Elastic–plastic void expansion in near-self-similar shapes

► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very small initial void size, growth by four orders of magnitude is considered. ► An iterative procedure is used until the final void shape and the in...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 50; no. 11; pp. 3105 - 3109
Main Author Tvergaard, Viggo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0927-0256
1879-0801
DOI10.1016/j.commatsci.2011.05.034

Cover

Loading…
Abstract ► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very small initial void size, growth by four orders of magnitude is considered. ► An iterative procedure is used until the final void shape and the initial void shape are identical. ► The results for near-self-similar growth are compared with self-similar shapes found for nonlinear viscous solids. For void growth in an elastic–plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state. Axisymmetric cell model analyses are carried out with a very small initial void size relative to the cell dimensions. Large deformations of the material around the void are modeled until the void volume is four orders of magnitude larger than the initial volume. An iterative procedure is used until the final void shape and the initial void shape are identical. Even when this convergence has been obtained, the void shape does not stay constant during the growth. Thus, the shapes found give only approximately self-similar growth. The results are compared with self-similar shapes determined previously for nonlinear viscous solids, subject to power law creep. For the time independent elastic–plastic material considered here the effect of the strain hardening level and of the initial yield strain are studied.
AbstractList ► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very small initial void size, growth by four orders of magnitude is considered. ► An iterative procedure is used until the final void shape and the initial void shape are identical. ► The results for near-self-similar growth are compared with self-similar shapes found for nonlinear viscous solids. For void growth in an elastic–plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state. Axisymmetric cell model analyses are carried out with a very small initial void size relative to the cell dimensions. Large deformations of the material around the void are modeled until the void volume is four orders of magnitude larger than the initial volume. An iterative procedure is used until the final void shape and the initial void shape are identical. Even when this convergence has been obtained, the void shape does not stay constant during the growth. Thus, the shapes found give only approximately self-similar growth. The results are compared with self-similar shapes determined previously for nonlinear viscous solids, subject to power law creep. For the time independent elastic–plastic material considered here the effect of the strain hardening level and of the initial yield strain are studied.
For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state. Axisymmetric cell model analyses are carried out with a very small initial void size relative to the cell dimensions. Large deformations of the material around the void are modeled until the void volume is four orders of magnitude larger than the initial volume. An iterative procedure is used until the final void shape and the initial void shape are identical. Even when this convergence has been obtained, the void shape does not stay constant during the growth. Thus, the shapes found give only approximately self-similar growth. The results are compared with self-similar shapes determined previously for nonlinear viscous solids, subject to power law creep. For the time independent elastic-plastic material considered here the effect of the strain hardening level and of the initial yield strain are studied.
Author Tvergaard, Viggo
Author_xml – sequence: 1
  givenname: Viggo
  surname: Tvergaard
  fullname: Tvergaard, Viggo
  email: viggo@mek.dtu.dk
  organization: Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24371354$$DView record in Pascal Francis
BookMark eNqFkMFO3DAQQK1qK3V34RvIpeopYRzHsS21B4S2LRJSL_RsGWeiepU4wRMQ3PgH_rBfUqOFHrhw8hzem5Hfhq3iFJGxEw4VB96e7is_jaNbyIeqBs4rkBWI5gNbc61MCRr4iq3B1KqEWraf2IZoD9k0ul6zr7vB0RL838en-TAVd1PoCryfXaQwxSLEIqJLJeHQlxTGMLhU0B83Ix2xj70bCI9f3i37_X13df6zvPz14-L87LL0Qqml9ApNjfkkdNi0CHgtQWmueiGNvO44ttqg0aIRUred7IFrJxW2gMp3je_Fln057J3TdHOLtNgxkMdhcBGnW7IGlGlEo3UmP7-Qjrwb-uSiD2TnFEaXHmzdCMWFbDL37cD5NBEl7K0Pi1vyf5fkwmA52Oe4dm__x7XPcS1Im-NmX73xX0-8b54dTMzB7gImmwmMHruQ0C-2m8K7O_4B9zicMw
CitedBy_id crossref_primary_10_1016_j_joes_2018_10_003
crossref_primary_10_5897_IJPS2015_4384
Cites_doi 10.1016/0022-5096(69)90033-7
10.1016/S0045-7949(98)00005-4
10.1115/1.3601204
10.1016/S0020-7403(98)00128-3
10.1016/j.euromechsol.2008.11.002
10.1016/j.ijsolstr.2010.12.009
10.1007/s004660050238
10.1016/S0022-5096(00)00019-3
10.1016/0020-7683(88)90051-0
10.1016/0022-5096(76)90027-2
10.1016/0022-5096(91)90004-8
10.1016/j.euromechsol.2008.11.003
10.1007/BF00015686
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1016/j.commatsci.2011.05.034
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0801
EndPage 3109
ExternalDocumentID 24371354
10_1016_j_commatsci_2011_05_034
S0927025611003077
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c377t-c7e92e0010de46e0eb507817f3595bd1e689e98343586d5f018a57e60e7cd4cf3
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Fri Jul 11 08:25:31 EDT 2025
Mon Jul 21 09:16:33 EDT 2025
Tue Jul 01 00:37:53 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Fri Feb 23 02:37:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Void shapes
Finite strains
Plasticity
Self-similarity
High strain
Self-similiar states
Elastoplasticity
Iterative method
Non linear effect
Cavitation
Strain hardening
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-c7e92e0010de46e0eb507817f3595bd1e689e98343586d5f018a57e60e7cd4cf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 907943488
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_907943488
pascalfrancis_primary_24371354
crossref_citationtrail_10_1016_j_commatsci_2011_05_034
crossref_primary_10_1016_j_commatsci_2011_05_034
elsevier_sciencedirect_doi_10_1016_j_commatsci_2011_05_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computational materials science
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rice, Tracey (b0020) 1969; 17
B. Budiansky, J.W. Hutchinson, Self-similar shapes and asymptotic dilatation-rates for voids in viscous solids, in: F.P.J. Rimrott, B. Tabarrok, (Eds.), Proceedings of the XVth Int. Congress of Theoretical and Applied Mechanics, Toronto, Canada, August 1980, North-Holland Publishing Company, 1980, pp. 243–249.
Pardoen, Hutchinson (b0055) 2000; 48
Gologanu, Leblond, Perrin, Devaux (b0040) 1997
Hutchinson (b0075) 1973
Pedersen (b0085) 1998; 67
Tvergaard (b0025) 1982; 18
Tvergaard (b0080) 1976; 24
Huang, Hutchinson, Tvergaard (b0035) 1991; 39
Danas, Ponte Castaneda (b0045) 2009; 28
Danas, Ponte Castaneda (b0050) 2009; 28
Budiansky, Hutchinson, Slutsky (b0005) 1981
Koplik, Needleman (b0030) 1988; 24
Tvergaard (b0065) 2000; 42
McClintock (b0015) 1968; 35
Tvergaard (b0070) 2011; 48
Tvergaard (b0060) 1997; 20
10.1016/j.commatsci.2011.05.034_b0010
Tvergaard (10.1016/j.commatsci.2011.05.034_b0060) 1997; 20
Tvergaard (10.1016/j.commatsci.2011.05.034_b0070) 2011; 48
Tvergaard (10.1016/j.commatsci.2011.05.034_b0080) 1976; 24
Hutchinson (10.1016/j.commatsci.2011.05.034_b0075) 1973
Budiansky (10.1016/j.commatsci.2011.05.034_b0005) 1981
McClintock (10.1016/j.commatsci.2011.05.034_b0015) 1968; 35
Pedersen (10.1016/j.commatsci.2011.05.034_b0085) 1998; 67
Danas (10.1016/j.commatsci.2011.05.034_b0050) 2009; 28
Rice (10.1016/j.commatsci.2011.05.034_b0020) 1969; 17
Tvergaard (10.1016/j.commatsci.2011.05.034_b0025) 1982; 18
Pardoen (10.1016/j.commatsci.2011.05.034_b0055) 2000; 48
Gologanu (10.1016/j.commatsci.2011.05.034_b0040) 1997
Danas (10.1016/j.commatsci.2011.05.034_b0045) 2009; 28
Huang (10.1016/j.commatsci.2011.05.034_b0035) 1991; 39
Tvergaard (10.1016/j.commatsci.2011.05.034_b0065) 2000; 42
Koplik (10.1016/j.commatsci.2011.05.034_b0030) 1988; 24
References_xml – volume: 35
  start-page: 363
  year: 1968
  end-page: 371
  ident: b0015
  publication-title: J. Appl. Mech.
– volume: 67
  start-page: 279
  year: 1998
  end-page: 288
  ident: b0085
  publication-title: Comput. Struct.
– volume: 42
  start-page: 381
  year: 2000
  end-page: 395
  ident: b0065
  publication-title: Int. J. Mech. Sci.
– start-page: 17
  year: 1973
  ident: b0075
  article-title: Finite strain analysis of elastic–plastic solids and structures
  publication-title: Numerical Solution of Nonlinear Structural Problems
– volume: 48
  start-page: 2467
  year: 2000
  end-page: 2512
  ident: b0055
  publication-title: J. Mech. Phys. Solids
– start-page: 13
  year: 1981
  end-page: 45
  ident: b0005
  article-title: Void growth and collapse in viscous solids
  publication-title: Mechanics of Solids
– volume: 18
  start-page: 23
  year: 1982
  ident: b0025
  publication-title: Int. J. Fract
– volume: 24
  start-page: 291
  year: 1976
  end-page: 304
  ident: b0080
  publication-title: J. Mech. Phys. Solids
– volume: 20
  start-page: 186
  year: 1997
  end-page: 191
  ident: b0060
  publication-title: Comput. Mech.
– volume: 24
  start-page: 835
  year: 1988
  end-page: 853
  ident: b0030
  publication-title: Int. J. Solids Struct.
– volume: 39
  start-page: 223
  year: 1991
  end-page: 241
  ident: b0035
  publication-title: J. Mech. Phys. Solids
– volume: 48
  start-page: 1255
  year: 2011
  end-page: 1267
  ident: b0070
  publication-title: Int. J. Solids Struct
– start-page: 61
  year: 1997
  end-page: 106
  ident: b0040
  article-title: Recent Extensions of Gurson’s Model for Porous Ductile Metals
  publication-title: Continuum Micromechanics
– reference: B. Budiansky, J.W. Hutchinson, Self-similar shapes and asymptotic dilatation-rates for voids in viscous solids, in: F.P.J. Rimrott, B. Tabarrok, (Eds.), Proceedings of the XVth Int. Congress of Theoretical and Applied Mechanics, Toronto, Canada, August 1980, North-Holland Publishing Company, 1980, pp. 243–249.
– volume: 28
  start-page: 402
  year: 2009
  end-page: 416
  ident: b0050
  publication-title: Eur. J. Mech. A/Solids
– volume: 28
  start-page: 387
  year: 2009
  end-page: 401
  ident: b0045
  publication-title: Eur. J. Mech. A/Solids
– volume: 17
  start-page: 201
  year: 1969
  end-page: 217
  ident: b0020
  publication-title: J. Mech. Phys. Solids
– start-page: 61
  year: 1997
  ident: 10.1016/j.commatsci.2011.05.034_b0040
  article-title: Recent Extensions of Gurson’s Model for Porous Ductile Metals
– volume: 17
  start-page: 201
  year: 1969
  ident: 10.1016/j.commatsci.2011.05.034_b0020
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(69)90033-7
– volume: 67
  start-page: 279
  year: 1998
  ident: 10.1016/j.commatsci.2011.05.034_b0085
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(98)00005-4
– volume: 35
  start-page: 363
  year: 1968
  ident: 10.1016/j.commatsci.2011.05.034_b0015
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3601204
– volume: 42
  start-page: 381
  year: 2000
  ident: 10.1016/j.commatsci.2011.05.034_b0065
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/S0020-7403(98)00128-3
– start-page: 17
  year: 1973
  ident: 10.1016/j.commatsci.2011.05.034_b0075
  article-title: Finite strain analysis of elastic–plastic solids and structures
– start-page: 13
  year: 1981
  ident: 10.1016/j.commatsci.2011.05.034_b0005
  article-title: Void growth and collapse in viscous solids
– volume: 28
  start-page: 387
  year: 2009
  ident: 10.1016/j.commatsci.2011.05.034_b0045
  publication-title: Eur. J. Mech. A/Solids
  doi: 10.1016/j.euromechsol.2008.11.002
– volume: 48
  start-page: 1255
  year: 2011
  ident: 10.1016/j.commatsci.2011.05.034_b0070
  publication-title: Int. J. Solids Struct
  doi: 10.1016/j.ijsolstr.2010.12.009
– volume: 20
  start-page: 186
  year: 1997
  ident: 10.1016/j.commatsci.2011.05.034_b0060
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050238
– volume: 48
  start-page: 2467
  year: 2000
  ident: 10.1016/j.commatsci.2011.05.034_b0055
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(00)00019-3
– volume: 24
  start-page: 835
  year: 1988
  ident: 10.1016/j.commatsci.2011.05.034_b0030
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(88)90051-0
– volume: 24
  start-page: 291
  year: 1976
  ident: 10.1016/j.commatsci.2011.05.034_b0080
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(76)90027-2
– volume: 39
  start-page: 223
  year: 1991
  ident: 10.1016/j.commatsci.2011.05.034_b0035
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(91)90004-8
– volume: 28
  start-page: 402
  year: 2009
  ident: 10.1016/j.commatsci.2011.05.034_b0050
  publication-title: Eur. J. Mech. A/Solids
  doi: 10.1016/j.euromechsol.2008.11.003
– ident: 10.1016/j.commatsci.2011.05.034_b0010
– volume: 18
  start-page: 23
  year: 1982
  ident: 10.1016/j.commatsci.2011.05.034_b0025
  publication-title: Int. J. Fract
  doi: 10.1007/BF00015686
SSID ssj0016982
Score 1.9520679
Snippet ► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very...
For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state....
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3105
SubjectTerms Convergence
Creep (materials)
Exact sciences and technology
Finite strains
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Nonlinearity
Physics
Plasticity
Power law
Self-similarity
Solid mechanics
Strain
Strain hardening
Structural and continuum mechanics
Void shapes
Voids
Title Elastic–plastic void expansion in near-self-similar shapes
URI https://dx.doi.org/10.1016/j.commatsci.2011.05.034
https://www.proquest.com/docview/907943488
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iF0XEJz6XHrzWTbdNk4oXkV1WRS8qeAtNM8WKdotdxZP4H_yH_hJn-lhcRDx4K22Shsn0y0wz8w1j-73A-n6S9lwjjUIHhYNrPBAIhlZaSC0YScnJF5fh8CY4uxW3M-ykzYWhsMoG-2tMr9C6udNtpNktsqx7xSPKpcL936s0lTLKib0OdfrgbRLm4YVRVTCKGrvUeirGC8dGuxBHb7g8xQH3g992qMUiLlFuaV3w4gd2VxvSYJktNZakc1xPdoXNQL7KFr7xC66xoz7axvj48_2jqK-cl1FmHXhFDKDfZE6WOznqulvCQ-qW2WOGjq5T3sUFlOvsZtC_Phm6TbkEN_GlHLuJhKgH5ORZCELgYAQx-ciUcm-N9SBUEUTKRwNJhVak3FOxkBBykIkNktTfYLP5KIdN5khlwsBThspyBAnEROIlwE8VHaIG0m6xsBWRThoucSpp8aDboLF7PZGtJtlqLjTKdovxSceiptP4u8thuwZ6SjM0gv7fnTtTqzZ5KfEwer7ABk67jBo_LDotiXMYPZc64hV3nlLb_5nADpvvtVGD3i6bHT89wx6aMWPTqfS0w-aOT8-Hl1-rt_P1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QEQQqUtojzaHHoN62zs2EFcqqrV9rUXWqk3K44nIqhko2ZbceQ_8A_5JczksWKFUA-9RYkntsaTz-N45huA_Yn0cZwXk9BpZ2iDIjB0ESoCQ689Fh6d5uTki1kyvZKn1-p6DQ6HXBgOq-yxv8P0Fq37O-Nem-O6LMdfRMq5VLT-R62l6iewzuxUcgTrBydn09nyMCFJ25pR3D5kgZUwL3o9uYbUQU_nqT6KWP5vkXpRZw2pruhqXvwD3-2adLwBL3tnMjjoxvsK1rDahOd_UQxuwecjco_p8e-fv-ruKriflz7AHwQD_KcsKKugInMPG7wpwqb8XtJeN2i-ZjU223B1fHR5OA37iglhHmu9CHON6QR5n-dRJijQKSbz0QWn3zofYWJSTE1MPpJJvCpEZDKlMRGocy_zIn4No2pe4RsItHGJjIzjyhwyx4x5vBTGheFzVKn9DiSDimze04lzVYsbO8SNfbNL3VrWrRXKkm53QCwF645R42GRT8Mc2BXjsIT7DwvvrszaslOmYoxiRQ2CYRotfVt8YJJVOL9rbCpa-jxj3j5mAHvwdHp5cW7PT2Zn7-DZZAgijN7DaHF7hx_Iq1m43d5q_wAF1Pam
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic%E2%80%95plastic+void+expansion+in+near-self-similar+shapes&rft.jtitle=Computational+materials+science&rft.au=TVERGAARD%2C+Viggo&rft.date=2011-10-01&rft.pub=Elsevier&rft.issn=0927-0256&rft.volume=50&rft.issue=11&rft.spage=3105&rft.epage=3109&rft_id=info:doi/10.1016%2Fj.commatsci.2011.05.034&rft.externalDBID=n%2Fa&rft.externalDocID=24371354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon