Elastic–plastic void expansion in near-self-similar shapes
► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very small initial void size, growth by four orders of magnitude is considered. ► An iterative procedure is used until the final void shape and the in...
Saved in:
Published in | Computational materials science Vol. 50; no. 11; pp. 3105 - 3109 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0927-0256 1879-0801 |
DOI | 10.1016/j.commatsci.2011.05.034 |
Cover
Loading…
Abstract | ► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very small initial void size, growth by four orders of magnitude is considered. ► An iterative procedure is used until the final void shape and the initial void shape are identical. ► The results for near-self-similar growth are compared with self-similar shapes found for nonlinear viscous solids.
For void growth in an elastic–plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state. Axisymmetric cell model analyses are carried out with a very small initial void size relative to the cell dimensions. Large deformations of the material around the void are modeled until the void volume is four orders of magnitude larger than the initial volume. An iterative procedure is used until the final void shape and the initial void shape are identical. Even when this convergence has been obtained, the void shape does not stay constant during the growth. Thus, the shapes found give only approximately self-similar growth. The results are compared with self-similar shapes determined previously for nonlinear viscous solids, subject to power law creep. For the time independent elastic–plastic material considered here the effect of the strain hardening level and of the initial yield strain are studied. |
---|---|
AbstractList | ► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very small initial void size, growth by four orders of magnitude is considered. ► An iterative procedure is used until the final void shape and the initial void shape are identical. ► The results for near-self-similar growth are compared with self-similar shapes found for nonlinear viscous solids.
For void growth in an elastic–plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state. Axisymmetric cell model analyses are carried out with a very small initial void size relative to the cell dimensions. Large deformations of the material around the void are modeled until the void volume is four orders of magnitude larger than the initial volume. An iterative procedure is used until the final void shape and the initial void shape are identical. Even when this convergence has been obtained, the void shape does not stay constant during the growth. Thus, the shapes found give only approximately self-similar growth. The results are compared with self-similar shapes determined previously for nonlinear viscous solids, subject to power law creep. For the time independent elastic–plastic material considered here the effect of the strain hardening level and of the initial yield strain are studied. For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state. Axisymmetric cell model analyses are carried out with a very small initial void size relative to the cell dimensions. Large deformations of the material around the void are modeled until the void volume is four orders of magnitude larger than the initial volume. An iterative procedure is used until the final void shape and the initial void shape are identical. Even when this convergence has been obtained, the void shape does not stay constant during the growth. Thus, the shapes found give only approximately self-similar growth. The results are compared with self-similar shapes determined previously for nonlinear viscous solids, subject to power law creep. For the time independent elastic-plastic material considered here the effect of the strain hardening level and of the initial yield strain are studied. |
Author | Tvergaard, Viggo |
Author_xml | – sequence: 1 givenname: Viggo surname: Tvergaard fullname: Tvergaard, Viggo email: viggo@mek.dtu.dk organization: Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24371354$$DView record in Pascal Francis |
BookMark | eNqFkMFO3DAQQK1qK3V34RvIpeopYRzHsS21B4S2LRJSL_RsGWeiepU4wRMQ3PgH_rBfUqOFHrhw8hzem5Hfhq3iFJGxEw4VB96e7is_jaNbyIeqBs4rkBWI5gNbc61MCRr4iq3B1KqEWraf2IZoD9k0ul6zr7vB0RL838en-TAVd1PoCryfXaQwxSLEIqJLJeHQlxTGMLhU0B83Ix2xj70bCI9f3i37_X13df6zvPz14-L87LL0Qqml9ApNjfkkdNi0CHgtQWmueiGNvO44ttqg0aIRUred7IFrJxW2gMp3je_Fln057J3TdHOLtNgxkMdhcBGnW7IGlGlEo3UmP7-Qjrwb-uSiD2TnFEaXHmzdCMWFbDL37cD5NBEl7K0Pi1vyf5fkwmA52Oe4dm__x7XPcS1Im-NmX73xX0-8b54dTMzB7gImmwmMHruQ0C-2m8K7O_4B9zicMw |
CitedBy_id | crossref_primary_10_1016_j_joes_2018_10_003 crossref_primary_10_5897_IJPS2015_4384 |
Cites_doi | 10.1016/0022-5096(69)90033-7 10.1016/S0045-7949(98)00005-4 10.1115/1.3601204 10.1016/S0020-7403(98)00128-3 10.1016/j.euromechsol.2008.11.002 10.1016/j.ijsolstr.2010.12.009 10.1007/s004660050238 10.1016/S0022-5096(00)00019-3 10.1016/0020-7683(88)90051-0 10.1016/0022-5096(76)90027-2 10.1016/0022-5096(91)90004-8 10.1016/j.euromechsol.2008.11.003 10.1007/BF00015686 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1016/j.commatsci.2011.05.034 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-0801 |
EndPage | 3109 |
ExternalDocumentID | 24371354 10_1016_j_commatsci_2011_05_034 S0927025611003077 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c377t-c7e92e0010de46e0eb507817f3595bd1e689e98343586d5f018a57e60e7cd4cf3 |
IEDL.DBID | .~1 |
ISSN | 0927-0256 |
IngestDate | Fri Jul 11 08:25:31 EDT 2025 Mon Jul 21 09:16:33 EDT 2025 Tue Jul 01 00:37:53 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Fri Feb 23 02:37:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Void shapes Finite strains Plasticity Self-similarity High strain Self-similiar states Elastoplasticity Iterative method Non linear effect Cavitation Strain hardening |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-c7e92e0010de46e0eb507817f3595bd1e689e98343586d5f018a57e60e7cd4cf3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 907943488 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_907943488 pascalfrancis_primary_24371354 crossref_citationtrail_10_1016_j_commatsci_2011_05_034 crossref_primary_10_1016_j_commatsci_2011_05_034 elsevier_sciencedirect_doi_10_1016_j_commatsci_2011_05_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-01 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computational materials science |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Rice, Tracey (b0020) 1969; 17 B. Budiansky, J.W. Hutchinson, Self-similar shapes and asymptotic dilatation-rates for voids in viscous solids, in: F.P.J. Rimrott, B. Tabarrok, (Eds.), Proceedings of the XVth Int. Congress of Theoretical and Applied Mechanics, Toronto, Canada, August 1980, North-Holland Publishing Company, 1980, pp. 243–249. Pardoen, Hutchinson (b0055) 2000; 48 Gologanu, Leblond, Perrin, Devaux (b0040) 1997 Hutchinson (b0075) 1973 Pedersen (b0085) 1998; 67 Tvergaard (b0025) 1982; 18 Tvergaard (b0080) 1976; 24 Huang, Hutchinson, Tvergaard (b0035) 1991; 39 Danas, Ponte Castaneda (b0045) 2009; 28 Danas, Ponte Castaneda (b0050) 2009; 28 Budiansky, Hutchinson, Slutsky (b0005) 1981 Koplik, Needleman (b0030) 1988; 24 Tvergaard (b0065) 2000; 42 McClintock (b0015) 1968; 35 Tvergaard (b0070) 2011; 48 Tvergaard (b0060) 1997; 20 10.1016/j.commatsci.2011.05.034_b0010 Tvergaard (10.1016/j.commatsci.2011.05.034_b0060) 1997; 20 Tvergaard (10.1016/j.commatsci.2011.05.034_b0070) 2011; 48 Tvergaard (10.1016/j.commatsci.2011.05.034_b0080) 1976; 24 Hutchinson (10.1016/j.commatsci.2011.05.034_b0075) 1973 Budiansky (10.1016/j.commatsci.2011.05.034_b0005) 1981 McClintock (10.1016/j.commatsci.2011.05.034_b0015) 1968; 35 Pedersen (10.1016/j.commatsci.2011.05.034_b0085) 1998; 67 Danas (10.1016/j.commatsci.2011.05.034_b0050) 2009; 28 Rice (10.1016/j.commatsci.2011.05.034_b0020) 1969; 17 Tvergaard (10.1016/j.commatsci.2011.05.034_b0025) 1982; 18 Pardoen (10.1016/j.commatsci.2011.05.034_b0055) 2000; 48 Gologanu (10.1016/j.commatsci.2011.05.034_b0040) 1997 Danas (10.1016/j.commatsci.2011.05.034_b0045) 2009; 28 Huang (10.1016/j.commatsci.2011.05.034_b0035) 1991; 39 Tvergaard (10.1016/j.commatsci.2011.05.034_b0065) 2000; 42 Koplik (10.1016/j.commatsci.2011.05.034_b0030) 1988; 24 |
References_xml | – volume: 35 start-page: 363 year: 1968 end-page: 371 ident: b0015 publication-title: J. Appl. Mech. – volume: 67 start-page: 279 year: 1998 end-page: 288 ident: b0085 publication-title: Comput. Struct. – volume: 42 start-page: 381 year: 2000 end-page: 395 ident: b0065 publication-title: Int. J. Mech. Sci. – start-page: 17 year: 1973 ident: b0075 article-title: Finite strain analysis of elastic–plastic solids and structures publication-title: Numerical Solution of Nonlinear Structural Problems – volume: 48 start-page: 2467 year: 2000 end-page: 2512 ident: b0055 publication-title: J. Mech. Phys. Solids – start-page: 13 year: 1981 end-page: 45 ident: b0005 article-title: Void growth and collapse in viscous solids publication-title: Mechanics of Solids – volume: 18 start-page: 23 year: 1982 ident: b0025 publication-title: Int. J. Fract – volume: 24 start-page: 291 year: 1976 end-page: 304 ident: b0080 publication-title: J. Mech. Phys. Solids – volume: 20 start-page: 186 year: 1997 end-page: 191 ident: b0060 publication-title: Comput. Mech. – volume: 24 start-page: 835 year: 1988 end-page: 853 ident: b0030 publication-title: Int. J. Solids Struct. – volume: 39 start-page: 223 year: 1991 end-page: 241 ident: b0035 publication-title: J. Mech. Phys. Solids – volume: 48 start-page: 1255 year: 2011 end-page: 1267 ident: b0070 publication-title: Int. J. Solids Struct – start-page: 61 year: 1997 end-page: 106 ident: b0040 article-title: Recent Extensions of Gurson’s Model for Porous Ductile Metals publication-title: Continuum Micromechanics – reference: B. Budiansky, J.W. Hutchinson, Self-similar shapes and asymptotic dilatation-rates for voids in viscous solids, in: F.P.J. Rimrott, B. Tabarrok, (Eds.), Proceedings of the XVth Int. Congress of Theoretical and Applied Mechanics, Toronto, Canada, August 1980, North-Holland Publishing Company, 1980, pp. 243–249. – volume: 28 start-page: 402 year: 2009 end-page: 416 ident: b0050 publication-title: Eur. J. Mech. A/Solids – volume: 28 start-page: 387 year: 2009 end-page: 401 ident: b0045 publication-title: Eur. J. Mech. A/Solids – volume: 17 start-page: 201 year: 1969 end-page: 217 ident: b0020 publication-title: J. Mech. Phys. Solids – start-page: 61 year: 1997 ident: 10.1016/j.commatsci.2011.05.034_b0040 article-title: Recent Extensions of Gurson’s Model for Porous Ductile Metals – volume: 17 start-page: 201 year: 1969 ident: 10.1016/j.commatsci.2011.05.034_b0020 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(69)90033-7 – volume: 67 start-page: 279 year: 1998 ident: 10.1016/j.commatsci.2011.05.034_b0085 publication-title: Comput. Struct. doi: 10.1016/S0045-7949(98)00005-4 – volume: 35 start-page: 363 year: 1968 ident: 10.1016/j.commatsci.2011.05.034_b0015 publication-title: J. Appl. Mech. doi: 10.1115/1.3601204 – volume: 42 start-page: 381 year: 2000 ident: 10.1016/j.commatsci.2011.05.034_b0065 publication-title: Int. J. Mech. Sci. doi: 10.1016/S0020-7403(98)00128-3 – start-page: 17 year: 1973 ident: 10.1016/j.commatsci.2011.05.034_b0075 article-title: Finite strain analysis of elastic–plastic solids and structures – start-page: 13 year: 1981 ident: 10.1016/j.commatsci.2011.05.034_b0005 article-title: Void growth and collapse in viscous solids – volume: 28 start-page: 387 year: 2009 ident: 10.1016/j.commatsci.2011.05.034_b0045 publication-title: Eur. J. Mech. A/Solids doi: 10.1016/j.euromechsol.2008.11.002 – volume: 48 start-page: 1255 year: 2011 ident: 10.1016/j.commatsci.2011.05.034_b0070 publication-title: Int. J. Solids Struct doi: 10.1016/j.ijsolstr.2010.12.009 – volume: 20 start-page: 186 year: 1997 ident: 10.1016/j.commatsci.2011.05.034_b0060 publication-title: Comput. Mech. doi: 10.1007/s004660050238 – volume: 48 start-page: 2467 year: 2000 ident: 10.1016/j.commatsci.2011.05.034_b0055 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(00)00019-3 – volume: 24 start-page: 835 year: 1988 ident: 10.1016/j.commatsci.2011.05.034_b0030 publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(88)90051-0 – volume: 24 start-page: 291 year: 1976 ident: 10.1016/j.commatsci.2011.05.034_b0080 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(76)90027-2 – volume: 39 start-page: 223 year: 1991 ident: 10.1016/j.commatsci.2011.05.034_b0035 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(91)90004-8 – volume: 28 start-page: 402 year: 2009 ident: 10.1016/j.commatsci.2011.05.034_b0050 publication-title: Eur. J. Mech. A/Solids doi: 10.1016/j.euromechsol.2008.11.003 – ident: 10.1016/j.commatsci.2011.05.034_b0010 – volume: 18 start-page: 23 year: 1982 ident: 10.1016/j.commatsci.2011.05.034_b0025 publication-title: Int. J. Fract doi: 10.1007/BF00015686 |
SSID | ssj0016982 |
Score | 1.9520679 |
Snippet | ► For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated. ► In axisymmetric cell models with a very... For void growth in an elastic-plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3105 |
SubjectTerms | Convergence Creep (materials) Exact sciences and technology Finite strains Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Nonlinearity Physics Plasticity Power law Self-similarity Solid mechanics Strain Strain hardening Structural and continuum mechanics Void shapes Voids |
Title | Elastic–plastic void expansion in near-self-similar shapes |
URI | https://dx.doi.org/10.1016/j.commatsci.2011.05.034 https://www.proquest.com/docview/907943488 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iF0XEJz6XHrzWTbdNk4oXkV1WRS8qeAtNM8WKdotdxZP4H_yH_hJn-lhcRDx4K22Shsn0y0wz8w1j-73A-n6S9lwjjUIHhYNrPBAIhlZaSC0YScnJF5fh8CY4uxW3M-ykzYWhsMoG-2tMr9C6udNtpNktsqx7xSPKpcL936s0lTLKib0OdfrgbRLm4YVRVTCKGrvUeirGC8dGuxBHb7g8xQH3g992qMUiLlFuaV3w4gd2VxvSYJktNZakc1xPdoXNQL7KFr7xC66xoz7axvj48_2jqK-cl1FmHXhFDKDfZE6WOznqulvCQ-qW2WOGjq5T3sUFlOvsZtC_Phm6TbkEN_GlHLuJhKgH5ORZCELgYAQx-ciUcm-N9SBUEUTKRwNJhVak3FOxkBBykIkNktTfYLP5KIdN5khlwsBThspyBAnEROIlwE8VHaIG0m6xsBWRThoucSpp8aDboLF7PZGtJtlqLjTKdovxSceiptP4u8thuwZ6SjM0gv7fnTtTqzZ5KfEwer7ABk67jBo_LDotiXMYPZc64hV3nlLb_5nADpvvtVGD3i6bHT89wx6aMWPTqfS0w-aOT8-Hl1-rt_P1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QEQQqUtojzaHHoN62zs2EFcqqrV9rUXWqk3K44nIqhko2ZbceQ_8A_5JczksWKFUA-9RYkntsaTz-N45huA_Yn0cZwXk9BpZ2iDIjB0ESoCQ689Fh6d5uTki1kyvZKn1-p6DQ6HXBgOq-yxv8P0Fq37O-Nem-O6LMdfRMq5VLT-R62l6iewzuxUcgTrBydn09nyMCFJ25pR3D5kgZUwL3o9uYbUQU_nqT6KWP5vkXpRZw2pruhqXvwD3-2adLwBL3tnMjjoxvsK1rDahOd_UQxuwecjco_p8e-fv-ruKriflz7AHwQD_KcsKKugInMPG7wpwqb8XtJeN2i-ZjU223B1fHR5OA37iglhHmu9CHON6QR5n-dRJijQKSbz0QWn3zofYWJSTE1MPpJJvCpEZDKlMRGocy_zIn4No2pe4RsItHGJjIzjyhwyx4x5vBTGheFzVKn9DiSDimze04lzVYsbO8SNfbNL3VrWrRXKkm53QCwF645R42GRT8Mc2BXjsIT7DwvvrszaslOmYoxiRQ2CYRotfVt8YJJVOL9rbCpa-jxj3j5mAHvwdHp5cW7PT2Zn7-DZZAgijN7DaHF7hx_Iq1m43d5q_wAF1Pam |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic%E2%80%95plastic+void+expansion+in+near-self-similar+shapes&rft.jtitle=Computational+materials+science&rft.au=TVERGAARD%2C+Viggo&rft.date=2011-10-01&rft.pub=Elsevier&rft.issn=0927-0256&rft.volume=50&rft.issue=11&rft.spage=3105&rft.epage=3109&rft_id=info:doi/10.1016%2Fj.commatsci.2011.05.034&rft.externalDBID=n%2Fa&rft.externalDocID=24371354 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |