Hydrodynamic Analysis and Shape Optimization for Vertical Axisymmetric Wave Energy Converters

The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface,...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 30; no. 6; pp. 954 - 966
Main Author 张万超 刘恒序 张亮 张学伟
Format Journal Article
LanguageEnglish
Published Nanjing Chinese Ocean Engineering Society 01.12.2016
Springer Nature B.V
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisyrnmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.
AbstractList The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisyrnmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber’s hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.
Author 张万超 刘恒序 张亮 张学伟
AuthorAffiliation College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
AuthorAffiliation_xml – name: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Author_xml – sequence: 1
  fullname: 张万超 刘恒序 张亮 张学伟
BookMark eNp9kE1v3CAQQFGVSt2k_QG9ofbUg9MBjMHH1SppKq20h36dKsQC9hKtYQPOps6vL4mjtuohJy7vzQzvFJ2EGBxCbwmcEwDxMRPG6roC0lQADa3oC7SgpCWVbGt-ghYgW6h4LcUrdJrzNQAnvCYL9PNqsinaKejBG7wMej9ln7EOFn_Z6YPDm8PoB3-vRx8D7mLC310avdF7vPzl8zQMbkzF_KGPDl8El_oJr2I4Fsil_Bq97PQ-uzdP7xn6dnnxdXVVrTefPq-W68owIcbKNJ21rRCyXOwI33Za2FqT1pratEZy7qhuOrZtKTALlost5baxAIUqhGNn6MM8906HTodeXcfbVP6S1X2_m3qjHC1loAFoC_t-Zg8p3ty6PP6FiZQgGeVCFkrMlEkx5-Q6Zfz4GGFM2u8VAfXQXc3dVZmuHrorWkzyn3lIftBpetahs5MLG3qX_rnpGend06JdDP1N8f5sagQIKill7DekYqMS
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_117827
crossref_primary_10_2112_SI83_161_1
crossref_primary_10_1017_jfm_2021_993
crossref_primary_10_3389_fenrg_2020_553295
crossref_primary_10_1016_j_oceaneng_2022_113286
crossref_primary_10_1016_j_rser_2024_114880
crossref_primary_10_2112_SI97_008_1
crossref_primary_10_1007_s13344_017_0076_4
crossref_primary_10_2478_pomr_2023_0029
crossref_primary_10_4031_MTSJ_54_2_4
crossref_primary_10_1080_20464177_2024_2447555
crossref_primary_10_1016_j_renene_2024_121990
crossref_primary_10_1007_s13344_022_0085_9
crossref_primary_10_1016_j_energy_2022_123433
crossref_primary_10_1049_rpg2_12254
crossref_primary_10_1007_s11804_019_00083_9
crossref_primary_10_1016_j_apenergy_2021_117100
crossref_primary_10_1016_j_oceaneng_2022_112189
crossref_primary_10_1016_j_energy_2025_135613
crossref_primary_10_1016_j_rser_2024_114398
crossref_primary_10_3390_jmse10121985
crossref_primary_10_1016_j_renene_2024_120595
crossref_primary_10_1007_s13344_018_0046_5
crossref_primary_10_1007_s13344_019_0027_3
crossref_primary_10_1016_j_rser_2020_110593
crossref_primary_10_1016_j_renene_2024_120333
crossref_primary_10_1007_s00773_020_00705_w
crossref_primary_10_1016_j_renene_2023_03_086
crossref_primary_10_1007_s13344_021_0071_7
crossref_primary_10_1016_j_oceaneng_2024_118212
crossref_primary_10_1007_s13344_018_0036_7
crossref_primary_10_1007_s11804_024_00431_4
crossref_primary_10_1016_j_oceaneng_2023_114818
crossref_primary_10_1016_j_apenergy_2019_113996
crossref_primary_10_1016_j_energy_2023_129427
crossref_primary_10_1016_j_oceaneng_2019_106245
Cites_doi 10.1016/j.renene.2012.01.105
10.1016/j.renene.2011.10.002
10.1007/s00773-014-0268-z
10.1016/j.renene.2014.05.022
10.1016/j.renene.2012.09.054
10.1016/j.apor.2005.03.002
10.1016/0029-8018(86)90037-5
10.1016/j.renene.2010.04.029
10.1016/j.renene.2012.04.044
10.1017/S0022112082001980
10.1049/iet-rpg.2009.0191
10.1017/CBO9780511754630
10.1016/j.renene.2012.02.004
10.1016/0141-1187(81)90101-2
10.1016/j.renene.2012.05.009
10.1145/2001576.2001810
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2016
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2016
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7TN
F1W
H96
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13344-016-0062-2
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
DocumentTitleAlternate Hydrodynamic Analysis and Shape Optimization for Vertical Axisymmetric Wave Energy Converters
EISSN 2191-8945
EndPage 966
ExternalDocumentID zghygc_e201606009
10_1007_s13344_016_0062_2
670728223
GrantInformation_xml – fundername: This paper is financially supported by the National Natural Science Foundation of China
  funderid: (Grant .11572094,51579055 and 51509048)
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
2RA
30V
4.4
406
408
5GY
5VR
5XA
5XB
5XL
8RM
92E
92I
92L
92M
92Q
93N
96X
9D9
9DA
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
W94
WK8
Z7R
ZMTXR
~A9
~LH
~WA
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
H13
HG6
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
ABRTQ
F1W
H96
L.G
4A8
PSX
ID FETCH-LOGICAL-c377t-c6fdd9778219e15bfa7d4a19dc4c9c855e2a6f3b9203d0d57b25d6d00d4a4c9e3
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Thu May 29 03:55:51 EDT 2025
Fri Jul 25 07:53:08 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Tue Jul 01 01:29:47 EDT 2025
Fri Feb 21 02:36:04 EST 2025
Wed Feb 14 10:08:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords complex wetted surface
vertical axisymmetric
geometrical shape
astringency
semi-analytical method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-c6fdd9778219e15bfa7d4a19dc4c9c855e2a6f3b9203d0d57b25d6d00d4a4c9e3
Notes 32-1441/P
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisyrnmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.
vertical axisymmetric; complex wetted surface; semi-analytical method; astringency; geometrical shape
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880832578
PQPubID 2043672
PageCount 13
ParticipantIDs wanfang_journals_zghygc_e201606009
proquest_journals_1880832578
crossref_citationtrail_10_1007_s13344_016_0062_2
crossref_primary_10_1007_s13344_016_0062_2
springer_journals_10_1007_s13344_016_0062_2
chongqing_primary_670728223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
– name: Heidelberg
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitleAlternate China Ocean Engineering
PublicationTitle_FL China Ocean Engineering
PublicationYear 2016
Publisher Chinese Ocean Engineering Society
Springer Nature B.V
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Publisher_xml – name: Chinese Ocean Engineering Society
– name: Springer Nature B.V
– name: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
References McCabe, Aggidis, Widden (CR16) 2010; 35
Falnes (CR6) 2002
Alves, Traylor, Sarmento (CR1) 2007
Koh, Ruy, Cho, Kweon (CR10) 2014; 20
Falcão, Henriques, Cândido (CR5) 2012; 48
Bachynski, Young, Yeung (CR3) 2012; 48
Kokkinowrachos, Mavrakos, Asorakos (CR11) 1986; 13
Yeung (CR19) 1980; 3
Kramer, Frigaard (CR12) 2002
Gomes, Henriques, Gato, Falcão (CR8) 2012; 44
Mavrakos (CR13) 2004; 26
Colby, Nasroullahi, Tumer (CR4) 2011
Mavrakos, Katsaounis (CR14) 2009; 4
Mavrakos, Katsaounis, Apostolidis (CR15) 2009
Hulme (CR9) 1982; 121
Oskamp, Ozkan-Haller (CR18) 2012; 45
McCabe (CR17) 2013; 51
Goggins, Finnegan (CR7) 2014; 71
Babarit, Hals, Muliawan, Kurniawan, Moan, Krokstad (CR2) 2012; 41
M. Colby (62_CR4) 2011
A. Hulme (62_CR9) 1982; 121
J. A. Oskamp (62_CR18) 2012; 45
M. M. Kramer (62_CR12) 2002
R. W. Yeung (62_CR19) 1980; 3
S. A. Mavrakos (62_CR15) 2009
E. E. Bachynski (62_CR3) 2012; 48
J. Goggins (62_CR7) 2014; 71
A. P. McCabe (62_CR16) 2010; 35
R. P. F. Gomes (62_CR8) 2012; 44
S. A. Mavrakos (62_CR13) 2004; 26
S. A. Mavrakos (62_CR14) 2009; 4
K. Kokkinowrachos (62_CR11) 1986; 13
A. P. McCabe (62_CR17) 2013; 51
M. Alves (62_CR1) 2007
A. F. O. Falcão (62_CR5) 2012; 48
A. Babarit (62_CR2) 2012; 41
H. J. Koh (62_CR10) 2014; 20
J. Falnes (62_CR6) 2002
References_xml – volume: 44
  start-page: 328
  year: 2012
  end-page: 339
  ident: CR8
  article-title: Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.01.105
– volume: 41
  start-page: 44
  year: 2012
  end-page: 63
  ident: CR2
  article-title: Numerical benchmarking study of a selection of wave energy converters
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.10.002
– volume: 20
  start-page: 53
  issue: 1
  year: 2014
  end-page: 63
  ident: CR10
  article-title: Multi-objective optimum design of a buoy for the resonant-type wave energy converter
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-014-0268-z
– volume: 71
  start-page: 208
  year: 2014
  end-page: 220
  ident: CR7
  article-title: Shape optimization of floating wave energy converters for a specified wave energy spectrum
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.05.022
– volume: 51
  start-page: 274
  year: 2013
  end-page: 284
  ident: CR17
  article-title: Constrained optimization of the shape of a wave energy collector by genetic algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.09.054
– volume: 26
  start-page: 84
  year: 2004
  end-page: 97
  ident: CR13
  article-title: Hydrodynamic coefficients in heave of two concentric surface-piercing truncated circular cylinders
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2005.03.002
– volume: 13
  start-page: 505
  issue: 6
  year: 1986
  end-page: 538
  ident: CR11
  article-title: Behavior of vertical bodies of revolution in waves
  publication-title: Ocean Eng.
  doi: 10.1016/0029-8018(86)90037-5
– volume: 35
  start-page: 2767
  issue: 12
  year: 2010
  end-page: 2775
  ident: CR16
  article-title: Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.04.029
– volume: 48
  start-page: 133
  year: 2012
  end-page: 145
  ident: CR3
  article-title: Analysis and optimization of a tethered wave energy converter in irregular waves
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.04.044
– start-page: 1739
  year: 2011
  end-page: 1746
  ident: CR4
  article-title: Optimizing ballast design of wave energy converters using evolutionary algorithms
  publication-title: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference
– volume: 121
  start-page: 443
  year: 1982
  end-page: 463
  ident: CR9
  article-title: The wave forces acting on a floating hemisphere undergoing forced periodic oscillations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112082001980
– volume: 4
  start-page: 531
  issue: 6
  year: 2009
  end-page: 544
  ident: CR14
  article-title: Effects of floaters’ hydrodynamics on the performance of tightly moored wave energy converters
  publication-title: IET Renew. Power Gen.
  doi: 10.1049/iet-rpg.2009.0191
– year: 2002
  ident: CR6
  publication-title: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
  doi: 10.1017/CBO9780511754630
– year: 2002
  ident: CR12
  article-title: Efficient wave energy amplification with wave reflectors
  publication-title: Proceedings of the 12th International Offshore and Polar Engineering Conference
– volume: 45
  start-page: 72
  year: 2012
  end-page: 77
  ident: CR18
  article-title: Power calculations for a passively tuned point absorber wave energy converter on the Oregon coast
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.02.004
– volume: 3
  start-page: 119
  issue: 3
  year: 1980
  end-page: 133
  ident: CR19
  article-title: Added mass and damping of a vertical cylinder in finite depth waters
  publication-title: Appl. Ocean Res.
  doi: 10.1016/0141-1187(81)90101-2
– year: 2009
  ident: CR15
  article-title: Effects of floaters’ geometry on the performance characteristics of tightly moored wave energy converters
  publication-title: Proceedings of the 28th International Conference on Ocean Offshore Arctic Engineering
– year: 2007
  ident: CR1
  article-title: Hydrodynamic optimization of a wave energy converter using a heave motion buoy
  publication-title: Proceedings of the 7th European Wave and Tidal Energy Conference
– volume: 48
  start-page: 369
  year: 2012
  end-page: 381
  ident: CR5
  article-title: Dynamics and optimization of the OWC spar buoy wave energy converter
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.05.009
– volume: 48
  start-page: 133
  year: 2012
  ident: 62_CR3
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.04.044
– start-page: 1739
  volume-title: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference
  year: 2011
  ident: 62_CR4
  doi: 10.1145/2001576.2001810
– volume: 20
  start-page: 53
  issue: 1
  year: 2014
  ident: 62_CR10
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-014-0268-z
– volume: 121
  start-page: 443
  year: 1982
  ident: 62_CR9
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112082001980
– volume-title: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
  year: 2002
  ident: 62_CR6
  doi: 10.1017/CBO9780511754630
– volume: 44
  start-page: 328
  year: 2012
  ident: 62_CR8
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.01.105
– volume: 45
  start-page: 72
  year: 2012
  ident: 62_CR18
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.02.004
– volume-title: Proceedings of the 28th International Conference on Ocean Offshore Arctic Engineering
  year: 2009
  ident: 62_CR15
– volume: 71
  start-page: 208
  year: 2014
  ident: 62_CR7
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.05.022
– volume-title: Proceedings of the 12th International Offshore and Polar Engineering Conference
  year: 2002
  ident: 62_CR12
– volume: 13
  start-page: 505
  issue: 6
  year: 1986
  ident: 62_CR11
  publication-title: Ocean Eng.
  doi: 10.1016/0029-8018(86)90037-5
– volume: 3
  start-page: 119
  issue: 3
  year: 1980
  ident: 62_CR19
  publication-title: Appl. Ocean Res.
  doi: 10.1016/0141-1187(81)90101-2
– volume-title: Proceedings of the 7th European Wave and Tidal Energy Conference
  year: 2007
  ident: 62_CR1
– volume: 48
  start-page: 369
  year: 2012
  ident: 62_CR5
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.05.009
– volume: 35
  start-page: 2767
  issue: 12
  year: 2010
  ident: 62_CR16
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.04.029
– volume: 51
  start-page: 274
  year: 2013
  ident: 62_CR17
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.09.054
– volume: 41
  start-page: 44
  year: 2012
  ident: 62_CR2
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.10.002
– volume: 26
  start-page: 84
  year: 2004
  ident: 62_CR13
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2005.03.002
– volume: 4
  start-page: 531
  issue: 6
  year: 2009
  ident: 62_CR14
  publication-title: IET Renew. Power Gen.
  doi: 10.1049/iet-rpg.2009.0191
SSID ssj0051541
Score 2.2298608
Snippet The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence...
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 954
SubjectTerms Coastal Sciences
Converters
Cylindrical waves
Damping
Energy conversion
Engineering
Fluid- and Aerodynamics
Hydrodynamic coefficients
Marine & Freshwater Sciences
Mathematical models
Numerical and Computational Physics
Oceanography
Offshore Engineering
Radiation
Shape optimization
Simulation
Stepped
Velocity
Velocity potential
Wave energy
Wave excitation
Wave power
Title Hydrodynamic Analysis and Shape Optimization for Vertical Axisymmetric Wave Energy Converters
URI http://lib.cqvip.com/qk/86654A/201606/670728223.html
https://link.springer.com/article/10.1007/s13344-016-0062-2
https://www.proquest.com/docview/1880832578
https://d.wanfangdata.com.cn/periodical/zghygc-e201606009
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA6iL1YQLy2uN4L4ZBnITJK5PC5FXRTtSxf0oYTcZrfQnbXO2rr--p4zm9ndQhV8G5jkDOTLfOeEnPMdQk5jVnpwiyLiHktynCsxCSCLpDGJsIIL2SB9c5v2-uLqTt6FOu66zXZvryQbpl4Uu3EuMGMCTsAM7ALvrkk8usMm7ifdln7BPzftKllesAjD8fYq838mUFBhOK4Gv-Bz_zqmRbQ5vyBtynqqUleDJQ90sUU2Q-hIuzOst8mKr3bIhyVBwR2y8dV6XQUV6l3yvTd1QJCzpvNUB_0ReHC0HuoHT8dAGKNQiUkhfKVNd2aAjernH_V0NMJ-W5b-0b899U2VIG3S1DEPtP5I-hfn3770otBPIbI8yyaRTUvnIN7LgaV8LE2pMyd0XDgrbGFzKX2i05KbImHcMSczk0iXOsZgFIzw_BNZrcaV3yM0z3Sui1KWXHJYY2OweCs2NhV5bI1POuRgvrDqYaabodKMZZi1yjuEtUutbJAix44YP9VCRBmRUph-hkgpMHg2n9Lae2PwYYufCr9krVB4DugLGKpDPreYLr1-3dhJgH0x-GUwnA6s8gnq80HIWOy_y-QBWceZs6yYQ7I6eXzyRxDbTMwxWete3l-fHzd7-i9cgPE3
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dSxtBFB2KPrQKYq3F1I8OxafKwuzOzH48iiixVftiwBcZ5msTwWy0m1bjr_fezWySghZ8C-zduzBn98wNc-65hOzHrPSwLYqIe2zJca5EEUAWSWMSYQUXskH6_CLt9sSPK3kV-rjrVu3eHkk2TD1vduNcoGIC_gEzyAu8uwy1QI46rl5y2NIv7M_NuEqWFyzCcrw9ynwpBRoqDEZV_x4e9-_GNK82ZwekTVtPVeqqv7ADnayTtVA60sMp1h_JO19tkJUFQ8ENsvrLel0FF-pP5Lo7cUCQ06HzVAf_EfjhaD3Qd56OgDCGoROTQvlKm-nMABvVjzf1ZDjEeVuWPui_nvqmS5A2MnXUgdabpHdyfHnUjcI8hcjyLBtHNi2dg3ovB5bysTSlzpzQceGssIXNpfSJTktuioRxx5zMTCJd6hiDKIjw_DNZqkaV3yI0z3Sui1KWXHJYY2OweSs2NhV5bI1POmR7trDqbuqbodKMZaha5R3C2qVWNliR40SMWzU3UUakFMrPECkFCb_Pbmnz_Sd4p8VPhU-yVmg8B_QFDNUhBy2mC5dfT_YtwD4PfuoPJn2rfIL-fFAyFl_elPIred-9PD9TZ6cXP7fJB8wyVcjskKXx7z9-F-qcsdlr3utnT4jylg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEF5KC0WFolXxbNVFfFJCN9nd_Hgs6nFWrT540BdZ9ued4OVOc7aef70zyebuBBX6FshkAjubbybsN98Q8ixlwUNaFAn32JLjXEASQJFIYzJhBReyjfT783w0FmcX8iLOOW16tnt_JNn1NKBKU708Wbhwsml841wgewL-hhm8AzB4D9A4xW09zk57KIZc3Y6uZGXFEizN-2PNv7lAcYXpvJ58g1f_maQ2lef6sLRt8amDridb2Wh4mxzEMpKednG_Q3Z8fUhubokLHpJbH6zXdVSkvks-j1YOwLIbQE911CKBC0ebqV54OgfwmMWuTAqlLG0nNUMIqf75pVnNZjh7y9IrfempbzsGaUtZR05oc4-Mh68_vRwlcbZCYnlRLBObB-eg9isBsXwqTdCFEzqtnBW2sqWUPtN54KbKGHfMycJk0uWOMbACC8_vk916XvsHhJaFLnUVZOCSwxobg41cqbG5KFNrfDYgR-uFVYtOQ0PlBSuQwcoHhPVLrWyUJcfpGF_VRlAZI6WQioaRUuDw-fqR3t9_jI_7-Kn4eTYKRegAygCtBuRFH9Ot2_929jSGfWP8azJdTazyGWr1QflYPbyWyydk_-OroXr35vztEbmBTjqyzDHZXX7_4R9BybM0j9tt_Rs-QfbS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrodynamic+analysis+and+shape+optimization+for+vertical+axisymmetric+wave+energy+converters&rft.jtitle=China+ocean+engineering&rft.au=Zhang%2C+Wan-chao&rft.au=Liu%2C+Heng-xu&rft.au=Zhang%2C+Liang&rft.au=Zhang%2C+Xue-wei&rft.date=2016-12-01&rft.pub=Chinese+Ocean+Engineering+Society&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=30&rft.issue=6&rft.spage=954&rft.epage=966&rft_id=info:doi/10.1007%2Fs13344-016-0062-2&rft.externalDocID=10_1007_s13344_016_0062_2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86654A%2F86654A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg