Gabor-based kernel PCA with fractional power polynomial models for face recognition
This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial lo...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 26; no. 5; pp. 572 - 581 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels. |
---|---|
AbstractList | This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels. This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. |
Author | Chengjun Liu |
Author_xml | – sequence: 1 givenname: Chengjun surname: Liu fullname: Liu, Chengjun email: liu@cs.njit.edu organization: Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA. liu@cs.njit.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15460279$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1LHDEUhoNY6mr7BxTK4EXvZj35mHxcLou1gkVBex0ymTMaOzPZJrOI_95Zd2vBi_YmgeR5Dpz3PST7QxyQkGMKc0rBnN3dLH5czhmAmFOmuGFqj8yo4abkFTf7ZAZUslJrpg_IYc6PAFRUwD-SA1oJCUyZGbm9cHVMZe0yNsUvTAN2xc1yUTyF8aFok_NjiIPrilV8wjSd3fMQ-zA99LHBLhdtTEXrPBYJfbwfwgb_RD60rsv4eXcfkZ_fzu-W38ur64vL5eKq9FypsfSaMRBGCyMkFU4z13iKmoKrKlk3nnFKm6atawAuFWNCSc-cAc-EQJCUH5Gv27mrFH-vMY-2D9lj17kB4zpbKQ3nBtR_QTZFpKmGCTx9Bz7GdZr2z1ZrAUwqkBP0ZQet6x4bu0qhd-nZ_gl1AvQW8CnmnLC1Poxuk8yYXOgsBbvpz772Zzf92V1_k8reqW_T_yWdbKWAiH-F3e8LXY2j1w |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1049_el_2010_0219 crossref_primary_10_1109_THMS_2014_2340578 crossref_primary_10_1016_j_patrec_2010_03_011 crossref_primary_10_1243_09544119JEIM384 crossref_primary_10_1016_j_imavis_2006_05_002 crossref_primary_10_1016_j_ins_2012_10_016 crossref_primary_10_1016_j_patcog_2013_08_023 crossref_primary_10_1016_j_asoc_2017_10_021 crossref_primary_10_1007_s11042_020_08628_9 crossref_primary_10_1155_2014_840685 crossref_primary_10_3390_app11146303 crossref_primary_10_1109_TMM_2007_893346 crossref_primary_10_1109_ACCESS_2017_2737821 crossref_primary_10_1007_s00138_013_0561_6 crossref_primary_10_1016_j_catena_2022_106428 crossref_primary_10_1016_j_patrec_2009_12_026 crossref_primary_10_4018_ijcvip_2012070101 crossref_primary_10_1016_j_cviu_2005_10_002 crossref_primary_10_1109_TSMCB_2012_2191773 crossref_primary_10_1016_j_procs_2015_07_434 crossref_primary_10_1016_j_patrec_2010_11_021 crossref_primary_10_1016_j_neucom_2008_05_001 crossref_primary_10_4028_www_scientific_net_AMM_373_375_654 crossref_primary_10_1007_s11356_022_19812_9 crossref_primary_10_1109_TPAMI_2006_90 crossref_primary_10_1016_j_proeng_2012_07_250 crossref_primary_10_1109_LRA_2024_3511416 crossref_primary_10_1049_iet_bmt_2018_5235 crossref_primary_10_1162_NECO_a_00535 crossref_primary_10_1016_j_patcog_2014_10_018 crossref_primary_10_1109_LSP_2021_3095017 crossref_primary_10_1109_TIP_2006_877435 crossref_primary_10_1016_j_compeleceng_2015_03_031 crossref_primary_10_1016_j_neucom_2013_01_007 crossref_primary_10_1109_TMM_2007_898933 crossref_primary_10_1016_j_riai_2011_06_009 crossref_primary_10_1049_iet_bmt_2011_0004 crossref_primary_10_1051_ita_2006006 crossref_primary_10_1109_TSMCC_2010_2051328 crossref_primary_10_1016_j_chemolab_2021_104247 crossref_primary_10_1016_j_eswa_2010_11_016 crossref_primary_10_1007_s13042_011_0023_2 crossref_primary_10_1016_j_ejor_2018_11_065 crossref_primary_10_1016_j_measurement_2016_09_012 crossref_primary_10_1117_1_2355524 crossref_primary_10_1016_j_cviu_2012_01_006 crossref_primary_10_1007_s11760_017_1125_4 crossref_primary_10_1016_j_bspc_2022_103889 crossref_primary_10_1371_journal_pone_0259575 crossref_primary_10_1016_j_knosys_2019_105272 crossref_primary_10_1016_j_neucom_2018_03_015 crossref_primary_10_1117_1_2801735 crossref_primary_10_1109_TPAMI_2007_70708 crossref_primary_10_1007_s11460_009_0072_4 crossref_primary_10_1049_iet_its_2009_0090 crossref_primary_10_1109_TNN_2010_2046423 crossref_primary_10_1109_TPAMI_2008_143 crossref_primary_10_1109_ACCESS_2022_3185137 crossref_primary_10_1142_S021969131850025X crossref_primary_10_4018_ijcvip_2012040104 crossref_primary_10_1016_j_patcog_2005_07_003 crossref_primary_10_1007_s00521_013_1424_9 crossref_primary_10_1007_s11767_005_0260_1 crossref_primary_10_1016_j_patcog_2006_06_030 crossref_primary_10_1142_S0219455422501346 crossref_primary_10_1016_j_jat_2018_07_003 crossref_primary_10_1155_2020_9579538 crossref_primary_10_1016_j_patcog_2014_05_004 crossref_primary_10_1007_s13042_015_0440_8 crossref_primary_10_1109_TIP_2007_904408 crossref_primary_10_1109_TNNLS_2014_2333664 crossref_primary_10_1007_s00530_018_0599_4 crossref_primary_10_1186_s13640_016_0123_8 crossref_primary_10_1049_el_20071688 crossref_primary_10_1016_j_optlaseng_2012_03_007 crossref_primary_10_1007_s00138_007_0095_x crossref_primary_10_1016_j_patcog_2007_07_025 crossref_primary_10_1016_j_patrec_2009_03_012 crossref_primary_10_1016_j_eswa_2010_11_066 crossref_primary_10_1016_j_neucom_2018_06_083 crossref_primary_10_1117_1_2227000 crossref_primary_10_1016_j_jksuci_2016_12_008 crossref_primary_10_1016_j_imavis_2007_09_002 crossref_primary_10_1016_j_jfoodeng_2007_01_008 crossref_primary_10_1049_iet_ipr_2019_0772 crossref_primary_10_1007_s11042_014_2327_1 crossref_primary_10_1016_j_procs_2010_11_006 crossref_primary_10_1016_j_measurement_2013_10_033 crossref_primary_10_1109_TIFS_2007_902915 crossref_primary_10_1142_S021800141456014X crossref_primary_10_1109_TNNLS_2011_2182058 crossref_primary_10_1115_1_4043919 crossref_primary_10_1109_TPAMI_2012_40 crossref_primary_10_1016_j_jvcir_2009_09_002 crossref_primary_10_1002_tee_22336 crossref_primary_10_1109_TSMCB_2007_908865 crossref_primary_10_1016_j_imavis_2007_11_004 crossref_primary_10_1109_TPAMI_2007_1096 crossref_primary_10_1007_s11263_009_0244_y crossref_primary_10_1016_j_neucom_2021_10_122 crossref_primary_10_1541_ieejeiss_132_1847 crossref_primary_10_1016_j_sna_2015_09_009 crossref_primary_10_1016_j_patcog_2016_08_010 crossref_primary_10_1007_s12652_020_02787_1 crossref_primary_10_1007_s00521_009_0272_0 crossref_primary_10_1016_j_engappai_2005_12_010 crossref_primary_10_3724_SP_J_1087_2010_00854 crossref_primary_10_1371_journal_pbio_1002585 crossref_primary_10_1016_j_acha_2010_04_001 crossref_primary_10_1007_s11425_013_4688_8 crossref_primary_10_1016_j_neucom_2016_10_047 crossref_primary_10_1016_j_cosrev_2016_05_003 crossref_primary_10_1109_TMC_2018_2812883 crossref_primary_10_1016_j_ins_2007_12_001 crossref_primary_10_1109_TASL_2010_2070495 crossref_primary_10_3390_sym16050549 crossref_primary_10_1109_TNN_2008_2004376 crossref_primary_10_3233_KES_190132 crossref_primary_10_1016_j_neucom_2015_07_141 crossref_primary_10_1109_TIP_2013_2292560 crossref_primary_10_1016_j_micron_2021_103161 crossref_primary_10_1016_j_imavis_2008_11_005 crossref_primary_10_1186_s13640_017_0188_z crossref_primary_10_3103_S0146411616050102 crossref_primary_10_1016_j_patcog_2007_01_026 crossref_primary_10_1016_j_patcog_2011_03_033 crossref_primary_10_1109_TNN_2006_873291 crossref_primary_10_1109_TIP_2012_2219542 crossref_primary_10_1155_2013_825861 crossref_primary_10_1016_j_jvcir_2014_03_006 crossref_primary_10_1109_TNN_2009_2039647 crossref_primary_10_1016_j_patrec_2006_12_018 crossref_primary_10_3390_s140101850 crossref_primary_10_1049_iet_cvi_2008_0039 crossref_primary_10_5772_52862 crossref_primary_10_1109_LSP_2008_2010070 crossref_primary_10_1142_S0219530513500206 crossref_primary_10_3390_s130404499 crossref_primary_10_1016_j_patcog_2010_08_008 crossref_primary_10_1016_j_eswa_2014_12_040 crossref_primary_10_1007_s10044_006_0033_y crossref_primary_10_1364_OE_20_024382 crossref_primary_10_1007_s00138_013_0566_1 crossref_primary_10_1080_00207160_2011_587511 crossref_primary_10_1007_s11548_017_1626_1 crossref_primary_10_1145_2845089 crossref_primary_10_1587_transfun_2024EAL2004 crossref_primary_10_1109_TIP_2018_2809040 crossref_primary_10_1155_2008_675787 crossref_primary_10_1142_S0219691319500334 crossref_primary_10_1109_TETCI_2021_3120513 crossref_primary_10_1007_s10044_009_0152_3 crossref_primary_10_1118_1_4906129 crossref_primary_10_1117_1_2885149 crossref_primary_10_1007_s11042_013_1548_z crossref_primary_10_1016_j_neucom_2006_01_019 crossref_primary_10_3934_era_2023071 crossref_primary_10_1109_TIFS_2007_910238 crossref_primary_10_1109_TNNLS_2014_2375209 crossref_primary_10_1155_2014_702076 crossref_primary_10_7763_IJCTE_2012_V4_574 crossref_primary_10_1007_s00500_009_0426_0 crossref_primary_10_1016_j_patrec_2012_04_007 crossref_primary_10_1109_TNNLS_2017_2648122 crossref_primary_10_1007_s11263_008_0161_5 crossref_primary_10_1587_transinf_2016EDP7256 crossref_primary_10_5392_JKCA_2012_12_12_517 crossref_primary_10_1016_j_asoc_2021_108210 crossref_primary_10_1016_j_patrec_2013_06_009 crossref_primary_10_3724_SP_J_1087_2010_01568 crossref_primary_10_1016_j_jmaa_2018_06_013 crossref_primary_10_1016_j_patcog_2009_04_017 crossref_primary_10_1007_s10044_020_00906_4 crossref_primary_10_1007_s10846_009_9391_1 crossref_primary_10_1016_j_jvcir_2013_04_011 crossref_primary_10_1109_TIP_2010_2042645 crossref_primary_10_1016_j_jcmds_2021_100016 crossref_primary_10_3390_sym8080075 crossref_primary_10_1007_s10044_015_0470_6 crossref_primary_10_1109_TSMCB_2005_850175 crossref_primary_10_1016_j_neucom_2013_03_039 crossref_primary_10_1109_MCI_2007_353418 crossref_primary_10_1007_s11704_018_7402_8 crossref_primary_10_1016_j_patrec_2008_03_002 crossref_primary_10_1145_3447755 crossref_primary_10_1007_s10444_012_9288_6 crossref_primary_10_1007_s10489_024_05639_z crossref_primary_10_1109_TIP_2015_2426413 crossref_primary_10_1016_j_neucom_2006_09_005 crossref_primary_10_1007_s11063_013_9299_4 crossref_primary_10_1016_j_procs_2015_07_493 crossref_primary_10_1007_s00138_022_01341_7 crossref_primary_10_1016_j_jat_2012_10_001 crossref_primary_10_1109_TSMCA_2009_2033031 crossref_primary_10_1016_j_patrec_2009_11_002 crossref_primary_10_1109_TIFS_2010_2069560 crossref_primary_10_1155_2013_206251 crossref_primary_10_1109_LSP_2007_914937 crossref_primary_10_1109_TSMCB_2009_2018137 |
Cites_doi | 10.1038/381607a0 10.1162/jocn.1991.3.1.71 10.1109/34.598230 10.1109/29.1644 10.1109/34.799905 10.1023/A:1008120406972 10.1109/TNN.2003.813829 10.1016/0042-6989(89)90006-0 10.1364/JOSA.70.001297 10.1152/jn.1987.58.6.1233 10.1109/34.862196 10.1016/S0262-8856(97)00070-X 10.1016/0031-3203(92)90007-6 10.7551/mitpress/4175.001.0001 10.1109/34.254061 10.1364/JOSAA.2.001160 10.1109/34.41390 10.1016/0042-6989(80)90065-6 10.1109/2.820038 10.1109/34.598235 10.1109/34.598227 10.1109/5.381842 10.1109/TPAMI.2002.1008384 10.1364/JOSAA.14.001724 10.1162/neco.1996.8.6.1321 10.1109/TPAMI.2003.1227983 10.1109/2.820039 10.1109/ICIP.2000.900886 10.1109/34.598231 10.1109/34.927464 10.1109/12.210173 10.1109/TPAMI.2003.1201822 10.1109/83.913594 10.1109/34.817413 10.1109/AFGR.2000.840635 10.1364/JOSAA.4.002379 10.1023/A:1007901712605 10.1017/CBO9780511801389 10.1109/34.598228 10.1016/0031-3203(94)90006-X 10.1109/CVPR.1994.323814 10.1109/34.655648 10.1109/34.531802 10.1016/0004-3702(95)00026-7 10.1109/AFGR.2002.1004130 10.1109/34.598225 10.1162/089976698300017467 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
DBID | RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2004.1273927 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1939-3539 |
EndPage | 581 |
ExternalDocumentID | 2427779311 15460279 10_1109_TPAMI_2004_1273927 1273927 |
Genre | orig-research Validation Studies Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c377t-c8220498494614a82adc1e810a556bdc2311ddfbb0036722476c2a90c244e0613 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Thu Jul 10 18:19:39 EDT 2025 Mon Jul 21 11:51:54 EDT 2025 Fri Jul 25 07:05:12 EDT 2025 Wed Mar 05 08:02:38 EST 2025 Tue Jul 01 05:18:31 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Aug 26 16:39:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-c8220498494614a82adc1e810a556bdc2311ddfbb0036722476c2a90c244e0613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 15460279 |
PQID | 884026706 |
PQPubID | 85458 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2004_1273927 proquest_miscellaneous_28288180 crossref_primary_10_1109_TPAMI_2004_1273927 ieee_primary_1273927 proquest_journals_884026706 pubmed_primary_15460279 proquest_miscellaneous_66933907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-May 2004-05-00 20040501 |
PublicationDateYYYYMMDD | 2004-05-01 |
PublicationDate_xml | – month: 05 year: 2004 text: 2004-May |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2004 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Beymer (ref4) 1995 ref12 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Craw (ref9) 1992 ref8 ref7 ref3 Haykin (ref20) 1999 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 Diamantaras (ref15) 1996 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref34 doi: 10.1038/381607a0 – ident: ref47 doi: 10.1162/jocn.1991.3.1.71 – ident: ref49 doi: 10.1109/34.598230 – ident: ref14 doi: 10.1109/29.1644 – ident: ref16 doi: 10.1109/34.799905 – ident: ref41 doi: 10.1023/A:1008120406972 – ident: ref28 doi: 10.1109/TNN.2003.813829 – ident: ref7 doi: 10.1016/0042-6989(89)90006-0 – year: 1999 ident: ref20 publication-title: Neural Networks–A Comprehensive Foundation – ident: ref31 doi: 10.1364/JOSA.70.001297 – ident: ref21 doi: 10.1152/jn.1987.58.6.1233 – ident: ref26 doi: 10.1109/34.862196 – ident: ref38 doi: 10.1016/S0262-8856(97)00070-X – ident: ref40 doi: 10.1016/0031-3203(92)90007-6 – ident: ref42 doi: 10.7551/mitpress/4175.001.0001 – ident: ref6 doi: 10.1109/34.254061 – ident: ref13 doi: 10.1364/JOSAA.2.001160 – ident: ref22 doi: 10.1109/34.41390 – ident: ref12 doi: 10.1016/0042-6989(80)90065-6 – ident: ref35 doi: 10.1109/2.820038 – ident: ref50 doi: 10.1109/34.598235 – ident: ref33 doi: 10.1109/34.598227 – year: 1996 ident: ref15 publication-title: Principal Component Neural Networks: Theory and Applications. – ident: ref8 doi: 10.1109/5.381842 – year: 1992 ident: ref9 article-title: The Computer Understanding of Faces publication-title: Processing Images of Faces – ident: ref32 doi: 10.1109/TPAMI.2002.1008384 – ident: ref17 doi: 10.1364/JOSAA.14.001724 – ident: ref1 doi: 10.1162/neco.1996.8.6.1321 – ident: ref5 doi: 10.1109/TPAMI.2003.1227983 – ident: ref36 doi: 10.1109/2.820039 – ident: ref51 doi: 10.1109/ICIP.2000.900886 – ident: ref24 doi: 10.1109/34.598231 – year: 1995 ident: ref4 article-title: Vectorizing Face Images by Interleaving Shape and Texture Computations – ident: ref19 doi: 10.1109/34.927464 – ident: ref23 doi: 10.1109/12.210173 – ident: ref25 doi: 10.1109/TPAMI.2003.1201822 – ident: ref27 doi: 10.1109/83.913594 – ident: ref30 doi: 10.1109/34.817413 – ident: ref29 doi: 10.1109/AFGR.2000.840635 – ident: ref18 doi: 10.1364/JOSAA.4.002379 – ident: ref2 doi: 10.1023/A:1007901712605 – ident: ref10 doi: 10.1017/CBO9780511801389 – ident: ref3 doi: 10.1109/34.598228 – ident: ref48 doi: 10.1016/0031-3203(94)90006-X – ident: ref37 doi: 10.1109/CVPR.1994.323814 – ident: ref45 doi: 10.1109/34.655648 – ident: ref46 doi: 10.1109/34.531802 – ident: ref39 doi: 10.1016/0004-3702(95)00026-7 – ident: ref44 doi: 10.1109/AFGR.2002.1004130 – ident: ref11 doi: 10.1109/34.598225 – ident: ref43 doi: 10.1162/089976698300017467 |
SSID | ssj0014503 |
Score | 2.3635778 |
Snippet | This paper presents a novel Gabor-based kernel principal component analysis (PCA) method by integrating the Gabor wavelet representation of face images and the... This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the... The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 572 |
SubjectTerms | Algorithms Artificial Intelligence Computer Simulation Face - anatomy & histology Face recognition Facial features Frequency Humans Image databases Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Information Storage and Retrieval - methods Kernel Lighting Models, Biological Models, Statistical Numerical Analysis, Computer-Assisted Pattern Recognition, Automated Photography - methods Polynomials Principal Component Analysis Principal components analysis Principle-Based Ethics Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Spatial databases Studies Subtraction Technique Wavelet analysis |
Title | Gabor-based kernel PCA with fractional power polynomial models for face recognition |
URI | https://ieeexplore.ieee.org/document/1273927 https://www.ncbi.nlm.nih.gov/pubmed/15460279 https://www.proquest.com/docview/884026706 https://www.proquest.com/docview/28288180 https://www.proquest.com/docview/66933907 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQstjaQEfuEG2duI48XFVUQrSokq0Um-RY08uXWWrfRzg1zPjPFoQRVyiKHGeHme-L56ZD-A9oi9lVockbWRIdOYxcVwJM2vqxrlSB4WcKDz_Zs6v9Nfr_HoHPo65MIgYg89wyqtxLj8s_ZZ_lZ0o8rU2LXZhl4hbl6s1zhjoPKogE4KhEU40YkiQkfbk8mI2_xKp4LQ_QxTj0YYomf3NH0WBlYexZvQ5Z_swH-62CzW5mW439dT__KOQ4_8-zlN40oNPMeus5RnsYHsA-4Owg-jH-QE8vlel8BC-f2ZDSdjfBXGDqxYX4uJ0JvgXrmhWXWYEnfaWBddoufjBqc60IarsrAXBYtE4j2IMVlq2z-Hq7NPl6XnSazEkPiuKTeIJSBCZKLXV5NBdmbrgFZZKujw3dfAEE1UITc1fCVMQLiiMT52VnuADMmZ4AXvtssVXILQOTWFdIVUttSK6gynqXJWNTkOe2WYCauiRyveFylkvY1FFwiJtFTuUBTR11b_DCXwYj7ntynT8s_Uh98Zdy2Hz0dDxVT-S11VJDDg1hTQTeDfupSHI8yquxeV2XTFr5ZT5h1sYY7PMSrrCy86e7i7dm-Hrv9_SETzqQoU4wvIY9jarLb4hFLSp30bz_wXfNf-7 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7KC2UdgstPvTWZrET5-HjCkGXlkVIXSRukWOPL6yyaB-H8usZOw8oKlUvUZQ4thN7Mt_YM_MBfEE0BU8qG8WO20gmBiPtM2EmrnJaF9IK9IHCk_NsfCl_XKVXG_Ctj4VBxOB8hkN_Gvby7dys_VLZoSBdq-L8GTwnvZ-KJlqr3zOQaeBBJgxDMk6GRBciw9Xh9GI0OQ3G4LCtI9DxyIyMMvWHRgoUK0-jzaB1TrZg0vW3cTa5Hq5X1dDcPkrl-L8v9AZet_CTjZr58hY2sN6GrY7agbWSvg2vHuQp3IFf3_1UibzGs-waFzXO2MXRiPlFXOYWTWwEVXvjKdfoOPvtg53pQuDZWTICxsxpg6x3V5rX7-Dy5Hh6NI5aNobIJHm-igxBCTInCqkkqXRdxNoagYXgOk2zyhoCisJaV_n_RJYTMsgzE2vFDQEI9KhhFzbreY0fgElpXa50zkXFpSCDB2OUqSicjG2aKDcA0Y1IadpU5Z4xY1YGk4WrMgyop9CUZfsNB_C1f-amSdTxz9I7fjTuS3aX97qBL1tZXpYF2cBxlvNsAAf9XRJCv7Oia5yvl6W3W33Q_NMlskwlieLUwvtmPt033U7Dj3_v0gG8GE8nZ-XZ6fnPPXjZOA55f8t92Fwt1viJMNGq-hxE4Q5dBgMT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gabor-based+kernel+PCA+with+fractional+power+polynomial+models+for+face+recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chengjun+Liu&rft.date=2004-05-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=26&rft.issue=5&rft.spage=572&rft.epage=581&rft_id=info:doi/10.1109%2FTPAMI.2004.1273927&rft_id=info%3Apmid%2F15460279&rft.externalDocID=1273927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |