Hydrodynamic Analysis and Shape Optimization for Vertical Axisymmetric Wave Energy Converters
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface,...
Saved in:
Published in | China ocean engineering Vol. 30; no. 6; pp. 954 - 966 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Nanjing
Chinese Ocean Engineering Society
01.12.2016
Springer Nature B.V College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisyrnmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion. |
---|---|
AbstractList | The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisyrnmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion. The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber’s hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion. |
Author | 张万超 刘恒序 张亮 张学伟 |
AuthorAffiliation | College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China |
AuthorAffiliation_xml | – name: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China |
Author_xml | – sequence: 1 fullname: 张万超 刘恒序 张亮 张学伟 |
BookMark | eNp9kE1v3CAQQFGVSt2k_QG9ofbUg9MBjMHH1SppKq20h36dKsQC9hKtYQPOps6vL4mjtuohJy7vzQzvFJ2EGBxCbwmcEwDxMRPG6roC0lQADa3oC7SgpCWVbGt-ghYgW6h4LcUrdJrzNQAnvCYL9PNqsinaKejBG7wMej9ln7EOFn_Z6YPDm8PoB3-vRx8D7mLC310avdF7vPzl8zQMbkzF_KGPDl8El_oJr2I4Fsil_Bq97PQ-uzdP7xn6dnnxdXVVrTefPq-W68owIcbKNJ21rRCyXOwI33Za2FqT1pratEZy7qhuOrZtKTALlost5baxAIUqhGNn6MM8906HTodeXcfbVP6S1X2_m3qjHC1loAFoC_t-Zg8p3ty6PP6FiZQgGeVCFkrMlEkx5-Q6Zfz4GGFM2u8VAfXQXc3dVZmuHrorWkzyn3lIftBpetahs5MLG3qX_rnpGend06JdDP1N8f5sagQIKill7DekYqMS |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_117827 crossref_primary_10_2112_SI83_161_1 crossref_primary_10_1017_jfm_2021_993 crossref_primary_10_3389_fenrg_2020_553295 crossref_primary_10_1016_j_oceaneng_2022_113286 crossref_primary_10_1016_j_rser_2024_114880 crossref_primary_10_2112_SI97_008_1 crossref_primary_10_1007_s13344_017_0076_4 crossref_primary_10_2478_pomr_2023_0029 crossref_primary_10_4031_MTSJ_54_2_4 crossref_primary_10_1080_20464177_2024_2447555 crossref_primary_10_1016_j_renene_2024_121990 crossref_primary_10_1007_s13344_022_0085_9 crossref_primary_10_1016_j_energy_2022_123433 crossref_primary_10_1049_rpg2_12254 crossref_primary_10_1007_s11804_019_00083_9 crossref_primary_10_1016_j_apenergy_2021_117100 crossref_primary_10_1016_j_oceaneng_2022_112189 crossref_primary_10_1016_j_energy_2025_135613 crossref_primary_10_1016_j_rser_2024_114398 crossref_primary_10_3390_jmse10121985 crossref_primary_10_1016_j_renene_2024_120595 crossref_primary_10_1007_s13344_018_0046_5 crossref_primary_10_1007_s13344_019_0027_3 crossref_primary_10_1016_j_rser_2020_110593 crossref_primary_10_1016_j_renene_2024_120333 crossref_primary_10_1007_s00773_020_00705_w crossref_primary_10_1016_j_renene_2023_03_086 crossref_primary_10_1007_s13344_021_0071_7 crossref_primary_10_1016_j_oceaneng_2024_118212 crossref_primary_10_1007_s13344_018_0036_7 crossref_primary_10_1007_s11804_024_00431_4 crossref_primary_10_1016_j_oceaneng_2023_114818 crossref_primary_10_1016_j_apenergy_2019_113996 crossref_primary_10_1016_j_energy_2023_129427 crossref_primary_10_1016_j_oceaneng_2019_106245 |
Cites_doi | 10.1016/j.renene.2012.01.105 10.1016/j.renene.2011.10.002 10.1007/s00773-014-0268-z 10.1016/j.renene.2014.05.022 10.1016/j.renene.2012.09.054 10.1016/j.apor.2005.03.002 10.1016/0029-8018(86)90037-5 10.1016/j.renene.2010.04.029 10.1016/j.renene.2012.04.044 10.1017/S0022112082001980 10.1049/iet-rpg.2009.0191 10.1017/CBO9780511754630 10.1016/j.renene.2012.02.004 10.1016/0141-1187(81)90101-2 10.1016/j.renene.2012.05.009 10.1145/2001576.2001810 |
ContentType | Journal Article |
Copyright | Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2016 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2016 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7TN F1W H96 L.G 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s13344-016-0062-2 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
DocumentTitleAlternate | Hydrodynamic Analysis and Shape Optimization for Vertical Axisymmetric Wave Energy Converters |
EISSN | 2191-8945 |
EndPage | 966 |
ExternalDocumentID | zghygc_e201606009 10_1007_s13344_016_0062_2 670728223 |
GrantInformation_xml | – fundername: This paper is financially supported by the National Natural Science Foundation of China funderid: (Grant .11572094,51579055 and 51509048) |
GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 0VY 188 29B 29~ 2B. 2C. 2KG 2KM 2RA 30V 4.4 406 408 5GY 5VR 5XA 5XB 5XL 8RM 92E 92I 92L 92M 92Q 93N 96X 9D9 9DA AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 Q-- Q-0 R-A R9I RLLFE RSV RT1 S.. S1Z S27 S3B SCL SEG SHX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T8Q TCJ TGP TSG U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W94 WK8 Z7R ZMTXR ~A9 ~LH ~WA AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 HG6 ROL SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TN ABRTQ F1W H96 L.G 4A8 PSX |
ID | FETCH-LOGICAL-c377t-c6fdd9778219e15bfa7d4a19dc4c9c855e2a6f3b9203d0d57b25d6d00d4a4c9e3 |
IEDL.DBID | U2A |
ISSN | 0890-5487 |
IngestDate | Thu May 29 03:55:51 EDT 2025 Fri Jul 25 07:53:08 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Tue Jul 01 01:29:47 EDT 2025 Fri Feb 21 02:36:04 EST 2025 Wed Feb 14 10:08:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | complex wetted surface vertical axisymmetric geometrical shape astringency semi-analytical method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-c6fdd9778219e15bfa7d4a19dc4c9c855e2a6f3b9203d0d57b25d6d00d4a4c9e3 |
Notes | 32-1441/P The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisyrnmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion. vertical axisymmetric; complex wetted surface; semi-analytical method; astringency; geometrical shape ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880832578 |
PQPubID | 2043672 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_zghygc_e201606009 proquest_journals_1880832578 crossref_citationtrail_10_1007_s13344_016_0062_2 crossref_primary_10_1007_s13344_016_0062_2 springer_journals_10_1007_s13344_016_0062_2 chongqing_primary_670728223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing – name: Heidelberg |
PublicationTitle | China ocean engineering |
PublicationTitleAbbrev | China Ocean Eng |
PublicationTitleAlternate | China Ocean Engineering |
PublicationTitle_FL | China Ocean Engineering |
PublicationYear | 2016 |
Publisher | Chinese Ocean Engineering Society Springer Nature B.V College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China |
Publisher_xml | – name: Chinese Ocean Engineering Society – name: Springer Nature B.V – name: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China |
References | McCabe, Aggidis, Widden (CR16) 2010; 35 Falnes (CR6) 2002 Alves, Traylor, Sarmento (CR1) 2007 Koh, Ruy, Cho, Kweon (CR10) 2014; 20 Falcão, Henriques, Cândido (CR5) 2012; 48 Bachynski, Young, Yeung (CR3) 2012; 48 Kokkinowrachos, Mavrakos, Asorakos (CR11) 1986; 13 Yeung (CR19) 1980; 3 Kramer, Frigaard (CR12) 2002 Gomes, Henriques, Gato, Falcão (CR8) 2012; 44 Mavrakos (CR13) 2004; 26 Colby, Nasroullahi, Tumer (CR4) 2011 Mavrakos, Katsaounis (CR14) 2009; 4 Mavrakos, Katsaounis, Apostolidis (CR15) 2009 Hulme (CR9) 1982; 121 Oskamp, Ozkan-Haller (CR18) 2012; 45 McCabe (CR17) 2013; 51 Goggins, Finnegan (CR7) 2014; 71 Babarit, Hals, Muliawan, Kurniawan, Moan, Krokstad (CR2) 2012; 41 M. Colby (62_CR4) 2011 A. Hulme (62_CR9) 1982; 121 J. A. Oskamp (62_CR18) 2012; 45 M. M. Kramer (62_CR12) 2002 R. W. Yeung (62_CR19) 1980; 3 S. A. Mavrakos (62_CR15) 2009 E. E. Bachynski (62_CR3) 2012; 48 J. Goggins (62_CR7) 2014; 71 A. P. McCabe (62_CR16) 2010; 35 R. P. F. Gomes (62_CR8) 2012; 44 S. A. Mavrakos (62_CR13) 2004; 26 S. A. Mavrakos (62_CR14) 2009; 4 K. Kokkinowrachos (62_CR11) 1986; 13 A. P. McCabe (62_CR17) 2013; 51 M. Alves (62_CR1) 2007 A. F. O. Falcão (62_CR5) 2012; 48 A. Babarit (62_CR2) 2012; 41 H. J. Koh (62_CR10) 2014; 20 J. Falnes (62_CR6) 2002 |
References_xml | – volume: 44 start-page: 328 year: 2012 end-page: 339 ident: CR8 article-title: Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion publication-title: Renew. Energy doi: 10.1016/j.renene.2012.01.105 – volume: 41 start-page: 44 year: 2012 end-page: 63 ident: CR2 article-title: Numerical benchmarking study of a selection of wave energy converters publication-title: Renew. Energy doi: 10.1016/j.renene.2011.10.002 – volume: 20 start-page: 53 issue: 1 year: 2014 end-page: 63 ident: CR10 article-title: Multi-objective optimum design of a buoy for the resonant-type wave energy converter publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-014-0268-z – volume: 71 start-page: 208 year: 2014 end-page: 220 ident: CR7 article-title: Shape optimization of floating wave energy converters for a specified wave energy spectrum publication-title: Renew. Energy doi: 10.1016/j.renene.2014.05.022 – volume: 51 start-page: 274 year: 2013 end-page: 284 ident: CR17 article-title: Constrained optimization of the shape of a wave energy collector by genetic algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2012.09.054 – volume: 26 start-page: 84 year: 2004 end-page: 97 ident: CR13 article-title: Hydrodynamic coefficients in heave of two concentric surface-piercing truncated circular cylinders publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2005.03.002 – volume: 13 start-page: 505 issue: 6 year: 1986 end-page: 538 ident: CR11 article-title: Behavior of vertical bodies of revolution in waves publication-title: Ocean Eng. doi: 10.1016/0029-8018(86)90037-5 – volume: 35 start-page: 2767 issue: 12 year: 2010 end-page: 2775 ident: CR16 article-title: Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2010.04.029 – volume: 48 start-page: 133 year: 2012 end-page: 145 ident: CR3 article-title: Analysis and optimization of a tethered wave energy converter in irregular waves publication-title: Renew. Energy doi: 10.1016/j.renene.2012.04.044 – start-page: 1739 year: 2011 end-page: 1746 ident: CR4 article-title: Optimizing ballast design of wave energy converters using evolutionary algorithms publication-title: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference – volume: 121 start-page: 443 year: 1982 end-page: 463 ident: CR9 article-title: The wave forces acting on a floating hemisphere undergoing forced periodic oscillations publication-title: J. Fluid Mech. doi: 10.1017/S0022112082001980 – volume: 4 start-page: 531 issue: 6 year: 2009 end-page: 544 ident: CR14 article-title: Effects of floaters’ hydrodynamics on the performance of tightly moored wave energy converters publication-title: IET Renew. Power Gen. doi: 10.1049/iet-rpg.2009.0191 – year: 2002 ident: CR6 publication-title: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction doi: 10.1017/CBO9780511754630 – year: 2002 ident: CR12 article-title: Efficient wave energy amplification with wave reflectors publication-title: Proceedings of the 12th International Offshore and Polar Engineering Conference – volume: 45 start-page: 72 year: 2012 end-page: 77 ident: CR18 article-title: Power calculations for a passively tuned point absorber wave energy converter on the Oregon coast publication-title: Renew. Energy doi: 10.1016/j.renene.2012.02.004 – volume: 3 start-page: 119 issue: 3 year: 1980 end-page: 133 ident: CR19 article-title: Added mass and damping of a vertical cylinder in finite depth waters publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(81)90101-2 – year: 2009 ident: CR15 article-title: Effects of floaters’ geometry on the performance characteristics of tightly moored wave energy converters publication-title: Proceedings of the 28th International Conference on Ocean Offshore Arctic Engineering – year: 2007 ident: CR1 article-title: Hydrodynamic optimization of a wave energy converter using a heave motion buoy publication-title: Proceedings of the 7th European Wave and Tidal Energy Conference – volume: 48 start-page: 369 year: 2012 end-page: 381 ident: CR5 article-title: Dynamics and optimization of the OWC spar buoy wave energy converter publication-title: Renew. Energy doi: 10.1016/j.renene.2012.05.009 – volume: 48 start-page: 133 year: 2012 ident: 62_CR3 publication-title: Renew. Energy doi: 10.1016/j.renene.2012.04.044 – start-page: 1739 volume-title: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference year: 2011 ident: 62_CR4 doi: 10.1145/2001576.2001810 – volume: 20 start-page: 53 issue: 1 year: 2014 ident: 62_CR10 publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-014-0268-z – volume: 121 start-page: 443 year: 1982 ident: 62_CR9 publication-title: J. Fluid Mech. doi: 10.1017/S0022112082001980 – volume-title: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction year: 2002 ident: 62_CR6 doi: 10.1017/CBO9780511754630 – volume: 44 start-page: 328 year: 2012 ident: 62_CR8 publication-title: Renew. Energy doi: 10.1016/j.renene.2012.01.105 – volume: 45 start-page: 72 year: 2012 ident: 62_CR18 publication-title: Renew. Energy doi: 10.1016/j.renene.2012.02.004 – volume-title: Proceedings of the 28th International Conference on Ocean Offshore Arctic Engineering year: 2009 ident: 62_CR15 – volume: 71 start-page: 208 year: 2014 ident: 62_CR7 publication-title: Renew. Energy doi: 10.1016/j.renene.2014.05.022 – volume-title: Proceedings of the 12th International Offshore and Polar Engineering Conference year: 2002 ident: 62_CR12 – volume: 13 start-page: 505 issue: 6 year: 1986 ident: 62_CR11 publication-title: Ocean Eng. doi: 10.1016/0029-8018(86)90037-5 – volume: 3 start-page: 119 issue: 3 year: 1980 ident: 62_CR19 publication-title: Appl. Ocean Res. doi: 10.1016/0141-1187(81)90101-2 – volume-title: Proceedings of the 7th European Wave and Tidal Energy Conference year: 2007 ident: 62_CR1 – volume: 48 start-page: 369 year: 2012 ident: 62_CR5 publication-title: Renew. Energy doi: 10.1016/j.renene.2012.05.009 – volume: 35 start-page: 2767 issue: 12 year: 2010 ident: 62_CR16 publication-title: Renew. Energy doi: 10.1016/j.renene.2010.04.029 – volume: 51 start-page: 274 year: 2013 ident: 62_CR17 publication-title: Renew. Energy doi: 10.1016/j.renene.2012.09.054 – volume: 41 start-page: 44 year: 2012 ident: 62_CR2 publication-title: Renew. Energy doi: 10.1016/j.renene.2011.10.002 – volume: 26 start-page: 84 year: 2004 ident: 62_CR13 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2005.03.002 – volume: 4 start-page: 531 issue: 6 year: 2009 ident: 62_CR14 publication-title: IET Renew. Power Gen. doi: 10.1049/iet-rpg.2009.0191 |
SSID | ssj0051541 |
Score | 2.2298608 |
Snippet | The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence... The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 954 |
SubjectTerms | Coastal Sciences Converters Cylindrical waves Damping Energy conversion Engineering Fluid- and Aerodynamics Hydrodynamic coefficients Marine & Freshwater Sciences Mathematical models Numerical and Computational Physics Oceanography Offshore Engineering Radiation Shape optimization Simulation Stepped Velocity Velocity potential Wave energy Wave excitation Wave power |
Title | Hydrodynamic Analysis and Shape Optimization for Vertical Axisymmetric Wave Energy Converters |
URI | http://lib.cqvip.com/qk/86654A/201606/670728223.html https://link.springer.com/article/10.1007/s13344-016-0062-2 https://www.proquest.com/docview/1880832578 https://d.wanfangdata.com.cn/periodical/zghygc-e201606009 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA6iL1YQLy2uN4L4ZBnITJK5PC5FXRTtSxf0oYTcZrfQnbXO2rr--p4zm9ndQhV8G5jkDOTLfOeEnPMdQk5jVnpwiyLiHktynCsxCSCLpDGJsIIL2SB9c5v2-uLqTt6FOu66zXZvryQbpl4Uu3EuMGMCTsAM7ALvrkk8usMm7ifdln7BPzftKllesAjD8fYq838mUFBhOK4Gv-Bz_zqmRbQ5vyBtynqqUleDJQ90sUU2Q-hIuzOst8mKr3bIhyVBwR2y8dV6XQUV6l3yvTd1QJCzpvNUB_0ReHC0HuoHT8dAGKNQiUkhfKVNd2aAjernH_V0NMJ-W5b-0b899U2VIG3S1DEPtP5I-hfn3770otBPIbI8yyaRTUvnIN7LgaV8LE2pMyd0XDgrbGFzKX2i05KbImHcMSczk0iXOsZgFIzw_BNZrcaV3yM0z3Sui1KWXHJYY2OweCs2NhV5bI1POuRgvrDqYaabodKMZZi1yjuEtUutbJAix44YP9VCRBmRUph-hkgpMHg2n9Lae2PwYYufCr9krVB4DugLGKpDPreYLr1-3dhJgH0x-GUwnA6s8gnq80HIWOy_y-QBWceZs6yYQ7I6eXzyRxDbTMwxWete3l-fHzd7-i9cgPE3 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dSxtBFB2KPrQKYq3F1I8OxafKwuzOzH48iiixVftiwBcZ5msTwWy0m1bjr_fezWySghZ8C-zduzBn98wNc-65hOzHrPSwLYqIe2zJca5EEUAWSWMSYQUXskH6_CLt9sSPK3kV-rjrVu3eHkk2TD1vduNcoGIC_gEzyAu8uwy1QI46rl5y2NIv7M_NuEqWFyzCcrw9ynwpBRoqDEZV_x4e9-_GNK82ZwekTVtPVeqqv7ADnayTtVA60sMp1h_JO19tkJUFQ8ENsvrLel0FF-pP5Lo7cUCQ06HzVAf_EfjhaD3Qd56OgDCGoROTQvlKm-nMABvVjzf1ZDjEeVuWPui_nvqmS5A2MnXUgdabpHdyfHnUjcI8hcjyLBtHNi2dg3ovB5bysTSlzpzQceGssIXNpfSJTktuioRxx5zMTCJd6hiDKIjw_DNZqkaV3yI0z3Sui1KWXHJYY2OweSs2NhV5bI1POmR7trDqbuqbodKMZaha5R3C2qVWNliR40SMWzU3UUakFMrPECkFCb_Pbmnz_Sd4p8VPhU-yVmg8B_QFDNUhBy2mC5dfT_YtwD4PfuoPJn2rfIL-fFAyFl_elPIred-9PD9TZ6cXP7fJB8wyVcjskKXx7z9-F-qcsdlr3utnT4jylg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEF5KC0WFolXxbNVFfFJCN9nd_Hgs6nFWrT540BdZ9ued4OVOc7aef70zyebuBBX6FshkAjubbybsN98Q8ixlwUNaFAn32JLjXEASQJFIYzJhBReyjfT783w0FmcX8iLOOW16tnt_JNn1NKBKU708Wbhwsml841wgewL-hhm8AzB4D9A4xW09zk57KIZc3Y6uZGXFEizN-2PNv7lAcYXpvJ58g1f_maQ2lef6sLRt8amDridb2Wh4mxzEMpKednG_Q3Z8fUhubokLHpJbH6zXdVSkvks-j1YOwLIbQE911CKBC0ebqV54OgfwmMWuTAqlLG0nNUMIqf75pVnNZjh7y9IrfempbzsGaUtZR05oc4-Mh68_vRwlcbZCYnlRLBObB-eg9isBsXwqTdCFEzqtnBW2sqWUPtN54KbKGHfMycJk0uWOMbACC8_vk916XvsHhJaFLnUVZOCSwxobg41cqbG5KFNrfDYgR-uFVYtOQ0PlBSuQwcoHhPVLrWyUJcfpGF_VRlAZI6WQioaRUuDw-fqR3t9_jI_7-Kn4eTYKRegAygCtBuRFH9Ot2_929jSGfWP8azJdTazyGWr1QflYPbyWyydk_-OroXr35vztEbmBTjqyzDHZXX7_4R9BybM0j9tt_Rs-QfbS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrodynamic+analysis+and+shape+optimization+for+vertical+axisymmetric+wave+energy+converters&rft.jtitle=China+ocean+engineering&rft.au=Zhang%2C+Wan-chao&rft.au=Liu%2C+Heng-xu&rft.au=Zhang%2C+Liang&rft.au=Zhang%2C+Xue-wei&rft.date=2016-12-01&rft.pub=Chinese+Ocean+Engineering+Society&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=30&rft.issue=6&rft.spage=954&rft.epage=966&rft_id=info:doi/10.1007%2Fs13344-016-0062-2&rft.externalDocID=10_1007_s13344_016_0062_2 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg |