_11_016
crossref_primary_10_1007_s13042_011_0023_2
crossref_primary_10_1016_j_ejor_2018_11_065
crossref_primary_10_1016_j_measurement_2016_09_012
crossref_primary_10_1117_1_2355524
crossref_primary_10_1016_j_cviu_2012_01_006
crossref_primary_10_1007_s11760_017_1125_4
crossref_primary_10_1016_j_bspc_2022_103889
crossref_primary_10_1371_journal_pone_0259575
crossref_primary_10_1016_j_knosys_2019_105272
crossref_primary_10_1016_j_neucom_2018_03_015
crossref_primary_10_1117_1_2801735
crossref_primary_10_1109_TPAMI_2007_70708
crossref_primary_10_1007_s11460_009_0072_4
crossref_primary_10_1049_iet_its_2009_0090
crossref_primary_10_1109_TNN_2010_2046423
crossref_primary_10_1109_TPAMI_2008_143
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1142_S021969131850025X
crossref_primary_10_4018_ijcvip_2012040104
crossref_primary_10_1016_j_patcog_2005_07_003
crossref_primary_10_1007_s00521_013_1424_9
crossref_primary_10_1007_s11767_005_0260_1
crossref_primary_10_1016_j_patcog_2006_06_030
crossref_primary_10_1142_S0219455422501346
crossref_primary_10_1016_j_jat_2018_07_003
crossref_primary_10_1155_2020_9579538
crossref_primary_10_1016_j_patcog_2014_05_004
crossref_primary_10_1007_s13042_015_0440_8
crossref_primary_10_1109_TIP_2007_904408
crossref_primary_10_1109_TNNLS_2014_2333664
crossref_primary_10_1007_s00530_018_0599_4
crossref_primary_10_1186_s13640_016_0123_8
crossref_primary_10_1049_el_20071688
crossref_primary_10_1016_j_optlaseng_2012_03_007
crossref_primary_10_1007_s00138_007_0095_x
crossref_primary_10_1016_j_patcog_2007_07_025
crossref_primary_10_1016_j_patrec_2009_03_012
crossref_primary_10_1016_j_eswa_2010_11_066
crossref_primary_10_1016_j_neucom_2018_06_083
crossref_primary_10_1117_1_2227000
crossref_primary_10_1016_j_jksuci_2016_12_008
crossref_primary_10_1016_j_imavis_2007_09_002
crossref_primary_10_1016_j_jfoodeng_2007_01_008
crossref_primary_10_1049_iet_ipr_2019_0772
crossref_primary_10_1007_s11042_014_2327_1
crossref_primary_10_1016_j_procs_2010_11_006
crossref_primary_10_1016_j_measurement_2013_10_033
crossref_primary_10_1109_TIFS_2007_902915
crossref_primary_10_1142_S021800141456014X
crossref_primary_10_1109_TNNLS_2011_2182058
crossref_primary_10_1115_1_4043919
crossref_primary_10_1109_TPAMI_2012_40
crossref_primary_10_1016_j_jvcir_2009_09_002
crossref_primary_10_1002_tee_22336
crossref_primary_10_1109_TSMCB_2007_908865
crossref_primary_10_1016_j_imavis_2007_11_004
crossref_primary_10_1109_TPAMI_2007_1096
crossref_primary_10_1007_s11263_009_0244_y
crossref_primary_10_1016_j_neucom_2021_10_122
crossref_primary_10_1541_ieejeiss_132_1847
crossref_primary_10_1016_j_sna_2015_09_009
crossref_primary_10_1016_j_patcog_2016_08_010
crossref_primary_10_1007_s12652_020_02787_1
crossref_primary_10_1007_s00521_009_0272_0
crossref_primary_10_1016_j_engappai_2005_12_010
crossref_primary_10_3724_SP_J_1087_2010_00854
crossref_primary_10_1371_journal_pbio_1002585
crossref_primary_10_1016_j_acha_2010_04_001
crossref_primary_10_1007_s11425_013_4688_8
crossref_primary_10_1016_j_neucom_2016_10_047
crossref_primary_10_1016_j_cosrev_2016_05_003
crossref_primary_10_1109_TMC_2018_2812883
crossref_primary_10_1016_j_ins_2007_12_001
crossref_primary_10_1109_TASL_2010_2070495
crossref_primary_10_3390_sym16050549
crossref_primary_10_1109_TNN_2008_2004376
crossref_primary_10_3233_KES_190132
crossref_primary_10_1016_j_neucom_2015_07_141
crossref_primary_10_1109_TIP_2013_2292560
crossref_primary_10_1016_j_micron_2021_103161
crossref_primary_10_1016_j_imavis_2008_11_005
crossref_primary_10_1186_s13640_017_0188_z
crossref_primary_10_3103_S0146411616050102
crossref_primary_10_1016_j_patcog_2007_01_026
crossref_primary_10_1016_j_patcog_2011_03_033
crossref_primary_10_1109_TNN_2006_873291
crossref_primary_10_1109_TIP_2012_2219542
crossref_primary_10_1155_2013_825861
crossref_primary_10_1016_j_jvcir_2014_03_006
crossref_primary_10_1109_TNN_2009_2039647
crossref_primary_10_1016_j_patrec_2006_12_018
crossref_primary_10_3390_s140101850
crossref_primary_10_1049_iet_cvi_2008_0039
crossref_primary_10_5772_52862
crossref_primary_10_1109_LSP_2008_2010070
crossref_primary_10_1142_S0219530513500206
crossref_primary_10_3390_s130404499
crossref_primary_10_1016_j_patcog_2010_08_008
crossref_primary_10_1016_j_eswa_2014_12_040
crossref_primary_10_1007_s10044_006_0033_y
crossref_primary_10_1364_OE_20_024382
crossref_primary_10_1007_s00138_013_0566_1
crossref_primary_10_1080_00207160_2011_587511
crossref_primary_10_1007_s11548_017_1626_1
crossref_primary_10_1145_2845089
crossref_primary_10_1587_transfun_2024EAL2004
crossref_primary_10_1109_TIP_2018_2809040
crossref_primary_10_1155_2008_675787
crossref_primary_10_1142_S0219691319500334
crossref_primary_10_1109_TETCI_2021_3120513
crossref_primary_10_1007_s10044_009_0152_3
crossref_primary_10_1118_1_4906129
crossref_primary_10_1117_1_2885149
crossref_primary_10_1007_s11042_013_1548_z
crossref_primary_10_1016_j_neucom_2006_01_019
crossref_primary_10_3934_era_2023071
crossref_primary_10_1109_TIFS_2007_910238
crossref_primary_10_1109_TNNLS_2014_2375209
crossref_primary_10_1155_2014_702076
crossref_primary_10_7763_IJCTE_2012_V4_574
crossref_primary_10_1007_s00500_009_0426_0
crossref_primary_10_1016_j_patrec_2012_04_007
crossref_primary_10_1109_TNNLS_2017_2648122
crossref_primary_10_1007_s11263_008_0161_5
crossref_primary_10_1587_transinf_2016EDP7256
crossref_primary_10_5392_JKCA_2012_12_12_517
crossref_primary_10_1016_j_asoc_2021_108210
crossref_primary_10_1016_j_patrec_2013_06_009
crossref_primary_10_3724_SP_J_1087_2010_01568
crossref_primary_10_1016_j_jmaa_2018_06_013
crossref_primary_10_1016_j_patcog_2009_04_017
crossref_primary_10_1007_s10044_020_00906_4
crossref_primary_10_1007_s10846_009_9391_1
crossref_primary_10_1016_j_jvcir_2013_04_011
crossref_primary_10_1109_TIP_2010_2042645
crossref_primary_10_1016_j_jcmds_2021_100016
crossref_primary_10_3390_sym8080075
crossref_primary_10_1007_s10044_015_0470_6
crossref_primary_10_1109_TSMCB_2005_850175
crossref_primary_10_1016_j_neucom_2013_03_039
crossref_primary_10_1109_MCI_2007_353418
crossref_primary_10_1007_s11704_018_7402_8
crossref_primary_10_1016_j_patrec_2008_03_002
crossref_primary_10_1145_3447755
crossref_primary_10_1007_s10444_012_9288_6
crossref_primary_10_1007_s10489_024_05639_z
crossref_primary_10_1109_TIP_2015_2426413
crossref_primary_10_1016_j_neucom_2006_09_005
crossref_primary_10_1007_s11063_013_9299_4
crossref_primary_10_1016_j_procs_2015_07_493
crossref_primary_10_1007_s00138_022_01341_7
crossref_primary_10_1016_j_jat_2012_10_001
crossref_primary_10_1109_TSMCA_2009_2033031
crossref_primary_10_1016_j_patrec_2009_11_002
crossref_primary_10_1109_TIFS_2010_2069560
crossref_primary_10_1155_2013_206251
crossref_primary_10_1109_LSP_2007_914937
crossref_primary_10_1109_TSMCB_2009_2018137
Cites_doi 10.1038/381607a0
10.1162/jocn.1991.3.1.71
10.1109/34.598230
10.1109/29.1644
10.1109/34.799905
10.1023/A:1008120406972
10.1109/TNN.2003.813829
10.1016/0042-6989(89)90006-0
10.1364/JOSA.70.001297
10.1152/jn.1987.58.6.1233
10.1109/34.862196
10.1016/S0262-8856(97)00070-X
10.1016/0031-3203(92)90007-6
10.7551/mitpress/4175.001.0001
10.1109/34.254061
10.1364/JOSAA.2.001160
10.1109/34.41390
10.1016/0042-6989(80)90065-6
10.1109/2.820038
10.1109/34.598235
10.1109/34.598227
10.1109/5.381842
10.1109/TPAMI.2002.1008384
10.1364/JOSAA.14.001724
10.1162/neco.1996.8.6.1321
10.1109/TPAMI.2003.1227983
10.1109/2.820039
10.1109/ICIP.2000.900886
10.1109/34.598231
10.1109/34.927464
10.1109/12.210173
10.1109/TPAMI.2003.1201822
10.1109/83.913594
10.1109/34.817413
10.1109/AFGR.2000.840635
10.1364/JOSAA.4.002379
10.1023/A:1007901712605
10.1017/CBO9780511801389
10.1109/34.598228
10.1016/0031-3203(94)90006-X
10.1109/CVPR.1994.323814
10.1109/34.655648
10.1109/34.531802
10.1016/0004-3702(95)00026-7
10.1109/AFGR.2002.1004130
10.1109/34.598225
10.1162/089976698300017467
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2004.1273927
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
EndPage 581
ExternalDocumentID 2427779311
15460279
10_1109_TPAMI_2004_1273927
1273927
Genre orig-research
Validation Studies
Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c377t-c8220498494614a82adc1e810a556bdc2311ddfbb0036722476c2a90c244e0613
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Thu Jul 10 18:19:39 EDT 2025
Mon Jul 21 11:51:54 EDT 2025
Fri Jul 25 07:05:12 EDT 2025
Wed Mar 05 08:02:38 EST 2025
Tue Jul 01 05:18:31 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Aug 26 16:39:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-c8220498494614a82adc1e810a556bdc2311ddfbb0036722476c2a90c244e0613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 15460279
PQID 884026706
PQPubID 85458
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2004_1273927
proquest_miscellaneous_28288180
crossref_primary_10_1109_TPAMI_2004_1273927
ieee_primary_1273927
proquest_journals_884026706
pubmed_primary_15460279
proquest_miscellaneous_66933907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-May
2004-05-00
20040501
PublicationDateYYYYMMDD 2004-05-01
PublicationDate_xml – month: 05
  year: 2004
  text: 2004-May
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2004
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Beymer (ref4) 1995
ref12
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Craw (ref9) 1992
ref8
ref7
ref3
Haykin (ref20) 1999
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
Diamantaras (ref15) 1996
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref34
  doi: 10.1038/381607a0
– ident: ref47
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref49
  doi: 10.1109/34.598230
– ident: ref14
  doi: 10.1109/29.1644
– ident: ref16
  doi: 10.1109/34.799905
– ident: ref41
  doi: 10.1023/A:1008120406972
– ident: ref28
  doi: 10.1109/TNN.2003.813829
– ident: ref7
  doi: 10.1016/0042-6989(89)90006-0
– year: 1999
  ident: ref20
  publication-title: Neural Networks–A Comprehensive Foundation
– ident: ref31
  doi: 10.1364/JOSA.70.001297
– ident: ref21
  doi: 10.1152/jn.1987.58.6.1233
– ident: ref26
  doi: 10.1109/34.862196
– ident: ref38
  doi: 10.1016/S0262-8856(97)00070-X
– ident: ref40
  doi: 10.1016/0031-3203(92)90007-6
– ident: ref42
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref6
  doi: 10.1109/34.254061
– ident: ref13
  doi: 10.1364/JOSAA.2.001160
– ident: ref22
  doi: 10.1109/34.41390
– ident: ref12
  doi: 10.1016/0042-6989(80)90065-6
– ident: ref35
  doi: 10.1109/2.820038
– ident: ref50
  doi: 10.1109/34.598235
– ident: ref33
  doi: 10.1109/34.598227
– year: 1996
  ident: ref15
  publication-title: Principal Component Neural Networks: Theory and Applications.
– ident: ref8
  doi: 10.1109/5.381842
– year: 1992
  ident: ref9
  article-title: The Computer Understanding of Faces
  publication-title: Processing Images of Faces
– ident: ref32
  doi: 10.1109/TPAMI.2002.1008384
– ident: ref17
  doi: 10.1364/JOSAA.14.001724
– ident: ref1
  doi: 10.1162/neco.1996.8.6.1321
– ident: ref5
  doi: 10.1109/TPAMI.2003.1227983
– ident: ref36
  doi: 10.1109/2.820039
– ident: ref51
  doi: 10.1109/ICIP.2000.900886
– ident: ref24
  doi: 10.1109/34.598231
– year: 1995
  ident: ref4
  article-title: Vectorizing Face Images by Interleaving Shape and Texture Computations
– ident: ref19
  doi: 10.1109/34.927464
– ident: ref23
  doi: 10.1109/12.210173
– ident: ref25
  doi: 10.1109/TPAMI.2003.1201822
– ident: ref27
  doi: 10.1109/83.913594
– ident: ref30
  doi: 10.1109/34.817413
– ident: ref29
  doi: 10.1109/AFGR.2000.840635
– ident: ref18
  doi: 10.1364/JOSAA.4.002379
– ident: ref2
  doi: 10.1023/A:1007901712605
– ident: ref10
  doi: 10.1017/CBO9780511801389
– ident: ref3
  doi: 10.1109/34.598228
– ident: ref48
  doi: 10.1016/0031-3203(94)90006-X
– ident: ref37
  doi: 10.1109/CVPR.1994.323814
– ident: ref45
  doi: 10.1109/34.655648
– ident: ref46
  doi: 10.1109/34.531802
– ident: ref39
  doi: 10.1016/0004-3702(95)00026-7
– ident: ref44
  doi: 10.1109/AFGR.2002.1004130
– ident: ref11
  doi: 10.1109/34.598225
– ident: ref43
  doi: 10.1162/089976698300017467
SSID ssj0014503
Score 2.3635778
Snippet This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the...
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the...
The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 572
SubjectTerms Algorithms
Artificial Intelligence
Computer Simulation
Face - anatomy & histology
Face recognition
Facial features
Frequency
Humans
Image databases
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Kernel
Lighting
Models, Biological
Models, Statistical
Numerical Analysis, Computer-Assisted
Pattern Recognition, Automated
Photography - methods
Polynomials
Principal Component Analysis
Principal components analysis
Principle-Based Ethics
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Spatial databases
Studies
Subtraction Technique
Wavelet analysis
Title Gabor-based kernel PCA with fractional power polynomial models for face recognition
URI https://ieeexplore.ieee.org/document/1273927
https://www.ncbi.nlm.nih.gov/pubmed/15460279
https://www.proquest.com/docview/884026706
https://www.proquest.com/docview/28288180
https://www.proquest.com/docview/66933907
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQstjaQEfuEG2duI48XFVUQrSokq0Um-RY08uXWWrfRzg1zPjPFoQRVyiKHGeHme-L56ZD-A9oi9lVockbWRIdOYxcVwJM2vqxrlSB4WcKDz_Zs6v9Nfr_HoHPo65MIgYg89wyqtxLj8s_ZZ_lZ0o8rU2LXZhl4hbl6s1zhjoPKogE4KhEU40YkiQkfbk8mI2_xKp4LQ_QxTj0YYomf3NH0WBlYexZvQ5Z_swH-62CzW5mW439dT__KOQ4_8-zlN40oNPMeus5RnsYHsA-4Owg-jH-QE8vlel8BC-f2ZDSdjfBXGDqxYX4uJ0JvgXrmhWXWYEnfaWBddoufjBqc60IarsrAXBYtE4j2IMVlq2z-Hq7NPl6XnSazEkPiuKTeIJSBCZKLXV5NBdmbrgFZZKujw3dfAEE1UITc1fCVMQLiiMT52VnuADMmZ4AXvtssVXILQOTWFdIVUttSK6gynqXJWNTkOe2WYCauiRyveFylkvY1FFwiJtFTuUBTR11b_DCXwYj7ntynT8s_Uh98Zdy2Hz0dDxVT-S11VJDDg1hTQTeDfupSHI8yquxeV2XTFr5ZT5h1sYY7PMSrrCy86e7i7dm-Hrv9_SETzqQoU4wvIY9jarLb4hFLSp30bz_wXfNf-7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7KC2UdgstPvTWZrET5-HjCkGXlkVIXSRukWOPL6yyaB-H8usZOw8oKlUvUZQ4thN7Mt_YM_MBfEE0BU8qG8WO20gmBiPtM2EmrnJaF9IK9IHCk_NsfCl_XKVXG_Ctj4VBxOB8hkN_Gvby7dys_VLZoSBdq-L8GTwnvZ-KJlqr3zOQaeBBJgxDMk6GRBciw9Xh9GI0OQ3G4LCtI9DxyIyMMvWHRgoUK0-jzaB1TrZg0vW3cTa5Hq5X1dDcPkrl-L8v9AZet_CTjZr58hY2sN6GrY7agbWSvg2vHuQp3IFf3_1UibzGs-waFzXO2MXRiPlFXOYWTWwEVXvjKdfoOPvtg53pQuDZWTICxsxpg6x3V5rX7-Dy5Hh6NI5aNobIJHm-igxBCTInCqkkqXRdxNoagYXgOk2zyhoCisJaV_n_RJYTMsgzE2vFDQEI9KhhFzbreY0fgElpXa50zkXFpSCDB2OUqSicjG2aKDcA0Y1IadpU5Z4xY1YGk4WrMgyop9CUZfsNB_C1f-amSdTxz9I7fjTuS3aX97qBL1tZXpYF2cBxlvNsAAf9XRJCv7Oia5yvl6W3W33Q_NMlskwlieLUwvtmPt033U7Dj3_v0gG8GE8nZ-XZ6fnPPXjZOA55f8t92Fwt1viJMNGq-hxE4Q5dBgMT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gabor-based+kernel+PCA+with+fractional+power+polynomial+models+for+face+recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chengjun+Liu&rft.date=2004-05-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=26&rft.issue=5&rft.spage=572&rft.epage=581&rft_id=info:doi/10.1109%2FTPAMI.2004.1273927&rft_id=info%3Apmid%2F15460279&rft.externalDocID=1273927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon